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ABSTRACT 

Pedunculopontine nucleus region deep brain stimulation (DBS) is a promising but 

experimental therapy for axial motor deficits in Parkinson’s disease (PD), particularly gait 

freezing and falls. Here, we summarise the clinical application and outcomes reported over 

the last 10 years. The published dataset is limited – comprising less than a hundred cases. 

Furthermore, there is great variability in clinical methodology, both between and within 

surgical centres. The commonest indication has been severe medication refractory gait 

freezing (often associated with postural instability). Some patients received lone 

pedunculopontine nucleus DBS (unilateral or bilateral) and some received co-stimulation of 

the subthalamic nucleus or internal pallidum. Both rostral and caudal pedunculopontine 

nucleus subregions have been targeted. However, spread of stimulation and variance in 

targeting means that neighbouring brainstem regions may be implicated in any response. Low 

stimulation frequencies are typically employed (20-80 Hertz). The fluctuating nature of gait 

freezing can confound programming and outcome assessments. Whilst firm conclusions 

cannot be drawn on therapeutic efficacy, the literature suggests that medication refractory 

gait freezing and falls can improve. The impact on postural instability is unclear. Most groups 

report a lack of benefit on gait or limb akinesia or dopaminergic medication requirements. 

The key question is whether pedunculopontine nucleus DBS can improve quality of life in 

PD. So far, the evidence supporting such an effect is minimal. Development of 

pedunculopontine nucleus DBS to become a reliable, established therapy would likely require 

a collaborative effort between experienced centres to clarify biomarkers predictive of 

response and the optimal clinical methodology. 
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INTRODUCTION 

The pedunculopontine nucleus (PPN, also known as the pedunculopontine tegmental nucleus 

or PPTg) is a collection of heterogeneous neurons at the junction of the midbrain and pons.
1, 2

 

PPN neurons express a range of neurotransmitters but perhaps most prominently 

acetylcholine.
2
 The PPN displays substantial reciprocal connectivity with the cortex via the 

thalamus, basal ganglia, and spinal cord.
3
 A long and rich history of research in animals 

suggests that the PPN may affect locomotion, the startle response, states of arousal and even 

reward.
4-8

  Of relevance to gait, the PPN has been considered a key component of the 

“Mesencephalic Locomotor Region’ – an area where electrical stimulation in decerebrated 

animals can induce locomotor-like activity, although the relevance of this concept to the 

therapeutic impact of PPN DBS is debated.
2, 3

  

PPN DBS has developed as an experimental therapy for axial motor deficits in Parkinson’s 

disease (PD), particularly those which are poorly responsive to subthalamic nucleus (STN) 

and globus pallidus internus (GPi) DBS.
9-11

 Axial deficits such as gait freezing and postural 

instability are major contributors to impaired quality of life in PD. The initial emergence of 

PPN DBS, therefore, raised much excitement. However, it became apparent that the 

therapeutic outcomes from PPN DBS were variable and often disappointing, both within and 

between surgical centres.
12-16

 This variability may reflect a fundamental limitation of the 

target or alternatively that the methodology has not been optimised yet.   

To try and progress the field, a Working Group was approved as a bi-societal endeavour of 

the international Movement Disorders Society (MDS) and the World Society for Stereotactic 

and Functional Neurosurgery (WSSFN). This group encompasses neurologists, 

neurosurgeons, neurophysiologists, neuropsychologists, and electrical engineers with 
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expertise on the PPN and/or PPN DBS. The initial objective was to summarise, analyse and 

publish on the state of the field. 

The surgical aspects of this work (surgical anatomy and techniques) have been recently 

published in a specialized neurosurgical journal.
17, 18

 This paper deals with medical aspects of 

PPN DBS including the clinical application and outcomes to date.  

 

METHODS 

Literature search 

The PubMed database was searched from 1990 to March 2017 using the key words: deep 

brain stimulation, Parkinson’s disease, pedunculopontine nucleus, surgery, treatment. Only 

publications in English reporting clinical outcomes of PPN DBS in PD were selected.  

Questions and consensus process 

The Executive Committee of the Working Group formulated several questions which were 

distributed to groups of authors according to their expertise - as with previous Task Forces.
19, 

20
 The answers were organized into the manuscript, and reviewed by the Executive 

Committee and the complete task force at multiple international meetings. Areas of 

disagreement were discussed and modified according to Delphi techniques until consensus 

was reached.
21

 The literature was updated during the work. 

 

RESULTS 

Less than 100 patients with PD implanted with PPN DBS have been published.
9, 10, 12-16, 22-27

 

Between and even within surgical centres, there has been substantial variation and often 
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evolution in clinical methodology. Therefore, we must acknowledge the many limitations and 

confounds from these reports. First, the clinical application of PPN DBS employed so far 

does not necessarily reflect the optimal methodology. Secondly, the location of where 

therapeutic effects from stimulation arise has not been established yet. For example, 

electrodes have been implanted in both rostral and caudal PPN subregions.
25, 26

 Furthermore, 

in some cases, stimulation may actually have been directed at networks involving 

neighbouring structures including the cuneiform and peripeduncular nuclei.
27, 28

 In any case, 

the range of stimulation parameters typically employed  means that a range of networks  may 

be implicated in any response.
24, 28

 For example, the differing stimulation frequencies applied 

to the PPN (10 to 80 Hz) may affect the selectivity of neural elements.
29

 For this reason, we 

always imply stimulation of the PPN region when we discuss PPN DBS. Thirdly, the limited 

and heterogeneous dataset prevents us drawing firm conclusions regarding the scope of 

clinical impact. This dataset includes case reports, open label series, double blinded single 

time point assessments, and longer term double blinded studies (table). Finally, PPN DBS has 

evolved as a treatment for axial motor impairment, particularly gait freezing and falls. The 

impact of PPN DBS on other domains have generally been reported as incidental 

observations.  

 

Clinical application 

Indication 

After initial reports suggested improvement in gait freezing from PPN DBS in PD, the typical 

indications became medication refractory gait freezing and falls.
9, 12-14, 16

 Therefore, most 

patients implanted with PPN DBS have fallen into one of these two groups;  
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1. Patients with PD who exhibit early and severe gait freezing resistant to medication as the 

dominant cause of disability are candidates for lone PPN DBS.
30

 This is an unusual 

subgroup, perhaps comprising around 5% of patients with PD.
30

 Indeed, some of these 

patients may later declare features of an atypical parkinsonian disorder.
31

 Patients with 

medication responsive freezing and motor fluctuations are candidates for established 

therapies such as STN or GPi DBS.
32, 33

  

2. Patients with PD who develop medication resistant gait freezing during STN or GPi DBS 

can be candidate for PPN DBS.
12, 15, 22, 25

 However, co-stimulation of both the PPN and 

STN/GPi could cause  an interaction between stimulation at these sites.
34

 On the one 

hand, this could be synergistic, with STN or GPi DBS adding improvement to akinesia 

and ‘off’ freezing compared with lone PPN DBS.
22

  On the other hand, high frequency 

STN or GPi DBS could transmit to the PPN via their extensive reciprocal connections and 

counteract PPN DBS.
2, 7, 35

   

 

Target selection 

The exact location and the anatomical boundaries of the PPN are controversial.
36-38

 

Furthermore, the precise location of stimulation in the brainstem is poorly reflected by 

commissural coordinates. Therefore, some studies have reported the location of PPN 

stimulation relative to local landmarks. A detailed discussion on the surgical anatomy and 

targeting is found in our companion papers.
17, 18

 The following two issues are raised as 

important for understanding the medical management of PPN DBS.   

Rostral vs. Caudal PPN stimulation 

Over time, two topographic regions of the PPN have been posited, rostral and caudal. Studies 

have reported spatially segregated patterns of local field potentials recorded from PPN 
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electrodes in patients with PD. Alpha band oscillations in the caudal subregion (around 4mm 

below the pontomesencephalic junction) were reported to correlate with gait and freezing,
37

 

whereas beta band oscillations in the rostral subregion (around the level of the inferior 

colliculus) were not found to correlate with gait (real or imagined).
37, 39 

Two studies reported 

very limited clinical data that further raised the hypothesis that caudal PPN DBS may be 

more effective than rostral PPN DBS for gait freezing.
37, 40

 Given the surgical trajectory 

usually runs along the long axis of the PPN, it is feasible to target both subregions with the 

same electrode giving the option to activate either.  

