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Reconstruction for the Signature of a Rough
Path

Xi Geng∗

Abstract

Recently it was proved that the group of rough paths modulo tree-like
equivalence is isomorphic to the corresponding signature group through
the signature map S (a generalized notion of taking iterated path inte-
grals). However, the proof of this uniqueness result does not contain any
information on how to “see” the trajectory of a (tree-reduced) rough path
from its signature, and a constructive understanding on the uniqueness
result (in particular on the inverse of S) has become an interesting and
important question. The aim of the present paper is to reconstruct a
rough path from its signature in an explicit and universal way.
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1 Introduction
Motivated from the study of homotopy theory and cohomology of loop spaces,
in 1954 K.T. Chen [7] introduced the powerful tool of iterated path integrals.
In particular, he observed that a continuous path with bounded variation can
be represented by a fully non-commutative power series through an exponential
homomorphism. In terms of tensor products, this is equivalent to saying that
the integration map S, which sends a path x in Rd to the formal tensor series

1 +
∞∑

n=1

ˆ

0<t1<···<tn<1

dxt1 ⊗ · · · ⊗ dxtn ,

is a homomorphism from the semigroup of paths under concatenation to the
algebra of formal tensor series under tensor product. Moreover, in 1957 Chen [8]
discovered an important algebraic property of such representation which asserts
that the formal logarithm of S is always a formal Lie series. Equivalently, S(x)
satisfies the shuffle product formula for every path x.
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Inspired by the algebraic structure of iterated path integrals, in a seminal
work [16] in 1998, T. Lyons developed a theory of path integration and differen-
tial equations driven by rough signals, which is now known as rough path theory.
The key novel point in his theory is that if a path is irregular, a collection of
“generalized iterated integrals” up to a certain degree should be pre-specified
in order to define integration against such a path. More precisely, a generic
path should be a path taking values in the free nilpotent group up to a certain
degree, which is related to the roughness of the underlying path. Identifying the
right topology for paths with certain roughness to ensure continuity properties
for differential equations is a fundamental contribution in the analytic aspect of
rough path theory.

The development of rough path theory leads to tremendous applications in
probability theory, due to the important fact that most of interesting contin-
uous stochastic processes can be regarded as rough paths in a canonical way.
It follows that a pathwise theory of stochastic differential equations is a conse-
quence of rough path theory. This provides a new perspective in solving a lot
of probabilistic problems, for instance regularity of hypoelliptic Gaussian SDEs
[6], large deviation principles [13], analysis on path and loop spaces [1] and etc.
Rough path theory also provides a one dimensional prototype of M. Hairer’s
Fields medal work on the theory of regularity structures for stochastic partial
differential equations.

An important result in rough path theory, known as Lyons’ extension the-
orem, asserts that a rough path has a unique lifting to the full tensor algebra
which has the same regularity. In particular, a rough path can also be rep-
resented by a formal tensor series of “generalized iterated integrals” as in the
bounded variation case. In the rough path literature, such representation is
usually known as the signature of a rough path.

A fundamental question in rough path theory is to understand in what sense
is such representation faithful. In 1958, Chen [9] gave an answer to this question
for the class of piecewise regular and irreducible paths. After five decades, in
2010 H. Bambly and T. Lyons [12] solved this problem for the class of contin-
uous paths with bounded variation. More precisely, they proved that a contin-
uous path of bounded variation is determined by its signature up to tree-like
equivalence. This result was recently extended to the rough path setting by H.
Boedihardjo, X. Geng, T. Lyons and D. Yang [4] in 2016.

From a theoretical point of view, the uniqueness result of [4] is important
as it builds an isomorphism between the rough path space modulo tree-like
equivalence and the corresponding signature group. In particular, it reveals a
link between the geometric property of rough paths and the algebraic property
of signatures. A natural reason of looking at the signature is that the algebraic
structure is very explicit and simple: polynomial functionals on the signature
group are always linear functionals. Therefore, regular functions on signature
are relatively easy to study. On the practical side, this point plays a key role in
the signature approach for time series analysis and financial data analysis (c.f.
[14], [17] for instance).

On the other hand, despite of the fact that the signature map S descends to
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an isomorphism between tree-reduced rough paths (a canonical representative
in each equivalence class) and their signatures, the proof of the uniqueness
result in [4] does not contain any information about how one can “see” the
trajectory of a tree-reduced rough path from its signature. The question about
reconstructing of a path from its signature is interesting and important as it
might shed light on understanding the local geometry of a path from global
information (the signature). Moreover, a nice reconstruction method might
be useful to understand functions on the rough path space by pulling them
back to the signature group through the inverse map S−1, and as mentioned
before, the resulting functions on signature are generally easier to study. The
reconstruction problem was first studied by T. Lyons and W. Xu [18], [19] for
the class of piecewise linear paths and the class of continuously differentiable
paths in which the modulus of continuity for the derivatives is known.

The aim of the present paper is to study the reconstruction problem in the
general rough path setting. To be precise, we aim at reconstructing a tree-
reduced rough path from its signature in an explicit and universal way, in the
sense that it relies only on the Euclidean structure where our underlying paths
should live, and with the knowledge of any given signature, our reconstruction
produces the underlying tree-reduced rough path. The main idea of our recon-
struction is motivated from the understanding on Y. Le Jan and Z. Qian’s work
[15] for Brownian motion into a completely deterministic setting (c.f. Section
3 for a more detailed explanation). We hope that our work might give us a
constructive understanding on the uniqueness result in [4], and in particular on
the inverse of the signature map.

The present paper is organized in the following way. In Section 2, we recall
the basic notions on rough paths and the uniqueness result in [4]. In Section 3,
we explain the main idea of our reconstruction, and provide the precise math-
ematical setting of our problem. In Section 4, we present several preliminary
results which are essential for our study. In Section 5, we consider the case when
our underlying tree-reduced rough paths are non-self-intersecting. In Section 6,
we deal with the general case. In Section 7, we give a few concluding remarks
on the present work.

2 Generalities on the Uniqueness Result for the
Signature of a Rough Path

In this section, we present the basic notions on the signature of rough paths
and recapture the main result of [4]. We will see that the general idea of under-
standing non-self-intersecting signature paths in [4] plays an important role in
the present work.

Let T ((Rd)) be the infinite dimensional tensor algebra over Rd consisting of
formal series of tensors in each degree. For N ∈ N, let

T (N)(Rd) =

N⊕

k=0

(Rd)⊗k
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be the truncated tensor algebra up to degree N . Here we identify (Rd)⊗k ∼= Rdk

with basis {ei1 ⊗ · · · ⊗ eik : 1 6 i1, · · · , ik 6 d}, where {e1, · · · , ed} is the
canonical basis of Rd.

Definition 2.1. A multiplicative functional of degree N ∈ N is a continuous
map X·,· = (1, X1

·,·, · · · , XN
·,· ) from the standard 2-simplex ∆ = {(s, t) : 0 6 s 6

t 6 1} to T (N)(Rd) satisfying the following so-called Chen’s identity :

Xs,u = Xs,t ⊗Xt,u, ∀0 6 s 6 t 6 u 6 1.

Let X,Y be two multiplicative functionals of degree N. Define

dp(X,Y) = max
16i6N

sup
P[0,1]

(∑

l

∣∣∣Xi
tl−1,tl

− Y itl−1,tl

∣∣∣
p
i

) i
p

,

where P[0,1] denotes all finite partitions of [0, 1]. dp is called the p-variation
metric, and we say X has finite (total) p-variation if dp(X,1) < ∞ where
1 := (1, 0, · · · , 0). A multiplicative functional X of degree bpc with finite p-
variation is called a p-rough path. The space of p-rough paths over Rd is denoted
by Ωp(Rd).

A fundamental analytic property of p-rough paths is the following extension
theorem proved by Lyons [16]. It asserts that some analytic version of “iterated
path integrals” against a p-rough path can be uniquely defined and has a nice
factorial decay property.

Theorem 2.1. (Lyons’ extension theorem) Let X be a p-rough path. Then for
any i > bpc + 1, there exists a unique continuous map Xi : ∆ →

(
Rd
)⊗i such

that
S(X) :=

(
1, X1, · · · , Xbpc, · · ·Xi, · · ·

)

is a multiplicative functional in T
((
Rd
))

with finite p-variation when restricted
up to each degree. Moreover, there exists a positive constant Cp depending only
on p, such that

∣∣Xi
s,t

∣∣ 6 Cpω(s, t)
i
p

(
i
p

)
!

, ∀i > 1 and ∀(s, t) ∈ ∆, (2.1)

where ω is the control function defined by

ω(s, t) =

bpc∑

i=1

sup
P[s,t]

∑

l

∣∣∣Xi
tl−1,tl

∣∣∣
p
i

, (s, t) ∈ ∆.

Definition 2.2. The tensor element S(X)0,1 ∈ T ((Rd)) defined by Theorem
2.1 is called the signature of X.
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In the case of p = 1, a p-rough path X is just the collection of increments
of the continuous path x· := X0,· in Rd with bounded variation, and Lyons’
extension of X reduces to the classical iterated path integrals along x.

Now let G(Rd) be the group defined by the exponential of formal Lie series
in T ((Rd)). For N ∈ N, let GN (Rd) be the truncation of G(Rd) up to degree N ,
which consists of the exponential of Lie polynomials up to degree N in T (N)(Rd).
GN (Rd) is usually known as the free nilpotent group of degree N.

The following result, known as the shuffle product formula, reveals a funda-
mental algebraic property for the signature of continuous paths with bounded
variation (c.f. Reutenauer [21] and also Chen [8]). This property lies as a crucial
base to expect that a path with bounded variation is uniquely determined by
its signature up to tree-like equivalence and also to its extension to the rough
path setting.

Theorem 2.2. (Shuffle product formula) A tensor element a = (1, a1, a2, · · · ) ∈
T ((Rd)) belongs to G(Rd) if and only if

am ⊗ an =
∑

σ∈S(m,n)
Pσ(am+n), ∀m,n > 1, (2.2)

where S(m,n) denotes the set of (m,n)-shuffles in the permutation group of
order m+ n, and Pσ : V ⊗(m+n) → V ⊗(m+n) is the permutation operator given
by

Pσ(v1 ⊗ · · · ⊗ vm+n) = vσ(1) ⊗ · · · ⊗ vσ(m+n).

In particular, for any continuous path x in Rd with bounded variation, the
signature of x satisfies (2.2) and hence belongs to G(Rd).

Following the general setting of [4], in the present paper we work with a
class of rough paths called weakly geometric rough paths. It is defined on
the previous algebraic structure and is the fundamental class of paths that the
theory of rough integration and differential equations is based on.

Definition 2.3. A weakly geometric p-rough path is a p-rough path taking
values in Gbpc(Rd). The space of weakly geometric p-rough paths over Rd is
denoted by WGΩp(Rd).

It can be shown (c.f. [10], and also [4]) that the signature of a weakly
geometric rough path is an element in G.

