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SUMMARY

Managed by an auto-scaler in the clouds, applications may still be overloaded by sudden flash crowds or
resource failures as the auto-scaler takes time to make scaling decisions and provision resources. With
more cloud providers building geographically dispersed data centers, applications are commonly deployed
in multiple data centers to better serve customers worldwide. In this case, instead of sufficiently over-
provisioning each data center to prepare for occasional overloads, it is more cost-efficient to over-provision
each data center a small amount of capacity and to balance the extra load among them when resources in any
data center are suddenly saturated. In this paper, we present a decentralized system that timely detects short-
term overload situations and autonomously handles them using geographical load balancing and admission
control in order to minimize the resulted performance degradation. Our approach also includes a new
algorithm that optimally distributes the excessive load to remote data centers causing minimum increase
of overall response times. We developed a prototype and evaluated it on Amazon Web Services. The results
show that our approach is able to maintain acceptable QoS while greatly increase the number of requests
served during overloading periods. Copyright c© 2016 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Web Application; Geographical Load Balancing; Resource Overload; Auto-Scaling;
Multi-cloud; Request Forwarding

1. INTRODUCTION

Cloud computing continues to gain rapid adoption for hosting web applications. One of its appealing
features is its elasticity, which allows application providers to dynamically expand or shrink
the amount of resources provisioned to their applications using auto-scaling. However, detecting
workload changes and provisioning enough resources in the cloud still demand considerable time.
Mao and Humphrey [1] conducted an experimental study on the VM startup time of various types
of instances in Amazon AWS, Microsoft Azure, and Rackspace. They found that the booting time
ranges from about 50s to more than 900s depending on the sizes, cost models, and operating
systems. This delay in resource provisioning will result in performance degradation and even
unavailability of service during this period.

In web applications, it is common to observe rapid surges in requests once in a while. This
situation is called flash crowd, and it can occur any moment with little or no warning. The cloud
auto-scaler, in these cases, cannot timely provision enough resources to deal with these situations. In
addition, sudden failures of either software or virtual machines can also lead to application overload.
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Application providers now deploy web applications on low cost but unreliable cloud resources, such
as spot instances [2, 3], which makes the applications more prone to resource failures.Therefore,
solely relying on auto-scaling is not enough to ensure high performance all the time and certain
level of over-provisioning is necessary for production environments in preparation for these events.

Cloud providers have established their data centers all over the world, which enables their
customers to deploy their applications in multiple geographically dispersed regions to better serve
the worldwide population. As multi-cloud deployment is becoming increasingly popular, we argue
that in this type of deployment, when failures happen, or a flash crowd arrives at a data center, it
is better to utilize the unused capacities already provisioned in other data centers† to process as
many exceeding requests as possible through geographical load balancing, instead of processing
all the requests locally and degrading the performance of all the clients served by the regional data
center, or rejecting the exceeding requests directly. This approach is viable as failures are unlikely to
happen simultaneously in multiple data centers and flash crowds also seldom take place on a global
scale at the same time due to culture and time differences.

A common approach to implement geographical load balancing is through DNS resolution.
However, it takes time to populate the DNS settings across layered DNS servers, which makes
it impossible to react to overload situations timely. Furthermore, it is also difficult to accurately
control the load directed to each data center using this technique. Another popular way is to utilize
a centralized load balancer to distribute load among data centers. Though it allows fine-grained
control over traffic, it introduces extra latencies to all the requests, which reduces the benefit of
deploying the application in multiple clouds.

In this paper, we present a system that supplements and enhances state-of-the-art auto-scalers
for applications deployed across multiple data centers. It follows the monitor-analyse-plan-execute
(MAPE) loop architecture commonly adopted by other Cloud-based systems [4, 5, 6]. It aims to
quickly detect and adapt to short-term overloads caused by resource failures and flash crowds
in each data center through geographical load balancing and admission control before the auto-
scaler finishes provisioning new resources. Different from previous geographical load balancing
solutions, our system relies on decentralized agents deployed in each data center to implement
fast and accurate geographical load balancing. During the overload situations, the agent deployed
in the overloaded data center temporarily forwards certain amount of excessive requests to other
data centers to keep the predefined SLA satisfied. Within our approach lies our proposed overload
handling algorithm that optimally distributes excessive load among data centers have available
capacities causing minimum overall increase of latencies. In this way, our approach only incurs little
performance overhead to the forwarded requests and requests served by the receiving data centers
during the short overloading periods and thus, preserves the benefit of a multi-cloud deployment. We
implemented a prototype and evaluated it on Amazon Web Services, who offer IaaS infrastructure
in multiple geographically dispersed regions. Results show that our approach can timely detect
short-term overload events and effectively improve the application performance during resource
contention periods.

