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Abstract 

Executive functions (EF), such as inhibition and cognitive flexibility, are essential for 

everyday functioning, including regulation of socially appropriate emotional 

responses. These skills develop during childhood and continue maturing into early 

adulthood. The current study aimed to investigate the very long-term impact of 

childhood traumatic brain injury (TBI) on inhibition and cognitive flexibility, and to 

examine whether global white matter is associated with these abilities. 28 young adult 

survivors of childhood TBI (M age at 16-year follow-up=21.67 years, SD=2.70) and 

16 typically developing controls (TDCs), group-matched for age, sex and 

socioeconomic status, completed tests of inhibition and cognitive flexibility and 

underwent structural MRI. Survivors of childhood TBI did not significantly differ 

from TDCs on EF or white matter volume. However, the relationship between EF and 

white matter volumes differed between survivors of TBI and TDCs. Survivors of TBI 

did not mimic the brain behavior relationship that characterized EF in TDCs. The 

inverse brain behavior relationship, exhibited by childhood TBI survivors, suggests 

disruptions in the whole brain underpinning EF following childhood TBI.  

Key words: traumatic brain injury, cognitive function, white matter, executive 

function, inhibition, cognitive flexibility, childhood.  

 

Significance Statement: This study highlights the enduring impact that childhood 

traumatic brain injury can exert on survivors throughout late adolescence and into 

early adulthood. Survivors, who sustained traumatic brain injury in childhood, did not 

reflect the typical brain behavior relationship that characterized executive function in 

adulthood. These findings suggest long-lasting changes in the brain behavior 
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connections following childhood traumatic brain injury, thereby serving as a reminder 

to refrain from downplaying a head injury sustained in early childhood.  

 

Introduction 

Traumatic brain injury (TBI) results from an external force to the head, which 

may contribute to persistent impairments in cognitive functioning (Taylor & Alden, 

1997). It is not uncommon for survivors of childhood TBI to exhibit impairments in 

executive functioning (EF), referring to higher-order cognitive processes that are 

essential for governing complex human behavior and include attention, planning, 

organization, goal setting and inhibition (Anderson et al., 2001).  

 Inhibition, the ability to monitor and control responses, and cognitive 

flexibility, the ability to switch attention between cognitive demands (Konrad et al., 

2000), are EF skills particularly vulnerable to childhood TBI (Anderson et al., 2001). 

Impairments in these domains have been associated with difficulties in everyday 

functioning, such as regulating socially appropriate emotional and behavioral 

responses (Beauchamp & Anderson, 2010; Ganesalingam et al., 2007; Gioia et al., 

2000). 

Inhibition and cognitive flexibility emerge relatively early in childhood and 

show protracted development into adolescence (Anderson, 2002; Jurado & Rosselli, 

2007). Some studies have also found sex differences, with females outperforming 

males on measures of inhibition (Berlin & Bohlin, 2002; Carlson & Moses, 2001), 

while others have found no differences (Brocki & Bohlin, 2004). According to the 

early brain vulnerability hypothesis (Dennis, 1989), sustaining a brain insult in 
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childhood disrupts the acquisition of skills, particularly those in the early stages of 

development (Anderson et al., 2011). In keeping with this hypothesis, survivors of 

moderate-to-severe TBI sustained in both early (Beauchamp et al., 2011; Faber et al., 

2016; Levin et al., 2004) and late childhood (Muscara et al, 2008) demonstrate 

impairments in inhibition and cognitive flexibility. However, the neural correlates of 

these difficulties remain unclear.  

Importantly, healthy maturation of cortical white matter is associated with 

improved cognitive functioning (Kinnunen et al., 2010; Nagy et al., 2004). Ongoing 

processes of myelination and synaptic pruning throughout adolescence and early 

adulthood coincide with increasing functional specificity of neural networks that 

support cognitive functioning (Asato et al., 2010; Hwang et al., 2010). Multiple 

studies have reported disruptions in these neural processes following diffuse axonal 

injury (DAI), which results from shearing of white matter connecting pathways within 

neural networks associated with cognitive flexibility and inhibition (Beauchamp et al., 

2011; Berryhill et al., 1995; Kinnunen et al., 2010; Levin et al., 2004; Ryan et al., 

2013; Tasker, 2006). Perhaps not surprisingly, these childhood injuries are associated 

with widespread morphological changes, including reductions in cortical gray and 

white matter, as well as overall reductions in brain volume (Beauchamp et al., 2011; 

Benson et al., 2007; Bigler, 2001; Bigler, 2007; Ding et al., 2008; Gale et al., 2005; 

Trivedi et al., 2007; Wilde et al., 2005).  