Remark 2.1. There is an equivalent intrinsic definition of weakly geometric
rough paths in terms of the Carnot–Carathéodory metric dCC on Gbpc(Rd). To
be precise, a weakly geometric p-rough path is a continuous path X : [0, 1] →
Gbpc(Rd) starting at the unit such that X has finite p-variation with respect to
the metric dCC . This definition is equivalent to Definition 2.3 through Xs,t =
X−1s ⊗Xt and Xt = X0,t. We refer the reader to [10] for a detailed discussion
along this approach.
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From now on, unless otherwise stated we always regard a weakly geometric
p-rough path as an actual path in Gbpc(Rd) instead of a multiplicative functional
defined on the simplex ∆.

The main result of [4] states that a weakly geometric p-rough path is uniquely
determined by its signature up to tree-like equivalence. More precisely, it was
shown that:

Theorem 2.3. A weakly geometric p-rough path X has trivial signature if and
only if it is tree-like, in the sense that there exists some real tree τ together with
a continuous loop α : [0, 1]→ τ and some continuous map ψ : τ →WGΩp(Rd)
such that X = ψ ◦ α.

In particular, let

Sp = {g = S(X)0,1 : X ∈WGΩp(Rd)}

be the signature group for weakly geometric p-rough paths. It was proved that
for each g ∈ Sp, there exists a uniqueXg ∈WGΩp(Rd) up to reparametrization,
such that S(Xg)0,1 = g and S(Xg)0,· is a non-self-intersecting (or simple) path
in T ((Rd)). Xg is known as the tree-reduced path associated with signature g.
It follows that Sp can be equipped with a real tree metric in a canonical way,
and a weakly geometric p-rough path with trivial signature factors through this
real tree with ψ being the projection map.

Therefore, modulo tree-like paths the signature homomorphism

Sp : WGΩp(Rd) → T ((Rd)),
X 7→ S(X)0,1,

descents to a group isomorphism

S̃p : WGΩp(Rd)/tree−like
∼=→ Sp.

Moreover, each equivalence class contains a unique tree-reduced path X (up to
reparametrization) and this isomorphism gives rise to a one-to-one correspon-
dence between tree-reduced paths (up to reparametrization) and signatures.

However, the proof of Theorem 2.3 contains no information about how a
tree-reduced path can be reconstructed from its signature. The development of
such a reconstruction in an explicit and universal way is the main focus of the
present paper.

Before studying the reconstruction problem, let us mention the following
interesting fact. In the case of p = 1, it is not hard to see that (c.f. [12]) a path
is tree-reduced if and only if it is a reparametrization of the unique minimizer of
1-variation (i.e. the length) among paths parametrized by arc length with the
same signature. However, this is not true in the case of p > 1. A tree-reduced
path certainly minimizes the p-variation, but a p-variation minimizer might not
be tree-reduced no matter how it is parametrized. We conclude this section by
providing such an example.
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Example 2.1. Consider the two dimensional case and 1 < p < 2. Let ÃB be
an arc of the unit circle centered at O ∈ R2 with central angle θ0, and let C
be the midpoint of ÃB. Let D be a point on the extension of the radius vector−−→
OC and let |CD| = ε. Consider the paths x, y : [0, 1] → R2 defined by the
trajectories

x = ÃC t −−→CD t −−→DC t C̃B, y = ÃB,

respectively, where “t” means concatenation. It is easy to see that x, y have the
same signature g and y is a tree-reduced path. Apparently x and y do not differ
by just a reparametrization. Now we show that ‖x‖p−var = ‖y‖p−var =

∣∣∣−−→AB
∣∣∣

provided θ0 and ε are small enough.
In fact, let E ∈ ÃB and denote the central angle ∠EOB by θ. Consider the

function
f(θ) =

∣∣∣−→AE
∣∣∣
p

+
∣∣∣−−→EB

∣∣∣
p

, θ ∈ [0, θ0],

which can be written as

f(θ) = 2p
(

sinp
θ

2
+ sinp

θ0 − θ
2

)

according to Euclidean geometry. Computing the second derivative of f , we
obtain that

f ′′(θ) =
p

22−p

(
(p− 1)

(
cos2 θ2

sin2−p θ
2

+
cos2 θ0−θ2

sin2−p θ0−θ
2

)
−
(

sinp
θ

2
+ sinp

θ0 − θ
2

))
.

Since 1 < p < 2, we know that when θ0 is small, f ′′(θ) is uniformly positive and
hence f is convex on [0, θ]. Also note that f(0) = f(θ0) =

∣∣∣−−→AB
∣∣∣
p

. Therefore, for
θ0 small enough f obtains its maximum on the end points and we have

∣∣∣−→AE
∣∣∣
p

+
∣∣∣−−→EB

∣∣∣
p

6
∣∣∣−−→AB

∣∣∣
p

, ∀E ∈ ÃB.

Now we fix such θ0. This already implies that ‖y‖p =
∣∣∣−−→AB

∣∣∣. Moreover, by
considering the symmetry of f(θ) it is easy to see that f obtains its minimum
at θ = θ0/2. Set

λ =
∣∣∣−−→AB

∣∣∣
p

−
∣∣∣−→AC

∣∣∣
p

−
∣∣∣−−→CB

∣∣∣
p

> 0.

It remains to show that when ε is small enough, ‖x‖p =
∣∣∣−−→AB

∣∣∣. To this end,
let

P : 0 = t0 < t1 < · · · < tn = 1

be a finite partition of [0, 1], and let tk, tl be the first and last partition points
at which x is in CD respectively. If such points do not exist, then obviously we
have

n∑

i=1

∣∣xti − xti−1

∣∣p 6
∣∣∣−−→AB

∣∣∣
p

.
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Otherwise, we have

n∑

i=1

∣∣xti − xti−1

∣∣p =

k−1∑

i=1

∣∣xti − xti−1

∣∣p +
∣∣xtk − xtk−1

∣∣p +

l∑

i=k+1

∣∣xti − xti−1

∣∣p

+
∣∣xtl+1

− xtl
∣∣p +

n∑

i=l+2

∣∣xti − xti−1

∣∣p

6
∣∣xtk−1

−A
∣∣p +

∣∣B − xtl+1

∣∣p +
∣∣xtk − xtk−1

∣∣p

+
∣∣xtl+1

− xtl
∣∣p + 2εp,

where we have used the previous discussion and the fact that
−−→
CD is a geodesic.

It follows that
n∑

i=1

∣∣xti − xti−1

∣∣p

6
∣∣∣−→AC

∣∣∣
p

+
∣∣∣−−→CB

∣∣∣
p

+
(∣∣xtk − xtk−1

∣∣p −
∣∣C − xtk−1

∣∣p)

+
(∣∣xtl+1

− xtl
∣∣p −

∣∣xtl+1
− C

∣∣p)+ 2εp

=
∣∣∣−−→AB

∣∣∣
p

−
(∣∣∣−−→AB

∣∣∣
p

−
∣∣∣−→AC

∣∣∣
p

−
∣∣∣−−→CB

∣∣∣
p

−
(∣∣xtk − xtk−1

∣∣p −
∣∣C − xtk−1

∣∣p)

−
(∣∣xtl+1

− xtl
∣∣p −

∣∣xtl+1
− C

∣∣p)− 2εp
)
.

On the other hand, we have
∣∣xtk − xtk−1

∣∣p −
∣∣C − xtk−1

∣∣p 6
(∣∣C − xtk−1

∣∣+ ε
)p −

∣∣C − xtk−1

∣∣p

6 max
{(√

ε+ ε
)p
, θp0
((

1 +
√
ε
)p − 1

)}

=: µ(ε).

The same inequality holds for
∣∣xtl+1

− xtl
∣∣p −

∣∣xtl+1
− C

∣∣p . Therefore, we have

n∑

i=1

∣∣xti − xti−1

∣∣p 6
∣∣∣−−→AB

∣∣∣
p

− (λ− 2µ(ε)− 2εp) 6
∣∣∣−−→AB

∣∣∣
p

,

provided ε is small enough so that

2µ(ε) + 2εp < λ.

Now by taking supremum over all finite partitions of [0, 1], we conclude that

‖x‖p 6
∣∣∣−−→AB

∣∣∣ = ‖y‖p 6 ‖x‖p.

Therefore, x is also a p-variation minimizer with signature g.
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3 Main Idea of the Reconstruction
In this section, we explain the basic idea of our reconstruction and present the
precise mathematical setting of our problem.

The underlying strategy of our reconstruction is motivated from the proba-
bilistic work of Le Jan and Qian [15] for Brownian motion, which was further
developed by X. Geng Z. Qian [11] for hypoelliptic diffusions and by H. Boedi-
hardjo and X. Geng [3] in the non-Markov setting. We first summarize the
original idea of Le Jan and Qian for the almost-sure reconstruction of Brownian
sample paths.

(1) By knowing the (Stratonovich) signature of Brownian sample paths, the
shuffle product formula allows us to construct iterated path integrals along any
finite sequence of regular one forms (which they called extended signatures).

(2) Given a disjoint family of nice compact domains {Kn} in space with a
well-chosen one form supported in each Kn, by evaluating extended signatures
associated with this family of one forms, with probability one we can determine
the ordered sequence of domains Kn visited by a Brownian path.

(3) Construct a polygonal path associated with this ordered sequence of do-
mains Kn visited by the underlying Brownian path. As we refine the geometric
scheme, it is reasonable to expect that the polygonal approximation converges
to the original Brownian path in some sense.

In the probabilistic setting, the way of choosing the “testing” one forms and
of refining the geometric scheme to obtain convergence depends on the a priori
knowledge on the law of the underlying process, in particular on its certain non-
degeneracy properties. In this respect, it gives rise to the main obstruction of
developing such idea in the deterministic setting for arbitrary weakly geometric
rough paths as we need to treat every path equally. We explain this point in
more details.

For simplicity, let us consider the two dimensional case in which our under-
lying paths are non-self-intersecting and have bounded variation. Assume that
the plane is decomposed into disjoint squares of size order ε and narrow tunnels
of width order δ (δ << ε). By using extended signatures we can determine the
ordered sequence mε,δ of squares visited by a path (this relies on the non-self-
intersecting assumption on our path in a crucial way), and we can construct
a polygonal path associated with this sequence according to (3) as discussed
before.

Now if we refine our geometric scheme by letting (ε, δ)→ 0 independently, we
cannot expect that the polygonal approximation would converge to the original
path in any sense although it should be true generically. In general, for any
given refinement of geometric schemes, one could always construct a path such
that the convergence fails for this path. Heuristically, such a path should have
a long excursion in the complement of each geometric scheme (i.e. the tunnels
in this case) along the refinement.

The following is a simple example illustrating this situation.

Example 3.1. Figure 3.1 gives a simple example that the convergence of the
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Figure 3.1: An example illustrating that the convergence of polygonal approxi-
mation can fail as (ε, δ)→ 0.

polygonal approximation could fail in general. Here x is a piecewise linear
path starting from origin with two edges, going first from (0, 0) to (1, 0) and
then from (1, 0) to (1, 1). In the ε-scale, every square is centered at εn for
some integer point n in the plane, leaving gaps between squares to the order of
another independent parameter δ. Now choose a subsequence εn = 2

2n+1 and
arbitrary δn. It is then easy to see that along this subsequence εn, the polygonal
approximation xn is given by the linear path joining the origin and the point
nεn. In this situation we cannot expect that xn converges to the original path
x in any reasonable sense.