The main contributions of the paper are:

• a system that supplements and enhances state-of-the-art auto-scalers in handling short-term
overload situations for multi-cloud applications;

• a decentralized load balancing framework across multiple clouds that detects and handles
short-term overload events;

• an optimal load distribution algorithm and admission control mechanism that quickly adapts
to the overload situations; and

• a prototype implementation of the proposed system evaluated in Amazon’s IaaS infrastructure
across US, Europe, and Asia.

†Because load is balanced among all the servers provisioned in a data center, the unused capacities come from the spare
processing capabilities in each server instead of from completely idle servers that are standing by.
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The remainder of the paper is organized as follows. In Section 2, we illustrate the use case
scenarios of our system. We then describe the multi-cloud deployment model and some assumptions
in Section 3. We explain our proposed system and its implementation in detail in Section 4. Finally,
we compare our approach with related works and conclude the paper in Section 7.

2. USE CASE SCENARIOS

Our system aims to mitigate performance degradation caused by short-term overloads that cannot be
timely addressed by the cloud auto-scalers. It is not designed to replace state-of-the-art auto-scalers;
instead, it is complementary to them and it should work cooperatively with them.

2.1. Resource Failures

Resource failures can happen at any time and the failed resources will become inaccessible
immediately, which leaves the auto-scaler no time to provision new resources without causing
performance degradation during the provision time, if the amount of resource loss is beyond the
locally unused capacity. Such failures can frequently happen and in large scale if the application
is deployed on unreliable resources, such as spot instances [2], which makes things worse. Spot
instances are resources sold by the cloud providers through an auction-like mechanism. They are
significantly cheaper than the corresponding on demand instances, but they will be terminated by the
provider when the market price exceeds the user bid, thus, causing failures. Besides infrastructure
level, failures can also happen in software level, including the operating system, the application
server, and the application itself. Our system utilizes periodic health checks to detect failures, which
is agnostic to the underlying failure types.

If any failure is detected, the local agent of our system and the auto-scaler will intervene at the
same time. During the failures, the agent temporarily forwards some requests to other data centers
and enforces admission control if necessary to protect the application from crashing and maintain
acceptable performance; meanwhile, the auto-scaler restarts the faulty resources or provisions new
resources. When the provision process completes, and there are enough local resources, the agent
then stops geographical load balancing and admission control.

2.2. Flash Crowds

Flash crowds might arrive anytime at any data center. They are difficult to be managed by the
auto-scaler alone due to their unpredictability and bursty nature. In the case of a flash crowd,
widely used commercial auto-scalers, such as Amazon Auto-scaling Service‡, launch new VMs
only after the application has experienced high load for a consecutive period set by the user, instead
of provisioning new resources right after the detection of application overload. This mechanism
is useful to reduce resource wastage and prevent scaling oscillations [7], as when the provision
completes, the flash crowd might have already passed. Our system can be an ideal partner of these
commercial auto-scalers as it can help to reduce resource contentions not only during provision
times but during waiting times as well.

3. DEPLOYMENT MODEL AND APPLICATION REQUIREMENTS

3.1. Deployment Model

We assume the target application of our system, including each of its composing
services/components, is deployed in geographically dispersed data centers. Furthermore, the
application instance deployed in a data center should be able to communicate with the instances

‡http://aws.amazon.com/autoscaling/
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Figure 1. A service-oriented social network application

located in other data centers though network for request forwarding purpose, which will be
explained afterward.

3.2. Application Requirements

Our approach requires requests can be processed by application replicas deployed in other data
centers, which involves two important factors: session continuity and data locality.

Session continuity means that the end user should be able to seamlessly interact with the
application without losing any internal state even if different data centers process his requests.
Stateless applications, such as public knowledge services like Wikipedia and search engine,
implicitly satisfy this requirement. For stateful applications, there are ways to make them
geographically stateless, such as pushing the states into client side, and session replication across
sites§. Besides, applications can be divided into multiple stateful and stateless services following the
Service-oriented Architecture (SOA) [8]. Figure 1 shows an example of a service-oriented social
network application. The application first loads the session data of the user and then relays the
corresponding data to the underlying stateless services for further processing. The local data center
should always serve the requests for the stateful services. Thus, stateful services cannot be managed
by our approach. For these services, they should be sufficiently over-provisioned in preparation for
failures and flash crowds. While the majority of the underlying stateless services, which consume
the most resources, are eligible to be administrated by our approach.

The second requirement is that persistent data should also be replicated across multiple data
centers either partially or entirely as requests can be only forwarded to data centers that have
the essential data available. Fortunately, data replication is commonly adopted by multi-cloud
applications nowadays [9, 10], and thus, enhances applicability of our approach in many scenarios.