Unilateral vs. Bilateral PPN Stimulation  

The relative efficacy of unilateral versus bilateral PPN stimulation is controversial. Some 

practitioners elected to implant unilaterally, given the bilateral connectivity of each PPN and 

the greater risks inherent in bilateral implantation.
2, 13 

In a small double blind study 

employing spatiotemporal gait analysis, bilateral PPN stimulation in seven patients was 

reported as more effective than unilateral PPN stimulation for ‘off medication’ gait 

freezing.
41

 Additionally, some patients implanted with unilateral PPN DBS, have been 

reported to further benefit from contralateral PPN implantation.
42

  

 

Outcome assessments 

A common method to assess outcomes has been the Unified Parkinson’s disease rating scale 

(UPDRS).
43

 The ‘pull test’ item of the UPDRS was the only method used in most studies to 

assess postural instability, however this test is said to suffer poor reliability and scaling 

(score/4).
44

 Gait freezing exhibits substantial fluctuation which makes accurate measurement 

difficult. Some studies of PPN DBS employed specific instruments to capture gait freezing 

such as the Gait and Falls Questionnaire (GFQ, score/64), and the Freezing of Gait 
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Questionnaire (FOGQ, score/24).

45, 46
 Even fewer studies employed objective laboratory 

methods including spatiotemporal gait analysis using a walkway with embedded pressure 

sensors, step tracking with shoe mounted pressure sensors, and fast Fourier transformation of 

trunk accelerometer data.
12, 37, 41

 However, such laboratory methods can confounded by the 

propensity of freezing to disappear under observation.
47

 Some studies therefore employed 

potent triggers of gait freezing such as turning on the spot in a confined space.
12, 41

 Individual 

studies have attempted to assess non-motor deficits such as sleep, cognition, psychiatric state, 

quality of life and adverse events using instruments commonly used to assess DBS in PD.
48
 

 

Postoperative management 

Programming 

Titration of PPN DBS can be complex and time consuming. Factors include the fluctuating 

nature of gait freezing, the unpredictable degree of benefit and the prolonged latencies (days 

to weeks) reported for benefits to emerge.
12-14 

Furthermore, an acute microlesion or ‘stun’ 

effect has been described where gait freezing improves in the early postoperative period prior 

to activation of stimulation.
16, 37, 49

  

The major stimulation variables explored have been stimulation location along the electrode 

(see discussion of rostral vs caudal DBS above) and frequency. Other reported parameters 

have been fairly restricted (e.g. typical pulse width range 60-90 usec,
13, 35

 and voltage range 

from 0.8 to 3.6 V) with monopolar or bipolar configuration.
12, 13, 23

 

All studies have reported that low frequencies (<80 Hz) of PPN DBS seem optimal for motor 

deficits. Studies of bilateral PPN DBS have reported that 20-35 Hz stimulation was useful for 

gait freezing.
12, 14, 22, 23

 One study found that patients responded best to higher frequencies (60 

-80 Hz).
13

 This study differed in two critical respects – the use of unilateral rather than 
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bilateral PPN DBS and the additional goal of treating co-morbid postural instability.

13
 Two 

studies have specifically investigated frequency effects of PPN DBS in PD. One study 

explored differing very low frequencies (5-35 Hz) on reaction time.
23

 This study found that 

20-35 Hz PPN DBS was superior to 5 Hz and 10 Hz stimulation.
23

 Another study directly 

compared the impact of bilateral low frequency (10-25 Hz) versus higher frequency (60-80 

Hz) PPN DBS on gait freezing, akinesia and sleepiness.
35

 Seven of nine patients had less gait 

freezing with low frequency PPN DBS.
35

 Bilateral higher frequency PPN DBS was 

associated with worsened akinesia and sleepiness.  

Titration of medication and stimulation of other targets 

The lack of benefit of PPN DBS on akinesia (see below) has meant that either dopaminergic 

medication or co-stimulation of conventional targets (STN or GPi) has been required to 

maintain the ‘on’ state.
12, 14

 PPN DBS has not been widely reported to substantially change 

dopaminergic medical requirements. In some patients, an ideal motor benefit was achieved by 

reducing the high frequencies normally employed in the STN (e.g. from 130 Hz to 80 Hz) 

during co-stimulation of the PPN.
15, 50

 Even with lone STN DBS, it has been reported that 

lower stimulation frequencies may improve ‘on’ freezing, so it is unclear if this represents a 

specific interaction between the two stimulation locations.
51

  

Stimulation and implantation side effects 

Reversible side effects resulting from PPN region DBS or the microlesion effect from 

implantation mostly relate likely to involvement of neighbouring structures.
17

 These include: 

1. Sensory phenomena. Contralateral paraesthesia likely reflects current spread to the medial 

lemniscus.
12, 22, 52

 This typically habituates over seconds to minutes. A more profound and 

even painful sensation may reflect spread into the more lateral spinothalamic tract.
52

 In a 
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single case stimulation caused ipsilateral pain consistent with spread to the trigeminal 

nucleus.
53 

 

2. Oscillopsia. Typically, reported by patients as ‘shimmering’ vision. Infra-red eye tracking 

demonstrates nystagmus at the frequency of DBS ipsilateral to stimulation. Stimulation of 

fibres in the uncinate fasciculus of the cerebellum and the superior cerebellar peduncle 

(which in turn stimulate the saccadic premotor neurones) is hypothesized.
54

 

3. Limb myoclonus. This may reflect involvement of the ipsilateral cerebellar 

peduncle/decussation.
12

  

4. Urge urinary incontinence with phasic detrusor over activity. This was described in a 

patient from the time of implantation and which recovered over months.
55

 The nearby 

pontine micturition centre was implicated.
55

 

 

Outcomes 

Motor Impact 

1. Gait freezing 

Short term (< 2 years) 

Reduced gait freezing appears to be the major therapeutic benefit of PPN DBS, evident from 

the earliest reports.
9, 24

 However, the evidence base remains modest, with studies being small 

(up to ten patients) and ranging from unblinded open label series to double blinded studies 

with controls.
12-16, 41

 These studies suggest that PPN DBS can improve gait freezing in some 

patients, in both off and on medication states.
13, 41

  Two surgical centres (Toronto and 

Grenoble) employed unilateral or bilateral stimulation to the rostral PPN, and reported 

variable and overall modest improvements.
12, 13

 Another two surgical centres (Oxford and 

Brisbane), applied bilateral stimulation to the caudal PPN region, and also reported modest 
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but more substantial benefits.

14, 41
 Two more surgical centres (Rome and Bristol) reported 

that PPN DBS improved motor function including gait, but did not isolate gait freezing as a 

separate outcome measure.
15, 50, 56, 57

 There are also single case reports of PPN DBS in PD 

with overall mixed results.
25, 26

   

Some inferences regarding the degree of efficacy of PPN DBS on freezing can be attempted 

by using selected studies that reported scores from individual patients.
12-14, 41

 Pooled results 

from three studies that reported individual scores for item 14 (freezing) of the UPDRS part II, 

revealed an overall improvement with PPN DBS of 30% (N=15, mean score 2.2/4 reduced to 

1.5/4) when on medication.
12, 13, 16

 Results of patients from two centres assessed with the 

GFQ (reflecting function whilst medicated) revealed an improvement of 39% (N=7, mean 

45.7 to 27.7).
58

 One double-blind controlled study assessed freezing using spatiotemporal gait 

analysis while off medication, and reported an overall 64.6% improvement (N=7, freezing 

duration 31.1 to 11.0 seconds).
41

 Thus, so far, PPN DBS has been reported to partially 

improve but not abolish gait freezing. Whether such partial benefits are clinically meaningful 

is unclear but perhaps captured in quality of life assessments (see below). Furthermore, there 

is insufficient data to comment on whether PPN DBS differentially affects all the various 

aspects of gait freezing that have been described.  

Longer term (> 2 years)  

One recent paper reported the outcomes at four years after unilateral PPN DBS implantation 

in six patients with PD, with double blinded assessments off and on stimulation (two weeks 

in each condition).
42

 There was persistent benefit in four of the six patients on gait freezing 

and falls.  