In a more general situation, suppose that {Cn} is any given refinement of
geometric schemes in Rd (i.e. the size of domains goes to zero uniformly as
n → ∞), and let 0 < r < R. Then one can prove that there exists a subse-
quence Cln and a continuous path x : [0, 1] → Rd, such that |x1| > R but the
polygonal approximation xn of x with respect to Cln is contained in B(0, r) for
all sufficiently large n. Therefore, one could not expect that xn converges to
x in any reasonable sense. To get an idea of how this works, we can first pick
some geometric scheme Cl1 and construct a path x1 with |x11| > R but which
does not enter domains in Cl1 which are outside B(0, r). Then we can pick some
next geometric scheme Cl2 and modify x1 to another path x2 with |x21| > R
but which does not enter domains in Cl1 and Cl2 which are outside B(0, r). By
doing this inductively and keeping track of the uniform error created in each
step, we can obtain a sequence of paths xn which converges uniformly to some
limit path x with |x1| > R, and xn does not enter domains in Cl1 , · · · , Cln which
are outside B(0, r). It is then natural to expect that the limit path x does not
enter domains in Cln which are outside B(0, r) for every n. Therefore, x will be
a desired counter-example. The detailed proof of this claim is quite technical
and is hence omitted.

The main idea of overcoming this issue is to let the signature g determine the
width δ of the tunnels for each ε according to some stable quantity, so that the
underlying path with signature g is not able to travel through any long narrow
tunnels in the resulting geometric scheme. Therefore the approximating polyg-
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onal path must converge to the original path. This part is the key ingredient of
the present work.

If the underlying path is not simple, the situation is more complicated since
extended signatures might not be able to recover the discrete route mε,δ. The
key to overcoming this issue is to lift the path to its truncated signature path
up to certain high degree N which is determined by the signature g. This is
achieved again through some stabilizing property. Here we will see that the
decay of signature plays a crucial role.

Now we present the basic functional setting on which our reconstruction is
based. Throughout the rest of the present paper, the roughness p > 1 is fixed.

As the signature is invariant under reparametrization, it is natural to regard
the parametrization-free tree-reduced path as a single object to be reconstructed
in some functional space.

Definition 3.1. A reparametrization is a continuous and strictly increasing
function σ : [0, 1] → [0, 1], such that σ(0) = 0 and σ(1) = 1. The group of
reparametrizations is denoted by R.

Let (E, ρ) be a metric space, andW = C([0, 1];E) be the space of continuous
paths in E. We introduce an equivalence relation “∼” on W by x ∼ x′ if and
only if x· = x′σ(·) for some σ ∈ R, and let W∼ be the corresponding quotient
space. Now define a distance function d on W∼ by

d([x], [x′]) = inf
σ∈R

sup
t∈[0,1]

ρ
(
xt, x

′
σ(t)

)
, [x], [x′] ∈W∼. (3.1)

It is not hard to see that d is well-defined, symmetric and satisfies the triangle
inequality (c.f. [3] for a detailed discussion). However, it is not positively
definite in general. Now let Γ be the set of paths x ∈ W such that there exist
0 6 s < t 6 1 with xu = xs for all u ∈ [s, t]. If we restrict the relation “∼” on
W0 = Γc ⊂ W and consider the corresponding quotient space W∼0 , it is proved
in [3] that d is indeed a metric on W∼0 .

In our situation, we take E to be the space Ebpc = T bpc(Rd). Let X be a
weakly geometric p-rough path. If X stays constant during some [s, t], then
its signature path would not be simple. It follows that every tree-reduced
weakly geometric p-rough path can be regarded as an element in W0 (recall
that Gbpc(Rd) is canonically embedded in Ebpc). Moreover, from the unique-
ness result we know that any two tree-reduced path with the same signature
differ by a reparametrization in the sense of Definition 3.1. Therefore, the set
of tree-reduced paths modulo reparametrization can naturally be regarded as
a subset Tp of W∼0 . Our aim is to reconstruct the unique element in Tp corre-
sponding to each given g ∈ Sp.

11
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4 Extended Signatures for Truncated Signature
Paths

The starting point of our reconstruction is the use of extended signatures which
are iterated integrals along ordered sequence of one forms. In this section we
present the basic ingredients for this part.

4.1 The Signature of Truncated Signature Paths
Since we aim at reconstructing the tree-reduced path X as a trajectory in Ebpc,
we shall integrate along one forms defined on Ebpc rather than those on Rd.
This requires an important fact that X can be regarded as the first level path
of some weakly geometric p-rough path Y over Ebpc whose signature, which
is an element of the tensor algebra over Ebpc, is determined by the signature
of X explicitly. Fortunately, such Y can be constructed in a canonical way.
A construction based on ordered shuffles already appears in [5], [16] for the
study of rough integration against weakly geometric rough paths, and also in
[4] for the uniqueness problem. Here for completeness we present an equivalent
construction which does not rely on ordered shuffles and is more convenient to
use from a combinatorial point of view.

Let X be an arbitrary weakly geometric p-rough path.
Given N ∈ N, let yt = (1, X1

0,t, · · · , XN
0,t) be the truncated signature path of

X up to degree N . Then we know that y takes values in the Euclidean space

EN :=
N⊕

i=0

(Rd)⊗i.

Therefore, the construction of the lifting of y should take place in the tensor
algebra over EN , where for each n > 1, we apply the following identification:

(EN )⊗n ∼=
N⊕

i1,··· ,in=0

(Rd)⊗(i1+···+in).

Equivalently we need to construct Y n;i1,··· ,ins,t ∈ (Rd)⊗(i1+···+in) for n > 1, 0 6
i1, · · · , in 6 N and (s, t) ∈ ∆. Y 1 is just the increment of y.

Now we consider the case when n = 2. We first proceed by a formal calcu-
lation to motivate the rigorous construction. Such calculation is based on the
formal differential equation

dS(X)s,t = S(X)s,t ⊗ dxt

for the signature path (c.f. [10], Proposition 7.8) together with the shuffle
product formula. Note that the identity in each step below do not make sense
when p > 2.

12
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If 1 6 i1, i2 6 N, then formally we have

Y 2;i1,i2
s,t

.
=

ˆ

s<u<t

Y 1;i1
s,u ⊗ dyi2u

.
=

ˆ

s<u<t

(Xi1
0,u −Xi1

0,s)⊗ dXi2
0,u

.
=

ˆ

s<u<t




i1∑

j1=1

Xi1−j1
0,s ⊗Xj1

s,u


Xi2−1

0,u ⊗ dxu

.
=

ˆ

s<u<t




i1∑

j1=1

Xi1−j1
0,s ⊗Xj1

s,u





i2−1∑

j2=0

Xi2−1−j2
0,s ⊗Xj2

s,u


⊗ dxu

.
=

i1∑

j1=1

i2−1∑

j2=0

ˆ

s<u<t

P τ(i1−j1,j1,i2−1−j2,j2)(Xi1−j1
0,s ⊗Xi2−1−j2

0,s

⊗Xj1
s,u ⊗Xj2

s,u)⊗ dxu

.
=

i1∑

j1=1

i2−1∑

j2=0

ˆ

s<u<t

P τ(i1−j1,i1,i2−1−j2,j2)




∑

σ1∈S(i1−j1,i2−1−j2)
σ2∈S(j1,j2)

Pσ1⊗σ2(Xi1+i2−j1−j2−1
0,s ⊗Xj1+j2

s,u )


⊗ dxu

.
=

i1∑

j1=1

i2−1∑

j2=0

∑

σ1∈S(i1−j1,i2−1−j2)
σ2∈S(j1,j2)

P
τ(i1−j1,i1,i2−1−j2,i2)

◦ Pσ1⊗σ2
(Xi1+i2−j1−j2−1

0,s ⊗Xj1+j2+1
s,u ). (4.1)

Here P τ(i1−j1,j1,i2−1−j2,j2), Pσ1⊗σ2 are linear transformations on (Rd)⊗(i1+i2−1)
defined by

P τ(i1−j1,j1,i2−1,j2)(a⊗ b⊗ c⊗ d) = a⊗ c⊗ b⊗ d
for a ∈ (Rd)⊗(i1−j1), b ∈ (Rd)⊗(i2−1−j2), c ∈ (Rd)⊗j1 , d ∈ (Rd)⊗j2 , and

Pσ1⊗σ2(a⊗ b) = Pσ1(a)⊗ Pσ2(b)

for a ∈ (Rd)⊗(i1+i2−j1−j2−1), b ∈ (Rd)⊗(j1+j2). P
τ(i1−j1,i1,i2−1−j2,i2)

, P
σ1⊗σ2

are their extensions to (Rd)(i1+i2) by fixing the last tensor component. The
notation “ .=” means that the identities are formal. For simplicity, we can write
(4.1) as

Y 2;i1,i2
s,t

.
=

i1+i2∑

j=2

∑

σ∈A(i1,i2,j)

Pσ(Xi1+i2−j
0,s ⊗Xj

s,t), (4.2)
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where A(i1, i2, j) is a set of permutations of order i1 + i2 which fix the last
component. Of course A(i1, i2, j) can be written down explicitly from (4.1) but
we are not interested in its exact expression. The crucial point here is that
the right hand side of (4.2) is a well-defined element in (Rd)⊗(i1+i2), and it is
reasonable to take it as the definition of Y 2;i1,i2

s,t .
Inductively, assume that we have defined

Y n;i1,··· ,ins,t =

i1+···+in∑

j=n

∑

σ∈A(i1,··· ,in,j)
Pσ(Xi1+···+in−j

0,s ⊗Xj
s,t) (4.3)

for all 1 6 i1, · · · , in 6 N and (s, t) ∈ ∆, where A(i1, · · · , in, j) is a set of
permutations of order i1 + · · · + in which fix the last component. Then for
1 6 i1, · · · , in+1 6 N , formally we have

Y
n+1;i1,··· ,in+1

s,t

=

ˆ

s<u<t

Y n;i1,··· ,ins,u ⊗ dyin+1
u

=

i1+···+in∑

j=n

∑

σ∈A(i1,··· ,in,j)

ˆ

s<u<t

P
σ
(Xi1+···+in−j

0,s ⊗Xj
s,u ⊗Xin+1−1

0,u )⊗ dxu,

where P
σ
is the extension of Pσ to (Rd)⊗(i1+···+in+1−1) by fixing the last in+1−1

tensor components. By applying the same formal calculation as in the case when
n = 2, we obtain that

Y
n+1;i1,··· ,in,in+1

s,t
.
=

i1+···+in+1∑

j=n+1

∑

σ∈A(i1,··· ,in+1,j)

Pσ(X
i1+···+in+1−j
0,s ⊗Xj

s,t), (4.4)

where A(i1, · · · , in+1, j) is a set of permutations of order i1 + · · ·+ in+1 which
fix the last component. We take the right hand side of (4.4) as the definition of
Y
n+1;i1,··· ,in+1

s,t .
Therefore, for each n > 1, 1 6 i1, · · · , in 6 N and (s, t) ∈ ∆, we have defined

Y n;i1,··· ,ins,t ∈ (Rd)⊗(i1+···+in) from a purely algebraic point of view. In the case
when one of those ij equals zero, we simply let Y n;i1,··· ,ins,t = 0. It remains to
verify that this definition is exactly what we need. Such verification is a straight
forward consequence of the fact that X is a geometric p′-rough path for every
p′ ∈ (p, bpc+ 1) (c.f. [10], Corollary 8.24).