§http://www.alachisoft.com/ncache/multi-site-dotnet-session-sharing.html
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Figure 2. Proposed architecture with three data centers involved

4. THE PROPOSED APPROACH

4.1. Architecture

Our approach employs a decentralized architecture as shown in Figure 2. The load balancing agent
is co-located with the application/service load balancer in the corresponding data center to realize
fast detection of overload events and perform quick adaptations. They are fully connected with
each other through network to work cooperatively. Each agent comprises the monitoring module
which constantly monitors the incoming requests and the status of the available resources to detect
application overload, the communication module which is in charge of broadcasting its status to
other agents and receiving other agents’ statuses, and the control module that quickly adapts the
application/service to the detected overload events.

4.2. Overload Detection

Choosing the right performance indicator is critical for the detection algorithm. There are several
potential indicators we can utilize, such as request rate (request arrival per second), session creation
rate (newly created sessions per second), and average response time. In some cases, some indicators
cannot truthfully reflect the actual load. For example, the downstream service in an SOA application
is usually called by its upstream service using a persistent session, therefore, in this case, session
creation rate is not suitable to serve as the overload indicator. In our prototype implementation, we
adopt request rate as the indicator since it is more general purpose than other indicators. In addition
to the incoming load, the agent also needs to monitor the availability of resources. This can be
carried out by periodic health checks.

Another important task is to determine the monitoring frequency. A small monitoring interval
enables our approach to timely detect the changes even in the spikiest workload. However, frequent
monitoring not only consumes a lot of physical resources, but also causes more false positives. Such
behavior can be observed in our experiments results shown in Figure 10 and Figure 13 with a small
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amount of requests being rejected by the admission control approach in the one server down and
245 reqs/s flash crowd settings. Because by using our approach, false positives only result in some
of the requests being unnecessarily forwarded to other data centers, instead of being rejected, we
choose to favor sensitivity over accuracy and employ a high monitoring rate of every 2 seconds.

With the indicator chosen, we developed a detection mechanism. In the first stage, we profile the
machine to determine averagely how many requests per second (c) it can safely handle under the
predefined SLA, such as 90% of requests should be served within 1 second. Suppose the requests
arrival is a Poisson process and the data center has n machines available for serving requests, the
datacenter is considered overloaded when the incoming workload λ is larger than n ∗ c+

√
n ∗ c or

between n ∗ c and n ∗ c+
√
n ∗ c for consecutively a few monitoring intervals. The rationality under

this approach is that the probability of the result of a Poisson process deviates beyond its standard
deviation

√
λ is relatively small, and overload situations often cause much higher load. In this way,

we can reduce the amount of false positives caused by highly fluctuant workloads. Note that our
framework can employ other detection algorithms as well, such as the one proposed by Kamra et al.
[11].

4.3. Overload Handling Algorithm

When overload is detected, the system needs to distribute as many excessive requests as possible to
other data centers that have available capacities. Though the response times of the requests that are
initially served by the receiving data centers will be negatively affected by the forwarded requests,
the SLAs of the receiving data centers can still be ensured as the amount of requests forwarded by
our approach should never exceed the remaining capacities available. Our software framework is
modularized and can utilize various request distribution algorithms, such as random and greedy
algorithms. To get optimal overall performance, we propose a new distribution algorithm that
minimizes the increase of latencies caused by request forwarding. We define the observed latency
increase as follows:

I(X) =

n∑
i=0

Rwf
i (xi)−

n∑
i=0

Rbf
i +

n∑
i=0

F (xi) (1)

where xi is the average amount of requests per second forwarded to the ith data center, Rwf
i (xi) is

the latencies observed by all the users originally served by the ith data center with extra xi requests
per second forwarded to it, Rbf

i is the total latencies experienced by all the users originally served
by the ith data center without extra requests forwarded to it, and F (xi) is the total latencies felt
by the users whose requests are forwarded to the ith data center. Since Rbf

i is constant, the latency
increase minimization problem is equivalent to:

minimize
x

n∑
i=0

Rwf
i (xi) +

n∑
i=0

F (xi)

subject to
∑

xi = N

0 ≤ xi < Si

(2)

where N is the average amount of excessive requests per second needs to be distributed, and Si

is the maximum average amount of extra load per second the ith data center can handle without
violating the local SLA.