Although previous reports establish a link between persisting impairments in 

inhibition, cognitive flexibility, and white matter volume reductions in pediatric TBI 

(Faber et al., 2016; Kurowski et al., 2009), the neural correlates of long-term 

outcomes in this domain are poorly characterized. For instance, no study to date has 
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investigated the possible link between white matter volume and inhibition and 

cognitive flexibility in the long-term post-childhood TBI. 

The overall aim of the present study is to investigate the presence of global 

white matter macrostructural abnormalities following childhood TBI and examine 

their relationship with concurrent measures of EF. More specifically, the study aimed 

to: (i) examine whether inhibition and cognitive flexibility deficits persist to 16 years 

after childhood TBI; (ii) determine whether cortical white matter volume may explain 

variability in EF performance 16 years post-injury and; (iii) investigate the brain 

behavior relationship underlying cortical white matter volume and inhibition and 

cognitive flexibility in survivors of childhood TBI and typically developing controls 

(TDCs). 

We hypothesized that, for survivors of childhood TBI (i) inhibition and 

cognitive flexibility would be reduced compared to TDCs; (ii) cortical white matter 

volumes would be significantly smaller than TDCs and; (iii) larger cortical white 

matter volumes would predict better performance on tasks of inhibition and cognitive 

flexibility in both childhood TBI survivors and TDCs.  
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Method 

Participants 

The study reports on a sample of English-speaking children who had sustained early 

childhood TBI between 1993 and 1997 and an age matched typically developing 

control group. As part of a larger prospective longitudinal study, participants were 

originally recruited upon admission to the Emergency Department or Pediatric 

Intensive Care Unit at The Royal Children’s Hospital (RCH, Melbourne, Australia) 

(Anderson et al., 2000), and evaluated at several time points: 0-3 (acute), 6, 12, and 

30 months, and 5 and 10 years post-injury.  

Inclusion criteria of the original study were: (1) age at injury between 1 and 7 

years; (2) documented evidence of TBI, including a period of altered consciousness 

and; (3) comprehensive medical records that allow ascertainment of injury severity. 

Exclusion criteria were: (1) penetrating or inflicted head injury; (2) history of 

previous closed head injury and; (3) pre-existing physical, neurological, psychiatric or 

developmental disorders.  

 Twenty-eight young adults (12 males, M age at injury=5.04 years range=5.91, 

SD=1.79; M age at 16-year follow-up=21.67 years, SD=2.70 range=8.75), comprising 

29% of the original TBI sample consented to participate in the 16-year follow-up 

assessment and has usable MRI scan data. The control group consisted of 16 healthy 

young adults (11 males, M age at 16-year follow-up=21.11 years, SD=2.30), 46% of 

the original control sample, who were matched with the original TBI sample on age, 

socioeconomic status and sex, and has usable MRI scan data at the 16-year follow-up.  
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Participants with TBI were categorized into groups according to their level of 

injury severity, using a combination of measures including the Glasgow Coma Score 

(GCS: Teasdale & Jennett, 1974), and the existence of radiological and neurological 

abnormalities. Injury severity was classified at study recruitment as follows: (1) mild 

TBI (n=7): GCS 13 to 15, no mass lesion on CT/MRI scans, and no neurologic 

deficits; (2) moderate TBI (n=15): GCS 9 to 12; and/or mass lesion or other evidence 

of specific injury on CT/MRI, and/or neurological impairment and; (3) severe TBI 

(n=6): GCS 3 to 8, with mass lesion or other evidence of specific injury on CT/MRI, 

and/or neurological impairment. However, given small and uneven sample sizes 

across the TBI subgroups, TBI participants were combined for analysis and compared 

to the control group. 

Measures at 16-year follow-up 

Socio-economic Status. Using Daniel’s Scale of Occupational Prestige 

(Daniel, 1983), socio-economic status (SES), understood as one’s social standing, was 

obtained on recruitment. Socio-economic status was operationalized using parents’ 

occupation, which was rated on a 7-point scale from 1.0 to 7.0 with higher scores 

delineating lower socioeconomic status. 