Proposition 4.1. Let X ∈ WGΩp(Rd) and N ∈ N. Then the formula (4.3)
together with

Y n;i1,··· ,ins,t = 0, if one of ij = 0,

defines a multiplicative functional Y on the infinite dimensional tensor algebra
T ((EN )) over EN which takes values in the group G(EN ) of exponential Lie
series over EN . Moreover, for each n > 1,

Y
(n)
s,t := (1, Y 1

s,t, · · · , Y ns,t), (s, t) ∈ ∆, (4.5)
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has finite p-variation in the sense of Definition 2.1. Therefore, Y (bpc) defines a
weakly geometric p-rough path Y over EN whose signature path is Y with first
level path being the truncated signature path of X up to degree N.

Finally, the signature of Y is determined by the signature of X explicitly
through the following formula:

S(Y)n;i1,··· ,in0,1

=





∑
σ1∈S(i1,i2−1)

σ2∈S(i1+i2,i3−1)···
σn−1∈S(i1+···+in−1,in−1)

Pσn−1◦···◦σ1(Xi1+···+in
0,1 ), 1 6 i1, · · · , in 6 N,

0, ij = 0 for some j,

(4.6)

where each shuffle σj is regarded as a permutation of order i1 + · · ·+ in by fixing
the last ij+1 + · · ·+ in + 1 components.

Proof. Given p′ ∈ (p, bpc + 1), let xn be a sequence of continuous paths with
bounded variation whose lifting to Gbpc(Rd) converges to X in p′-variation.
The existence of xn is guaranteed by [10], Corollary 8.24. Since the truncated
signature path yn of xn up to degree N has bounded variation, it follows that
each step in the previous formal calculation becomes exact equality when X
is replaced by xn. In other words, the signature path of yn given by iterated
path integrals against yn coincides with the definition given in the previous
formal construction. Therefore, it defines a multiplicative functional on T ((EN ))
satisfying the shuffle product formula.

For each n > 1, since the free nilpotent group Gn(EN ) of step n over EN is
a closed subset of T (n)(EN ), by the continuity of signature (c.f. [16], Theorem
2.2.2) we conclude the first part of the proposition. Moreover, from the explicit
formula (4.3), it is easy to see that Y n;i1,··· ,ins,t has the following estimate:

|Y n;i1,··· ,ins,t | 6 C(N,n, ω(0, 1)) · ω(s, t)
n
p ,

where

ω(s, t) :=
n∑

i=1

sup
P[s,t]

∑

l

∣∣∣Xi
tl−1,tl

∣∣∣
p
i

, (s, t) ∈ ∆,

and C(N,n, ω(0, 1)) is a constant depending only on N,n, ω(0, 1). Therefore,
Y (n) defined by (4.5) has finite p-variation and the conclusion of the second
part holds. Finally, the formula (4.6) for the signature of Y can be seen directly
by letting s = 0 in the previous formal calculation (in this case the permutation
sets A(i1, · · · , in, j) can be written down easily).

4.2 Using Extended Signatures
As mentioned before, we are going to reconstruct the tree-reduced path by using
extended signatures. In particular, we will integrate along compactly supported
one forms with continuous derivatives up to order α := bpc+ 1.

Let X be a weakly geometric p-rough path, and let (φ1, · · · , φn) be a finite
sequence of compactly supported Cα-one forms on Rd.

15



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Definition 4.1. The first level of the iterated path integral
ˆ

0<t1<···<tn<1

φ1(dXt1) · · ·φn(dXtn)

is called the extended signature of X along (φ1, · · · , φn), and it is denoted by
[φ1, · · · , φn](x).

In general, the extended signature of X along (φ1, · · · , φn) can either be
interpreted through the approximation

[φ1, · · · , φn](x) = lim
k→∞

ˆ

0<t1<···<tn<1

φ1(dx
(k)
t1 ) · · ·φn(dx

(k)
tn ), (4.7)

where x(k) is a sequence of continuous paths with bounded variation whose
lifting to Gbpc(Rd) converges to X in p′-variation for some p′ ∈ (p, bpc + 1), or
through the unique solution to the rough differential equation





dxit = dxit, 1 6 i 6 d,

dyjt = yj−1t

∑d
i=1 φ

j
i (xt)dx

i
t, 1 6 j 6 n,

x0 = 0, y0 = 0,

where y0t := 1.

Remark 4.1. In the notation [φ1, · · · , φn](x), we have used small “x”, which
denotes the first level path of X, to emphasize that the integral is essentially
constructed on Rd although the rigorous definition relies on the rough path
nature of X. Later on we will use extended signatures constructed on EN along
one forms over EN for N > bpc.

Let g be the signature ofX and let φ be a compactly supported Cα-one form.
The starting point of our reconstruction is the crucial fact that the integral
´ 1

0
φ(dXt) can be explicitly reconstructed from the knowledge of g and φ.
Indeed, let n0 > 1 be such that Bn0

= {x ∈ Rd : |x| 6 n0} contains the
support of φ. For each n > n0, let pn be a polynomial one form such that

sup
06j6α

sup
Bn

∣∣Dj(φ− pn)
∣∣ 6 1

n
.

The existence of pn is guaranteed by the work of Bagby-Bos-Levenberg [2],
Theorem 1. Moreover, from their proof the construction of pn is explicit.

Since pn is a polynomial one form, the integral
´ 1

0
pn(dXt) can be directly

computed from g using the shuffle product formula. Now it remains to show the
following simple fact.

Proposition 4.2. The value of the integral
´ 1

0
φ(dXt) is given by

ˆ 1

0

φ(dXt) = lim
n→∞

ˆ 1

0

pn(dXt).
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Proof. Since x([0, 1]) is a compact subset of Rd, we know that x([0, 1]) ⊂⊂ Bn1

for some n1 > n0. Therefore,

sup
06j6α

sup
Bn1

∣∣Dj(φ− pn)
∣∣ < 1

n
, ∀n > n1.

The result follows from the continuity of the integration map φ 7→
´ 1

0
φ(dXt) (c.f.

[10], Theorem 10.47). Note that here the path X is fixed, thus the continuity
holds under the Cα-norm over Bn1 .

The same argument applies to extended signatures. In particular, for a
given finite sequence (φ1, · · · , φn) of compactly supported Cα-one forms, the
extended signature [φ1, · · · , φn](x) can be reconstructed from the knowledge of
g and these one forms.

In our reconstruction problem, as we have pointed out before, we shall inte-
grate over Ebpc rather than over Rd. More generally, given N > bpc, let y be the
truncated signature path of X up to some degree N , and let Y be the weakly
geometric p-rough path over EN defined in Proposition 4.1. We know that the
signature of Y is determined by g through the formula (4.6). Therefore, given a
finite sequence (Φ1, · · · ,Φn) of compactly supported Cα-one forms on EN , the
extended signature [Φ1, · · · ,Φn](y) can be reconstructed from the knowledge of
g and these one forms on EN .

5 The Reconstruction: Non-self-intersecting Case
In this section, we develop our reconstruction for the case when the tree-reduced
weakly geometric p-rough paths are simple. Although we could treat the general
case in one go, a good understanding of the non-self-intersecting case is very
helpful.

Recall that

Ebpc =

bpc⊕

i=0

(Rd)⊗i

is an Euclidean space of dimension D = 1 + d+ · · ·+ dbpc with Euclidean norm
given by

‖ · ‖Ebpc =

bpc∑

i=0

‖ · ‖(Rd)⊗i .

Elements in Ebpc are of the form a = (aI)06|I|6bpc, where I is a word over the
alphabet {1, · · · , d}. Here the order of coordinates aI in a homogeneous tensor
product (Rd)⊗k is not important, but the increasing order with respect to the
tensor degree is important (in order to make use of the decay of signature as we
will see in Section 6).

In the rest of this section, we assume that X is a simple tree-reduced weakly
geometric p-rough path with signature g.
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Figure 5.1: This figure illustrates the construction of the discrete route of a path
in dimension 2. In this example L = 7, and the discrete route of the underlying
path is given by the word (0, 3, 4, 5, 0, 1, 0, 3).

5.1 Recovering the Discrete Route in a Given Geometric
Scheme

Let {K0, · · · ,Kr} be a finite family of bounded domains in Ebpc whose closures
are mutually disjoint. Suppose that the path X starts in K0.

We define L to be the total number of domains Ki visited by X in order
(excluding the initial one K0). L is finite from the continuity of X and the
disjointness of those Ki. Let

{(τk,mk) ∈ [0, 1]× {0, · · · , r} : 0 6 k 6 L}

be the corresponding sequence of entry times together with domains visited,
where τ0 = 0 and m0 = 0. Here we label the domains by their subscripts
{0, · · · , r}.

We should point out that revisiting the same domain before entering other
ones does not count, but revisiting after entering some other domain does count.
Moreover, we only consider entrance of these domains (which are open) but do
not consider the case of bouncing at the boundaries.

Figure 5.1 illustrates the notions in dimension 2. In this example L = 7, and
the discrete route of the underlying path is given by the word (0, 3, 4, 5, 0, 1, 0, 3).

The next step is to show that in the non-self-intersecting case, the ordered
sequence (m0, · · · ,mL) of domains visited by X can be reconstructed from the
signature g through computing extended signatures.

To be more precise, we have the following result. The construction of the
one forms involved is motivated from the work of [4].

Proposition 5.1. Let S = {m0, · · · ,mL} ⊂ {0, · · · , r} be the associated set of
domains visited by X.
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(1) For each m ∈ S, there exists a Cα-one form Φm supported on Km, such
that the extended signature

[Φm0
, · · · ,ΦmL ] (X) 6= 0.

Here we should regard X as the first level of the rough path Y in Proposition
4.1 with N = bpc, and the extended signature is constructed on Ebpc for Y (see
the last paragraph of Section 4).

(2) For 0 6 m 6 r, let Ψm be any given Cα-one form supported on Km.
Suppose that n =(n0 = 0, n1, · · · , nl) is an arbitrary word over the alphabet
{0, · · · , r} such that nk 6= nk−1 for 1 6 k 6 l. If nk /∈ S for some 1 6 k 6 l, or
if it is different from the word m = (m0, · · · ,mL) when l > L, then the extended
signature

[Ψn0
, · · · ,Ψnl ](X) = 0.