2. Other aspects of Gait 
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Two studies suggested that PPN DBS could alter a variety of spatiotemporal parameters 

during unconstrained gait – that is, when walking freely straight ahead.
57, 59

 However, these 

studies had methodological issues, including a set order of conditions, unblinded assessments, 

the potential influence of fluctuating medication state and washout of STN DBS.
59

 In 

contrast, in a double-blinded, controlled study employing spatiotemporal gait analysis, the 

impact of lone PPN DBS on gait was assessed when off medication.
41

 This study reported a 

benefit of PPN DBS on gait freezing. During unconstrained walking, patients with freezing 

had reduced step length and increased step length variability compared to patients without 

freezing. However, these deficits were unchanged by PPN DBS.
41

 This study suggests that 

the impact of PPN DBS differs from that of levodopa and STN DBS, which improve step 

length and thereby presumably also improve off medication freezing.
47, 60

 Therefore, the 

therapeutic benefits of PPN and STN DBS (or levodopa) on gait would be predicted to be 

complementary although this remains to be formally tested.   

3. Balance   

The impact of PPN DBS on overall balance is uncertain.  

Improved postural instability was specifically cited as a potential benefit in one of the earliest 

reports of PPN DBS.
9
 However, few studies have specifically isolated the impact on postural 

instability – and any benefit has been variable and often not detected.
9, 12, 13, 16

 One issue may 

be the shortcomings in the assessment tool for postural instability used by these studies - the 

clinical ‘pull test’ (item 30 of the UPDRS part III and item 3.12 of the MDS-UPDRS, 

score/4).
43, 61

 The pull test may not be sufficiently sensitive or reliable to detect a clinically 

meaningful change.
14, 44

 Another issue may relate to DBS programming as it has been 

suggested that different frequencies of stimulation may be needed to improve postural 

instability compared with gait freezing.
35

 Further research is needed into this area.   

Page 14 of 55

John Wiley & Sons

Movement Disorders

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
Two recent papers suggest that other aspects of balance may be modulated by PPN DBS.

16, 27
 

In these studies, PPN DBS appeared to alter measures of postural sway in centre of pressure 

during stance.
16

 In one study, PPN DBS improved anticipatory postural adjustments.
16

 In 

another study, PPN DBS (during STN stimulation) appeared to improve vestibular perceptual 

thresholds.
27

 The net functional consequences of such effects remain to be established.  

4. Falls 

An improvement in falls frequency with PPN DBS has been documented using item 13 of the 

UPDRS part II (score/4), components of the Rating Scale for Gait Evaluation and the GFQ, 

and patient diaries.
12-14, 16, 23, 42

 Fewer falls with PPN DBS has been a consistently reported 

therapeutic benefit, occurring even in studies where any benefit on freezing or postural 

instability was modest or not found.
13, 23

 This could reflect that falls frequency is a more 

certain and sensitive biomarker of the response to PPN DBS. It is unclear if falls are reduced 

due to less freezing, less postural instability, or another mechanism (for example, a 

paradoxical reduction in falls due to less ambulation or greater use of gait aids has not been 

excluded). In two studies, reduced falls were unrelated to freezing, which suggests that the 

effect is somewhat independent of any reduction in gait freezing.
13, 23

 The benefit of PPN 

DBS on falls is reported to endure over the long term in one study.
42

  

5. Axial deformity 

Two reports describe an apparent benefit of unilateral PPN DBS on Pisa syndrome. In one 

report, the electrode was contralateral to the side of lateral lean and improvement was 

sustained over 14 months, and documented with videotape assessment.
62

 In the other report, 

the electrode was ipsilateral to the side of lateral lean and improvement wore off over 3 years. 

The effect in this case was documented with a wall mounted goniometer.
63

 Such findings 
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seem to mirror the debate regarding whether the direction of lean in Pisa syndrome relates to 

the side most affected by parkinsonism.
64

 

6. Speech 

Three studies have specifically assessed the impact of PPN DBS on speech.
65-67

 In an initial 

study, unilateral PPN DBS was suggested to improve oromotor movements, raising hopes 

that speech could improve.
65

 However, a recent double-blinded study of six patients found 

that bilateral PPN DBS worsened measures of phonation time and speech diadokokinesis 

with overall mixed effects on speech intelligibility.
67

 Considering the current evidence, it is 

not clear whether the overall impact of PPN DBS on speech is helpful or detrimental.  

7. Akinesia, rigidity and tremor 

Almost all studies of PPN DBS have observed no substantial benefit on akinesia, rigidity or 

tremor as assessed by items 1-26 of the UPDRS part III.
12-14, 22

 However, one group has 

consistently reported a possible benefit of PPN DBS on these items, both off and on 

medication.
9, 15, 50, 56

 These patients were generally also receiving STN DBS raising the 

possibility that persistent washout effects could have influenced the results. Furthermore, 

PPN DBS does not significantly change dopaminergic medication requirements and there is 

additional motor benefit following STN DBS.
12, 22

 PPN DBS does not uniformly yield the 

type of reaction time benefits that are reported with levodopa and STN and pallidal DBS.
23, 58, 

68, 69
 Furthermore, double blinded spatiotemporal gait analysis has revealed no change to step 

length with PPN DBS.
41

 Importantly, in one double-blind study, bilateral PPN DBS applied 

at medium frequencies (60-80 Hz) significantly worsened akinesia scores compared with low 

frequency stimulation (15-25 Hz).
7, 35, 70

  

8. Reaction time 
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Studies of at least eight patients that assessed the impact of PPN DBS on reaction time have 

reported a benefit most prominent in simple reaction time tasks.
23, 58, 71

 This reaction time 

benefit was reported to affect the entire reaction time distribution curve and not just outliers, 

argued to reflect a motor impact rather than augmented attention.
23

 A further study suggested 

that this motor effect could be isolated to enhanced release of pre-programmed motor 

responses, supported by the absence of the Start React phenomenon in patients with gait 

freezing that was restored by PPN DBS.
58

  

 

Non-Motor Impact 

1. Cognition and mood 

That the PPN comprises part of the reticular activating system has raised the question of 

whether PPN DBS may improve attention, especially as attentional deficits are implicated in 

the pathogenesis of gait freezing.
72, 73

 A recent study found that bilateral PPN DBS improved 

simple reaction times without a warning cue but not a go/no-go or divided attention task.
71

 

There was a strong trend that PPN DBS also improved simple reaction times with a warning 

cue (p=0.07). However, on the basis that this latter result was not significant, the authors 

argued that PPN DBS improved phasic arousal rather than a motor effect. Though, with only 

eight patients in the study, this may simply reflect insufficient power. Additionally, two 

further studies (discussed in the section above) suggested that the selective impact of PPN 

DBS on certain aspects of reaction time is likely due to enhanced motor performance.
23, 58

 

Thus, it seems currently that there is insufficient evidence to support that PPN DBS augments 

alertness or general attention. 

Several studies of PPN DBS have performed cross sectional cognitive assessments. Two 

studies found no consistent change in the Mattis Dementia Rating Scale or a composite 
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assessment of frontal lobe function in six patients with PPN DBS.

12, 16
 However, several 

studies from the Rome group have reported substantial improvements with PPN DBS on 

frontal lobe cognition in small numbers of patients. For example, two such studies suggested 

improvements in performance on an n-back task and various tasks of executive functioning 

but with limited information regarding the methodology.
74, 75

 One case report claimed that 

PPN DBS improved measures in all tested cognitive domains including attention, memory 

and language, and was perhaps modulated by attentional improvements although this effect 

may have been due to intercurrent factors.
76

 These authors also reported that PPN DBS 

increased prefrontal glucose utilisation using FDG-PET with associated improvements in 

delayed recall and executive functioning.
77

 However, such frontal changes with PPN DBS 

were not found on regional cerebral blood flow PET in three other studies, where blood flow 

changes appeared restricted to subcortical and sensorimotor cortical areas.
15, 78, 79

 

In one study of six patients, PPN DBS did not consistently change scores of the Beck 

Depression Inventory or the Starkstein Apathy Scale.
12

 In another study of four patients, 

anxiety and depression did not change, as assessed by questionnaires (Brief Anxiety Scale, 

Montgomery, and Asberg Depression Scale).
16

 Other major clinical studies (with ≥5 patients) 

have not formally assessed psychiatric outcomes.
13, 14, 22

 However, clinically obvious 

psychiatric effects from PPN DBS were not reported in these studies.  