Cognitive Abilities. The Wechsler Abbreviated Scale of Intelligence two 

subtest form (WASI, Wechsler, 2011) was administered to assess intellectual ability, 

which was also known as the Full Scale Intelligence Quotient (FSIQ) (M=100, 

SD=15).  

 Executive Function. The Delis-Kaplan Executive Function System (D-KEFS) 

(Delis, Kaplan, & Kramer, 2001) Color-Word Interference Test (CWIT), which was a 

modification of the original Stroop (1935) task, consists of four time-limited tasks 
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(M=10, SD=3). 

 

(1) Color Naming: The examinee is shown rows of individual patches of 

different colors and is asked to name the color of the patches as quickly as 

possible. 

(2) Word Reading: The examinee is shown rows of words printed in black ink 

and is asked to read the words as quickly as possible.  

(3) Inhibition: The examinee is shown rows of words printed in dissonant ink 

colors and is asked to say the color of the ink the words are printed in, and 

not read the words, as quickly as possible.  

(4) Inhibition/Switching: The examinee is shown rows of words printed in 

dissonant ink colors and some of the words are contained within 

rectangles. Similar to the previous task, the examinee is asked to say the 

color of the ink the words are printed in. However, if the word is enclosed 

within a rectangle, the examinee is asked to read the word instead of 

saying the color. This task was to be done as quickly as possible.  

 

The initial two tasks served as baseline low-level cognitive measures while the third 

and fourth tasks tapped into high-level cognitive function – inhibition and cognitive 

flexibility. Of note, performance on the latter two tasks was likely to be confounded 

by other factors such as fatigue and basic processing speed (Lansbergen et al., 2007). 

Therefore, in order to accurately isolate any deficits in higher-level cognitive tasks 

over and above lower-level cognitive functioning, pure measures of inhibition and 

cognitive flexibility were obtained by using contrast scores (M=10; SD=3): inhibition 

Page 10 of 46

Journal of Neuroscience Research

Journal of Neuroscience Research

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le

11 

(inhibition minus color naming completion time), inhibition/cognitive flexibility 

(inhibit/switching minus color naming completion time) and cognitive flexibility 

(inhibit/switching minus inhibit completion time) (Delis et al., 2001). Using 

differences in performance between high-level and baseline tasks is consistent with 

prevailing methods of assessing inhibition on Stroop tasks (Lansbergen et al., 2007; 

Thornton et al., 2007). In addition, these contrast scores share moderate inter-

correlations with their respective tasks, lending validity to these measures (Delis et 

al., 2001).  

MRI Scans. Imaging data were acquired on a 3T Siemens TIM Trio scanner 

(Erlangen, Germany) at the Murdoch Childrens Research Institute, at the RCH. As 

part of the follow-up protocol, a high-resolution anatomical T1 scan (3D MPRAGE) 

was obtained; TR = 1900 ms, TE = 2.62 ms, matrix size = 250 x 250, 176 contiguous 

sagittal slices, isotropic voxel dimensions = 0.8 x 0.8 x 0.8 mm. Morphological 

measurements of gray and white matter from T1-weighed MR images were acquired 

using automated segmentation and cortical parcellation tools in FreeSurfer version 

5.3.X (Van Essen et al., 2012).  This procedure involved motion correction, intensity 

normalisation, automated topology corrections, and automatic segmentations of gray 

and white matter. The cortex was parcellated and labelled into to 128 Regions of 

Interest (74 per hemisphere) using the Destrieux atlas (Destrieux et al., 2010). Quality 

assurance and manual editing of segmentation defects was performed using tkmedit, a 

FreeSurfer volume editing tool, after processing by an experienced image analyst 

(CA). Reprocessing was performed if required. 
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Procedure 

This study was approved by the RCH Human Research Ethics Committee (HREC 

#36004). For the current 16-year follow-up study, all participants were re-contacted 

by mail and provided with a description of the current study. Informed consent was 

obtained prior to neuropsychological assessment and MRI brain scan. Assessments 

were conducted by trained psychologists. 

Statistical Analyses 

Volumetric, demographic and cognitive data were combined using R Studio Version 

0.98.1091. All data was entered and checked for violations of normality in SPSS 

Version 21.0. Thereafter, descriptive and inferential analyses were conducted. Effect 

sizes were calculated using Hedges’s g and Cramer’s V. Effect sizes less than .20 

were small, effect sizes of .50 were classified as moderate, and effect sizes above .80 

were considered large (Sullivan & Feinn, 2012). Independent samples t-tests were 

conducted to compare (i) injury age, SES and FSIQ between participating and non-

participating samples; (ii) age at 16-year follow-up, SES, and FSIQ between 

participating TBI participants and controls and; (iii) EF and volumetric measures. 

