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ABSTRACT

Aims: Humoralimmurity developsan the spleerduring bloodstagePlasmodium infection
This elicits parasitespecific IgM and IgG which control parasite and protect againsinalaria
Studies inmice haveelucidated ce and moleculegiriving humoral immunity toPlasmodium,
including CD4" T-cells, B-cells, interleukin (IL)21 andICOS. IL-6, a cytokinereadily detected in
Plasmodium-infected mice and humangs recognizedin other systemss a driver of humoral
immunity. Here, we examined the effecf infectioninduced I-:6 on humoral immunity to
Plasmodium.

Methods and ResultéJsing P. chabaudi chabaudi AS (PcAS) infection ofwild-type and

IL-6" mice,we found that IL-6 helped to control parasites during primary infectitin-6 promoted
early production of parasigpecific IgM but not IgG Notably, splenic CD138 plasmablast
development wasnore dependent on H6 than germinal centrd GC) B-cell differentiation IL-6
also promoted-lCOS expression by CD#-cells, as well as their localisation closesgenicB-
cells butwasnot requiredor early Tfhcell development. FinallylL-6 promoted parasite control,
IgM and IgG=preductionGC B-cell development and ICOS expression by Tfh cella second
model, P)L7XNL infection.

Conclusiens:|L-6 promoesCD4" T cell activationand Bcell responseduring bloodstage
Plasmodiumnfection, whichencourages parasigpecific antibody production.

Keywords. Malaria, Cytokine, Humoral Immunity, Costimulatory Molecules, B lymphocyte,
CD4 T lymphecyte,Animal model

INTRODUCTION

Plasmedium-specific antibodiescan control bloodstageparasite nmbers both in humans
and in experimental anima(d-4). In fact, aatibody-mediated parasite controdmains gorimary
mechanism by which natural infection or immunizatmonferspartial immunity to bloodstage
malaria(1, 3).Given that longived immunity to malaria is not easy to inducehumansa better
understanding of howlasmodium-specific antibodies are generatedivo may offe strategies for
improving naturallyacquired and vacciamediated immunity.
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To model the cellular and atecular processes that govern the onset of humoral immunity,
many research laboratories hameaminedinbred nice infected with no#ethal, rodentinfective
Plasmodium strains, such aB. yoelii 17XNL (Py17XNL) andP. chabaudi chabaudi AS (PcAS) (2,
4-8). Detailedimmune process have been identified using thése/ivo systems, which indicate
that CD4 T cells and Bcells interact in the spleen to drive the production of parapieific
antibodies. For example, dag PcAS infection, a rapid and transient blurring of dhd Bcell
zones was reported during the first ten days of infection, which sugdkateearly Fcell and B
cell interactions_occurre(®). Furthermorea strong extrdollicular B-cell response was observed,
whereCD138" antibodysecreting plasmablasts wexabustly generated9). More recently, it was
also shown inprthisymodéhat CD4™ T-cell-derived interleukir21 (IL-21) playeda crucial role in
the development-of the germinal cen&C) reaction, in which somatic hypermutation of activated
B-cells occurswhich drivesthe development of highffinity, parasitespecific IgG antibodie¢4).
Interestingly, .in this report there was little evidence oblefor IL-21 in promoting earljaumoral
immune responses such asgtrafollicular plasmablastdevelopment within the first week of
infection, altheugh=a requirement for 421 for longterm humoral immunity was cleaAnother
recent study usin@cAS infectionreportedthat InducibleT-cell Co-stimulatoy molecule(ICOS)
played an important role in the s#elopment of humoral immunity10), a finding that we
subsequently also"observed durfgl7XNL infection (6). Several recent studies, using a number
of different Plasmodium strains in mice also identified molecules that suppressed the onset of
humoral immunity, including PD1 and Lad3), inflammatory cytokines IFNand TNF(5), and
Type | Interferon sigrniing via IFNAR1 (6, 7) Moreover, we showed that IFNARsIgnalling
exerted its suppressive effects at |gamtially by limiting ICOS expression on CD7Z cells (6).
Therefore,overthe past few yearthe literature has begun tevealthe existence ofactorsthat
regulatethe onset of humoral immunity #lasmodiumin vivo.