We model each remote data center as a M/M/1 - processing sharing queue. According to Little’s
Law, the average response time of the ith data center can be represented as:

ri =
1

µi − λi
(3)

where µi is the service rates of the ith data center, and λi is the average incoming load to the ithe
data center. Based on Equation 3, Rwf

i (xi) and F (xi) can be respectively modeled as:
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Algorithm 1: Overload Handling Algorithm

Input: r : the average excessive requests per second
Input: Si : the maximum average requests per second the ith data center can handle without

violating the local SLA
Input: Li : the latency to the ith data center from the forwarding data center

1 if r >
∑n

i Si then
2 reject r −

∑n
i Si requests per second;

3 r ←
∑n

i Si;
4 end
5 obtain the request distribution plan X by solving the problem defined by Equation 7;
6 respectively forward xi requests per second to the ith data center;
7 Return;

Rwf
i (xi) =

λi
µi − λi − xi

(4)

F (xi) = Lixi +
xi

µi − λi − xi
(5)

where Li is the RTT latency between the ith data center and the data center sending the forwarding
requests. The optimization function then can be formatted as:

minimize
x

n∑
i=0

(
µi

µi − λi − xi
+ Lixi − 1) (6)

By removing the constant -1, the optimization problem is transformed to:

minimize
x

n∑
i=0

(
µi

µi − λi − xi
+ Lixi)

subject to
∑

xi = N

0 ≤ xi < Si

(7)

Since Si is smaller than µi − xi, the optimization function is strictly convex in the feasible space.
Besides, the constraints are also convex. Therefore, the optimization problem is strictly convex and
can be efficiently and optimally solved using existing convex solvers. According to our experiment
results and analysis presented in Section 5.8, this problem can be solved quickly enough within
milliseconds scale to support instant online decisions. Besides, as long as N <

∑n
i Si, the feasible

set is non-empty, and thus, the problem has a unique global optimal solution since it is strictly
convex.

The overall flow of the overload handling algorithm is abstracted in Algorithm 1. It first checks
whether the aggregated available capacities of remote data centers can cater all the excessive load
(Line 1) and rejects the exceeding requests (Line 2) accordingly. After that, it solves the optimization
problem defined in Equation 7 and distributes excessive requests among remote data centers (Line
5 and Line 6).

Though rare in probability, simultaneous overloads in multiple data centers can happen. In this
case, if the remaining capacities in the rest data centers still can cope all the excessive requests,
our approach will serve all the requests, as in the worst case, a request would only be forwarded
multiple times due to staled statuses of remote data centers and finally be served by a data center
with available capacity. Otherwise, all the data centers will be saturated and our approach will apply
admission control to reject the excessive requests in the overloaded data centers.
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Figure 3. An example of the dynamically generated HAProxy configuration

We treat the network latencies as constants in the optimization problem. However, they often
vary dynamically during runtime. Therefore, they need to be dynamically monitored and updated.
Sometimes, some data centers can even become disconnected from the network. In this case, they
are temporarily removed from the candidate set for request forwarding during the downtime.

4.4. Communication Protocol

Load balancing agents in each participating data center communicate among themselves to update
their real-time statuses, including their service rate, current load, and available capacity for
offloading. In our prototype, this is implemented through a broadcasting protocol. It makes each
agent broadcast its status when its service rate has changed, its load has varied beyond a predefined
percentage, or some time has elapsed since the last broadcast. Compared to a strategy that broadcasts
only in a particular time interval, it not only confines the data error but also makes the system more
robust when overload events happen simultaneously in multiple data centers, though such case is
expected to be rare. Considering the situation that one agent detects the local application is in an
overload condition, according to the protocol, it will immediately inform other agents that there is
no available unused capacity offered by it, instead of waiting until the scheduled broadcasting time.
This method prevents the agent in another data center happens to be overloaded as well to forward
requests to the overloaded data center, leading it to more severe resource congestion or triggering
cascading request forwarding which will incur unnecessary extra latencies.

It is inevitable that sometimes data are not updated timely and causes requests being forwarded
to an already saturated data center. In this case, instead of directly rejecting excessive requests in
the receiving data center, a cascading request forwarding will be triggered, if it believes there are
extra capacities available in other data centers. Because the data center does not distinguish whether
a request is originally submitted to it or is forwarded to it by another data center, the forwarded
requests this time are formed by a mixture of requests submitted originally to it and requests that
have been forwarded once. However, because it is unlikely that more than one data center fall into
overloaded situations nearly at the same time, such scenarios will cause limited impact.

4.5. Prototype Implementation and Deployment

Since target of the proposed approach is to detect and handle application overload as soon as
possible, it is preferable to develop it as a part of the load balancer so that the it can react
instantaneously after the detection of the overload events. However, state-of-the-art load balancers,
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MITIGATING OVERLOAD ON MULTI-CLOUD WEB APPLICATIONS THROUGH GLB 9

such as HAProxy 1.6¶, do not support to program such complex configuration. Therefore, we
implemented the agent as a separate program. Fortunately, as some of the load balancers already
have built-in monitoring and health check tools, we still can utilize them to ease the implementation
and deployment of our approach.

