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ABSTRACT 

Alcoholism is a chronic relapsing disorder and stress is a key precipitant of relapse. 

The nucleus incertus (NI) is highly responsive to corticotrophin releasing factor (CRF) 

and psychological stressors, receives a CRF innervation and expresses CRF1 and 

CRF2 receptor mRNA. Furthermore, the ascending NI relaxin-3 system is implicated 

in alcohol seeking in rats. Therefore, in alcohol-preferring (iP) rats, we examined the 

effect of bilateral injections into the NI of the CRF1 receptor antagonist, CP376395 or 

the CRF2 receptor antagonist, astressin-2B on yohimbine-induced reinstatement of 

alcohol seeking. Using qPCR analysis of NI micropunches we assessed the effects 

of chronic alcohol consumption on gene expression profiles for components of the 

relaxin-3 and CRF systems. Bilateral intra-NI injections of CP376395 (500 ng/0.25 

μL) attenuated yohimbine-induced reinstatement of alcohol seeking. In contrast, 

intra-NI injections of astressin-2B (200 ng/0.25 μL) had no significant effect. In line 

with these data, CRF1, but not CRF2, receptor mRNA was upregulated in the NI 

following chronic ethanol intake. Relaxin family peptide 3 receptor (RXFP3) mRNA 

was also increased in the NI following chronic ethanol. Our qPCR analysis also 

identified CRF mRNA within the rat NI, and the existence of a newly-identified 

population of CRF-containing neurons was subsequently confirmed by detection of 

CRF immunoreactivity in rat and mouse NI. These data suggest NI neurons 

contribute to reinstatement of alcohol seeking, via an involvement of CRF1 signaling. 

Furthermore, chronic ethanol intake leads to neuroadaptive changes in CRF and 

relaxin-3 systems within rat NI. 
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INTRODUCTION  

Alcohol use disorders (AUD) account for approximately 3.8% of deaths and 4.6% of 

disease and injury burden in developed countries (Rhem et al, 2009). Current first 

line pharmacotherapeutics for alcoholism are inadequate, with low compliance, 

adverse side effects and high rates of relapse (Jupp and Lawrence, 2010). Up to 

90% of addicted individuals relapse within 12 months of abstinence (DeJong, 1994), 

most within 3 months (Sinha, 2008). Stress plays a key role in drug/alcohol abuse 

and is a major trigger of relapse (Koob et al, 2014). The neurocircuitry and brain 

chemistry underlying stress and addiction are the subject of ongoing investigation 

(Mantsch et al, 2016), although both involve corticotrophin releasing factor (CRF) 

(Koob et al, 2014). CRF binds to two G-protein-coupled receptors (CRF-receptor 1 

(CRF1) and CRF-receptor 2 (CRF2)), plus CRF binding protein (CRF-BP) (Bale and 

Vale, 2004). CRF is expressed widely throughout the brain and implicated in the 

acquisition, maintenance and relapse of alcohol seeking (Lodge and Lawrence, 

2003; Koob et al, 2014).  

The pontine nucleus incertus (NI) is anatomically divided into the pars compacta 

(NIc) and pars dissipata (NId) (Goto et al, 2001). In rats, the NI was first 

characterized by its dense CRF receptor expression (Potter et al, 1994) and 

sensitivity to exogenous CRF (Bittencourt and Sawchenko, 2000). Afferent and 

efferent connections of the NI suggest it is a likely site of integration for behavioral 

planning and modulation of cognitive processes (Ma et al, 2013). NI neurons are 

predominantly γ-aminobutyric acid (GABA)ergic, and the NI contains the largest 

population of neurons producing the neuropeptide relaxin-3 in rat (Ma et al, 2007), 

This article is protected by copyright. All rights reserved.



mouse (Smith et al, 2010) and macaque (Ma et al, 2009). The ascending relaxin-

3/RXFP3 (relaxin family peptide 3 receptor) system regulates stress effects on 

alcohol preference in mice (Walker et al, 2015) and reinstatement of alcohol (but not 

sucrose) seeking in rats (Ryan et al, 2013). 

NI relaxin-3 neurons co-express CRF1 receptors (Tanaka et al, 2005; Ma et al, 2013), 

and are activated by psychological stress and intracerebroventricular (icv) CRF 

(Tanaka et al, 2005). Electrophysiological studies confirmed that icv CRF excites 

relaxin-3 neurons within the NI (Ma et al, 2013). Pretreatment with the CRF1 receptor 

antagonist antalarmin attenuated swim-stress induced elevations of relaxin-3 mRNA 

(Banerjee et al, 2010), while CRF depolarization of relaxin-3 NI neurons was 

prevented by NBI35965 (Ma et al, 2013). These data suggest relaxin-3 neurons 

within the NI integrate information related to stressful stimuli in a CRF1-dependent 

manner.  

Chronic alcohol exposure is associated with changes in CRF expression in the 

paraventricular nucleus of the hypothalamus (Rivier et al, 1990), basolateral 

amygdala (BLA) (Falco et al, 2009), and central amygdala (CeA) (Zhou et al, 2013; 

Sommer et al, 2008). In alcohol dependent and certain alcohol-preferring rats CRF 

receptor expression is also altered in the BLA and medial amygdala (Sommer et al, 

2008; Hansson et al, 2006). Given the roles of CRF and relaxin-3 systems in stress-

induced alcohol seeking (Le et al, 2000; Ryan et al, 2013), and the functional 

interaction between CRF and relaxin-3 systems within the NI, we assessed whether 

a CRF receptor-mediated pathway in the NI was implicated in alcohol seeking. We 

also examined the impact of chronic ethanol intake on gene expression within the rat 
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NI.  