The dewvelopment of humoral immunity has been studied in numerous experimeetalssyst
in mice, mest often during viral infections and immunizati®fh-15) butless so during parasitic
infection These“studies also revealed crucial roles for 'CD4ells, Bcells, I1L-21 and ICOS in
promoting lumoral responses, as well almegenumber of other molecules including the cytokine,
IL-6 (11-17). During viral infection and immunization, 1& was repded to play specific roles
different todl=21, for example in driving early plasmablast respoil$ésl8). In addition, IL-6 has
been reported to Support ICOS expression by FoXpsy cellsin aged miceén vivo (19), by human
CD4" T-cellsduringin vitro culture (20), andlate during infection by LCMVspecificCD4" T cells
(12). However, whether 1-:6 plays any such roles durirfgasmodium infection has yet to be
determined
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IL-6 is a pleiotropic cytokinelt is expressed by many different cell types throughout the
body, and can exert its functions wi#ferent signaling proceses termed classical and trans
signalling (21). Notably|L-6 is readily detected in the plasma of humans and mice infected with
blood-stage Plasmodium parasites(22-25). Previous studieslemonstrated a role for infection
induced IL-6 in driving pathology during?lasmodium infection (26-28) Anotherinteresting study
improved IgG" antibody responses via exogenous injection of recombiha6tcytokine (22),
which suggested that 16 can control the development of humoral immune responses during
Plasmodium infection Here, weprincipally employedPcAS infection of C57BL/6J mice tturther
explore a role.for infecticinduced IL-6 in the development of humoral immune responses during

experimental bloogtage malariawith a specific focus on Bell and Fcell responses in the spleen

MATERIALSAND.METHODS

Animal Ethics

All procedureson~animalswere approved by the QIMR Berghofbtedical Research Institute
Animal Ethics'Committeéapproval numbers AGB33M and A1503-601M), in accordance with the
“Australian Code of Practice for the Care and Use of Animals for Scientific Purposes” (Australian
National Health and Medical Research €ail).

Mice and Plasmodium infections

Femalewild-type (WT) C57BL/6J mice (6-12 weeks old) purchased from Australian Resource
Centre (Canning Vale, Western Australia) amdre maintained under conventional conditions.
C57BL/6JIL-6Z=mice were maintained ihouse. Plasmodium chaubadi chaubadi AS (PcAS) or P.
yoelii 17XNL (Pyl7XNL) parasites werpreparedafteronein vivo passage iWwT C57BL/6J mice

and were injected™in 200ul volumes via intravenous tail-vein injection such thamice received
either 10° pRBGs*PcAS) or 10 pRBCs Pyl7XNL). Peripheral blood from tail bleeds were
assessed fgparasitemiaby preparing thin blood smears and usiff -Quick stains(Lab Aids,
Narrabeen, NSW, Australidylore usually, we employed antablishedflow cytometric method to
measure parasitem{@9). Onedrop of blood(~20ul) was diluted in 250ul RPMt 5U/ml heparin
sulphate and then cetained with Syto84 (5uM; Life Technologies) and Hoechst33342 (10pg/mil;
Sigma) for 30 minuteGoom temperatuten the darlk Reactionsverestoppedwith ice-cold RPMI
(10x volumes) immediately analysed by flow cytometryBD FACS Cantoll or LSR Fortessa
analyser (BD Biosciencesand FlowJo software (Treestar, CA, USARBC were detected as
Hoechst33342Syto84. PBMC were easilgxcluded on the basis of size, granularity and much
higher Hoechst33342/Syto84 staining.
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Detection of parasite-specific serum antibodies by ELISA