2. Sleep  

Three studies have specifically assessed whether PPN DBS affects sleep in parkinsonian 

patients.
80-82

 The results suggest a marked impact on switching between sleep states, 

particularly the promotion of rapid eye movement (REM) sleep. This is consistent with 

decades of animal research.
83
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Two studies assessed patients using overnight polysomnography, and both reported that PPN 

DBS roughly doubled the proportion of REM sleep.
80, 82

 In one study of 5 patients with PD or 

PSP,  unilateral PPN DBS increased nightly REM sleep time (mean 35 to 61 minutes) and 

percentage REM sleep (mean 8 to 14%) compared with no stimulation.
82

 Importantly, this 

study found that the increased REM sleep was due to an increased frequency rather than 

duration of REM sleep episodes. Non-REM sleep was unchanged by PPN DBS. Two patients 

experienced REM sleep behavioural disturbance and this persisted with PPN DBS.  

The increased REM sleep episodes with PPN DBS suggest that there may be an underlying 

impact on transitioning between sleep states. In support of this notion, an early study detected 

phasic potentials during and before REM sleep from PPN electrodes consistent with ponto-

geniculo-occipital waves.
84

 One study reported two patients in whom PPN DBS could 

provoke sleep from a state of wakefulness, assessed clinically and with 

electroencephalography.
81

 These patients were alert during low frequency PPN DBS (10 Hz 

or 25 Hz). In one patient, abrupt withdrawal of this low frequency PPN DBS reproducibly 

triggered short periods of REM sleep. In both patients, initiation of high frequency PPN DBS 

(80 Hz) could precipitate non-REM sleep.  

It is unclear what, if any, functional consequence may result from increased REM sleep with 

PPN DBS. Some but not all studies suggest that REM sleep may decline in PD.
85

 REM sleep 

is postulated to improve memory consolidation, particularly that of procedural learning.
86

 

Whether this has mechanistic relevance to the motor impact of PPN DBS is unknown. 

 

Surgical risks 

At this stage, there does not appear to be any contraindication that is specific to PPN DBS 

relative to other forms of DBS for Parkinson’s disease. However, patients would need to be 
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counselled that the occurrence of even a small haemorrhage in the brainstem could have 

devastating consequences.
16, 67

  

 

Quality of Life  

Two double blinded studies have reported on the impact of PPN DBS on quality of life using 

the Parkinson’s Disease Questionnaire-39 (PDQ-39). One study of six patients found that 

PPN DBS did not consistently change scores of the PDQ-39.
12

 However in five of six 

patients, PPN DBS improved scores in the mobility subsection of the PDQ-39.
12

 In a second 

report of six patients, two patients had severe adverse events (infection requiring device 

explanation and brainstem hemorrhage). In the remaining four patients in that study, quality 

of life improved significantly.
16

 

 

DISCUSSION  

Despite more than ten-years history of the use of PPN DBS in patients with PD, the cohort of 

implanted patients worldwide remains limited.
9, 10

 Additionally, only a few centres have 

generated the bulk of the cases and published literature.
12-15, 22

 These factors limit the strength 

and thus inferences that can be drawn from the dataset. 

We have presented a summary of the clinical application of PPN DBS employed to date. 

Clinical methodologies have varied greatly. For example, in some cases stimulation is even 

argued to be directed at neighbouring structures including the cuneiform and peripeduncular 

nuclei.
36, 87

 However, it is conceivable that variance in stimulation location could identify a 

more effective target than the PPN itself. What is evident is that fundamental aspects of the 

clinical application of PPN DBS remain unclear, including if there are specific biomarkers of 
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response to guide patient selection, the ideal stimulation location and parameters of 

stimulation. Indeed, these areas could interact together, e.g., it is possible that postural 

instability may benefit from stimulation of a different PPN subregion, and with different 

stimulation parameters compared with gait freezing.
13

  

Whilst acknowledging the limitations of the dataset, the available evidence supports that PPN 

DBS has the potential to improve gait freezing in both the off and on medication states, and 

can reduce falls in some patients.
12-14, 41 

The impact on postural instability is unclear. The 

degree of improvement is highly variable – both between and within surgical centres. On 

average, PPN DBS offers a reduction and not resolution of freezing and falls. There is no 

known preoperative factor that predicts such benefits. The variability of benefit may reflect 

the differing clinical methods employed. For example, it is difficult to compare outcomes of 

patients implanted with lone PPN DBS compared with those also receiving stimulation in 

other targets (often with reciprocal connections to the PPN). Additionally, axial deficits are 

difficult to capture with the available clinical scales and more objective measures are 

needed.
44

 For example, the consistent benefit of PPN DBS on falls across studies may simply 

reflect that it is an unambiguous and sensitive biomarker of response. Furthermore, it should 

be acknowledged that disease progression in the subgroup of patients with severe gait 

freezing and balance disturbance who are suitable for this therapy is often more aggressive.
88

 

This means that long term outcomes will be particularly important in gauging success of this 

intervention.  

PPN DBS does not clearly improve other aspects of gait such as gait akinesia.
41

 Moreover, 

the evidence does not support any benefit for limb akinesia, rigidity or tremor and thus 

dopaminergic medication requirements do not substantially change after PPN DBS.
12, 13, 23
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Regarding non-motor symptoms, the current evidence does not strongly support any major 

impact on cognition outside of enhanced motor performance.
58

 PPN DBS appears to increase 

REM sleep.
82

 Whether this increased REM sleep has any functional consequences, either 

beneficial or not, is unknown.  

The clinically relevant question is whether PPN DBS can improve quality of life in patients 

with PD. So far, the available evidence supporting this ideal is very modest.
12, 16

 It is clearly 

our hope that refinement of the clinical application of PPN DBS will yield the type of robust 

and consistent benefits seen with DBS of established targets in PD such as the STN and GPi. 

However, we acknowledge the less attractive possibility that the therapeutic action of the 

target itself may be the issue. For example, gait freezing is considered a complex deficit 

which involves dysfunction in widespread networks including attentional and motor systems, 

both cortical and brainstem. Relief of the latter may only have capacity to yield a 

circumscribed benefit. However, even if this were the case, there could still be an identifiable 

subgroup of patients where this benefit could improve quality of life and/or have a synergistic 

relationship with other emerging therapies. Of course, any benefit must be contrasted against 

risks of brainstem implantation.   

So, what are the next steps? First, acknowledge that every centre has successes and failures. 

We need to identify what is different about patients who respond positively, and to identify 

the key predictors of therapeutic efficacy. To achieve this, we need to pool the experience of 

centres that implant the PPN. One initial approach would be a multicentre database capturing 

agreed measures of the clinical application (such as stimulation location) and outcomes. Only 

once the clinical methodology of PPN DBS has been further developed would it be 

appropriate to consider a multicentre randomised controlled trial to assess the impact on 

quality of life. 
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Table: Studies of at least 5 patients that have specifically measured the impact of PPN DBS on gait freezing and falls. Abbreviations; UPDRS = unified 

Parkinson’s disease rating scale, GFQ = Gait and falls questionnaire, FOGQ = freezing of gait questionnaire, RSGE = Rating scale for gait evaluation, FOG = 

freezing of gait 

Study: Author, Date Centre(s)
Number of 

patients 
PPN DBS type

PPN DBS 

frequency

Follow up 

duration
Study design Outcome measures Gait and Falls Outcomes

Ferraye et al, 2009 ³ Grenoble 6
Bilateral rostral                                             

with STN DBS
15-25Hz 12 months Double blind

UPDRS part II, FOGQ, 

Freezing duration

Reduced FOG in 4/6 patients. Reduced falls in 1/6 

patients

Moro et al, 2010 ⁴ Toronto 6
Unilateral rostral                                     

Lone PPN DBS
50-70Hz 12 months Double blind UPDRS part II

Reduced falls in all patients. Reduced FOG in 5/6 patients 

at 3 months and 3/6 patients at 12 months

Thevathasan et al, 

2011 ⁶
Brisbane 5

Bilateral caudal                                          

Lone PPN DBS
35Hz 24 months Open label GFQ and FOGQ

Reduced FOG and falls in all 5 patients at 6 months and 2 

years (but lesser benefit at 2 years)

Thevathasan et al, 

2012 ⁵

Oxford and 

Brisbane
7

Bilateral caudal                                            

Lone PPN DBS                                                       
35-40Hz 2-30 months

Single session 

double blind 

Duration of FOG on gait 

analysis

Significant improvement in FOG off medication. Bilateral 

DBS better than unilateral

Welter et al, 2015 ⁷ Paris 6

Bilateral rostral and 

caudal                                       

Lone PPN DBS

20-40Hz 6 months Double blind

UPDRS part II, RSGE, Gait 

initiation from a force 

platform

One patient required device removal due to infection. 