MATERIALS AND METHODS  

All studies were performed in accordance with the Prevention of Cruelty to Animals 

Act (2004), under the guidelines of the NHMRC Code of Practice for the Care and 

Use of Animals for Experimental Purposes in Australia (2013) and approved by The 

Florey Animal Ethics Committee. Adult male alcohol-preferring rats (iP) rats were 

obtained from in-house breeding. Parental stock came from Professor T.K. Li (while 

at Indiana University, USA). Rats were pair-housed under ambient conditions (21ºC) 

and maintained on a 12 h light/dark cycle (lights on at 0700h), with access to chow 

and water ad libitum. Post-surgery, rats were single housed. B6(Cg)-

Crhtm1(cre)Zjh/J (Crh-IRES-Cre) mice and B6.Cg-Gt(ROSA)26Sortm14(CAG-

TdTomato)Hze/J; (Ai14) mice were obtained from The Jackson Laboratory (Bar 

Harbor, ME, USA; stock number 012704 and 007914 respectively). Upon arrival, 

mice were backcrossed with a C57BL/6J breeder line, and mutants identified using 

polymerase chain reaction (PCR) procedures provided by the supplier. Homozygous 

Crh-IRES-Cre and Ai14 mice were bred to produce heterozygous Crh-IRES-

CrexAi14 progeny (Cusulin et al, 2013). Mice were housed on a 12 h light/dark cycle 

(lights on at 7:00) with ad libitum access to food and water. 

Alcohol self-administration  

Male iP rats were trained to self-administer ethanol (10% (v/v)) under operant 

conditions using a fixed ratio of 3 (FR3; 3 lever presses for one 100µl reward 

delivery) during 20-min sessions (Lawrence et al, 2006). For each session, total 
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ethanol and water responses were recorded, and the difference in fluid in the ethanol 

reservoir between the beginning and end of the session was recorded to ensure 

correct calibration of the delivery system, and consumption of ethanol. Operant 

conditioning chambers supplied by Med Associates (St Albans, VT, USA) were 

employed. Each chamber was housed individually in sound-attenuation cubicles and 

chambers were connected to a computer running Med-PC IV software (Med 

Associates) to record data. Within the chambers, a house light provided soft 

illumination during operant conditioning sessions. Retractable levers (exerted during 

operant conditioning sessions) were placed below a stimulus light and adjacent to a 

fluid receptacle. Availability of ethanol was conditioned by the presence of an 

olfactory cue (S+; one drop of vanilla essence (Queen Foods, Alderley, QLD, 

Australia) placed directly underneath the ethanol-paired lever of the operant 

conditioning chamber). A 1-s light stimulus (CS+) occurred when the FR3 

requirement was obtained with both the ethanol-paired and water-paired lever. Rats 

underwent an extended period of alcohol self-administration (~7 weeks, 5 

consecutive days per week), followed by surgery.  

Stereotaxic implantation of cannulae into NI 

Rats were anesthetized with isoflurane (5% (v/v) induction, 2% maintenance), 

positioned in a stereotaxic frame (Stoelting Co. Wood Dale, USA), and the scalp 

shaved and cleaned (proviodine-iodine 10% (w/v); Orion Laboratories, Arkles Bay, 

NZ). A small incision was made to expose the skull. Four pits were drilled into the 

skull and screws (1.4 mm diameter and 2 mm length; Mr Specs, Parkdale, Australia) 

inserted. A hole was drilled through the skull and a single stainless steel 26 gauge 
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bilateral cannula cut 7.3 mm below the pedestal (PlasticsOne, Roanoke, USA) was 

implanted relative to bregma: anteroposterior, −9.8 mm; mediolateral, ±0.3 mm; and 

dorsoventral, −7.8 mm, with the incisor bar set at -9.2 mm from the flat skull position 

to flex the head (Paxinos and Watson, 1986). Cannulae were fixed in place using 

dental cement (Vertex-Dental, Zeist, The Netherlands). Patency was maintained by 

inserting a dummy, which projected 1.5 mm beyond the tip (PlasticsOne). Meloxicam 

(3 mg/kg, i.p.) was administered for analgesia, plus antibiotic (Baitryl, 3 mg/kg, i.p.). 

Rats recovered for 7 days. 

Yohimbine-induced reinstatement of alcohol seeking 

After recovery, rats reacquired ethanol responding to pre-surgical levels before 

extinction training. During extinction training no cues were present and there was no 

programmed response following task completion. Extinction sessions continued until 

mean responding on the ethanol-paired lever was <15 lever presses for 3 

consecutive days. Subsequently, rats underwent a yohimbine-induced reinstatement 

session whereby yohimbine (Tocris Bioscience, Bristol, UK) dissolved in distilled 

water was injected (1 mg/kg i.p.) 30 min prior to test (Ryan et al, 2013). During this 

session, rats received intra-NI infusions of either vehicle or treatment directly prior to 

reinstatement testing in a randomized manner. Subsequently rats received 2 days of 

ethanol reacquisition to re-stabilize ethanol consumption and were then re-

extinguished (Lawrence et al, 2006). A second reinstatement test was performed 

where rats received the alternate intra-NI treatment in a counterbalanced manner. 

Cohort 1 (n = 9) received 0.25 μL vehicle and 500 ng/0.25 μL per side of the CRF1 

antagonist CP376395 (Tocris Bioscience), while Cohort 2 (n = 10) received 0.25 μL 
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vehicle and 200 ng/0.25 μL per side of the CRF2 antagonist astressin-2B (Tocris 

Bioscience). Additional rats whose injections fell outside of the NI were used as 

anatomic controls: CP376395 (n = 15) or astressin-2B (n = 7). 