Plasmodium antigen extract was prepared and ELISAs conducted a&mpsty described6, 3Q
31). 96well flat-bottomed plates(Costar EIA/RIA)were coated overnightith Plasmodium extract
(2.5pg/ml) in bicarbonate buffer (p19.6), overnight at 4°C. The following day, platesre washed
three times (0.005% Twe&?0 in PBS) and blockedvith 1% BSA/PBS for 1hr at 37C. After
washingthree times, 100ul afiluted sera(1/400 was added. Plates weareubated for 1hr at 3€.
Plates were then washed six times, and thetinylated antlgM or antttotal IgG (Jackson
ImmunoResearchyas adledfor 1hr at room temperaturBlates were again washed six times, after
which streptavidingHRP (BD Biosciences) was adfé®d30 minutes at room temperaturethe
dark Wells wereswashed six times prior to devatgpwith 10Qul of OPD (SigmaAldrich) for five
minutes in the/datk Colour changes were fixediith 100ul of 1M HCI. Absorbance was
determined at.492nmn a Biotek synergy H4 ELISA plate reader (Biotek, USA). Data were

analysed using.Gen5 software (version 2) and GraphPad Prism (version 6).

Flow Cytometryrand-Antibodies.

Splenocyteswere prepared as previously descril§g®). Monoclonal antibodies, anthouse B220
Alexa Fluor 700 (RA%B2), B220Pacific blue (RA36B2), CD19FITC (6D5), CD138BV605
(2812), IgD-APCCy7 (1126c.2a), IgMPECy7 (RMM1), TCR3-Alexa Fluor 700 (H5%97),
TCRB-APC/Cy7 (H57597), CD4BV605 (RM45), ICOSPE (7E.17G9),CD23-APC (B3B4),
CD21/CD35 (7E9)StreptavidinPE/Cy7 and Zombie Aqua™ fixable viability dye were purchased
from Biolegend (San Diego, CA). Aathouse CD95/FaBV421 (Jo2), CXCRbiotin (2G8), and
Bcl6-PerCP/Cy55,(K11-31) were sourced from BD Biosciences (Franklin Lakes, NJ).-PD1
APC/Cy7 (J43)purchased from eBiosciedeRCS stainingvas performed as previously described
(32, 33).

In vivo | L-6R blockade.
Anti-IL-6R blocking monoclonal antibody (clone MES, Chugg Japan) and its isotype control
mADb were administered in 0.5mg doses, iiainjection in 20Qul 0.9% NaCl (Baxter) on the day

of infection,-and subsequently on days 3, 6 and 9 post infection.

Confocal microscopy analysis
1020 pum frozen spleen sectiomgere employedas previously describe(B4, 35). Tssues were
snapfrozen in optimal cutting temperature (OCT) medium (Sakura) and stor8@°Gt Sections

were fixed (10 minutes)in ice-cold acetonebefore adding amMCD3-Biotin (clone-17A2), anti-
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B220PE (cloneRA3-6B2) and antrlICOSAPC (cloneC398.4A). AntiCD3 was detected by
streptavidin-Alexa Fluor 594. All antibodies were sourced from Biolegesan Diego, CAlIn
addition, we use®API was used thelp visualization of white plp. We imaged samples usirg
Zeiss 786ENLO laserscanning confocal microscope (Carl ZgisResulting image ata was
analysed using Imaris image analysis software, version 8.1.2 (Bitplane). Cells wereei@isiifig
the “spots functioh in Imaris, with thresholdset at<10uM and intensities set at150.The border
between T and ®ell zoneswere defined by the region between C22lls closest to the B cell
follicle and. B220 cells furthest into the -Tell zone.All objects were manually inspected for

accuracy before data were plotted and analyzed in GraphPad Prism (version 6)

Statistical analysis

Comparison between two groupasperformed usg nonparametric MarkWhitney tests. P<

0.05 was considered significant (P<0.05 = *0R4.=**; P<0.001 =***; P<0.0001=****), Graphs

depict mean values + SEM, except where individual mouse data points are depicted, in which case
median values are'shown. All statistical analyses were performed using Gtdpidta v6 or v7

software.

RESULTS

I L-6 promotes parasite control during PcAS infection.