The implementation follows the architecture shown in Figure 2. In the implementation, we use
HAProxy 1.6 as the load balancer and rely on it to monitor the performance indicators and check
the machines’ health. The agent is written as a separate Java application. Its monitoring module
periodically fetches the monitored information through HAProxy’s stats console in CSV format.
Then it extracts the required performance indicators and health statuses of the attached servers
and passes them to the overload detector. The overload detector then uses the overload detection
algorithm to judge whether the system is overloaded. In the case that application overload is
detected, the control module configures the load balancer to adapt to the load based on the proposed
overload handling algorithm. The Java agent program should be collocated with the HAProxy load
balancer to minimize network latency.

Both request forwarding and admission control are implemented by dynamically changing the
configuration of the HAProxy load balancer. In detail, the control module dynamically generates a
new configuration file for the HAProxy when it is necessary to perform changes during runtime.
The configuration change is performed through a script which automatically reloads the new
configuration to the running HAProxy process.

The request forwarding mechanism is implemented by dynamically adding the IP addresses of
the load balancers located in the remote data centers to the local load balancer’s configuration
file as normal servers. The number of forwarded requests is dynamically adjusted by assigning
relative weights to the servers and remote data centers using the weighted round robin algorithm
supported by HAProxy. The relative weights are obtained through solving the load distribution
problem defined in Equation 7 using the primal-dual interior-point method built in the JOptimizer‖

solver.
We take advantage of the Access Control List (ACL) mechanism in HAProxy to implement

admission control. It is traditionally used to define the white list and black list of IP addresses
to prevent abusing. Our agent utilizes it in a different manner. We define an ACL as a Bernoulli
trial instead of a fixed list. In this way, the coming request will be served if the random test result is
successful; otherwise, it will be rejected by the load balancer. Note that in a production environment,
instead of directly rejecting requests; a better approach is to allow the load balancer to reply a
customized error page or a default page, which is already supported by HAProxy.

Figure 3 shows an example of the dynamically generated HAProxy configuration by our system.
In line 31, it defines an ACL called monitoring, which is used to prevent monitoring requests
issued by the Java agent co-located in the same machine to be rejected by the admission control
mechanism. Lines 32 and 33 specify the admission control configuration in which the load balancer
will randomly drop 33 out of 250 incoming requests. The servers starts with “local” locate in the
current data center. They are health checked every 2000ms as shown in the configuration, and the
load balancer talks to these servers through their internal IPs. The last two lines specify the request
forwarding settings to the remote data centers located in Ireland and Tokyo. They receive forwarded
requests through the public IPs of their load balancers.

The communication module and its protocol are implemented by Java socket over persistent TCP
connections. Each Java agent constantly maintains a connection to all the other known agents and
continually listens to the updates sent by them.

¶http://www.haproxy.org/
‖http://www.joptimizer.com/
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Figure 4. The architecture of the benchmark application

Table I. Latencies between data centers in milliseconds

Ireland Tokyo
N. Virginia 76.3 167.2

5. PERFORMANCE EVALUATION

We evaluated our prototype implementation on Amazon Web Services IaaS infrastructure located
in North Virginia, Ireland, and Tokyo. We first introduce the benchmark application and the
experimental testbed. After that, we describe the workloads we used for experiments. Finally, we
explain each experiment and present the results.

5.1. Benchmark Application

We used the Wikibench benchmark tool [12] as the testing application. The benchmark tool consists
of three components:

• a stateless web application server installed with the MediaWiki∗∗ application — an open
source version of Wikipedia.

• a MySQL database loaded with the English Wikipedia pages by January 2008.
• a client driver that mimics the behavior of users by sending requests to the MediaWiki server

according to the given workload.

The reason we chose this benchmark is that it is stateless, which fits our prerequisite. Because
our focus is on the application tier, to allow deploying a cluster of application servers, we put an
HAProxy load balancer before the servers and changed the frontend configuration of the MediaWiki
application servers to the IP address of the load balancer. As stated before, the load balancing agent
is deployed along with the HAProxy load balancer on the same machine. Figure 4 demonstrates the
architecture of the benchmark application.

5.2. Experimental Testbed

We set up the experimental testbed in three data centers owned by Amazon Web Services: US-
east1 North Virginia, EU-West1 Ireland, and AP-Northeast1 Tokyo. Table I lists the RTT latencies

∗∗https://www.mediawiki.org
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between North Virginia and the other two data centers tested using ping. In the experiments, we
needed to emulate resource failures and flash crowds in one data center. We chose North Virginia
data center as the data center that experienced failures and flash crowds. Besides serving their loads,
the other two data centers accepted loads directed from North Virginia data center when overload
occurred to it.