Nucleus incertus infusions 

Bilateral NI infusions were made using 40 cm polyethylene connectors (PlasticsOne) 

attached to 1 μL microsyringes (SGE Analytical Science, Ringwood, Australia). 0.25 

μL of vehicle or drug were infused bilaterally (0.25 μL/min) by an automated syringe 

pump (Harvard Apparatus, Holliston, USA). The injectors were left in place for 2 min 

after infusion. After completion of behavioral testing, rats were anesthetized with 

pentobarbitone (100 mg/kg i.p., Virbac, Milperra, Australia). Correct cannula 

positioning was verified in each rat by infusing methylene blue (0.25 μL/side). Rats 

were euthanized (pentobarbitone (100 mg/kg i.p.)), brains collected, frozen over 

liquid nitrogen and sectioned for injection site validations, which were performed by 

an investigator blinded to the identity of the tissue.  

Drugs  

CP376359 and astressin-2B were purchased from Tocris Bioscience and dissolved 

in normal saline (0.9% NaCl). The dose of CP376395 was selected based on 

previous studies, which showed microinjections into the rat VTA to attenuate cocaine 

seeking, without inducing any non-specific motor impairments (Blacktop et al, 2011). 

The dose of astressin-2B was chosen based on previous studies (Tran et al, 2014).  

Two-bottle free-choice drinking 
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A separate cohort (n = 21) of individually housed male iP rats were acclimatized to 

drinking from two bottles of tap water. 14 rats then had one bottle replaced with 

ethanol (10% v/v), while the remaining n = 7 rats received tap water only. Over the 

subsequent ~125 days, fluid consumption volumes were calculated daily between 

0930 and 1100 h. The position of bottles was altered randomly. Ethanol was 

removed 24 h prior to culling to avoid acute pharmacological effects of ethanol on 

mRNA. Rats were anesthetized with pentobarbitone (100 mg/kg i.p.) decapitated and 

the brains rapidly dissected and frozen over liquid nitrogen (-80 °C). 

 

Tissue preparation and qPCR 

NI bilateral micro-punch samples (diameter: 0.3 mm, thickness: 400 µm) were taken 

relative to bregma: anteroposterior, −9.72 mm; mediolateral, ±0.3 mm; and 

dorsoventral, -7.6 mm (Paxinos and Watson, 1986) over dry ice using micro-

dissection needles (ProSciTech, Kirwan, Australia). Micropunches were 

homogenized using QIAzol Lysis Reagent (Qiagen, Venlo, The Netherlands) and 

RNA purified using the RNeasy Micro Kit (Qiagen). RNA yields, concentration and 

purity were measured using a Nanodrop 2000C UV-Vis Spectrophotometer (Thermo 

Fisher Scientific, Waltham, MA). For each sample, 0.3 µg of total RNA was reverse 

transcribed into cDNA using TaqMan Reverse Transcription reagents (Thermo Fisher 

Scientific) with random hexamers. Reverse transcription was performed on a 2720 

Thermal Cycler (Applied Biosystems, Foster City, USA): 10 min at 25°C, 30 min at 

42°C, 5 min at 95°C and hold at 4°C. cDNA products were stored at -20°C until use. 

See Table 1 for primer sequences.  
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qPCR was performed on a ViiATM 7 Real Time PCR System (Applied Biosystems). 

Reactions were performed in triplicate in optical 384-well plates (Applied 

Biosystems): 10 min at 95°C for polymerase activation followed by 40 cycles of 15 

sec at 95°C and 1 min at 60°C. Each reaction contained 2 µL of cDNA, 5 µL of 

Power SYBR Green PCR Master Mix (Thermo Fisher Scientific), sense and 

antisense primers (0.5 µL, each 20 µM) made up to 10 µL with DEPC water. Data 

were analysed using 7500 Fast System Sequence Detection Software. Expression 

levels of mRNA transcripts encoding relaxin-3 (Rln3), RXFP3 (Rxfp3), CRF1 (Crhr1), 

CRF2 (Crhr2), CRF-binding protein (Crhbp), and CRF (Crh) were assessed. Target 

gene expression was normalized to the expression of the internal control gene 

encoding GAPDH (Gapdh) using the 2-ΔΔCT method as described (Scmittgen et al, 

2008), and mean relative gene expression calculated for each target. 

iP rat immunohistochemistry 

Ethanol naïve adult male iP rats (350 g; n = 2) were anaesthetized with isoflurane 

(5% induction, 2% maintenance) and placed into a stereotaxic frame (Stoelting Co.). 

80 μg colchicine (Sigma-Aldrich, Schnelldorf, Germany) dissolved in 5 μL of 0.9% 

NaCl was injected into the lateral ventricle (anteroposterior, −0.9 mm; mediolateral, -

1.3 mm; and dorsoventral, −3.8 mm from bregma) via a needle connected to a 10 μL 

Hamilton syringe (Harvard Apparatus). Meloxicam (3 mg/kg, i.p.) was administered 

for analgesia. After 24 h rats were deeply anaesthetized with pentobarbitone (100 mg 

kg; i.p.) and transcardially perfused with 400 ml of 0.1 M phosphate buffered saline 

(PBS; 137 mM NaCl, 2.7 KCl, 11.2 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4) followed 

by 500 ml of 1% paraformaldehyde (PFA; Sigma-Aldrich) with 15% (v/v) picric acid 
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(Sigma-Aldrich) (Gunn et al, 2013) in PBS. Rats were then decapitated, brains 

removed and submerged in fixation solution for 24 h at 4◦C. Brains were then 

transferred to 20% (w/v) sucrose in PBS for 24 h at 4◦C. Coronal sections (50 μm) 

through the NI were cut on a cryostat at −18◦C (Cryocut 1800; Leica Microsystems, 

Heerbrugg, Switzerland) and collected into PBS.  