One patient sustained a brainstem bleed. Of the 

remaining 4 patients - reduced FOG in 3 and reduced 

falls in 2

Mestre et al, 2016 ³⁸ Toronto 8
Unilateral rostral                                          

Lone PPN DBS
70Hz 24-48 months Double blind UPDRS part II

Reduced falls at 2 years in 6/8  patients and at 4 years in 

4/6 patients. Reduced FOG at 2 years in 5/8 patients and 

at 4 years in 4/6 patients. 
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Figure 1:  Three axial sections through the human brainstem showing the position of the PPN. The level of 
the three sections is indicated by the dashed lines in the para-sagittal cartoon of the brainstem. RN, Red 

Nucleus. PPN, Pedunculopontine Nucleus. SN, Substantia Nigra. Adapted from Olszewski and Baxter (1954). 

Figure adapted from Jenkinson et al, Movement disorders 2008.2  
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Figure 2: Schematic illustration of the connectivity of the PPN. Distinct functional types of PPN 
subpopulations innervate basal ganglia and in turn basal ganglia structures project back to different 

neuronal populations in the PPN. It is important to note that projections form the PPN to the structures 
illustrated here are not wholly independent: cholinergic and non-cholinergic neurons from topographically 

distributed populations send collaterals to several structures (e.g. to thalamus and basal ganglia). Likewise, 
descending collaterals of ascending axons contribute to a dense innervation of structures in the lower 
brainstem, pons, medulla, and spinal cord. Figure adapted from Gut et al, Movement disorders 2016.3  
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ABSTRACT 

Pedunculopontine nucleus region deep brain stimulation (DBS) is a promising but 

experimental therapy for axial motor deficits in Parkinson’s disease (PD), particularly gait 

freezing and falls. Here, we summarise the clinical application and outcomes reported over 

the last 10 years. The published dataset is limited – comprising less than a hundred cases. 

Furthermore, there is great variability in clinical methodology, both between and within 

surgical centres. The commonest indication has been severe medication refractory gait 

freezing (often associated with postural instability). Some patients received lone 

pedunculopontine nucleus DBS (unilateral or bilateral) and some received co-stimulation of 

the subthalamic nucleus or internal pallidum. Both rostral and caudal pedunculopontine 

nucleus subregions have been targeted. However, spread of stimulation and variance in 

targeting means that neighbouring brainstem regions may be implicated in any response. Low 

stimulation frequencies are typically employed (20-80 Hertz). The fluctuating nature of gait 

freezing can confound programming and outcome assessments of outcomes. Whilst firm 

conclusions cannot be drawn on therapeutic efficacy, the literature suggests that medication 

refractory gait freezing and falls can improve. The impact on postural instability is unclear. 

Most groups report a lack of benefit on gait or limb akinesia or dopaminergic medication 

requirements. The key question is whether pedunculopontine nucleus DBS can improve 

quality of life in PD. So far, the evidence supporting such an effect is minimal. Development 

of pedunculopontine nucleus DBS to become a reliable, established therapy would likely 

require a collaborative effort between experienced centres worldwide collaborative effort to 

clarify biomarkers predictive of response and the optimal clinical methodology. 
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INTRODUCTION 

The pedunculopontine nucleus (PPN, also known as the pedunculopontine tegmental nucleus 

or PPTg) is a collection of heterogeneous neurons at the junction of the midbrain and pons.
1, 2

 

PPN neurons express a range of neurotransmitters but perhaps most prominently 

acetylcholine.
2
 The PPN displays substantial reciprocal connectivity with the cortex via the 

thalamus, basal ganglia, and spinal cord.
3
 A long and rich history of research in animals 

suggests that the PPN may affect locomotion, the startle response, states of arousal and even 

reward.
4-8

  Of relevance to gait, the PPN has been considered a key component of the 

“Mesencephalic Locomotor Region’ – an area where electrical stimulation in decerebrated 

animals can induce locomotor-like activity, although the relevance of this concept to the 

therapeutic impact of PPN DBS is debated.
2, 3

  

PPN DBS has developed as an experimental therapy for axial motor deficits in Parkinson’s 

disease (PD), particularly those which are poorly responsive to subthalamic nucleus (STN) 

and globus pallidus internus (GPi) DBS.
9-11

 Axial deficits such as gait freezing and postural 

instability are major contributors to impaired quality of life in PD. The initial emergence of 

PPN DBS, therefore, raised much excitement. However, it became apparent that the 

therapeutic outcomes from PPN DBS were variable and often disappointing, both within and 

between surgical centres.
12-16

 This variability may reflect a fundamental limitation of the 

target or alternatively that the methodology has not been optimised yet.   

To try and progress the field, a Working Group was approved as a bi-societal endeavour of 

the international Movement Disorders Society (MDS) and the World Society for Stereotactic 

and Functional Neurosurgery (WSSFN). This group encompasses neurologists, 

neurosurgeons, neurophysiologists, neuropsychologists, and electrical engineers with 
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expertise on the PPN and/or PPN DBS. The initial objective was to summarise, analyse and 

publish on the state of the field. 

The surgical aspects of this work (surgical anatomy and techniques) have been recently 

published in a specialized neurosurgical journal.
17, 18

 This paper deals with medical aspects of 

PPN DBS including the clinical application and outcomes to date.  

 

METHODS 

Literature search 

The PubMed database was searched from 1990 to March 2017 using the key words: deep 

brain stimulation, Parkinson’s disease, pedunculopontine nucleus, surgery, treatment. Only 

publications in English reporting clinical outcomes of PPN DBS in PD were selected.  

Questions and consensus process 

The Executive Committee of the Working Group formulated several questions which were 

distributed to groups of authors according to their expertise - as with previous Task Forces.
19, 

20
 The answers were organized into the manuscript, and reviewed by the Executive 

Committee and the complete task force at multiple international meetings. Areas of 

disagreement were discussed and modified according to Delphi techniques until consensus 

was reached.
21

 The literature was updated during the work. 

 

RESULTS 

Less than 100 patients with PD implanted with PPN DBS have been published.
9, 10, 12-16, 22-27

 

Between and even within surgical centres, there has been substantial variation and often 
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evolution in clinical methodology. Therefore, we must acknowledge the many limitations and 

confounds from these reports. First, the clinical application of PPN DBS employed so far 

does not necessarily reflect the optimal methodology. Secondly, the location of where 

therapeutic effects from stimulation arise has not been established yet. For example, 

electrodes have been implanted in both rostral and caudal PPN subregions.
25, 26

 Furthermore, 

in some cases, stimulation may actually have been directed at networks involving 

neighbouring structures including the cuneiform and peripeduncular nuclei.
27, 28

 In any case, 

the range of stimulation parameters typically employed  means that a range of networks  may 

be implicated in any response.
24, 28

 For example, the differing stimulation frequencies applied 

to the PPN (10 to 80 Hz) may affect the selectivity of neural elements.
29

 For this reason, we 

always imply stimulation of the PPN region when we discuss PPN DBS. Thirdly, the limited 

and heterogeneous dataset prevents us drawing firm conclusions regarding the scope of 

clinical impact. This dataset includes case reports, open label series, double blinded single 

time point assessments, and longer term double blinded studies (table). Finally, PPN DBS has 

evolved as a treatment for axial motor impairment, particularly gait freezing and falls. The 

impact of PPN DBS on other domains have generally been reported as incidental 

observations.  

 

Clinical application 

Indication 

After initial reports suggested improvement in gait freezing from PPN DBS in PD, the typical 

indications became medication refractory gait freezing and falls.
9, 12-14, 16

 Therefore, most 

patients implanted with PPN DBS have fallen into one of these two groups;  
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1. Patients with PD who exhibit early and severe gait freezing resistant to medication as the 

dominant cause of disability are candidates for lone PPN DBS.
30

 This is an unusual 

subgroup, perhaps comprising around 5% of patients with PD.
30

 Indeed, some of these 

patients may later declare features of an atypical parkinsonian disorder.
31

 Patients with 

medication responsive freezing and motor fluctuations are candidates for established 

therapies such as STN or GPi DBS.
32, 33

  

2. Patients with PD who develop medication resistant gait freezing during STN or GPi DBS 

can be candidate for PPN DBS.
12, 15, 22, 25

 However, co-stimulation of both the PPN and 

STN/GPi could cause  an interaction between stimulation at these sites.
34

 On the one 

hand, this could be synergistic, with STN or GPi DBS adding improvement to akinesia 

and ‘off’ freezing compared with lone PPN DBS.
22

  On the other hand, high frequency 

STN or GPi DBS could transmit to the PPN via their extensive reciprocal connections and 

counteract PPN DBS.
2, 7, 35

   

 

Target selection 

The exact location and the anatomical boundaries of the PPN are controversial.
36-38

 

Furthermore, the precise location of stimulation in the brainstem is poorly reflected by 

commissural coordinates. Therefore, some studies have reported the location of PPN 

stimulation relative to local landmarks. A detailed discussion on the surgical anatomy and 

targeting is found in our companion papers.
17, 18

 The following two issues are raised as 

important for understanding the medical management of PPN DBS.   