Analysis of variance analyses were also conducted to check for differences in EF and 

volumetric measures by severity. Post-hoc Tukey HSD tests were conducted for all 

significant omnibus F tests. Pearson chi-squared tests analyzed group differences for 

categorical variables such as sex. A series of hierarchical regression analyses was 

conducted to investigate whether the inclusion of variables would best predict EF 

performance. Prior to conducting the regression analyses, data was screened for 

multicollinearity and no single data point was observed to excessively influence the 

models and parameter estimates. As sex and age were found to impact EF 
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performance, these variables were included as covariates. While controlling for age at 

16-year follow-up and sex, the impact of group, cortical white matter and interaction 

of group and cortical white matter was added in successive steps. As per conventional 

practice, estimated cortical white and gray matter volumes were corrected for total 

intracranial volume (ICV) (Fischl et al., 2004). Total ICV was used to control for 

inter-subject variability in white and gray matter volume. Given the small sample 

size, SES and FSIQ at 16-year follow-up were excluded from the present analyses.  

 

Results 

Participants and non-participants were compared to assess whether the present sample 

was representative of the original TBI and control cohort. No statistically significant 

differences were observed between the participating and non-participating control 

cohort. The participating TBI cohort at 16-year follow-up included fewer males χ
2
(1, 

N=12)=4.72, p=.030, and presented with lower SES, (M=4.63, SD=0.98), t(62)=-2.08, 

p=.042, compared to the non-participating TBI sample. No statistically significant 

differences were observed within the TBI cohort for age at injury and FSIQ. 

Demographic characteristics of the final sample indicated no statistically significant 

differences in sex and age at the 16-year follow-up (see Table 1). However, FSIQ and 

SES differed significantly between TBI participants and controls, with controls 

presenting with higher SES and FSIQ.  

 

Insert Table 1 here 
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Descriptive statistics of EF and volumetric measures for TBI and control participants 

are presented in Table 2. Boxplots depicting normal distributions of executive 

function measures and cortical white matter are displayed (see Supplementary 

Materials Figure 1 and 2). No statistically significant differences were observed 

between childhood TBI participants and controls on any of the EF or volumetric 

measures. Differences on EF and volumetric measures across TBI severity subgroups 

are presented in Table 3. The independent between-groups analysis of variance 

yielded a statistically significant effect for cognitive flexibility only. The Tukey HSD 

post-hoc test indicated that the cognitive flexibility mean score for the mild TBI 

subgroup (M=11.29, SD =2.56) was significantly better than the cognitive flexibility 

mean score for moderate TBI subgroup (M=7.60, SD =2.20). All other comparisons 

were not significant.  

 

Insert Table 2 & 3 here 

 

Predictors of EF performance at 16-year follow-up 

A 4-step hierarchical multiple regression, which involved adding variables at each 

successive stage, was performed to investigate predictors– group and cortical white 

matter of EF performance 16 years following childhood TBI. Age at 16-year follow-

up and sex were entered at step 1 to control for age and sex effects. Group was 

entered in step 2 and cortical white matter volume was entered in step 3. The 

interaction between group and cortical white matter was entered in step 4. The 

variables were entered in this order to determine whether the interaction between 
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group and cortical white matter volume would explain the variation on the EF 

measure over and above group and cortical white matter separately. Analysis was 

conducted separately for inhibition (see Table 4), cognitive flexibility (see Table 5) 

and inhibition/cognitive flexibility (see Table 6).  

 

Insert Table 4, 5 & 6 here 

 

The models for inhibition and cognitive flexibility as separate measures were non-

significant. However, the overall model predicting inhibition/cognitive flexibility 

measure was statistically significant. Group and cortical white matter were found to 

have significant main effects on inhibition/cognitive flexibility. A significant 

interaction effect of group by cortical white matter was also observed for 

inhibition/cognitive flexibility (illustrated in Figure 1). 