Sections were preincubated (10% v/v normal goat serum (NGS) in PBS containing 

0.5% TritonX-100) for 1 h at room temperature (RT). Sections were then incubated in 

a primary antibody mix of 1:2000 dilution rabbit anti-CRF (PBL#C70) (Sawchenko et 

al, 1984) and 1:5 dilution mouse monoclonal anti-Relaxin-3 (HK4–144–10) (Tanaka 

et al, 2005), with 2% NGS in PBS containing 0.1% TritonX-100 for 48 h at 4◦C. 

Sections were washed 3 × 5 min in PBS and incubated in biotinylated donkey anti-

rabbit IgG (1:500, Vector Laboratories, Burlingame, USA, BA-1000) for 2h. Following 

3 × 5 min washes in PBS, sections were incubated in avidin–biotin complex (ABC; 

VectaStain Elite; Vector Laboratories), followed by 3 × 5 min washes in PBS and 2 h 

incubation in a mix of 1:400 dilution donkey anti-mouse-Alexa488 secondary 

antibody (Life Technologies, Carlsbad, USA, A-21202) and streptavidin-Alexa594 

(Life Technologies, S-11227).  

Crh-IRES-CrexAi14 mouse immunohistochemistry 

Mice (9 weeks, n = 2) were anaesthetized (pentobarbitone, 80 mg kg; i.p.) and 

transcardially perfused with 50 ml of 0.1 M PBS followed by 50 ml of 4% PFA in PBS. 

Mice were then decapitated, brains removed and submerged in PFA for 1 h at 4◦C. 

Brains were then transferred to 20% (w/v) sucrose in PBS for 24 h at 4◦C. Coronal 
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sections (40 μm) through the NI were cut on a cryostat at −18◦C (Cryocut 1800; 

Leica Microsystems) and collected into PBS. Sections were pre-blocked (10% v/v 

normal goat serum (NGS) in PBS containing 0.5% TritonX-100) for 1 h at RT. 

Sections were then incubated with rabbit anti-DsRed (1:2000, Clonetech, 632496) 

(Krashes et al, 2011) and mouse monoclonal anti-Relaxin-3 (1:5) (HK4–144–10) 

(Tanaka et al, 2005) with 2% NGS in PBS containing 0.1% TritonX-100 overnight at 

RT. Sections were washed 3 × 5 min in PBS and incubated in donkey anti-mouse-

Alexa488 (1:400, Life Technologies, Carlsbad, USA, A-21202) and donkey anti-

rabbit-Alexa594 (1:400, Life Technologies, A-21207) for 2 h at RT.  

Sections were washed 3 × 5 min, mounted on glass microscope slides with 

fluorescence mounting medium (DAKO, Carpentaria, USA). Micrographs were 

obtained using a confocal microscope (Leica DM LB2, Leica Microsystems). 

Statistical analysis 

Behavioral data were analyzed by repeated measures (RM) two-way ANOVA with 

Bonferroni post hoc analysis using the statistical software SPSS  (Version 21; IBM 

Corp., Armonk, NY, USA). GraphPad Prism (Version 5; GraphPad Software, Inc., La 

Jolla, CA, USA) was used for t-test statistical comparisons of qPCR data and to 

generate graphs. Data are reported as mean ± SEM, significance set at p < 0.05. 

EXT data are reported as an average of the last 3 days before reinstatement test. 

RESULTS 

Ethanol self-administration 
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During the last week of ethanol (10%v/v) self-administration rats averaged 90 ± 5.3 

ethanol-paired lever presses (0.56 ± 0.3 g/kg/session ethanol intake), and 6.3 ± 0.3 

water-paired lever presses (0.02 ± 0.003 g/kg/session water intake) which results in 

pharmacologically relevant blood alcohol levels (Roberts et al., 1999). 

Nucleus incertus CRF1 receptor antagonism attenuates yohimbine-induced 

reinstatement of alcohol seeking 

We investigated the effect of the CRF1 receptor antagonist, CP376395 on yohimbine-

induced reinstatement of alcohol seeking in rats. RM two-way ANOVA revealed a 

significant main effect of both treatment (F(2,7) = 21.925, p < 0.001) and lever (F(1,8) = 

41.261, p < 0.001) and a significant treatment x lever interaction (F(2,8) = 23.165, p < 

0.001). Bonferroni post hoc analysis showed yohimbine to induce a robust 

reinstatement of alcohol seeking in vehicle-treated animals (EXT vs. VEH, p < 0.001; 

Fig 1B), while CP376395 injected directly into the NI significantly reduced this 

reinstatement of alcohol seeking (VEH vs. CP376395, p = 0.036; Fig 1A). No 

differences in latency to ethanol reward were observed between VEH and 

CP376395-treated rats (Student’s t-test; p = 0.356). Time course data revealed a 

significant decrease in responding from 5 - 10 min during the reinstatement test (RM 

two-way ANOVA; p < 0.001; Fig 1C)  

To assess anatomic specificity injections were made immediately adjacent to the NI 

and/or within the fourth ventricle (4V) as controls. RM two-way ANOVA revealed an 

overall effect of both treatment (F(2,13) = 39.194, p < 0.001) and lever (F(1,14) = 

111.858, p < 0.001) and a significant treatment x lever interaction (F(2,13) = 39.562, p 

< 0.001). Bonferroni post hoc analysis confirmed yohimbine administration induced 
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reinstatement of alcohol seeking in vehicle-treated rats (EXT vs. VEH, p < 0.001; Fig. 