To begin exploringa role for IL-6 duringexperimental bloogtage malariaC57BL/6J wild-type
(WT) and IL-6" mice were infected witlPcAS andexaminedover a time courséor peripheral
blood parasitemi@WT andIL-6" mice displayedsimilar parasitemia overthe firstten daysof
infection (Figure 1A) However, for approximately one weeketbafter IL-6"" mice exhibited
higher pardtemiasthan WT controlgFigure 1). Ultimately, IL-67 mice resolved primarPcAS
infection (Figure..1A), indicating a modest role for-f in controlling parasite number3.o
substantiate these findings, WT mice wetso treated with antlL-6R (a-IL-6R) blocking
antibody oran.isotype control durind?cAS infection and parasitemiasimilarly assessedL-6R
blockade transientlimpaired parasite contrélom day 1217 p.i. with PCAS infection (Figure 1B)
once again suggesting that-6 played a nomedundant role in optimizing parasite contdoiring

PcAS infection
I L-6 promotes early humoral immune responses during PcCAS infection.
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Given that IL-6 supportegarasite control after peak parasiteing been reache@henhumoral
immune responses ao®nsderedto act (36, 37), we next examinedhe impact of 16 on the
development of humoral immumesponsedrirstly, parasitespecific IgM levels, but nototal IgG
levels weresignificantly lowerin IL-6" mice compared to infected WT conspét theend of the
second week of infectio(Figure 2), suggesting a role for-B.in supporting early production of
parasitespecific IgM but not I1gG.

A previoussingle study reportecbbustdifferentiationof CD138" antibodysecreting cells
in the spleen during the second weelPAS infection,particularlyin areas outsidB-cell follicles
(9). Here, wefirst confimedat day 8p.i. that PCAS infection had triggered potent development of
CD138 plasmablast in the spleerthat werealmostexclusively CD2f €D23°, consistent with
extrafollicularlecalisationFigure3). Next, IL-6" mice displayed significantly reduced proportions
and absolutehumbers ofsplenic IgD'°CD138 plasmablasts compared tofected WT controls
(Figure4A), althoughearly GC B-cell developmentvas lessaffected(Figure 4B. Together, these
data suggested that -& supportedsplenic plasmablastievelopment angbarasitespecific IgM

production durind?eAS infection

| L-6 supportsCOS expression by splenic CD4" T-cells

Previous reports®showed that duriRgAS infection splenic CD138 cells developed in extra
follicular areas;,close to-ell zones in the splegB). More recently we showedluring Py17XNL
infection, thatsplenicCD138 plasmablastievelopmentvas almost entirely dependent on CO4
cells (6). Therefore, we hypothesized that reduced plasmablast developmeht6if mice
compared to?WT controls was linked to effects dACT cell activation. Given reports in other
experimental systems that-B.can supportCOS expressiornl2, 19, 20) we assessed ICOS-up
regulation on. splenic CD4T-cells 8 days afterPcAS infection (Figure B). We noted a
impairment in=l€COS upregulation, in terms of the proportion and absolute numbersetls T
expressing=lCOS«(FigurgA), as well as the magnitude of ICOS expression by those cells which
had upregulated-this marker. Thus, ICOSregulation by splenic CD4T cells duringPcAS
infection wagpartially dependent upon IL-6.

Next, given that ICOS expression by CD% cells has been implicated in facilitating
interactiongwith 1ICOSigand-expressing Bells at the periphery of-Bell zones(14, 38, 39),we
examined the impact of -6 on CD4 T-cell localization within the spleen (Figus). Densities of
ICOS’ T-cells at the T/B bordeand within Bcell follicles were significantly reduced in spleens of
IL-67 mice compared to WT controls (Figus) by 8 dayspi, consistent with the idethat IL-6-
supportednteractions betweelCOS CD4" T-cellsand Bcells. Taken together, our data suggested
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237 that IL-6 supported early expression of ICOS by CO4cells, and their subsequent interaction
238  with B-cells located outside or at the periphery ofdd-follicles.