Proof. Given m ∈ S, let 0 6 k 6 L be such that mk = m. By the definition
of τk, there exist τk < s < t < τk+1 such that Im(X|[s,t]) ⊂ Km (here we set
τL+1 = 1). Let s′, t′ satisfy s < s′ < t′ < t. Since X is simple, we know that

Im(X|[s,s′])
⋂

Im(X|[t′,t]) = ∅

and
Im(X|[s′,t′])

⋂
Im(X|[τk,s]∪[t,τk+1]) = ∅.

It follows that there exist open neighborhoods U1, U2, V1, V2 of Im(X|[s,s′]),
Im(X|[t′,t]), Im(X|[s′,t′]), Im(X|[τk,s]∪[t,τk+1]) respectively, such that

U1

⋃
V1
⋃
U2 ⊂⊂ Km (5.1)

and
U1

⋂
U2 = V1

⋂
V2 = ∅.

Let F,G be two Cα-functions on Ebpc such that

F = 0 on U1, F = 1 on U2,

and
G = 0 on V2, G = 1 on V1,

respectively. We define Φk = GdF. From the construction it is straight forward
to see that

ˆ τk+1

τk

Φk(dYt) = F (Xt′)− F (Xs′) = 1.

Moreover, the value of the integral depends only on the definition of Φk on
U1 ∪ U2 ∪ V1 ∪ V2. Together with the fact that Φk = 0 on V2 and (5.1), we can
certainly modify the definition of Φk without changing its values on U1 ∪ U2 ∪
V1 ∪ V2 so that it is supported on Km. Furthermore, it follows again from the
simpleness of X that the family

{
Im(X|[τk,τk+1]) : 0 6 k 6 L with mk = m

}
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are mutually disjoint. Therefore, by choosing U1 ∪ U2 ∪ V1 ∪ V2 small enough,
we can define a single Cα-one form Φm supported on Km, such that

ˆ τk+1

τk

Φm(dYt) = 1

for every 0 6 k 6 L satisfying mk = m. The first part of the lemma follows
from the decomposition of the extended signature:

[Φm0
, · · · ,ΦmL ] (X) =

L∏

k=0

ˆ τk+1

τk

Φmk(dYt)

given in [3], Lemma 5.1 (1).
The second part follows from [3], Lemma 4.2 and Lemma 5.1 (2), (3).

Remark 5.1. The second part of Proposition 5.1 does not depend on the non-
self-intersecting assumption; it is true for all weakly geometric p-rough paths.

The construction of the one forms in Proposition 5.1 certainly depends on
the trajectory of X in a crucial way. However, once existence is guaranteed by
the result of Proposition 5.1, we actually do not need the specific construction
and it is sufficient to compute extended signatures with respect to a pre-specified
countable generating set for the space of one forms. This is a consequence of
separability and continuity.

Firstly, as α = bpc + 1 is a positive integer, it is well known that the space
of Cα-functions supported on some given compact set K equipped with the
CαK-topology is separable. Therefore, for each domain Ki, we can specify a
countable dense subset {Φ(i)

n : n > 1} of the space of Cα-one forms supported
on Ki. If the geometry of Ki is simple, the construction of Φ

(i)
n can be made

explicit for instance by using wavelets. In fact in our situation the domains Ki

are just cubes or convex hulls of two concentric cubes.
Secondly, for given l > 0, letWl be the set of words n = (n0 = 0, n1, · · · , nl)

such that nk 6= nk−1 for 1 6 k 6 l. Given a word n ∈ Wl, let {Im(g; l,n) : m >
1} be an enumeration of all possible extended signatures of Y along the word
n with respect to the previous specification of generating one forms. Define

χ(g; l,n) =

{
1, if Im(g; l,n) 6= 0 for some m;

0, otherwise.
(5.2)

Note that χ(g; l,n) is determined by the signature g and the word n ∈ Wl.
According to the continuity of rough path integrals along one forms, a direct
consequence of Proposition 5.1 is the following.

Corollary 5.1. The total number L of domains visited by X is given by

L = sup {l > 0 : χ(g; l,n) = 1 for some n ∈ Wl} ,
Moreover, there is one and only one word n = (n0, · · · , nL) ∈ WL such that
χ(g; l,n) = 1, and n is exactly the word m = (m0, · · · ,mL) corresponding to
the ordered sequence of domains visited by X.
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In other words, in the case when X is simple, the word m can be recon-
structed from the signature of X.
Remark 5.2. In contrast to the probabilistic setting, here as we have to treat
every path equally, a universal construction of a single one form for all paths is
not possible. Instead we need to compute extended signatures along all possible
“directions” to reveal geometric information about the underlying path. This is
the nature of the problem if we aim at finding a universal reconstruction for the
class of all tree-reduced weakly geometric p-rough paths in one go.

5.2 The Key Ingredient: A Stable Quantity on Words
Now we turn to the reconstruction of X by constructing our geometric scheme
in a more specific way.

Recall that Ebpc is an Euclidean space of dimension D. For 0 6 j 6 D, let
Vj be the set of points z = (zI)06|I|6bpc ∈ Ebpc such that exactly j of those zI
are integers and the rest are half-integers (i.e. of the form zI = n/2 where n is
an odd integer).

Definition 5.1. For 0 6 j 6 D, the open j-skeleton Kj is defined to be the
disjoint union

Kj =
⋃

z∈Vj
{a ∈ Ebpc :

∣∣aI − zI
∣∣ < 1

2
if zI is an integer and aI = zI otherwise}

of j-dimensional open faces with centers in Vj , and the closed j-skeleton Cj is
defined to be

Cj =

j⋃

i=0

Ki.

Figure 5.2 illustrates the definition of the open and closed skeletons when
D = 2. Here K2 consists of the set of open cubes centered at integer points, K1

consists of their open edges and K0 is the set of vertices.
From now on, we fix ε > 0 for the rest of this subsection, and for simplicity

in the upcoming notions the dependence on ε will be omitted. Correspondingly,
the skeletons Kj and Cj are scaled to the ε order.

Let δ be a parameter with δ < ε. For convenience we should think of ε, δ
as discrete parameters (for instance we can simply take ε = 1/m, δ = 1/n with
n > m). The same remark applies to other parameters to be introduced later
on.

For z ∈ VD, let Hδ;D
z be the cube defined by

Hδ;D
z =

{
a ∈ Ebpc :

∣∣aI − εzI
∣∣ < ε− δ

2

}
,

The geometric scheme of the collection {1 +Hδ;D
z : z ∈ VD} (1 = (1, 0, · · · , 0)

is the unit of Ebpc) is denoted by Cδ;D. In other words, Cδ;D consists of cubes
with edge length ε− δ and narrow tunnels with width δ.
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Figure 5.2: This figure illustrates the definition of the open and closed skeletons
in when D = 2. Here K2 consists of the set of open cubes centered at integer
points, K1 consists of their open edges and K0 is the set of vertices.

We define Lδ;D and {τ δ;Dk ,mδ;D
k : 0 6 k 6 Lδ;D} for the geometric scheme

Cδ;D in the same way as in the last subsection. Here we label the domains in
Cδ;D by elements in VD so that mδ;D

k ∈ VD is the center of the k-th visited cube.
According to the previous discussion, the word

mδ;D = (mδ;D
0 , · · · ,mδ;D

Lδ;D
)

can be reconstructed from the signature g. Associated with the word mδ;D, we
can construct a polygonal path by connecting the centers mδ;D

k (0 6 k 6 Lδ;D)
in order.

Remark 5.3. Although Cδ;D contains countably many cubes, the discussion in
the last subsection certainly carries through in without any difficulty since from
compactness we know that the underlying path can visit at most finitely many
different cubes.

As we have pointed out in the discussion in Section 3, we cannot expect the
convergence of the polygonal approximation to our underlying path in any sense
when we let ε, δ → 0. The main idea of overcoming this issue is to let the signa-
ture g choose the “right” width δ(g), so that in the resulting geometric scheme
Cδ(g);D, we can conclude that if the underlying path X has a long excursion in
the complement of Cδ(g);D (i.e. the tunnels) during some time period [s, t], it
has to spend some time period [s′, t′] ⊂ [s, t] having such a long excursion in
the closed (D − 1)-skeleton. This enables us to start a recursive construction
until we reach the 0-skeleton by adding more and more domains over the open
skeleton in each dimension. The conclusion is that in the final geometric scheme
C, the path is not able to have a long excursion in the complement of C and the
convergence is then immediate.

The way of choosing δ by the signature is through a stable quantity on words.
Let WD be the set of all finite words z = (z0 = 0, z1, · · · , zn) over the

alphabet VD such that zk 6= zk−1 for all k.
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Definition 5.2. A stable quantity over VD with respect to the geometric schemes
Cδ;D (0 < δ < ε) is a map s : WD → Z, such that for any continuous path x in
Ebpc starting at 1, the limit

lim
δ→0

s(mδ;D) (5.3)

always exists, where mδ;D is the word corresponding to the ordered sequence of
cubes visited by x in the geometric scheme Cδ;D defined as before.

Example 5.1. Given a word z = (z0, · · · , zn) ∈ WD, let Sz = {z0, · · · , zn} ⊂
VD be the associated set of letters in z. Define s(z) = ](Sz) (the total number of
elements in Sz). Then s defines a stable quantity. Indeed, let x be a continuous
path x starting at 1. For δ1 < δ2, it is easy to see that mδ2;D is a subword of
mδ1;D, and thus s(mδ2;D) 6 s(mδ1;D). Moreover, from the boundedness of x we
know that

sup
0<δ<ε

s(mδ;D) <∞.

Therefore the limit (5.3) exists. However, this stable quantity is not applicable
for our purpose.

Example 5.2. For z = (z0, · · · , zn) ∈ WD, define s(z) = n (the length of z).
Then s is not a stable quantity. This is simply because we can construct a path
x, such that the length of the associated word mδ;D explodes as δ → 0 (think
of the topologist’s sine curve in higher dimensions and note that the distance
between neighboring cubes tends to zero).

Now we are going to define a stable quantity sD, such that the width pa-
rameter

δ1 :=
1

2
sup{0 < δ < ε : sD(mδ′;D) = const. ∀δ′ 6 δ} > 0 (5.4)

obtained from the stability of sD(mδ;D) as δ → 0 will serve our purpose. In
particular we know that sD(mδ′;D) = sD(mδ1;D) for all δ′ 6 δ1. Note that δ1 is
determined by the signature g explicitly.

Definition 5.3. Let z = (z0, · · · , zn) ∈ WD. An admissible chain c in z is a
subword (zi1 , · · · , zir ) for some 0 6 i1 < · · · < ir 6 n such that

∣∣zik − zik−1

∣∣ > 2
√
D

for all 2 6 k 6 r.

For z ∈ WD, we define sD(z) to be the maximal length r of all possi-
ble admissible chains in z (if admissible chains do not exist, we simply define
sD(z) = 1). It is obvious that sD(z) is well-defined. Any admissible chain in
z with length sD(z) is called a maximal admissible chain. Note that maximal
admissible chains may not be unique.
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Example 5.3. Consider the case when D = 2. Let

z = ((0, 0), (0, 1), (1, 1), (2, 1), (2, 2), (3, 1)).