1B). However, CP376395 control injections had no effect on yohimbine-induced 

reinstatement of alcohol seeking (p = 0.218; Fig. 1B), suggesting a localized effect 

within the NI. Injection sites were validated histologically for all CP376395-treated 

rats (Fig. 1D). 

Nucleus incertus CRF2 receptor antagonism does not attenuate yohimbine-

induced reinstatement of alcohol seeking 

We also investigated the effect of the CRF2 receptor antagonist, astressin-2B, on 

yohimbine-induced reinstatement of alcohol seeking. RM two-way ANOVA revealed 

a significant main effect of both treatment (F(2,8) = 44.510, p < 0.001) and lever (F(1,9) 

= 138.703, p < 0.001) and a significant treatment x lever interaction (F(2,8) = 44.010, p 

< 0.001). Bonferroni post hoc analysis showed yohimbine to induce a robust 

reinstatement of alcohol seeking in vehicle-treated rats (EXT vs. VEH, p < 0.001; Fig 

2A), however astressin-2B injected directly into the NI had no effect on reinstatement 

of alcohol seeking (VEH vs. astressin-2B, p = 0.177; Fig 2A). No difference in latency 

to reward was observed between astressin-2B and VEH-treated animals (Student’s t-

test; p = 0.250). There were no time course differences during reinstatement (Fig 

2C). 

Anatomic specificity was also tested for astressin-2B, with injections made 

immediately adjacent to the NI as controls. RM two-way ANOVA revealed an overall 

effect of both treatment (F(2,5) = 37.934, p < 0.001) and lever (F(1,6) = 86.049, p < 

0.001)and a significant treatment x lever interaction (F(2,5) = 26.453, p < 0.001). Once 

again, Bonferroni post hoc analysis showed yohimbine administration induced 
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reinstatement of alcohol seeking in vehicle-treated rats (EXT Vs. VEH, p < 0.001; 

Fig. 2B). However, astressin-2B control injections had no effect on yohimbine-

induced reinstatement of alcohol seeking (p = 0.218; Fig. 1B). Injection sites were 

validated histologically for all astressin-2B-treated rats (Fig. 2D). 

Chronic alcohol consumption increases CRF1 and RXFP3 receptor expression 

within the nucleus incertus 

To assess changes in CRF and relaxin-3 system-related gene expression within the 

NI, male adult iP rats were provided a choice between either water and 10% ethanol, 

or water alone, for ~125 days. After an initial ~25 day period in which rats with 

access to alcohol displayed escalating rates of consumption and preference, over the 

remaining ~100 days consumption remained stable. During the last week of ethanol 

consumption rats averaged 4.1 ± 0.5 g/kg/day ethanol intake, with an alcohol 

preference of 79.2 ± 5.3% (Fig. 3). 

Rats were culled and tissue that encompassed the NI was collected (Fig. 4A) for 

qPCR analysis. Importantly, high levels of relaxin-3 mRNA were detected within 

every individual tissue sample, confirming correct tissue targeting. Chronic ethanol 

consumption did not alter relaxin-3 expression, relative to water controls (Student’s t-

test; p = 0.414; Fig. 4B). Expression of mRNA encoding the cognate receptor for 

relaxin-3, RXFP3, was significantly increased in rats following long-term voluntary 

ethanol intake compared to water controls (Student’s t-test; p = 0.012; Fig. 4C). CRF1 

receptor gene expression was significantly increased following chronic ethanol intake 

(Student’s t-test; p = 0.037; Fig. 4D). In contrast, no changes in the expression of 

mRNA encoding CRF2 receptors or CRF-BP were observed (Student’s t-test; p = 

This article is protected by copyright. All rights reserved.



0.704 and p = 0.394; Fig. 4E and 4F). CRF mRNA was detected within the NI but not 

altered by chronic ethanol intake (Student’s t-test; p = 0.114; Fig. 4G). 

A population of CRF-positive neurons within the NI 

To confirm the presence of CRF-containing neurons within the NI, we employed 

immunohistochemistry with a validated CRF antibody (Sawchenko et al, 1984) and 

Crh-IRES-CrexAi14 transgenic mice (Cusulin et al, 2013). Barrington’s nucleus was 

included as a positive control for CRF-like-IR specificity. A high density of cells 

displaying CRF-like-IR was evident within Barrington’s nucleus, however CRF-like-

IR-positive soma were largely absent in adjacent regions concordant with previous 

reports (Swanson et al, 1983; Fig. 6A, 7A). Importantly however, cell soma with 

punctate cytoplasmic CRF-like-IR were observed throughout the rostrocaudal axis of 

the iP rat and the Crh-IRES-CrexAi14 mouse NI (Table 2, 3; Fig. 5, 6, 7; CRF-like IR 

red circles; relaxin-3-like IR green circles), which was identified via double-labeling 

with relaxin-3 (Tanaka et al, 2005; Ma et al, 2013). While a small number of CRF-

positive neurons co-express relaxin-3 (Table 2, 3; Fig. 6, 7), the majority do not 

(Table 2, 3; Fig. 6, 7). CRF-positive cells were distributed throughout both the pars 

compacta and dissipata regions of the NI and more numerous towards the caudal 

extent of the NI (Table 2, 3).  