 

Insert Figure 1 here 

 

Discussion 

 The overarching aim of the present study was to investigate the very long-term 

impact of childhood TBI on EF and to determine whether white matter 

macrostructural abnormalities following childhood TBI may relate to EF 

performance. Study findings provided partial support for expectations. In accordance 

with the early brain vulnerability hypothesis (Anderson et al., 2011), sustaining an 
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early childhood TBI disrupts the maturation of skills in the early stages of 

development. In the present study, at a group level, EF abilities and global volumetric 

measures did not differ between survivors of childhood TBI and TDCs. However, 

evaluation of brain behavior relationships in the TBI and control groups showed that 

the direction of the association differed as a function of group membership.  

 The hypothesis that, at 16-years post-injury, childhood TBI survivors will 

demonstrate impaired inhibition and cognitive flexibility skills in comparison to 

controls was not supported. In order to disentangle higher order EF, that is, inhibition 

and cognitive flexibility abilities, from basic processing skills (e.g., color naming), 

contrast measures were derived based on performance on the CWIT in the present 

study (Delis et al., 2001). In contrast, Faber et al. (2016) and Muscara et al. (2008) 

operationalized inhibition and cognitive flexibility abilities by taking completion time 

and total number of errors on the CWIT inhibition and inhibition/switching tasks. Of 

note, there were suggestions that EF deficits in childhood TBI survivors may be 

confounded by impaired processing speed (Ginstfeldt & Emanuelson, 2010; Konig et 

al., 2015). Therefore, the removal of baseline processing skills in the current study 

may explain the discrepant findings. Nonetheless, it was worth noting that completion 

time of all four CWIT tasks did not differ between TBI survivors and their typically-

developing peers.  

The hypothesis that, at 16-year follow-up, childhood TBI survivors will 

demonstrate smaller white matter volumes than TDCs, was also not supported. 

Rather, TBI survivors exhibited comparable white matter volumes to their healthy 

peers. Notably, white matter shearing is most commonly observed following 

moderate to severe TBI (Oni et al., 2010; Tasker, 2006; Wilde et al., 2005). Given the 

small sample of severe TBI participants (n=6) in the present study, childhood TBI 
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severity groups were combined and investigated as a single group. As a result, caution 

is warranted in making inferences regarding the very long-term impact of severe 

childhood TBI on global indices of white matter volume.  

Our expectation of a link between cortical white matter and inhibition and 

cognitive flexibility abilities, was partially supported. This relationship was not 

observed for inhibition and cognitive flexibility when these skills were investigated as 

separate measures. However, a significant brain behavior relationship was observed 

for a composite measure of inhibition and cognitive flexibility skills. Consistent with 

previous literature (Brickman et al., 2006; Konrad et al., 2013), better EF abilities 

were associated with larger white matter volumes in the typically developing control 

group. In contrast, survivors of TBI demonstrated an inverse brain behavior 

relationship, whereby smaller white matter volumes were linked to better EF.  

Overall, these findings suggest that in the long-term following childhood TBI, 

brain behavior relationships do not mimic those observed in typically developing 

young adults. In keeping with the early brain vulnerability hypothesis (Dennis, 1989), 

this differential brain behavior relationship may suggest possible disruption in the 

whole brain underpinning EF following childhood TBI (Chapman & Mckinnon, 

2000). In fact, our findings indicate diffuse rather than localized brain changes, in 

keeping with the nature of acute brain pathology associated with TBI. 

Clinical implications  

Previous reports show that children with TBI exhibit impairments in EF 

(Taylor & Alden, 1997). For instance, survivors of childhood TBI with inhibition 

deficits demonstrate difficulties regulating appropriate behavioral responses 

(Beauchamp, & Anderson, 2010). At present, the childhood TBI research has 
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demonstrated the persistence of EF deficits up to 10 years post-injury (Faber et al., 

2016; Muscara et al., 2008). The present study has informed the childhood TBI 

research further by demonstrating the very long-term impact of 16-year childhood 

TBI on EF abilities. Specifically, childhood TBI survivors did not mimic the healthy 

brain behavior relationship underpinning inhibition and cognitive flexibility abilities.  

Evidence for inverse pattern of brain behavior relationships in the childhood 

TBI group may be suggestive of long-term changes to their neural architecture arising 

from their injury. Processes of myelination and synaptic pruning, that occur during 

childhood and adolescence, have been known to ensure efficient neural functioning 

(Blakemore & Choudhury, 2006). Importantly, disruption of synaptic pruning 

processes was found to maintain extraneous neural connections within the brain 

following pediatric TBI (Mychasiuk et al., 2015). Indeed, disrupted synaptic pruning 

was observed in childhood TBI survivors who demonstrated increased cortical 

thickness despite exhibiting poorer behavioural control (Wilde et al., 2012). 