The detailed experimental testbed is illustrated in Figure 5. In each data center, we deployed one
client driver using m4.xlarge instance, and one HAProxy server along with the load balancing agent
running on an m4.large instance. We respectively launched eight and four m3.medium instances
in Tokyo and Ireland acting as application servers. The Virginia data center, in the meantime, is
equipped with seven application instances. Besides, to ensure that the data layer did not become
the bottleneck, we launched different numbers of database instances to cope the load in each data
center.

5.3. Workload

We used synthetic workloads generated according to real requests submitted to English-language
edition of Wikipedia in September 2007 [13] to test our system. We first performed profiling tests
to determine on average how many requests one m3.medium application server can handle without
violating the SLA and its service rate. We defined the SLA as 90% requests should be replied
within one second. We assume the workload arrival is a Poisson process and follows the exponential
distribution, which is indicated by the literature [14]. This can be justified by the fact that each
request is submitted independently and occurrence of each request does not affect the probability
that a second request will occur. Base on this assumption, we respectively created three workloads
with an average rate of 30, 35, and 40 requests/s.
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Figure 6. CDFs of the profiling tests with different average workload rates

Figure 7. The workloads with flash crowds range from 117% to 183% of the normal load

Figure 6 depicts the cumulative distribution functions (CDF) of the response times obtained from
the profiling tests. It shows that 35 requests/s is the largest amount of workload an m3.medium
instance can handle without violating the SLA. Furthermore, we respectively calculated the service
rates of the three tests according to Equation 3. Then we averaged them to obtain the estimated
service rate for one instance, which is 41 requests/s.

In the following experiments, we assigned 35 requests/s unused capacities in Virginia and Ireland,
and 70 requests/s unused capacities in Tokyo. According to the profiling results and the capacity
setting, we generated synthetic workloads for the following experiments. We first generated the
background workloads for the Ireland and Tokyo data centers respectively with average incoming
rates of 105 requests/s and 210 requests/s. To test performance of the approach during resource
failures in North Virginia data center, we generated a workload with average request rate of 210
requests/s. For flash crowds cases, we created four workloads with different levels of flash crowds
as shown in Figure 7. Each workload experiences a total five minutes of flash crowd. The peaks of
the flash crowd range from 117% to 183% of the normal load. All the workloads last for 15 minutes
and suffer either server failures or flash crowds starting from the 300s time point for 300 seconds.
We particularly chose the length of 300 seconds because it is the default value of the waiting time
for server booting in Amazon Auto-scaling Service. In this way, we can emulate the situations that
a commercial auto-scaler solely manages the application and demonstrate its resulted application
performances during the overloading periods.
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(c) three server failures

10008006004002000

100

90

80

70

60

50

40

30

20

10

0

Response Time (ms)

Pe
rc

en
ta

ge
 o

f R
eq

ue
st

s

request queueing
admission control
with Ireland
with Ireland and Tokyo

(d) four server failures
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Figure 8. CDFs of the North Virginia data center during the failing periods with different approaches
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Figure 9. CDFs of the data centers receiving forwarded requests during the failing periods

5.4. Benchmarks

To test the performance of our prototype, we compare our approach with the following two
benchmarks:
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Figure 10. Percentage of admitted requests during the failing periods

• Request queueing: the first benchmark queues up all the requests in the local servers and
imposes no admission control when the application is overloaded. It mimics the situation that
the auto-scaler is booting new servers while the requests are queued up in the local servers.

• Admission control: the second benchmark directly imposes admission control when the
application is overloaded. It emulates the case that the auto-scaler asks the load balancer
to reject excessive requests while it is booting new servers.

To test the performance of the request forwarding algorithm, we compare with the following
greedy algorithm:

• Greedy: it always forwards possibly maximum amount of excessive requests to the data center
with largest available capacity one by one.

5.5. Performance under Resource Failures

In the first set of experiments, we performed tests using our approach and the benchmarks in
resource failure situations. In the experiments, we purposely removed some machines from the
load balancer at 300s time point to create synthetic failures and then added them back to the load
balancer after 5 minutes to mimic recovery from failures.

We ran our approach with two configurations. In the first configuration, we only utilized the
unused capacity in the Ireland data center. In the second configuration, we considered unused
capacity in both Ireland and Tokyo data centers. Figure 8 shows the CDFs of our approach and
the two benchmark approaches respectively during the failing periods under different numbers of
server failures††.