 

DISCUSSION 

Our results demonstrate that CRF1 receptor antagonism in the NI via local 

microinjection of CP376395 attenuates yohimbine-induced reinstatement of alcohol 
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seeking in iP rats. Importantly, injections of the same dose of CP376395 immediately 

adjacent to the NI had no effect, suggesting the effect is specifically associated with 

actions on NI neurons and not CRF1-positive neurons in adjacent areas. In contrast, 

intra-NI injections of astressin-2B did not alter alcohol seeking at the dose employed, 

suggesting a lesser role for CRF2 signaling within the NI in the regulation of this 

behavior, despite CRF2 expression within this region. Importantly, the attenuation of 

alcohol seeking after intra-NI CP376395 confirms that under our experimental 

paradigm, CRF is released within the NI and contributes to the observed behavior.  

Our findings are in accordance with immunohistochemical, electrophysiological and 

behavioral studies that demonstrate CRF and/or stress act via CRF1 to activate 

relaxin-3 containing neurons within the NI (Tanaka et al, 2005; Banerjee et al, 2010; 

Ma et al, 2013). In combination with previous studies which demonstrated that 

relaxin-3/RXFP3 signaling within the BNST promotes yohimbine-induced alcohol 

seeking (Ryan et al, 2013), our data are consistent with the hypothesis that stress 

activates CRF input(s) to the NI, which acts upon CRF1 receptors to drive ascending 

relaxin-3 pathways innervating the BNST (and likely other stress-relapse circuitry) to 

contribute to reinstatement of alcohol seeking. It is important to note that intra-NI 

CP376395 attenuated but did not prevent yohimbine-induced reinstatement of 

alcohol seeking. This is to be expected given the complex circuitry and multiple 

neurotransmitters/neuropeptides known to contribute to stress-induced alcohol 

seeking (Mantsch et al 2016). Nevertheless, our findings suggest that CRF1 receptor 

signaling within the NI is involved in this process, and that the NI therefore apparently 

interfaces with the established stress-relapse circuitry. In this regard, the BNST is a 

likely candidate where ascending relaxin-3 neurons modulate relapse-like behavior 
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(Ryan et al., 2013). 

The exact mechanisms involved in yohimbine-induced reinstatement of operant 

responding still require elucidation. A recent study showed that yohimbine reinstates 

lever pressing in rats that were previously trained with lever pressing resulting in cue 

presentation with or without reward delivery and therefore may not necessarily act as 

a stressor model (Chen et al, 2015). It is however noteworthy that yohimbine-induced 

reinstatement of ethanol seeking can be prevented by treatments that do not impact 

upon yohimbine-induced reinstatement of sucrose seeking (Ryan et al., 2013), 

suggesting that cue reactivity is not the only factor behind a yohimbine-induced 

reinstatement of reward seeking. Importantly, yohimbine induces anxiety and the 

subjective measures of alcohol intoxication in healthy humans (McDougle et al, 

1995), as well as craving in human alcoholics (Umhau et al., 2011) and opiate 

addicts (Greenwald et al, 2013). Based on this property yohimbine has been 

suggested to represent an ideal cross-species probe for translational addiction 

research (See & Waters, 2010). Yohimbine produces a robust and stable 

reinstatement of alcohol seeking in rats (Le et al, 2000). Importantly in the context of 

the present study, yohimbine shares a commonality with footshock stress-induced 

reinstatement of alcohol seeking in that both are critically dependent upon 

extrahypothalamic CRF1 receptor signaling (Marinelli et al., 2007). Moreover, 

yohimbine administration also induces c-fos and CRF mRNA in limbic regions to a 

similar degree as foot-shock (Funk et al, 2006). Therefore, while yohimbine may act 

via more than one mechanism to precipitate reinstatement of alcohol seeking it is 

nevertheless a useful tool to assess the involvement of CRF1 receptors in 
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reinstatement following extinction. Note also that yohimbine specifically reinstated 

responding on the lever associated with alcohol and not the lever paired with water.  

CRF1 antagonists effectively attenuate both footshock- and yohimbine- induced 

reinstatement of alcohol seeking (Le et al, 2000; Marinelli et al, 2007). Interestingly, 

existing evidence suggests that CRF1 antagonists are more effective in attenuating 

stress-induced reinstatement in rats with increased stress sensitivity, such as post-

dependent rats or behaviorally selected lines that prefer alcohol (Hansson et al, 

2006; Gehlert et al, 2007). It has been proposed that this behavior may be mediated 

by the upregulation of CRF1 receptor gene expression. For example Marchigian 

Sardinian alcohol-preferring (msP) rats display increased CRF1 receptor mRNA 

expression in limbic regions compared with Wistar rats, and unlike non-dependent 

Wistar rats, msP rats are susceptible to attenuation of drinking after treatment with a 

CRF1 receptor antagonist (Hansson et al, 2006). Consistent with this theory, iP rats 

also have enhanced CRF/stress responsivity (Ehler et al, 1992).  

Our molecular data demonstrate that CRF1, but not CRF2, receptor gene expression 

was upregulated within the NI following chronic voluntary ethanol consumption and 

confirms that chronic ethanol intake modulates expression of CRF system 

components within the rat NI. Our findings also provide further support that CRF1 and 

CRF2 receptors may have differential roles with regards alcohol intake/seeking. For 

example, administration of a CRF1 receptor antagonist, CP154546, or the CRF2 

receptor agonist, urocortin 3, dose-dependently reduced binge-like ethanol intake in 

C57BL/6J mice (Lowery et al, 2010). In addition, urocortin 3 reduces stress-related 

behavior and ethanol self-administration in ethanol-dependent rats following acute 
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withdrawal (Valdez et al, 2004). Chronic intermittent ethanol exposure in mice 

upregulates CRF1, but not CRF2, receptor transcripts in the CeA (Eisenhardt et al, 

2015). In line with this, we did not detect changes in CRF2 receptor mRNA 

expression within the NI following chronic ethanol consumption; however, the mRNA 

encoding CRF1 receptors was upregulated. Given our behavioral data, it is possible 

that increased CRF1 receptor expression within the NI may contribute to a 

heightened CRF/stress response, leaving rats more susceptible to reinstate. 