Rostral vs. Caudal PPN stimulation 

Over time, two topographic regions of the PPN have been posited, rostral and caudal. Studies 

have reported spatially segregated patterns of local field potentials recorded from PPN 
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electrodes in patients with PD. Alpha band oscillations in the caudal subregion (around 4mm 

below the pontomesencephalic junction) were reported to correlate with gait and freezing,
37

 

whereas beta band oscillations in the rostral subregion (around the level of the inferior 

colliculus) were not found to correlate with gait (real or imagined).
37, 39 

Two studies reported 

very limited clinical data that further raised the hypothesis that caudal PPN DBS may be 

more effective than rostral PPN DBS for gait freezing.
37, 40

 Given the surgical trajectory 

usually runs along the long axis of the PPN, it is feasible to target both subregions with the 

same electrode giving the option to activate either.  

Unilateral vs. Bilateral PPN Stimulation  

The relative efficacy of unilateral versus bilateral PPN stimulation is controversial. Some 

practitioners elected to implant unilaterally, given the bilateral connectivity of each PPN and 

the greater risks inherent in bilateral implantation.
2, 13 

In a small double blind study 

employing spatiotemporal gait analysis, bilateral PPN stimulation in seven patients was 

reported as more effective than unilateral PPN stimulation for ‘off medication’ gait 

freezing.
41

 Additionally, some patients implanted with unilateral PPN DBS, have been 

reported to further benefit from contralateral PPN implantation.
42

  

 

Outcome assessments 

A common method to assess outcomes has been the Unified Parkinson’s disease rating scale 

(UPDRS).
43

 The ‘pull test’ item of the UPDRS was the only method used in most studies to 

assess postural instability, however this test is said to suffer poor reliability and scaling 

(score/4).
44

 Gait freezing exhibits substantial fluctuation which makes accurate measurement 

difficult. Some studies of PPN DBS employed specific instruments to capture gait freezing 

such as the Gait and Falls Questionnaire (GFQ, score/64), and the Freezing of Gait 
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Questionnaire (FOGQ, score/24).

45, 46
 Even fewer studies employed objective laboratory 

methods including spatiotemporal gait analysis using a walkway with embedded pressure 

sensors, step tracking with shoe mounted pressure sensors, and fast Fourier transformation of 

trunk accelerometer data.
12, 37, 41

 However, such laboratory methods can confounded by the 

propensity of freezing to disappear under observation.
47

 Some studies therefore employed 

potent triggers of gait freezing such as turning on the spot in a confined space.
12, 41

 Individual 

studies have attempted to assess non-motor deficits such as sleep, cognition, psychiatric state, 

quality of life and adverse events using instruments commonly used to assess DBS in PD.
48
 

 

Postoperative management 

Programming 

Titration of PPN DBS can be complex and time consuming. Factors include the fluctuating 

nature of gait freezing, the unpredictable degree of benefit and the prolonged latencies (days 

to weeks) reported for benefits to emerge.
12-14 

Furthermore, an acute microlesion or ‘stun’ 

effect has been described where gait freezing improves in the early postoperative period prior 

to activation of stimulation.
16, 37, 49

  

The major stimulation variables explored have been stimulation location along the electrode 

(see discussion of rostral vs caudal DBS above) and frequency. Other reported parameters 

have been fairly restricted (e.g. typical pulse width range 60-90 usec,
13, 35

 and voltage range 

from 0.8 to 3.6 V) with monopolar or bipolar configuration.
12, 13, 23

 

All studies have reported that low frequencies (<80 Hz) of PPN DBS seem optimal for motor 

deficits. Studies of bilateral PPN DBS have reported that 20-35 Hz stimulation was useful for 

gait freezing.
12, 14, 22, 23

 One study found that patients responded best to higher frequencies (60 

-80 Hz).
13

 This study differed in two critical respects – the use of unilateral rather than 
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bilateral PPN DBS and the additional goal of treating co-morbid postural instability.

13
 Two 

studies have specifically investigated frequency effects of PPN DBS in PD. One study 

explored differing very low frequencies (5-35 Hz) on reaction time.
23

 This study found that 

20-35 Hz PPN DBS was superior to 5 Hz and 10 Hz stimulation.
23

 Another study directly 

compared the impact of bilateral low frequency (10-25 Hz) versus higher frequency (60-80 

Hz) PPN DBS on gait freezing, akinesia and sleepiness.
35

 Seven of nine patients had less gait 

freezing with low frequency PPN DBS.
35

 Bilateral higher frequency PPN DBS was 

associated with worsened akinesia and sleepiness.  

Titration of medication and stimulation of other targets 

The lack of benefit of PPN DBS on akinesia (see below) has meant that either dopaminergic 

medication or co-stimulation of conventional targets (STN or GPi) has been required to 

maintain the ‘on’ state.
12, 14

 PPN DBS has not been widely reported to substantially change 

dopaminergic medical requirements. In some patients, an ideal motor benefit was achieved by 

reducing the high frequencies normally employed in the STN (e.g. from 130 Hz to 80 Hz) 

during co-stimulation of the PPN.
15, 50

 Even with lone STN DBS, it has been reported that 

lower stimulation frequencies may improve ‘on’ freezing, so it is unclear if this represents a 

specific interaction between the two stimulation locations.
51

  

Stimulation and implantation side effects 

Reversible side effects resulting from PPN region DBS or the microlesion effect from 

implantation mostly relate likely to involvement of neighbouring structures.
17

 These include: 

1. Sensory phenomena. Contralateral paraesthesia likely reflects current spread to the medial 

lemniscus.
12, 22, 52

 This typically habituates over seconds to minutes. A more profound and 

even painful sensation may reflect spread into the more lateral spinothalamic tract.
52

 In a 
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single case stimulation caused ipsilateral pain consistent with spread to the trigeminal 

nucleus.
53 

 

2. Oscillopsia. Typically, reported by patients as ‘shimmering’ vision. Infra-red eye tracking 

demonstrates nystagmus at the frequency of DBS ipsilateral to stimulation. Stimulation of 

fibres in the uncinate fasciculus of the cerebellum and the superior cerebellar peduncle 

(which in turn stimulate the saccadic premotor neurones) is hypothesized.
54

 

3. Limb myoclonus. This may reflect involvement of the ipsilateral cerebellar 

peduncle/decussation.
12

  

4. Urge urinary incontinence with phasic detrusor over activity. This was described in a 

patient from the time of implantation and which recovered over months.
55

 The nearby 

pontine micturition centre was implicated.
55

 

 

Outcomes 

Motor Impact 

1. Gait freezing 

Short term (< 2 years) 

Reduced gait freezing appears to be the major therapeutic benefit of PPN DBS, evident from 

the earliest reports.
9, 24

 However, the evidence base remains modest, with studies being small 

(up to ten patients) and ranging from unblinded open label series to double blinded studies 

with controls.
12-16, 41

 These studies suggest that PPN DBS can improve gait freezing in some 

patients, in both off and on medication states.
13, 41

  Two surgical centres (Toronto and 

Grenoble) employed unilateral or bilateral stimulation to the rostral PPN, and reported 

variable and overall modest improvements.
12, 13

 Another two surgical centres (Oxford and 

Brisbane), applied bilateral stimulation to the caudal PPN region, and also reported modest 

Page 41 of 55

John Wiley & Sons

Movement Disorders

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
but more substantial benefits.