Without proper overload handling mechanisms, the application in the North Virginia data center
suffered severe performance degradation when requests were queued up and it became completely
unresponsive in the case of five server failures. If we added simple admission control mechanism,
the application performance was able to be maintained within acceptable level at the cost of rejecting
plenty incoming requests. As shown in Figure 8, we can observe one and two shoulders in the CDFs
of the two settings. This phenomenon was caused by the increased network latencies incurred by
the request forwarding mechanism. In our experiments, though request forwarding increased the
latencies of some requests, it did not result in the SLAs being violated. Comparing to the queuing

††In the reported results, rejected requests are not counted in the CDF graphs.
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(a) 245 reqs/s flash crowd
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(b) 280 reqs/s flash crowd

10008006004002000

100

90

80

70

60

50

40

30

20

10

0

Response Time (ms)

Pe
rc

en
ta

ge
 o

f R
eq

ue
st

s

request queueing
admission control
with Ireland
with Ireland and Tokyo

(c) 315 reqs/s flash crowd
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(d) 350 reqs/s flash crowd
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(e) 385 reqs/s flash crowd

Figure 11. CDFs of the North Virginia data center during the flash crowds with different approaches

delays when no overload handling mechanism is in place, the additional network latencies incurred
by request forwarding are still acceptable as long as the latencies between data centers are moderate.
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(d) 350 reqs/s flash crowd
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Figure 12. CDFs of the data centers receiving forwarded requests during the flash crowds

Our overload handling algorithm is encouraged to forward requests to data centers that are close to
the originating data center as it aims to minimize the overall latency increase.
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Figure 13. Percentage of admitted requests during the flash crowd periods

In addition to the failing data center, we also evaluated the performances of data centers that
received the forwarded requests. Figure 9 presents the CDFs of the data centers receiving the
forwarded requests when failures were happening in North Virginia data center. In all cases, the
SLA was strictly honored because of the constraints on amount of forwarded requests the remote
data centers can serve in the optimization problem.

Furthermore, comparing to just using admission control, our approach was able to increase the
number of served requests. Figure 10 lists the proportions of the admitted requests during the failing
periods in the corresponding experiments. It shows that the power of request forwarding depends
on the amount of unused capacity available in other data centers. As shown in Figure 10, the
configuration utilizing capacity of both Ireland and Tokyo data centers can serve more requests than
the configuration that just used capacity in Ireland data center. When applying admission control
only, a small portion of requests was rejected when one server was down even though the local
capacity should be able to handle it, which was caused by false alarms generated by the overloading
detector. While using our approach, these requests were still served by remote data centers.

5.6. Performance under Flash Crowds

We tested our system under flash crowd situations using the workloads depicted in Figure 7. We
utilized the same settings of Section 5.5. The resulted CDFs for the baselines and our approach
for North Virginia data center that was under flash crowds are delineated in Figure 11. The
corresponding CDFs for the receiving data centers are presented in Figure 12. The percentages
of admitted requests during the flash crowd periods are compared in Figure 13.

The experiments show similar results as the experiments in resource failure situations.
Nevertheless, the impact of short-term overload on the application performance in the flash crowd
experiments is not as severe because the extra load can be directed to more servers. For the same
reason, more percentages of requests are served by the application.

5.7. Performance of the Request Forwarding Algorithm

We utilized the same testing platform to evaluate our request forwarding algorithm (specified as Min
Latency Increase in the results), except we employed a workload with 70 requests/s for the North
Virginia data center and considered all those requests were excessive requests need to be forwarded.
In this way, we can eliminate the impact of the requests served by the North Virginia data center,
which is not in our optimization target, to the results.

Figure 14 shows the results of our algorithm compared to the Greedy algorithm for the aggregated
requests of the forwarded requests and the requests originally served by the remote data centers.
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Figure 15. Measured running time for solving the workload distribution problem

Our algorithm is able to outperform the Greedy algorithm in our experimental setting, because the
Greedy approach overlooks the longer network distance traveled by the forwarded requests.

5.8. Algorithm Scalability

Our system requires efficient solution for the workload distribution problem during runtime. In this
experiment, we illustrate that this problem can be tackled very fast by a convex solver even when a
large number of data centers are involved.

Since the input to the problem consists of the statuses of the data centers, the latencies to the
data centers, and the amount of the excessive load, the algorithm complexity is dominated by the
number of involved data centers. We randomly generated 100 problems with specific numbers of
data centers ranging from 10 to 50 and measured their running time on a desktop equipped with 8
core CPUs and 16 GB of RAM. Results are presented in Figure 15. Even in the worst case with 50
data centers, the runtime was below 35ms, which is acceptable for making real-time decisions. In
reality, the deployment usually involves less than a handful data centers, and the algorithm imposes
negligible overhead in these cases.

6. RELATED WORK

6.1. Overload Management

There have been plenty of work that aims to tackle overloads caused by failures and flash crowds
using cloud resources. However, all of them differ from our work in their target or approaches.
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The approach that is commonly adopted by the industry and is intensively researched is auto-
scaling [7]. It relies on dynamically provision new resources to meet the resource scarcity. Some
of the auto-scaling works have been focusing on how to predict the future workloads and provision
enough resources in advance [15, 16, 17, 18, 19, 20, 21, 22]. Other approaches provision resources
reactively either after detecting the overload events [23, 24] or the utilization has reached certain
threshold [2].