Therefore, the inverse brain behavior relationship observed in childhood TBI 

survivors in our study (i.e. greater white matter was associated with poorer EF) 

suggests that sustaining TBI in childhood may disrupt or delay processes of synaptic 

pruning. Nonetheless, this mechanism warrants further investigation and it is in the 

interest of future research to investigate changes in gray matter in relation to EF 

abilities following long-term childhood TBI.  

Most recently, reduced white matter integrity of the frontal lobes, particularly the 

ventral striatum has been linked to impaired EF in long-term childhood TBI survivors 

(Faber et al., 2016; Zappala et al., 2011). Indeed, the frontal lobes rest against the 

rough interior of the skull, rendering it more susceptible to damage following an 

injury to the head (Bigler, 2007). For this reason, sustaining a childhood TBI likely 
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altered the white matter integrity underpinning childhood TBI survivors’ EF abilities. 

Nonetheless, it was important to note that the observed relationship between white 

matter volume and EF in the present study does not imply causation. At this stage, 

further attention into the white matter integrity of childhood TBI survivors’ brains, 

particularly their frontal lobes, will assist in understanding the link between childhood 

TBI and its long-term impact on EF.  

Limitations and future directions 

MRI used in the current study was useful in providing volumetric white matter 

as an index of DAI. However, volumetric MRI was unable to demarcate the white 

matter integrity of survivors of childhood TBI and healthy adults. In fact, research 

that employed DTI has revealed lasting changes in white matter connections 

following childhood TBI (Wozniak et al., 2007; Yuan et al., 2007). Of note, it was 

particularly useful to utilize DTI with mild childhood TBI survivors, given that their 

brain abnormalities often went undetected on conventional MRI scans (Shenton et al., 

2012). Therefore, it was recommended that future studies utilize more sensitive 

neuroimaging techniques (e.g. DTI) to investigate changes in white matter integrity in 

supporting the EF capabilities of long-term survivors of childhood TBI.  

Another limitation relating to the present study was sample size. Given the 

small sample size, the three severity TBI subgroups (i.e. mild, moderate & severe) 

were combined to investigate the impact of TBI, potentially masking any severity 

effects. According to a recent systematic review, EF abilities differed across severity 

groups, and moderate childhood TBI survivors were more likely to display EF-related 

difficulties at follow-up compared to mild childhood TBI survivors (Lloyd et al., 

2015). Of note, EF deficits were most apparent in past studies that compared across 
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severity subgroups (Nadebaum et al., 2007; Treble-Barna et al., 2016), and between 

moderate-to-severe childhood TBI survivors and typically developing peers (Cooper 

et al., 2014; Faber et al., 2016; Levin et al., 2004; Muscara et al., 2008). Taken 

together, it was possible that EF deficits, if any, following from more severe 

childhood TBI, may have been concealed in the present study. Given the small sample 

size, the current study was also unable to investigate sex differences in brain volumes 

and measures of inhibition and cognitive flexibility.  

A final limitation was that only specific aspects of EF, namely inhibition and 

cognitive flexibility, were investigated in the present study. Previous studies 

demonstrating lasting EF deficits following childhood TBI have examined various EF 

domains, such as attention, goal setting, inhibition and cognitive flexibility. For 

instance, goal setting was found to be selectively impaired 10 years following 

childhood TBI (Beauchamp et al., 2011). As inhibition and cognitive flexibility have 

been understood to be the earliest EF domains to mature (Anderson, 2002; Huizinga 

et al., 2006), it was possible that these selective EF skills were more resilient to 

disruption following childhood TBI. Nonetheless, this account alone cannot fully 

explain the EF skills demonstrated by survivors of childhood TBI in the present study. 