However methodological differences must be considered. Different drinking 

paradigms were employed when examining the role of CRF receptors in operant 

behavior compared to mRNA regulation following long-term voluntary ethanol 

consumption. Our operant studies were designed to model relapse-like behavior and 

examine the role of CRF1 receptor signaling within the NI in this regard. On the other 

hand, our chronic ethanol consumption model was designed to assess whether 

molecular adaptations to relaxin-3 and/or CRF systems occurred within the NI after 

long-term intake. Both of these paradigms model features of human AUD and 

therefore are different, but also complementary, means to study alcohol-related 

problems. Therefore, the fact that intra-NI CRF1 receptor antagonism behaviorally 

reduced alcohol seeking while chronic ethanol consumption regulated CRF1 receptor 

mRNA expression within the NI provides strong support for a role of NI CRF 

signaling in aspects of alcohol use and abuse.   

The NIc and NId receive innervation from similar afferent sources, including the 

medial prefrontal cortex, lateral hypothalamus, lateral habenula and BNST (Goto et 

al, 2001), plus a recently revealed CRF input from the lateral preoptic area (Ma et al, 

2013). Previous studies evaluating CRF distribution in the brainstem have shown 

This article is protected by copyright. All rights reserved.



scattered CRF-like-IR (Sutin and Jacobowitz, 1988). Our identification of CRF-

positive neurons and fibers within the rat and mouse NI suggests both extrinsic and 

intrinsic sources of CRF apparently exist in this nucleus.  

RXFP3 mRNA was significantly upregulated within the NI following chronic voluntary 

ethanol consumption. While RXFP3 may act as an autoreceptor on NI neurons, it is 

also possible that RXFP3 is expressed by adjacent neurons that receive relaxin-3 

inputs. In contrast, relaxin-3 expression was unaltered by chronic alcohol 

consumption, which corroborates our previous study in which relaxin-3 expression 

(detected via in situ hybridization) was unaltered by chronic alcohol consumption in 

iP rat brain (Ryan et al. 2014). Notably relaxin-3 expression in the NI of iP rats 

correlated with alcohol consumption, suggesting that natural variations in expression 

may relate to the propensity to consume alcohol (Ryan et al. 2014).  

CRF is implicated in stress-induced reinstatement acting in extrahypothalamic 

regions, including the ventral tegmental area (VTA) (Blacktop et al, 2011; Chen et al, 

2014) and ventral BNST (Erb and Stewart, 1999); and in specific projections from the 

CeA to the BNST (Erb et al, 2001), and the BNST to the VTA (Silberman et al, 2013). 

The NI sends relaxin-3 containing efferent projections to all of these regions, and in 

particular, relaxin-3/RXFP3 signaling within the BNST promotes yohimbine-induced 

alcohol seeking (Ryan et al, 2013). The present studies reveal that CRF1 receptor 

signaling within the NI is implicated in yohimbine-induced alcohol seeking, while 

chronic alcohol consumption increases RXFP3 and CRF1 receptor expression within 

the NI. Furthermore, we reveal for the first time the existence of a population of CRF-

positive neurons within the NI. Taken together, these findings give further credence 
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to the hypothesis that the NI/relaxin-3 system functionally interfaces with CRF/CRF1 

signaling to modulate stress-associated responses, including alcohol seeking.  
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Figure Legends 

 

Figure 1. Bilateral injections of CRF1 antagonist CP376395 into the nucleus 

incertus attenuated yohimbine-induced reinstatement of alcohol seeking. (A) 

Ethanol-paired lever and water-paired lever presses following bilateral NI injections 

of CRF1 antagonist CP376395 (n = 9). (B) Ethanol-paired lever and water-paired 

lever presses in anatomic controls for CP376395 infusion (n = 15). (C) Time course 

of lever pressing throughout reinstatement session for vehicle (V) or CP376395. (D) 

Neuroanatomical representation of injection sites for CP376395 treated rats. Green 

circles represent NI injections, red triangles represent anatomic controls. Data were 

analyzed by repeated measures two-way ANOVA with post-hoc Bonferroni multiple 

comparisons test and expressed as mean ± SEM. Extinguished rats (EXT), and rats 

that underwent yohimbine-induced reinstatement, pre-treated with either, vehicle (V) 

or 500 ng CP376395 (CP). EXT data are represented as combined values of the last 

3 days of EXT prior to each reinstatement test. Yohimbine precipitated reinstatement 

of alcohol seeking (***p < 0.001), which was attenuated by CP76395 microinjection 

within the NI (#p < 0.05). Furthermore time course data revealed a significant 

difference in responding 5 - 10 min into the reinstatement test (***p < 0.001). 