As stated before, resource failures and some flash crowds are often unpredictable, and it takes the
auto-scaler considerable time [1] to provision new resources. Therefore, an auto-scaler alone cannot
adequately deal with these situations. Our work can fill in this gap for multi-cloud applications by
supplementing and enhancing state-of-the-art auto-scaling solutions.

In the previous work, we proposed an auto-scaler using unreliable spot instances for web
applications [2]. It relies on sufficiently over-provision the application to counter the terminations
of spot instances. Our new system can be an ideal partner for it. By working cooperatively with
the proposed system, the spot-based auto-scaler can either reduce the amount of over-provisioned
resources to reach the same level of protection or elevate the reliability of the application using the
same amount of over-provisioned resources.

Cloud burst is a term often used in hybrid cloud settings referring to dynamically provisioning
resources in cloud either to accelerate execution or to handle flash crowds when the local facility
is saturated. Many systems have been proposed to realize this vision [25, 26, 27, 28]. In a sense,
they are similar to our work as they also forward requests to remote data centers. Except that,
they are more close to the auto-scaling approaches as their major focus is on how to provision and
deprovision resources in clouds to meet the workload demand while our system aims to manage
short-term workload distribution.

Another possible method to reduce the impact of overload is to enforce admission control.
Chen et al. [29] proposed a flash crowd detection and mitigation system based on application-level
measurements and admission control. In addition to protecting the application server from crashing,
their target also covers protecting the network from being congested. However, in clouds, since the
provider offers strong data center network and high incoming and outgoing bandwidth, this is not a
concern. Different to their system, our approach uses both request forwarding and admission control
as the last line of defense to protect the application from performance degradation and crashing.

Chandra and Shenoy [30] researched using dynamic resource allocation among different
applications in a data center to cope with flash crowds. Different to them, our work addresses
the overload management problem from an application provider’s perspective instead of from an
infrastructure provider’s angle. Regarding applications that are composed of multiple components,
Gandhi et al. [31] and Klein et al. [32] explored borrowing resources from components that have
available capacity or can be terminated temporarily to support the core services under flash crowds.

6.2. Geographical Load Balancing

Geographical load balancing has been introduced to tackle different challenges. Commercial DNS
Load Balancer, such as Amazon Route 53‡‡ enables application providers to direct their customers
to different data centers according to their location and other factors, such as energy consumption
and carbon footprint [33]. However, such technique is not suitable to our needs as it takes time to
populate the DNS settings across layered DNS servers and it is impossible to realize fine-grained
control over the traffic flow.

Centralized geographical load balancing solutions gather all the user requests and then distribute
them among data centers. They are largely developed for saving energy and carbon footprint
[34, 35]. This architecture is also not applicable to reach our goal as it incurs extra network latency
to every request and reduces the benefit of using a multi-cloud deployment.

Grozev and Buyya [36] proposed an approach that dispatches users to the underlying data centers
at the entry point of the application framework according to the regulation requirements and the

‡‡https://aws.amazon.com/route53/
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available resources in each data center. As the client only talks to the entry point at the start of the
session, its impact on user experience is minimized compared to the centralized solutions. On the
other side, this approach limits its capability to control the load on each data center accurately.

Our solution is different to the methods as mentioned earlier. We adopt a decentralized
architecture composed of individual load balancing agents deployed in each participating data center
to balance the extra load. The agent is only activated temporarily when overload occurs; hence,
requests under normal situations can always be served by the closest data centers, and no extra
network latency is introduced.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a system that supplements and enhances state-of-the-art auto-scalers
for applications deployed in multiple clouds. It is capable of quickly react to short-term overloads
occurred to any participating data center by temporarily forwarding the excessive requests to data
centers with available capacities according to our proposed optimal workload distribution algorithm,
and enforcing admission control as the last line of defense. The system adopts a decentralized
architecture that deploys a load balancing agent within each data center. The agent monitors the local
application, detects overload events, and quickly adapts to them according to real-time resource
availability in other data centers to minimize their impact on the application performance. We
implemented a prototype of the system and evaluated it across AWS’s US, Europe, and Asia data
centers. The obtained results show that our approach can quickly detect overload situations caused
by either resource failures or flash crowds and is effective in improving application performance
during resource contention periods.

In the future, we plan to develop more accurate overload detectors and apply it to our approach.
We will also explore how to directly return forwarded requests to users to reduce the latency cost of
request forwarding. The last but not least, it is important to have a global capacity plan deciding how
much resources should be over-provisioned in each data center at runtime when using our approach
to minimize the overall resource cost.
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