Then sD(z) = 2, and ((0, 0), (2, 2)), ((0, 0), (3, 1)), ((0, 1), (3, 1)) are all maximal
admissible chains.

Now we have the following result.

Lemma 5.1. sD is a stable quantity.

Proof. Let x be a continuous path starting at 1. For 0 < δ < ε, let cδ =
(zi1 , · · · , zir ) be an admissible chain of mδ;D such that r = sD(mδ;D). It follows
that cδ is also an admissible chain of mδ′;D for any δ′ < δ since mδ;D is a
subword of mδ′;D. Therefore, sD(mδ′;D) > sD(mδ;D). On the other hand, since
x is continuous, there exists η > 0 such that

|xt − xs| >
√
Dε =⇒ |t− s| > η.

In the geometric scheme Cδ;D, let ζ1 < · · · < ζr be a sequence of entry times
corresponding to the admissible chain cδ (they exist by definition). Then for
each k we have
∣∣xζk − xζk−1

∣∣ >
∣∣εzik − εzik−1

∣∣− |xζk − (1 + εzik)| −
∣∣xζk−1

− (1 + εzik−1
)
∣∣

> 2
√
Dε−

√
D

2
ε−
√
D

2
ε

=
√
Dε.

It follows that |ζk − ζk−1| > η for every k, and thus r 6 1/η+ 1. Therefore, the
limit (5.3) exists.

Now we define δ1 by the formula (5.4).
The next step is to develop similar construction for geometric schemes over

the open (D − 1)-skeleton.
Suppose 0 < δ 6 δ1. For z ∈ VD−1, define

Hδ;D−1
z =

{
a ∈ Ebpc :

∣∣aI − εzI
∣∣ < ε− δ

2
if zI is an integer

and
∣∣aI − εzI

∣∣ < δ

4
otherwise

}
. (5.5)

Let Cδ;D−1z be the convex hull of the two cubes Hδ;D−1
z and Hδ1;D−1

z .We denote
the geometric scheme of {1 + Cδ;D−1z : z ∈ VD−1} by Cδ;D−1. Figure 5.3
(excluding the 4 cubes) illustrates the construction of Cδ;D−1 when D = 2.

Lemma 5.2. (1) For each δ 6 δ1, {Cδ;D−1z : z ∈ VD−1} are mutually disjoint.
(2) For each z ∈ VD−1, if δ′ < δ 6 δ1, then C

δ;D−1
z ⊂ Cδ′;D−1z .

24



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Figure 5.3: This figure illustrates the construction of Cδ;D−1 and Cε(g) (to be
defined later) when D = 2.

Proof. (1) Assume that a ∈ Cδ;D−1z ∩Cδ;D−1z′ for some z 6= z′ ∈ VD−1. Let I, I ′
be the sets of components of z, z′ which are integers respectively. If I = I ′,
then for any I we have

∣∣aI − εzI
∣∣ 6 ε− δ

2
,
∣∣aI − ε(z′)I

∣∣ 6 ε− δ
2

if I ∈ I, which implies that zI = (z′)I , and

∣∣aI − εzI
∣∣ 6 δ

4
,
∣∣aI − ε(z′)I

∣∣ 6 δ

4

if I /∈ I, which also implies that zI = (z′)I . This contradicts z 6= z′. If I 6= I ′,
there exists some I such that I ∈ I ∩ (I ′)c. It follows that |zI − (z′)I | > 1/2.
On the other hand, we have

∣∣aI − εzI
∣∣ 6 ε− δ

2
,
∣∣aI − ε(z′)I

∣∣ 6 δ

4
.

Therefore,

|zI − (z′)I | 6 1

2
− δ

4ε
,

which is contradiction.
(2) First note that Hδ;D−1

z is the convex hull of its vertices. Therefore it
suffices to show that each vertex of Hδ;D−1

z is an element of Cδ
′;D−1
z . Let a be

a vertex of Hδ;D−1
z . Without loss of generality, we may assume that

aI =

{
εzI + ε−δ

2 , if I ∈ I;

εzI + δ
4 , otherwise,

(5.6)

where I is the set of components of z which are integers. Let a(0) and a(1) be
the corresponding vertices of Hδ1;D−1

z and Hδ′;D−1
z respectively (i.e. replacing
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δ by δ1 and δ′ in (5.6) respectively). From direct calculation we know that

a =
δ − δ′
δ1 − δ′

a(0) +
δ1 − δ
δ1 − δ′

a(1).

Therefore a ∈ Cδ′;D−1z .

Lemma 5.2 enables us to develop the same construction over the geometric
scheme Cδ;D−1 as we have done over Cδ;D. More precisely, we define Lδ;D−1,
τ δ;D−1k , mδ;D−1, admissible chains, and the quantity sD−1 for words in WD−1

over the alphabet VD−1 in the same way as before (here we allow the empty
word as the path may not necessarily visit Cδ;D−1, and we set sD−1(∅) = 0 in
this case). Moreover, the same argument as in the proof of Lemma 5.1 shows
that sD−1 is a stable quantity over VD−1 with respect to the geometric schemes
Cδ;D−1 (0 < δ 6 δ1). Finally we define

δ2 =
1

2
sup

{
0 < δ < δ1 : sD−1(mδ′;D−1) = const. ∀δ′ 6 δ

}
> 0

as in (5.4).

Remark 5.4. We construct the convex hull of Hδ;D−1
z and Hδ1;D−1

z instead of
simply using the cube Hδ;D−1

z because sD−1 will no longer be a stable quantity
if we use the latter. Moreover, it will be difficult to show stability for other
attempts to construct a stable quantity without property (2) of Lemma 5.2.

We carry on the construction recursively. Assume that we have constructed
Cδj ;D−j+1 for j = 1, · · · , i. For δ 6 δi and z ∈ Vi, we construct Hδ;D−i

z by (5.5)
and define Cδ;D−iz to be the convex hull of Hδ;D−i

z and Hδi;D−i
z . The geometric

scheme of {1 + Cδ;D−iz : z ∈ VD−i} is denoted by Cδ;D−i. Lemma 5.2 holds
in exactly the same way as before. Moreover, we construct the stable quantity
sD−i over VD−i and define δi+1 > 0 accordingly from the stability property.

Therefore, we obtain D geometric schemes Cδi;D−i+1 (i = 1, · · · , D) from
the signature g, where δ1 > · · · > δD > 0. Let

Cε(g) =

D⋃

i=1

Cδi;D−i+1

be the totality of domains in each of them. Cε(g) will be our single geometric
scheme on the ε-scale in which we are going to construct the polygonal ap-
proximation. The notation emphasizes that it is determined by the signature
g as well as its dependence on ε. The previous Figure 5.3 also illustrates the
construction of Cε(g) when D = 2.

Lemma 5.3. Let A,B ∈ Cε(g), then A ∩B = ∅.

Proof. The case when A,B come from the same geometric scheme Cδi;D−i+1 is
contained in Lemma 5.2. Now suppose that A = Cδi;D−i+1

z and B = C
δj ;D−j+1
w

for some i < j with z ∈ VD−i+1 and w ∈ VD−j+1 respectively. By definition
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there exists some I such that zI is an integer and wI is a half-integer. If
a ∈ A ∩B, from the construction of our domains we know that

∣∣aI − εzI
∣∣ 6 ε− δi

2
,
∣∣aI − εwI

∣∣ 6 δj−1
4

.

But since δj−1 6 δi, we obtain that

|zk − wk| 6
1

2
− δi

4ε
,

which is a contradiction. Therefore, A ∩B = ∅.

So far we have not seen how the stable quantities si (i = 1, · · · , D) play a role
in our reconstruction problem because the previous construction certainly ap-
plies to arbitrary stable quantities with respect to the corresponding geometric
schemes. This will be clear in the next subsection.

5.3 The Convergence
Recall from Section 3 that W0 is the space of continuous paths in Ebpc which do
not stay constant over any positive time period, and modulo reparametrization
(W∼0 , d) is a metric space. Moreover, the set of equivalence classes for tree-
reduced weakly geometric p-rough paths is canonically embedded in W∼0 .

LetX be a simple tree-reduced weakly geometric p-rough path with signature
g. Our goal is to reconstruct X modulo reparametrization, i.e. the equivalence
class [X].

As before, in the geometric scheme Cε(g), we define the word

mε = (mε
0 = 0,mε

1, · · · ,mε
Lε)

over the alphabet V = V1 ∪ · · · ∪ VD corresponding to the ordered sequence of
domains in Cε visited by X, which is again determined by the signature explic-
itly. We also define the corresponding entry times {τεk : 0 6 k 6 Lε}, which is
not determined by the signature as it is invariant under reparametrization.

Now we construct the associated polygonal approximation of X by joining
the points in εmε in order and parametrizing it according to the successive entry
times τεk . More precisely, we define

Xε
t =

τεk − t
τεk − τεk−1

(1 + εmε
k−1) +

t− τεk−1
τεk − τεk−1

(1 + εmε
k)

for t ∈ [τεk−1, τ
ε
k ] if 1 6 k 6 Lε and

Xε
t = 1 + εmε

Lε

for t ∈ [τεLε , 1] .
Apparently the path Xε is not determined by the signature g. However, its

equivalence class [Xε], being regarded as an element in W∼0 , is reconstructed by
g since it is determined by the word mε only.
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Our reconstruction for the non-self-intersecting case will be finished by prov-
ing that [Xε] converges to [X] in (W∼0 , d) as ε→ 0. This is based on the following
crucial fact.

Proposition 5.2. Let T ε =
(⋃

C∈Cε C
)c be the set of tunnels for the geometric

scheme Cε. Then there do not exist s < t such that

|Xt −Xs| > 33D
3
2 ε (5.7)

and Im(X|[s,t]) ⊂ T ε.
Proof. Assume on the contrary that such s, t exist. Since Im(X|[s,t]) ⊂ T ε, we
know that X does not visit any domain in Cε(g) during [s, t]. For 1 6 i 6 D, let
Ci be the last domain in Cδi;D−i+1 visited by X before s, and let C ′i be the first
domain in Cδi;D−i+1 visited by X after t. It might be possible that only one of
them exists or even both do not exist. Let zi, z′i be their centers respectively.
Since there are at most 2D of them, there exists some 1 6 k 6 3D, such that

1 + εzi,1 + εz′i /∈ A11(k−1)
√
Dε,11k

√
Dε(Xs)

for all 1 6 i 6 D, where

Ar,R(a) := {b ∈ Ebpc : r < |b− a| < R}

denotes the open (r,R)-annulus around a.
By continuity and (5.7), there exist s1 < t1 ∈ [s, t] such that

|Xs1 −Xs| = 11(k − 1)
√
Dε

and
|Xt1 −Xs| = 11k

√
Dε.

Let
t2 = inf{u ∈ [s1, t1] : |Xu −Xs| > (11k − 5)

√
Dε}

and
s2 = sup{u ∈ [s1, t2] : |Xu −Xs| 6 (11k − 6)

√
Dε}.

It follows that
|Xt2 −Xs2 | >

√
Dε (5.8)

and Im(X|[s2,t2]) ⊂ A(11k−6)
√
Dε,(11k−5)

√
Dε (the closed annulus).