Given that 16 years have passed since initial injury, childhood TBI survivors’ EF 

skills likely reflected an intricate interplay of their recovery from injury coupled with 

their ongoing cognitive development. For that reason, it was recommended that future 

research strive to disentangle processes of recovery from long-term childhood TBI 

from those that characterize typical cognitive development.  
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Conclusion 

This is the first prospective longitudinal study to demonstrate the presence of neural 

abnormalities underpinning EF skills following TBI sustained in childhood. To our 

knowledge, this study reports on the largest cohort of survivors of childhood TBI 

assessed longitudinally over a 16-year period. The current findings revealed that that 

impact of childhood TBI coupled with cortical white matter explained EF abilities in 

early adulthood. Importantly, the neural architecture underpinning EF abilities was 

disparate between childhood TBI survivors and healthy adults. In healthy adults, 

inhibition and cognitive flexibility improved with increased cortical white matter. In 

contrast, childhood TBI survivors exhibited an inverse relationship between 

inhibition/cognitive flexibility abilities and cortical white matter. The use of more 

sensitive neuroimaging techniques in future studies is encouraged to uncover the 

presence of subtle white matter abnormalities in childhood TBI survivors and its 

relationship to cognitive outcomes. 
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Table 1.  

Demographic information for TBI participants and controls seen at 16 years post-

injury 

Variable 
TBI 

(n=28) 

Control 

(n=16) 
p t(df)/χ

2
 g/V 

Male, n (%) 12 (42.90) 11 (68.80) .180 1.80 .249 

Injury age, M (SD) 5.04 (1.80) -    

SES, M (SD) 

FSIQ, M (SD) 

4.63 (0.98) 

100.93 (14.38) 

3.41 (1.07) 

111.19 (12.12) 

.001* 

.016* 

3.60(35) 

-2.40(42) 

1.20 

.754 

Age at 16-year follow-

up, M (SD) 
21.67 (2.70) 21.11 (2.30) .474 0.69(42) .218 

Note. TBI = Traumatic Brain Injury; FSIQ = Full-Scale Intelligence Quotient; SES = 

socio-economic status. t(df) = independent samples t-test (degrees of freedom) or chi-

square for categorical; g = Hedges’ g and Cramer’s V for categorical variables. 
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Table 2. 

Inferential statistics of executive functioning and volumetric measures between TBI 

and controls  

Variables TBI (n = 28) Control (n = 16) p t(df) 

Executive Function     

   Inhibition, M (SD) 10.68 (2.39) 11.50 (2.00) .252 -1.16(42) 

   Cognitive flexibility, M (SD) 9.04 (2.82) 8.75 (3.70) .775 0.29(42) 

   Inhibition/cognitive flexibility, M (SD) 9.75 (2.44) 10.44 (3.05) .417 -0.82(42) 

Cortical Matter     

   Total (%) 64 63 .273 1.11(42) 

   Gray (%) 35 34 .063 1.91(42) 

   White (%) 29 29 .806 -0.25(42) 

Note. TBI = Traumatic Brain Injury; t(df) = t-test (degrees of freedom).  
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Table 3. 

Inferential statistics of executive functioning and volumetric measures across TBI severity subgroups   

Variables Controls (n = 16) Mild TBI (n = 7) Moderate (n = 15) Severe (n = 6)  p F(df) 

Executive Function        

   Inhibition, M (SD) 11.50 (2.00) 9.29 (2.36) 11.53 (1.92) 10.17 (2.93)  .180 1.87(14.29) 

   Cognitive flexibility, M (SD) 8.75 (3.70) 11.29 (2.56) 7.60 (2.20) 10.00 (2.68)  .033* 3.76(15.37) 

   Inhibition/cognitive flexibility, M (SD) 10.44 (3.05) 10.42 (1.72) 9.27 (2.99) 10.17 (1.47)  .682 0.51(18.74) 

Cortical Matter        

   Total, M (SD) 0.63 (0.02) 0.65 (0.03) 0.64 (0.02) 0.61 (0.03)  .117 2.33(14.38) 

   Gray, M (SD) 0.34 (0.02) 0.35 (0.02) 0.35 (0.02) 0.34 (0.01)  .143 2.09(15.88) 

   White, M (SD) 0.29 (0.02) 0.29 (0.02) 0.30 (0.02) 0.28 (0.03)  .527 0.77(14.58) 

Note. TBI = Traumatic Brain Injury; F(df) = Welch F-statistic (degrees of freedom).  
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Table 4. 