14, 41
 Two more surgical centres (Rome and Bristol) reported 

that PPN DBS improved motor function including gait, but did not isolate gait freezing as a 

separate outcome measure.
15, 50, 56, 57

 There are also single case reports of PPN DBS in PD 

with overall mixed results.
25, 26

   

Some inferences regarding the degree of efficacy of PPN DBS on freezing can be attempted 

by using selected studies that reported scores from individual patients.
12-14, 41

 Pooled results 

from three studies that reported individual scores for item 14 (freezing) of the UPDRS part II, 

revealed an overall improvement with PPN DBS of 30% (N=15, mean score 2.2/4 reduced to 

1.5/4) when on medication.
12, 13, 16

 Results of patients from two centres assessed with the 

GFQ (reflecting function whilst medicated) revealed an improvement of 39% (N=7, mean 

45.7 to 27.7).
58

 One double-blind controlled study assessed freezing using spatiotemporal gait 

analysis while off medication, and reported an overall 64.6% improvement (N=7, freezing 

duration 31.1 to 11.0 seconds).
41

 Thus, so far, PPN DBS has been reported to partially 

improve but not abolish gait freezing. Whether such partial benefits are clinically meaningful 

is unclear but perhaps captured in quality of life assessments (see below). Furthermore, there 

is insufficient data to comment on whether PPN DBS differentially affects all the various 

aspects of gait freezing that have been described.  

Longer term (> 2 years)  

One recent paper reported the outcomes at four years after unilateral PPN DBS implantation 

in six patients with PD, with double blinded assessments off and on stimulation (two weeks 

in each condition).
42

 There was persistent benefit in four of the six patients on gait freezing 

and falls.  

2. Other aspects of Gait 
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Two studies suggested that PPN DBS could alter a variety of spatiotemporal parameters 

during unconstrained gait – that is, when walking freely straight ahead.
57, 59

 However, these 

studies had methodological issues, including a set order of conditions, unblinded assessments, 

the potential influence of fluctuating medication state and washout of STN DBS.
59

 In 

contrast, in a double-blinded, controlled study employing spatiotemporal gait analysis, the 

impact of lone PPN DBS on gait was assessed when off medication.
41

 This study reported a 

benefit of PPN DBS on gait freezing. During unconstrained walking, patients with freezing 

had reduced step length and increased step length variability compared to patients without 

freezing. However, these deficits were unchanged by PPN DBS.
41

 This study suggests that 

the impact of PPN DBS differs from that of levodopa and STN DBS, which improve step 

length and thereby presumably also improve off medication freezing.
47, 60

 Therefore, the 

therapeutic benefits of PPN and STN DBS (or levodopa) on gait would be predicted to be 

complementary although this remains to be formally tested.   

3. Balance   

The impact of PPN DBS on overall balance is uncertain.  

Improved postural instability was specifically cited as a potential benefit in one of the earliest 

reports of PPN DBS.
9
 However, few studies have specifically isolated the impact on postural 

instability – and any benefit has been variable and often not detected.
9, 12, 13, 16

 One issue may 

be the shortcomings in the assessment tool for postural instability used by these studies - the 

clinical ‘pull test’ (item 30 of the UPDRS part III and item 3.12 of the MDS-UPDRS, 

score/4).
43, 61

 The pull test may not be sufficiently sensitive or reliable to detect a clinically 

meaningful change.
14, 44

 Another issue may relate to DBS programming as it has been 

suggested that different frequencies of stimulation may be needed to improve postural 

instability compared with gait freezing.
35

 Further research is needed into this area.   

Page 43 of 55

John Wiley & Sons

Movement Disorders

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
Two recent papers suggest that other aspects of balance may be modulated by PPN DBS.

16, 27
 

In these studies, PPN DBS appeared to alter measures of postural sway in centre of pressure 

during stance.
16

 In one study, PPN DBS improved anticipatory postural adjustments.
16

 In 

another study, PPN DBS (during STN stimulation) appeared to improve vestibular perceptual 

thresholds.
27

 The net functional consequences of such effects remain to be established.  

4. Falls 

An improvement in falls frequency with PPN DBS has been documented using item 13 of the 

UPDRS part II (score/4), components of the Rating Scale for Gait Evaluation and the GFQ, 

and patient diaries.
12-14, 16, 23, 42

 Fewer falls with PPN DBS has been a consistently reported 

therapeutic benefit, occurring even in studies where any benefit on freezing or postural 

instability was modest or not found.
13, 23

 This could reflect that falls frequency is a more 

certain and sensitive biomarker of the response to PPN DBS. It is unclear if falls are reduced 

due to less freezing, less postural instability, or another mechanism (for example, a 

paradoxical reduction in falls due to less ambulation or greater use of gait aids has not been 

excluded). In two studies, reduced falls were unrelated to freezing, which suggests that the 

effect is somewhat independent of any reduction in gait freezing.
13, 23

 The benefit of PPN 

DBS on falls is reported to endure over the long term in one study.
42

  

5. Axial deformity 

Two reports describe an apparent benefit of unilateral PPN DBS on Pisa syndrome. In one 

report, the electrode was contralateral to the side of lateral lean and improvement was 

sustained over 14 months, and documented with videotape assessment.
62

 In the other report, 

the electrode was ipsilateral to the side of lateral lean and improvement wore off over 3 years. 

The effect in this case was documented with a wall mounted goniometer.
63

 Such findings 
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seem to mirror the debate regarding whether the direction of lean in Pisa syndrome relates to 

the side most affected by parkinsonism.
64

 

6. Speech 

Three studies have specifically assessed the impact of PPN DBS on speech.
65-67

 In an initial 

study, unilateral PPN DBS was suggested to improve oromotor movements, raising hopes 

that speech could improve.
65

 However, a recent double-blinded study of six patients found 

that bilateral PPN DBS worsened measures of phonation time and speech diadokokinesis 

with overall mixed effects on speech intelligibility.
67

 Considering the current evidence, it is 

not clear whether the overall impact of PPN DBS on speech is helpful or detrimental.  

7. Akinesia, rigidity and tremor 

Almost all studies of PPN DBS have observed no substantial benefit on akinesia, rigidity or 

tremor as assessed by items 1-26 of the UPDRS part III.
12-14, 22

 However, one group has 

consistently reported a possible benefit of PPN DBS on these items, both off and on 

medication.
9, 15, 50, 56

 These patients were generally also receiving STN DBS raising the 

possibility that persistent washout effects could have influenced the results. Furthermore, 

PPN DBS does not significantly change dopaminergic medication requirements and there is 

additional motor benefit following STN DBS.
12, 22

 PPN DBS does not uniformly yield the 

type of reaction time benefits that are reported with levodopa and STN and pallidal DBS.
23, 58, 

68, 69
 Furthermore, double blinded spatiotemporal gait analysis has revealed no change to step 

length with PPN DBS.
41

 Importantly, in one double-blind study, bilateral PPN DBS applied 

at medium frequencies (60-80 Hz) significantly worsened akinesia scores compared with low 

frequency stimulation (15-25 Hz).
7, 35, 70

  

8. Reaction time 
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Studies of at least eight patients that assessed the impact of PPN DBS on reaction time have 

reported a benefit most prominent in simple reaction time tasks.
23, 58, 71

 This reaction time 

benefit was reported to affect the entire reaction time distribution curve and not just outliers, 

argued to reflect a motor impact rather than augmented attention.
23

 A further study suggested 

that this motor effect could be isolated to enhanced release of pre-programmed motor 

responses, supported by the absence of the Start React phenomenon in patients with gait 

freezing that was restored by PPN DBS.
58

  

 

Non-Motor Impact 

1. Cognition and mood 

That the PPN comprises part of the reticular activating system has raised the question of 

whether PPN DBS may improve attention, especially as attentional deficits are implicated in 

the pathogenesis of gait freezing.
72, 73

 A recent study found that bilateral PPN DBS improved 

simple reaction times without a warning cue but not a go/no-go or divided attention task.
71

 

There was a strong trend that PPN DBS also improved simple reaction times with a warning 

cue (p=0.07). However, on the basis that this latter result was not significant, the authors 

argued that PPN DBS improved phasic arousal rather than a motor effect. Though, with only 

eight patients in the study, this may simply reflect insufficient power. Additionally, two 

further studies (discussed in the section above) suggested that the selective impact of PPN 

DBS on certain aspects of reaction time is likely due to enhanced motor performance.
23, 58

 

Thus, it seems currently that there is insufficient evidence to support that PPN DBS augments 

alertness or general attention. 