Now assume that there exists some u ∈ [s2, t2] with Xu ∈ 1 + εKD (recall
that KD is the open D-skeleton). It follows that there exists some δ < δ1 such
that Xu ∈ 1 +Hδ;D

z for some z ∈ VD. From the construction of s2, t2, we have

|z − z1|, |z − z′1| > 4
√
D. (5.9)

Since Im(X|[s,t]) ⊂ T ε, we conclude that mδ1;D must be a proper subword of
mδ;D. More precisely, if we write mδ1;D in the form

mδ1;D = (z1, z1, z
′
1, z
′
1),

28



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

where z1, z
′
1 are the sections of mδ1;D before z1 and after z′1 respectively, then

the word
w = (z1, z1, z, z

′
1, z
′
1) ∈ WD

is a subword of mδ;D. Therefore, by definition we have sD(w) 6 sD(mδ;D).
On the other hand, let c be a maximal admissible chain in mδ1;D, and let

m1,m
′
1 be the last and first letters in c∩ (z1, z1) and c∩ (z′1, z

′
1) respectively. If

|z1 −m1|, |z′1 −m′1| 6 2
√
D, from (5.9) we know that

|z −m1|, |z −m′1| > 2
√
D,

which implies that (c ∩ (z1, z1), z, c ∩ (z′1, z
′
1)) is an admissible chain in w, and

thus
sD(w) > sD(mδ1;D) + 1.

Similarly, if |z1 − m1| 6 2
√
D, |z′1 − m′1| > 2

√
D or if |z1 − m1| > 2

√
D,

|z′1 −m′1| 6 2
√
D, we have

sD(w) > sD(mδ1;D) + 2.

And if |z1 −m1|, |z′1 −m′1| > 2
√
D, we have

sD(w) > sD(mδ1;D) + 3.

In other words, we conclude that sD(mδ1;D) < sD(w) 6 sD(mδ;D). But this
contradicts the construction of δ1. Therefore, Im(X|[s2,t2]) ⊂ 1 + εCD−1 (recall
that CD−1 is the closed (D − 1)-skeleton).

Based on the construction of δ2, the same argument shows that Im(X|[s2,t2]) ⊂
1 + εCD−2. Recursively, we conclude that Im(X|[s2,t2]) ⊂ 1 + εC0. Note that in
each step i of the recursive argument, we should also consider the cases when
one of zi, z′i does not exist and both of them do not exist, but these two cases
are apparently simpler than the general discussion before.

Finally, since C0 is a discrete space, from continuity we haveX|[s2,t2] = const,
which contradicts (5.8).

Now the proof is complete.

Finally, we are in a position to prove the following convergence result.

Theorem 5.1. For every ε > 0, we have

sup
t∈[0,1]

|Xε
t −Xt| 6 68D

3
2 ε. (5.10)

In particular,
lim
ε→0

[Xε] = [X] in (W∼0 , d).

Proof. Consider the time interval [τεk−1, τ
ε
k ]. Let Cεk−1, C

ε
k be the domain in Cε(g)

corresponding to the entry times τεk−1, τ
ε
k respectively. Define

t∗ = sup{t ∈ [τεk−1, τ
ε
k ] : Xu ∈ Cεk−1}.
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If |mε
k −mε

k−1| > 34D3/2, then we have

|Xt∗ −Xτεk
| > 34D

3
2 ε− 2×

√
D

2
ε > 33D

3
2 ε.

Moreover, we know that Im(X(|[t∗,τεk ]) ⊂ T ε. This contradicts Proposition 5.2.
Therefore,

|mε
k −mε

k−1| 6 34D3/2. (5.11)

Let t ∈ [τεk−1, τ
ε
k ]. If |Xt − (1 + εmε

k−1)| > 68D3/2ε, from (5.11) we know
that

|Xt − (1 + εmε
k)| > 34D

3
2 ε.

Therefore,
B(Xt, 33D

3
2 ε)
⋂(

Cεk−1
⋃
Cεk

)
= ∅.

Define
t′ = inf{t ∈ [t, τεk ] : Xt ∈ ∂B(Xt, 33D

3
2 ε)}.

It follows that |Xt′ − Xt| = 33D3/2ε and Im(X|[t,t′]) ⊂ T ε. This is again a
contradiction to Proposition 5.2. Therefore,

|Xt − (1 + εmε
k−1)| 6 68D

3
2 ε.

The same argument shows that

|Xt − (1 + εmε
k)| 6 68D

3
2 ε.

Finally, from the construction of Xε, we obtain that

sup
t∈[τεk−1,τ

ε
k ]

|Xε
t −Xt| 6 68D

3
2 ε.

The same argument shows that

sup
t∈[τε

Lε
,1]

|Xε
t −Xt| 6 34D

3
2 ε.

Therefore, (5.10) holds.

Remark 5.5. From a technical point one might observe that Xε is actually not
an element of W0 since it stays constant on [τεLε , 1]. However, we can modify
Xε over [τεLε , 1] to be non-constant in the ε-scale in any arbitrary way, so that
the result of Theorem 5.1 is still valid.
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6 The Reconstruction: General Case
Now we turn to the general case. Let X be a tree-reduced weakly geometric
p-rough path with signature g.

For each N > bpc, the truncated signature path of X up to degree N is
denoted by X(N). If I is a word over {1, · · · , d} with |I| 6 N, XI

t denotes the
I-th component of X(N)

t .
The main ingredient here is to construct a degree N(g) > bpc from the

signature g, so that we can conclude: |XI
t | 6 1/2 for all words I with |I| > N(g)

and all t ∈ [0, 1]. Starting from this, the construction in the last section carries
through on the Euclidean space EN(g) without much difficulty.

Now let 0 < δ < 1/4 be a parameter. Again δ should be regarded as a
discrete parameter, and only the direction δ → 0 matters.

For each N > bpc, let DN be the dimension of the Euclidean space EN .
Define AN0 to be the set of points z = (zI)06|I|6N ∈ EN such that at least one
of the components of z is ±1/2 and the rest are of the form zI = n/2 where
n ∈ Z. Let AN = {0} ∪AN0 .

Given z ∈ AN , let

Qδ;Nz =

{
a ∈ EN : |aI − zI | < 1

2
− δ if zI ∈ Z and |aI − zI | < δ

2
otherwise

}
.

Let Qδ;N be the geometric scheme on EN consisting of all the cubes 1 + Qδ;Nz
(z ∈ AN ). Apparently the closure of these cubes are mutually disjoint. A crucial
feature of Qδ;N for us is the following:

{
a ∈ EN : |aI | = 1

2
for some I

}
⊂

⋃

0<δ< 1
4

⋃

z∈AN0

Qδ;Nz . (6.1)

Figure 6.1 illustrates the construction of Qδ;N when DN = 2.
Define Lδ;N and the word

mδ;N = (mδ;N
0 = 0,mδ;N

1 , · · · ,mδ;N
Lδ;N

)

corresponding to the ordered sequence of cubes in Qδ;N visited by the truncated
signature path X(N) as before.

As in Section 5.1, for l > 0, let W̃N
l be the set of words n = (n0 = 0, n1, · · ·nl)

over the alphabet AN such that nk 6= nk−1 for 1 6 k 6 l. After pre-specifying
a countable family of generating one forms over the geometric scheme Qδ;N on
EN , we define χ(g; l,n) in the same way as (5.2), and also define

lδ;N = sup{l > 0 : χ(g; l,n) = 1 for some n ∈ W̃N
l },

where we set lδ;N = 0 if such n does not exist for every l. According to Propo-
sition 5.1 (2), we know that lδ;N < ∞. Let nδ;N be a word in W̃N

lδ;N such that
χ(g; lδ;N ,nδ;N ) = 1. Again lδ;N and nδ;N are determined by the signature g
explicitly.
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Figure 6.1: This figure illustrates the construction of Qδ;N when DN = 2.

Now the key observation is the following: due to the decay of the homoge-
neous signature path of high degree, when N becomes large, the high dimen-
sional component of every letter in nδ;N becomes zero. To be more precise,
given N < N ′, let

πN
′

N : EN ′ →
N ′⊕

i=N+1

(Rd)⊗i

be the projection onto the component of degree higher than N. If n is a word
with letters in EN ′ , πN

′
N (n) is the word obtained by projecting every letter in n

accordingly. Then we have the following result.

Lemma 6.1. There exists some N0 > bpc independent of δ, such that for any
N > N0 and 0 < δ < 1/4, we have

πNN0
(nδ;N ) = (0, · · · , 0). (6.2)

Proof. According to Lyons’ extension theorem (Theorem 2.1), there exists some
N0 > bpc depending on the path X, such that |XI

t | 6 1/4 for all I with |I| > N0

and all t ∈ [0, 1]. If there existN > N0 and 0 < δ < 1/4 such that πNN0
(nδ;N ) 6= 0,

then there exists a letter z ∈ nδ;N such that zI 6= 0 for some I with N0 < |I| 6
N. From the construction of nδ;N , we conclude that the truncated signature
path X(N) has visited the cube Qδ;Nz (for this it is helpful to see [3], Lemma
4.2). Therefore, there exists some t ∈ [0, 1] such that

|XI
t | > |zI | − |XI

t − zI | >
{

1−
(
1
2 − δ

)
> 1

4 , if zI is an integer;
1
2 − δ

2 >
1
4 , if zI is a half-integer,

which is a contradiction.
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Figure 6.2: This figure illustrates the possibility that nδ;N is a proper subword
of mδ;N when DN = 2. Here the underlying path is apparently tree-reduced.
However, nδ;N = ((0, 0), (1/2, 0)) and mδ;N = ((0, 0), (0, 1/2), (1/2, 0)).

Here a big difference from the non-self-intersecting case is that lδ;N can be
strictly less than Lδ;N , and nδ;N can just be some proper subword of mδ;N .
Figure 6.2 illustrates this possibility when DN = 2. In this example, the reason
is that any one form supported on the top long box integrates to zero as the
underlying path cancels itself exactly inside this box. However, from Proposition
5.1 we know that if lδ;N = Lδ;N , then nδ;N must coincide with mδ;N . This is
an important fact.

Let N0 be given by Lemma 6.1. Given N < N ′, let lN
′

N be the lifting map

lN
′

N : EN → EN ′ = EN
⊕ N ′⊕

i=N+1

(Rd)⊗i,

z 7→ (z, 0).

If n is a word with letters in EN , lN
′

N (n) is the word obtained by lifting every
letter in n accordingly. The following result is important for us. It is where the
tree-reduced property comes in.

Lemma 6.2. For N ′ > N > N0, we have

mδ;N ′ = lN
′

N (mδ;N )

for all 0 < δ < 1/4. In other words, knowing the discrete route of X(N ′) in
the geometric scheme Qδ;N ′ is equivalent to knowing the one of X(N) in Qδ;N .
Moreover, for each given δ, when N is large enough we have nδ;N = mδ;N .