Summary of hierarchical regression analysis of variables predicting inhibition 

Variable B t F(df1,df2) p R
2
 ∆R

2
 

Step 1   0.26(2,41) .771 .013 .013 

   Age 0.00 0.31  .975   

   Sex -0.50 -0.72  .474   

Step 2   0.50(3,40) .682 .036 .023 

   Age .0.20 .128  .899   

   Sex -0.33 -0.46  .651   

   Group 0.75 1.00  .326   

Step 3   0.41(4,39) .803 .040 .003 

   Age 0.01 .0.10  .921   

   Sex -0.36 -.0.49  .624   

   Group 0.75 0.98  .331   

   White matter 9.35 -0.38  .708   

Step 4   0.80(5,38) .556 .095 .055 

   Age -0.00 -0.02  .986   

   Sex -0.50 -0.69  .497   

   Group -18.00 -1.46  .152   

   White matter -89.56 -1.57  .125   

   Group*white matter 63.89 1.53  .135   

Note. Age = Age at 16-year follow-up; B = Unstandardised Regression Coefficient; t 

= t-test; F(df1, df2) = F-statistic (regression df, residual df); R
2
 = R-squared; ∆R

2
 

=Change in R-squared. 
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Table 5. 

Summary of hierarchical regression analysis of variables predicting cognitive 

flexibility 

Variable B t F(df1,df2) p R
2
 ∆R

2
 

Step 1   3.05(2,41) .058 .130 .130 

   Age -0.02 -0.12  .907   

   Sex 2.23 2.47  .018   

Step 2   2.02(3,40) .127 .132 .002 

   Age -0.02 -0.09  .932   

   Sex 2.30 2.44  .019*   

   Group 0.30 0.31  .760   

Step 3   1.67(4,39) .177 .146 .014 

   Age -0.01 -0.03  .977   

   Sex 2.40 2.51  .016*   

   Group 0.30 0.31  .761   

   White matter 20.18 -0.81  .422   

Step 4   1.57(5,38) .191 .171 .025 

   Age -0.02 -0.12  .911   

   Sex 2.27 2.37  .023*   

   Group -17.20 -1.06  .297   

   White matter -56.70 -0.75  .457   

   Group*white matter 59.94 1.08  .288   
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Note. Age = Age at 16-year follow-up; B = Unstandardised Regression Coefficient; t 

= t-test; F(df1, df2) = F-statistic (regression df, residual df); R
2
 = R-squared; ∆R

2
 

=Change in R-squared.  
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Table 6. 

Summary of hierarchical regression analysis of variables predicting 

inhibition/cognitive flexibility 

Variable B t F(df1,df2) p R
2
 ∆R

2
 

Step 1   1.94(2,41) .157 .086 .086 

   Age -0.02 -0.13  .895   

   Sex 1.55 1.97  .056   

Step 2   1.96(3,40) .136 .128 .042 

   Age 0.00 0.00  1.00   

   Sex 1.83 2.27  .029*   

   Group 1.16 1.38  .175   

Step 3   1.49(4,39) .225 .132 .004 

   Age 0.01 0.03  .975   

   Sex 1.87 2.28  .028*   

   Group 1.16 1.37  .179   

   White matter 9.35 0.44  .664   

Step 4   2.48(5,38) .049* .246 .114* 

   Age -0.02 -0.16  .878   

   Sex 1.64 2.10  .042*   

   Group -30.44 -2.30  .027*   

   White matter -129.50 -2.11  .042*   

   Group*white matter 107.70 2.40  .022*   
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Note. Age = Age at 16-year follow-up; B = Unstandardised Regression Coefficient; t 

= t-test; F(df1, df2) = F-statistic (regression df, residual df); R
2
 = R-squared; ∆R

2
 

=Change in R-squared.  
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Brain-behavior relationship underlying inhibition/cognitive flexibility performance between typically 
developing controls and childhood Traumatic Brain Injury (TBI) group and white matter volume.  
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Figure Legends for Supplementary Material 

 

Figure 1. Boxplot depicting distribution of executive function measures. 

 

Figure 2. Boxplot depicting distribution of white matter volume. 
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Graphical Abstract 

 

16 years following childhood Traumatic Brain Injury (TBI), survivors did not 

differ from age-matched controls on executive function measures and white 

matter volume. However, childhood TBI survivors did not reflect the typical 

brain behavior relationship that characterized executive function in adulthood, 

suggesting disruptions in the whole brain underpinning executive function.  
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Brain-behavior relationship underlying inhibition/cognitive flexibility performance between typically 
developing controls and childhood Traumatic Brain Injury (TBI) group and white matter volume.  
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