Several studies of PPN DBS have performed cross sectional cognitive assessments. Two 

studies found no consistent change in the Mattis Dementia Rating Scale or a composite 
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assessment of frontal lobe function in six patients with PPN DBS.

12, 16
 However, several 

studies from the Rome group have reported substantial improvements with PPN DBS on 

frontal lobe cognition in small numbers of patients. For example, two such studies suggested 

improvements in performance on an n-back task and various tasks of executive functioning 

but with limited information regarding the methodology.
74, 75

 One case report claimed that 

PPN DBS improved measures in all tested cognitive domains including attention, memory 

and language, and was perhaps modulated by attentional improvements although this effect 

may have been due to intercurrent factors.
76

 These authors also reported that PPN DBS 

increased prefrontal glucose utilisation using FDG-PET with associated improvements in 

delayed recall and executive functioning.
77

 However, such frontal changes with PPN DBS 

were not found on regional cerebral blood flow PET in three other studies, where blood flow 

changes appeared restricted to subcortical and sensorimotor cortical areas.
15, 78, 79

 

In one study of six patients, PPN DBS did not consistently change scores of the Beck 

Depression Inventory or the Starkstein Apathy Scale.
12

 In another study of four patients, 

anxiety and depression did not change, as assessed by questionnaires (Brief Anxiety Scale, 

Montgomery, and Asberg Depression Scale).
16

 Other major clinical studies (with ≥5 patients) 

have not formally assessed psychiatric outcomes.
13, 14, 22

 However, clinically obvious 

psychiatric effects from PPN DBS were not reported in these studies.  

2. Sleep  

Three studies have specifically assessed whether PPN DBS affects sleep in parkinsonian 

patients.
80-82

 The results suggest a marked impact on switching between sleep states, 

particularly the promotion of rapid eye movement (REM) sleep. This is consistent with 

decades of animal research.
83
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Two studies assessed patients using overnight polysomnography, and both reported that PPN 

DBS roughly doubled the proportion of REM sleep.
80, 82

 In one study of 5 patients with PD or 

PSP,  unilateral PPN DBS increased nightly REM sleep time (mean 35 to 61 minutes) and 

percentage REM sleep (mean 8 to 14%) compared with no stimulation.
82

 Importantly, this 

study found that the increased REM sleep was due to an increased frequency rather than 

duration of REM sleep episodes. Non-REM sleep was unchanged by PPN DBS. Two patients 

experienced REM sleep behavioural disturbance and this persisted with PPN DBS.  

The increased REM sleep episodes with PPN DBS suggest that there may be an underlying 

impact on transitioning between sleep states. In support of this notion, an early study detected 

phasic potentials during and before REM sleep from PPN electrodes consistent with ponto-

geniculo-occipital waves.
84

 One study reported two patients in whom PPN DBS could 

provoke sleep from a state of wakefulness, assessed clinically and with 

electroencephalography.
81

 These patients were alert during low frequency PPN DBS (10 Hz 

or 25 Hz). In one patient, abrupt withdrawal of this low frequency PPN DBS reproducibly 

triggered short periods of REM sleep. In both patients, initiation of high frequency PPN DBS 

(80 Hz) could precipitate non-REM sleep.  

It is unclear what, if any, functional consequence may result from increased REM sleep with 

PPN DBS. Some but not all studies suggest that REM sleep may decline in PD.
85

 REM sleep 

is postulated to improve memory consolidation, particularly that of procedural learning.
86

 

Whether this has mechanistic relevance to the motor impact of PPN DBS is unknown. 

 

Surgical risks 

At this stage, there does not appear to be any contraindication that is specific to PPN DBS 

relative to other forms of DBS for Parkinson’s disease. However, patients would need to be 
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counselled that the occurrence of even a small haemorrhage in the brainstem could have 

devastating consequences.
16, 67

  

 

Quality of Life  

Two double blinded studies have reported on the impact of PPN DBS on quality of life using 

the Parkinson’s Disease Questionnaire-39 (PDQ-39). One study of six patients found that 

PPN DBS did not consistently change scores of the PDQ-39.
12

 However in five of six 

patients, PPN DBS improved scores in the mobility subsection of the PDQ-39.
12

 In a second 

report of six patients, two patients had severe adverse events (infection requiring device 

explanation and brainstem hemorrhage). In the remaining four patients in that study, quality 

of life improved significantly.
16

 

 

DISCUSSION  

Despite more than ten-years history of the use of PPN DBS in patients with PD, the cohort of 

implanted patients worldwide remains limited.
9, 10

 Additionally, only a few centres have 

generated the bulk of the cases and published literature.
12-15, 22

 These factors limit the strength 

and thus inferences that can be drawn from the dataset. 

We have presented a summary of the clinical application of PPN DBS employed to date. 

Clinical methodologies have varied greatly. For example, in some cases stimulation is even 

argued to be directed at neighbouring structures including the cuneiform and peripeduncular 

nuclei.
36, 87

 However, it is conceivable that variance in stimulation location could identify a 

more effective target than the PPN itself. What is evident is that fundamental aspects of the 

clinical application of PPN DBS remain unclear, including if there are specific biomarkers of 
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response to guide patient selection, the ideal stimulation location and parameters of 

stimulation. Indeed, these areas could interact together, e.g., it is possible that postural 

instability may benefit from stimulation of a different PPN subregion, and with different 

stimulation parameters compared with gait freezing.
13

  

Whilst acknowledging the limitations of the dataset, the available evidence supports that PPN 

DBS has the potential to improve gait freezing in both the off and on medication states, and 

can reduce falls in some patients.
12-14, 41 

The impact on postural instability is unclear. The 

degree of improvement is highly variable – both between and within surgical centres. On 

average, PPN DBS offers a reduction and not resolution of freezing and falls. There is no 

known preoperative factor that predicts such benefits. The variability of benefit may reflect 

the differing clinical methods employed. For example, it is difficult to compare outcomes of 

patients implanted with lone PPN DBS compared with those also receiving stimulation in 

other targets (often with reciprocal connections to the PPN). Additionally, axial deficits are 

difficult to capture with the available clinical scales and more objective measures are 

needed.
44

 For example, the consistent benefit of PPN DBS on falls across studies may simply 

reflect that it is an unambiguous and sensitive biomarker of response. Furthermore, it should 

be acknowledged that disease progression in the subgroup of patients with severe gait 

freezing and balance disturbance who are suitable for this therapy is often more aggressive.
88

 

This means that long term outcomes will be particularly important in gauging success of this 

intervention.  

PPN DBS does not clearly improve other aspects of gait such as gait akinesia.
41

 Moreover, 

the evidence does not support any benefit for limb akinesia, rigidity or tremor and thus 

dopaminergic medication requirements do not substantially change after PPN DBS.
12, 13, 23
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Regarding non-motor symptoms, the current evidence does not strongly support any major 

impact on cognition outside of enhanced motor performance.
58

 PPN DBS appears to increase 

REM sleep.
82

 Whether this increased REM sleep has any functional consequences, either 

beneficial or not, is unknown.  

The clinically relevant question is whether PPN DBS can improve quality of life in patients 

with PD. So far, the available evidence supporting this ideal is very modest.
12, 16

 It is clearly 

our hope that refinement of the clinical application of PPN DBS will yield the type of robust 

and consistent benefits seen with DBS of established targets in PD such as the STN and GPi. 

However, we acknowledge the less attractive possibility that the therapeutic action of the 

target itself may be the issue. For example, gait freezing is considered a complex deficit 

which involves dysfunction in widespread networks including attentional and motor systems, 

both cortical and brainstem. Relief of the latter may only have capacity to yield a 

circumscribed benefit. However, even if this were the case, there could still be an identifiable 

subgroup of patients where this benefit could improve quality of life and/or have a synergistic 

relationship with other emerging therapies. Of course, any benefit must be contrasted against 

risks of brainstem implantation.   

So, what are the next steps? First, acknowledge that every centre has successes and failures. 

We need to identify what is different about patients who respond positively, and to identify 

the key predictors of therapeutic efficacy. To achieve this, we need to pool the experience of 

centres that implant the PPN. develop a high quality dataset of the growing worldwide 

experience of delivering PPN DBS. One initial approach would be a multicentre database 

capturing agreed measures of the clinical application (such as stimulation location) and 

outcomes. Only once the clinical methodology of PPN DBS has been further developed 

would it be appropriate to consider a multicentre randomised controlled trial to assess the 

impact on quality of life. 
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