Proof. Recall from the proof of Lemma 6.1 that |XI
t | 6 1/4 for |I| > N0 and

t ∈ [0, 1]. Therefore, if X(N ′)
t ∈ Qδ;N ′z for some z ∈ AN ′ , then for any I with

N < |I| 6 N ′,

|zI | 6 |XI
t |+ |XI

t − zI | 6
{

1
4 + 1

2 − δ, if zI is an integer;
1
4 + δ

2 , if zI is a half-integer.
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It follows that zI = 0. Moreover, given z ∈ AN , we have X(N)
t ∈ Qδ;Nz if and

only if X(N ′)
t ∈ Qδ;N

′

lN
′

N (z)
since

|XI
t | = |XI

t − 0| 6 1

4
<

1

2
− δ

for every N < |I| 6 N ′.
On the other hand, for given δ, from the previous discussion we know that

mδ;N = lNN0
(mδ;N0) for any N > N0. Define {τ δ;Nk : 0 6 k 6 Lδ;N} to be the

corresponding entry times. It is then easy to see that τ δ;Nk = τ δ;N0

k for every
0 6 k 6 Lδ;N = Lδ;N0 . For each k we choose τ δ;N0

k < sk < s′k < t′k < tk < τ δ;N0

k+1

such that
Im
(
X(N0)|[sk,tk]

)
⊂ Qδ;N0

m
δ;N0
k

,

where τ δ;N0

Lδ;N0+1
:= 1. Note that for N > N0 we also have

Im
(
X(N)|[sk,tk]

)
⊂ Qδ;N

lNN0
(m

δ;N0
k )

.

Now let
η = inf

06k6Lδ;N0

{s′k − sk, t′k − s′k, tk − t′k}.

Since X is a tree-reduced weakly geometric p-rough path, by a compactness
argument (c.f. [4], Lemma 19) we know that there exists some N1 > N0,

such that X(N)
s 6= X

(N)
t for any (s, t) ∈ [0, 1] with |t − s| > η and any N >

N1. Keeping this separation property in mind, by applying exactly the same
argument as in the proof of Proposition 5.1, we know that for each N > N1, the
extended signature for X(N) along certain compactly supported Cα-one forms
over the word mδ;N is nonzero. Therefore, together with Proposition 5.1 (2),
we conclude that lδ;N = Lδ;N and nδ;N = mδ;N .

For each δ, we define

N(g; δ) = inf{N > bpc : πN
′

N (nδ;N
′
) = (0, · · · , 0) ∀N ′ > N},

and define
N(g) = sup

0<δ< 1
4

N(g; δ). (6.3)

From Lemma 6.1 we have N(g) 6 N0. Note that N(g) is reconstructed from the
signature g. Such N(g) will serve our purpose. Namely, we have the following
result.

Proposition 6.1. For any I with |I| > N(g) and t ∈ [0, 1], we have |XI
t | 6 1/2.

Proof. Assume on the contrary that there exists some I with |I| > N(g) and
some t such that |XI

t | > 1/2. Let N = |I| ∨ N0. By continuity, there exists
some t′ ∈ (0, t) such that |XI

t′ | = 1/2.Without loss of generality we assume that
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XI
t′ = 1/2. According to (6.1), there exist some 0 < δ < 1/4, z ∈ AN0 , such that

X
(N)
t′ ∈ Qδ;Nz . Therefore, z is a letter in mδ;N . Moreover, we have

∣∣∣∣
1

2
− zI

∣∣∣∣ 6
{

1
2 − δ, if zI is an integer;
δ
2 , if zI is a half-integer,

which implies that zI must be 1/2.
According to Lemma 6.2, we know that mδ;N ′ = lN

′
N (mδ;N ) and nδ;N

′
=

mδ;N ′ when N ′ is large enough. Therefore,

πN
′

N(g)(n
δ;N ′) = πN

′
N(g)(m

δ;N ′).

But from the previous discussion we know that the right hand side of the above
identity contains a component zI = 1/2, thus πN

′
N(g)(n

δ;N ′) is nonzero. This
contradicts the definition of N(g).

The final step is to develop exactly the same construction as in the non-self-
intersecting case over the Euclidean space EN(g).

The only additional point is to see how to reconstruct the discrete route
of X(N(g)) in a given geometric scheme in EN(g) from the signature g. Let
C = {Ci : i ∈ I} be a given geometric scheme and let mC be the word over the
alphabet I corresponding to the ordered sequence of domains in C visited by
X(N(g)). As before, in general we cannot expect that mC can be reconstructed
from g by computing extended signatures in EN(g) only, and we need to lift the
construction to higher degrees. For each N > N(g), let CN be the geometric
scheme in EN defined by

CN = {Ci × UN : i ∈ I},

where UN is the cube in ⊕Ni=N(g)+1(Rd)⊗i given by

UN = {(zI)N(g)<|I|6N : |zI | < 1 for every I}.

From Proposition 6.1, we know that visiting Ci by X(N(g)) is equivalent to
visiting Ci × UN by X(N), i.e. mC = mC;N . Moreover, the same argument as
in the proof of Lemma 6.2 shows that nC;N = mC;N when N is large enough,
where nC;N is defined in the same way as nδ;N before by computing extended
signatures in EN . Therefore, the word nC;N is stable as N → ∞ (here the
alphabet is always I for every N), and we obtain that

mC = lim
N→∞

nC;N = nC;N1(g),

where
N1(g) = inf{N > N(g) : nC;N

′
= nC;N ∀N ′ > N} <∞.

In particular, mC is determined by the signature g explicitly.
Finally, if we look back into the discussion in Section 5.2 and 5.3, once mC is

known for any geometric scheme C we are concerned with, the whole argument
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relies only on continuity (not even the rough path nature of the underlying
path). In particular, by applying the same construction of geometric schemes
as in the non-self-intersecting case, we obtain an approximating sequence Xε of
polygonal paths for the truncated signature path X(N(g)) on EN(g). Let Xε be
the projection of Xε onto Ebpc and let [Xε] be the corresponding equivalence
class in (W∼0 , d). Then we have the following convergence result. Remark 5.5
applies in the same way here.

Theorem 6.1. For every ε > 0, we have

sup
t∈[0,1]

∣∣∣Xε
t −X(N(g))

t

∣∣∣
EN(g)

6 68D
3
2

N(g)ε.

In particular,
lim
ε→0

[Xε] = [X] in (W∼0 , d).

It is worthwhile to point out that a direct consequence of Theorem 6.1 is the
following uniqueness result for the signature of a rough path.

Corollary 6.1. Let X,Y be two tree-reduced weakly geometric p-rough paths
in the sense that their signature paths X,Y are both simple. Then X and Y are
equal up to reparametrization if and only if S(X)0,1 = S(Y)0,1. In particular,
in this case X and Y are equal up to reparametrization.

Proof. Suppose that S(X)0,1 = S(Y)0,1 = g. It suffices to show that X and Y
have the same image.

From the proof of Theorem 6.1, we know that for every N > N(g) where
N(g) is defined by (6.3), as a trajectory on EN , X(N) (modulo reparametriza-
tion) can be reconstructed from g, and similarly for Y (N). Therefore, X(N) and
Y (N) are equal up to reparametrization.

Now fix t ∈ [0, 1]. It follows that for every N > N(g), there exists sN ∈ [0, 1]

such that X(N)
t = Y

(N)
sN . From compactness we may assume without loss of

generality that sN → s ∈ [0, 1] as N →∞. By projection we conclude that

X
(N)
t = Y (N)

sN′

for every N ′ > N > N(g). By sending N ′ → ∞, we obtain that X(N)
t = Y

(N)
s

for every given N > N(g). This implies that

Xt = Ys ∈ Im(Y).

Remark 6.1. Corollary 6.1 does not cover the general uniqueness result in [4]
(c.f. Theorem 2.3) as the signature is not able to detect any tree-like pieces of
the underlying rough path. However, Corollary 6.1 is indeed the key ingredient
in proving the general uniqueness result (the necessity part: trivial signature
implies being tree-like) as it immediately leads to a canonical real tree structure
on the signature group Sp. The underlying rough path is then realized as a
continuous loop in the real tree Sp.
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7 Final Remarks
We give a few remarks in the following to conclude the present paper.

1. In summary, the general idea of our reconstruction consists of two parts:
the signature determines the discrete route in any given geometric scheme, and
the discrete route gives back our underlying path by refining the geometric
scheme in a way determined by the signature. The first part is an easy conse-
quence of the algebraic structure of signature, while the second part is the key
ingredient of the present work. If we look back into the discussion, it is not
hard to see that the development of the second part relies only on the continu-
ity of our underlying path. In other words, if the discrete route of a continuous
path is known for any given geometric scheme of the type in Section 5.1, our
reconstruction gives back the original path. This works for all continuous paths
without any regularity assumption.

The reason we cannot expect that the discrete route would yield the under-
lying path when the geometric scheme is fine enough and the second part is
necessary is that there are positive gaps among the domains in our geometric
scheme. Such construction is essential in our discussion. Removing the gaps
ruins the whole argument as the discrete route is no longer well-defined. On
the other hand, one might ask if we could use finitely many different geometric
schemes to cover all the gaps so that our argument could be simplified. But
it seems difficult to achieve because there is not a canonical way to embed
two discrete routes arising from two different geometric schemes into a single
word. Nevertheless, we expect that there might be some way to do this and our
construction is certainly not the only possibility.

2. We expect that a recursive construction of geometric schemes in Section
5 is not necessary, and there might be a way to construct a single geometric
scheme Cδ in one go with one parameter δ only (recall that ε is fixed). This
requires a more difficult construction of a stable quantity as we cannot expect
that every domain in Cδ is expanding as δ → 0 (it is hard to see whether the
quantity we have constructed in Section 5.2 is stable in this case).

3. The reconstruction problem is essentially (countably) infinite dimensional.
As we are looking for a universal way to treat every path equally, we should
expect that all information of signature as an infinite dimensional object is
to be used. From a practical side, one might wonder if in each ε-step, we
could truncate our construction to a situation involving only finite information
(depending on ε) and convergence still hold. We expect that this is possible
although we do not pursue along this direction in our work and we are more
focused on the theoretical side.

However, we want to emphasize that even with the possibility of proving
convergence, we expect that any attempt to obtain a quantitative error estimate
for a finite scheme reconstruction should involve an a priori control on the
behavior of the class of paths we are considering (for instance, an a prior uniform
regularity estimate or an a priori control on certain geometric property). More
precisely, it is unlikely to expect the existence of a quantitative result of the
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following type:
d(ξε(g), [X]) 6 C(ε, g), ∀ε > 0, g ∈ Sp, (7.1)

where ξε(g) ∈ W∼0 is constructed by using finitely many components of g
through finitely many steps of computation, and C(ε, g) is an explicit function
depending only on ε and g such that

lim
ε→0

C(ε, g) = 0, ∀g ∈ Sp.

This is the nature of the reconstruction problem. To expect an error estimate
like (7.1) for a finite scheme reconstruction, we believe that the restriction to
an a priori subset of Sp is necessary. This leaves an interesting question from
the computational point of view, for instance within our reconstruction method.
But this is beyond the scope of the present paper.
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