239

240 IL-6isnotrequired for early development of Tfh-like cells during PCAS infection.

241  IL-6 haspreviouslybeenreported tosupportCD4" T follicular helper (Tfh) celdifferentiation in
242  viral infection' models 12 , 40)Tth cells have been reported to develop in severatmodium
243  infection models includind®cAS infection (2, 4, 5). Therefore, we next exploreghether IL-6
244 influencedthe differentiation of Tfh cellsWT and IL-6" mice were infected witiPcAS, and
245 splenic CD4 T-cells examined eightays p.i. for the expression of Tfh markersSimilar
246  proportions angbselutenumbers okplenic CD4 T cells upregulated PD1 and CXCRS5, Bcl-6
247 and CXCR5in'bethWT andIL-6" mice, suggesting that -6 played noessentiatole in earlyTfh
248  differentiationduring PcAS infection (Figure 6A). However ICOS expression wasignificantly
249  reduced orthese emerging Tfh cells I1b-6" mice compared tWT controls (FiguréB). Together,
250 these data suggested thatGhvas not required foearly Tth differentiation during?cAS infection,
251  but did influencestheir expression of ICOS.

252

253  Effect of IL-6/0n humoral immune responsesin a second model, P. yoelii 17XNL infection.

254  Finally, we sought to determine whethiér-6 promotedthe development of humoral immune
255 responsesn assecond modePyl7XNL infection Firstly, we noted thalL-6 was required for
256  optimal contrel*of primary parasitemia, particularly during the second and third weefectian
257 (Figure 7A), and similar to observations madeiry PcCAS infection, wasultimately resolved
258  Next, we found that IL6 supported not only paras#pedfic IgM production, as seen durifRgAS
259 infection, but also IgG production, which had not bebserved durind®cAS infection (Figure
260 7B). Consistent with thid].-6 promotedGC B-cell development by day 14 &17XNL infection
261 (Figure 7C). gFinally, as witiPcAS infection, ICOS expression byfh cells but not in their
262  developmeniper=se; was partly reducedh the dsence of IL6 (Figure 7D. Therefore, taken
263  together ourdataindicatedthat IL-6 supported the development of humoral immune responses
264  duringPy17XNL infection, including parasitspecificilgM and IgG production, ICOS upregulation
265 on CD4 T-cellsand GC Bcell development.

266 DISCUSSION

267 In this study we reportn vivo roles for endogenoudL-6 in supporting CD4 T-cell
268  expression of ICOS and localization neacdls, differentiation of splenic Bells into CD138
269 plasmablaster GC Bcells production of parasitepecificantibody and optimal control ablood-
270 stagePlasmodium parasites Although previous reports have studied-@Lin mouse models of
271 malaria, these haveended to be in relation to immupathology and the effects of exogesou
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recombinant IL6 (22, 26-28) Therefore, to our knowledgéhis is the first study to suggest a
positive role for infectioninduced IL-6 in supporting the early development of humoral immune
responses during bloatagePlasmodium infection.

Although it is generally accepted tHlasmodium-specific antibodies can provide excellent
protection against malarié2, 3) our understanding of immunological factors that control the
development‘othesehumoral immune responses during infectimhmited. Current understanding
of cytokinemediated control of humoral immunity derivesostly from viral infection or
experimetal immunization in micein which roles for 1-:21 and 11-6 have been describétll, 12
40-42).More recently, v and others haveeportel suppressive roles fdFNy, TNF and Type |
IFN-signallingy”andpositive role for IL-21 in controllinghumoral immunityduring Plasmodium
infection (4-8, 43)#In particular, I.-21 mediated GC Bell responses and IgG class switching but
not Tfh cell developmentr pasmablast responsé$). This study found that IL6 alsoplayed no
essential role_in_early Tfh cell developmeaxcept in terms of supporting ICOS expreasibut
was importantin supportingB-cell responsesand antibody productionTaken together, these
observations ssuggest that duriRtasmodium infection, neither 121 nor IL-6 are cruciafor the
initial development: of Tfh cells. Instead these cytokiappear toplay other distinctroles: IL-6
optimizesICQS-dependent positioning @&D4" T cellsin B-cell areas of the splegandinfluences
the development=of spleniB-cell responses andntibody production, while 121, produced
predominantly.by Tfh cells within théC, influences IgG production. These observations suggest
differing roles«for IL-6 and IL-21, where 16 may tend toact earlier to drive extréollicular
plasmablastdevelopment while IL-21 is producedlater in the GC and acts to drive affinity
maturation ofilgG antibodies.

One impeortant question remaining from our studywhether 1-:6 influenced splenic
plasmablast development indirectly by driving ICOS expression on” GBeells, or directly via
signalng to activated Rells. Given that 1-6 was previouslyidentified as Bcell stimulatory
factor2 and-Beell-Growth Factor, it is important t@cognizets capacity for signalling directly to
B-cells (44-4¢ . Thereforewhile IL-6 may haveacteddirectly on B-cells, therelative contribution
of IL-6-signalling to TFcells and B-cells in driving plasmablast development remains to be
determined.

Another important question that remains is whether cytokines other tkizhdhd 11-6 are
crucial for the early development of Tfh cells duriRgAS infection. Our recent singleell
transcriptomic study showed that CDZ-cells passed througlan intermethte state prior to
becoming an early Tth cef#t7), but that no cytokine or chemokiseggnalling pathwaygother than
CXCR5 expressionglearly associated with early Tfh cell developmenhese data suggest that

CD4" T cells passhrough a TfHlike intermediate state before final commitment towar@éh fate

This article is protected by copyright. All rights reserved



307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

without a requirement for any cytokine-signalling. Instead, capture of IGXER5 CD4" T-cells
by B-cells may play the majople in driving final Tflrcell commitment.

During PcAS infection we noted a modestole for IL-6 in promoting GC Ecell
developmentwhich héd for percentages but not absolute numhsr8-cells in the spleen. The
reason for thispparentdiscrepancy wasnclear, but suggespossible differences lymphocyte
infiltration or retention in the spleen in WT comparedlies” mice. The possiblysubtle effect of
IL-6 on theGC reactionduring PcAS infection requires urther studyat later timepoints In
contrast, ouexperimentausing Py17XNL parasites revealed a clearer role fot6llin promoting
IgG production andsC B-cell development by the end of the second week of infectibas,bur
datasuggesthat depending on thlasmodium infection model employed, H6 plays a mild to
moderate roletinspromoting th@C reaction and IgG production, but a strengple in promoting
IgM production | However, further studies are required to studynore detailthe role of IL-6 in
maintaining IgG_production and GC &l responseduringPlasmodium infection

In this study we found that in the absence oB|lparasite control and antibody production
was impairedsinstwo model infections. These observations suggest, but do not prowg airaci
parasite controkiiil=6"" micewas dueo reduced antibody production. It is also possible that other
immune responses, for example Thl differentiation, may have been affecteebbyeflciency.
We believe studies are warranted to examine further the role-6fitLcellular and humoral
immunity to malaria.

Given.that 1l-6 played early roles during infection but was not essential for ultimate control
of parasites, we speculate thatcortrag to IL-21, IL-6 mediatesan early attempt by the host to
control parasite numberalthough, sucha response providesome protection against parasites, it
is not immediately obvious whether this benefits the host or parasite. For instageontrol of
parasite numbers/could reduce disease severity, keeping the hostatlivadso facilitating
tramsmission. gsMoreover a greaterfocus of the humoral response on shimed plasmablast
responsesndlgMsproduction could theoretically distract from longeed and highaffinity 19G
production 'which™again couldencourage the establishment of chronic infection fawilitate
transmission.Therefore although H6 promoted early humoral immune responses, and appeared
non-essential dr resolution of infection, the effect of 46 on longerterm immunity, chronic
infection and/ortransmissiorremains to be studied. In summatlyis study has demonstrated that
IL-6 can promot@arly humoral immune responses duriRgAS infection, which further cements
the conceptthat innate and prmflammatory cytokines are important potential targets for

modulating antparasiticantibodyresponseduring bloodstagePlasmodium infection
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FIGURE LEGENDS

Figure 1. | L=6-signalling contributes to parasite control during PcCAS infection. WT andIL-6-/'

mice (n=6) were infected witRcAS. (A) Shows a time&ourse analysis of parasitemia in WT and

IL-6" mice. (B) Shows a timeourse analysis of parasitemia in WT mice treated withlar@R
blocking monoclonal antibody or control IgG. Data representative of three independent
experiments. Statistics: MafWhitney U test, *P<0.05; **P<0.01

Figure 2. IL-6 supports IgM production during PcAS infection. WT andIL-6'/' mice (n=56)
were infected witPcAS. Graphs showPcAS-specific IgM and total IgG (serum diluted at 1/400)

antibody levels_in_serum of naive and infected WT tinﬁ'/' mice, 14 days posinfection .i.).
Datais pooled*from2 independent experimentach showing similar resultStatistics: Mann
Whitney U testp#***#*P<0.0001.

Figure 3. Early plasmablast formation during PcAS infection is extra-follicular. C57BL/6J
mice (n=5) were,infected witHiPcAS and splenic plasmablast formation assessed, 8 dayPgta

shows FACSplots and proportions of CD2CD23° pIasmabIasts(BZZO+CD19+IgDIOCD138hi,
denotedPcAS CD138) or nonplasmablast$B220 CD19'CD138’, denoted PCAED138) in the

spleens of nalvand,infected miceData representative ofiedependent experiments.

Figure 4. | L-6 prémotes splenic plasmablast development during PcASinfection. WT andIL-6

g mice (n=56) were infected witfPcAS. (A) Shows representative FACS plots, proportions and
numbers of.splenie plasmablasts (B+22019+IgDIOCD138hi) in naive and infected spleens, 8 days
p.i.. B) Shows'representative FACS plots, proportions and numbers of spleniecéld Byated as

8220*CD19*GL-7+Fas+) in WT andIL-6" mice, 8 day.i.. Data representative 8findependent
experimentssStatistics: MatWhitney U test, *P<0.05; **P<0.01.

Figure 5. IL-6 supports | COS expression and positioning of CD4" T-cells within splenic B-cell

areas. WT and IL-6'/' mice (n=56) were infected withPcAS. (A) Shows representative FACS
plots, proportions, absolute numbers and ICOS levels of splenic’ICO& T-cells (gated on
CD4" TCRB" live singlets) in naive, anBcAS-infected WT andL-6" mice, 8 days p.i.. Data
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representative of 3 independent experiments. $Bpws representative distribution pattern and

densities of ICOS expressingcélls in splenic B borders and &ell follicles of naive, WT and

IL-6'/'mice, 8 day®.i.. Each symbol represents on® border or follicle in the spleen. Data pooled
from 34 T-B borders or follicles per mouse with n=2 for naive and n=4 for WT and n=5-%f IL
mice. T-B border defined by region between CDRlIs farthest into follicle (dotted white line,
bottom) and B220cells farthest into the-Eell zone (dotted white line, tophcale bar, 100M.
Statistics: ManfWhitney U test, *P<0.05; **P<0.01; ****P<0.0001.

Figure 6. IL-6=signalling is not essential for early Tfh cell development during PcAS infection.

WT and IL-6!" mice (n=56) were infected withPcAS. (A) Shows epresentative FACS plots,
proportions and absolute numbers of spl@idd" CXCR5 or Bcl-6" CXCRS5' cells (gated on CD4
TCRB" live singlets) at day 8 p. i.. (B) Shows ICOS expression levels 66'BEXCR5 CD4" T-
cells at day "8pii"Data representative of2 independent experiments; Mawhitney U test
*P<0.01.

Figure7. IL-6-signalling promotes humoral immuneresponsesin a second model, Py17XNL
infection. WT.andILt6" mice (n=56) were infected witPy17XNL. (A) Time-course analysis of
parasitemiainWT antL-6_/' mice infected witlPy17XNL. (B) Pyl7XNL-specific serum IgM and
total IgG (serumsdiluted at 1/400, 1/800, 1/1600 & 1/3200) in naive and infected \/\/I'I:@ﬁld
mice, 14 day®.i. (C) Representative FACS plots, proportions and numbers of splenic G0B-
(gated as B22@D19’ GL-7+Fas+) in naive and infected spleens, 14 days(D) Representative
FACS plots, prepertions and numbers of splenic +CH;IRB+ PD1 CXCRS5 cells in naive and
infected WT andL<6" mice, 14 dayg.i., and ICOS expression on CTIPCRB*PD1+CXCR5+
cells. Statistics: ManAVhitney U test *P<0.05; **P<0.01; ***P<0.001; ****P<0.000Data

representative of three independent experiments for (Aytvemohdependent experiments showing

similar results for (BD).
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