 

Figure 2. Bilateral injections of CRF2 antagonist astressin-2B into the nucleus 

incertus does not attenuate yohimbine-induced reinstatement of alcohol 

seeking. (A) Ethanol-paired lever and water-paired lever presses following bilateral 

NI injections of CRF-R2 antagonist astressin-2B (n = 10).  (B) Ethanol-paired lever 

and water-paired lever of anatomic controls following astressin-2B infusion (n = 7). 
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(C) Time course of lever pressing throughout reinstatement session for vehicle (V) or 

astressin-2B. (D) Neuroanatomical representation of injection sites for astressin-2B 

treated rats. Green circles represent NI injections, red triangles represent anatomic 

controls. Data were analysed by repeated measures two-way ANOVA with post-hoc 

Bonferroni multiple comparisons test and expressed as mean ± SEM. Extinguished 

rats (EXT), and rats that underwent yohimbine-induced reinstatement, pre-treated 

with either, vehicle (V) or 200 ng astressin-2B (A2B). EXT data are represented as 

combined values of the last 3 days of EXT prior to each reinstatement test. 

Yohimbine induced reinstatement of alcohol seeking (***p < 0.001), astressin-2B did 

not attenuate this behaviour; no differences in time course data were observed. 

 

Figure 3. Two bottle choice fluid and ethanol consumption in iP rats. (A) 

Ethanol intake relative to body weight for ethanol-consuming iP rats (g/kg/day) and 

(B) 10% ethanol solution preference. All values are mean ± SEM, n = 14. 

Abbreviations: EtOH, ethanol. 

 

Figure 4. Chronic ethanol intake modulates the expression of components of 

the relaxin-3 and CRF system in the iP rat NI. (A) Representative micropunch 

dissection of the NI. Relative mRNA expression of (B) relaxin-3, (C) RXFP3, (D) 

CRF1, (E) CRF2, (F) CRF-BP and (G) CRF in rats voluntarily administering water (n = 

7) or ethanol (n = 14) for >125 days. Data were analyzed by unpaired student’s t-test 

and expressed as mean ± SEM. Chronic alcohol consumption increased RXFP3 and 

CRF1 receptor mRNA in the NI (*p < 0.05). Abbreviations: Cb, cerebellum; NI, 

nucleus incertus; 4V, fourth ventricle, CG, central gray. 
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Figure 5. CRF is expressed throughout the rat nucleus incertus. Schematic 

representation of CRF expression through the rostrocaudal axis of the rat nucleus 

incertus. Relaxin-3 positive neurons indicated in green, CRF positive neurons 

indicated in red. Distance from bregma is indicated for each section. Abbreviations: 

4V, fourth ventricle; Cb, cerebellum; PDTg, posterodorsal tegmental nucleus. 

 

Figure 6. CRF positive neurons are present within the nucleus incertus of the 

iP rat. (A) Low magnification confocal projection image of a section illustrating CRF 

positive neurons within the nucleus incertus and adjacent Barrington's nucleus of the 

iP rat. Overview of CRF positive neurons within the (B) NI compacta (NIc) and (C) NI 

dissipata (NId). Confocal projection of (D) CRF, (E) relaxin-3, and (F) overlay show 

both CRF positive/relaxin-3 negative cells and CRF negative/relaxin-3 positive cells. 

High magnification confocal projection of (G) CRF, (H) relaxin-3, and (I) overlay 

showing co-localization of CRF and relaxin-3. Relaxin-3 neurons (green) and CRF 

neurons (red), co-localisation indicated by arrowhead, while CRF positive / relaxin-3 

negative neurons indicated by arrow. 4V, fourth ventricle; NIc, nucleus incertus 

compacta; NId, nucleus incertus dissipata; Bar, Barrington’s nucleus; PDTg, 

posterodorsal tegmental nucleus.  

 

Figure 7. CRF positive neurons are present within the nucleus incertus of the 

Crh-IRES-CrexAi14 mouse. (A) Low magnification confocal projection image 

illustrating CRF/TdT positive neurons within the NI and Barrington’s nucleus of Crh-

IRES-CrexAi14 mice. Overview of CRF positive neurons within the (B) NI compacta 
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(NIc) and (C) NI dissipata (NId) of Crh-IRES-CrexAi14 mice. High magnification 

confocal projection of CRF/TdT (D), relaxin-3 (E), and overlay (F), showing co-

localization of CRF/TdT and relaxin-3 within the NIc of the Crh-IRES-CrexAi14 

mouse. Relaxin-3 neurons (green) and CRF/TdT neurons (red), co-localisation 

indicated by arrowhead, while CRF positive / relaxin-3 negative neurons indicated by 

arrow. Abbreviations: TdT, TdTomato; NIc, nucleus incertus compacta; NId, nucleus 

incertus dissipata; Bar, Barrington’s nucleus; PDTg, posterodorsal tegmental 

nucleus. 

 

Table 1. List of primers used in quantitative PCR 

 

Table 1. 

Gene  

Relaxin-3 

 

Forward primer 5’-CCCTATGGGGTGAAGCTCTG-3’ 

Reverse primer 5’-GCTTCTCCATCAGCGAAGAA-3’ 

RXFP3 

 

Forward primer 5’-AGGCCAGGGTACGGATCCT-3’ 

Reverse primer 5’-CCAGTCCCAGGGCACAAAC-3’ 

CRF Forward primer 5’-AAATGGCCAGGGCAGAGCAGT-3’ 

Reverse primer 5’-TGGCCAAGCGCAACATTTCAT-3’ 

CRF1 Forward primer 5’- TGCCAGGAGATTCTCAACGAA-3’ 

Reverse primer 5’- AAAGCCGAGATGAGGTTCCAG-3’ 

CRF2 Forward primer 5’-CTCATCAATTTTGTGTTTCTGTTCAA-3’ 

Reverse primer 5’-CTGTACTGGATGGTCTCGGATGT-3’ 
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CRF-BP Forward primer 5’-GCCCAGTGAGTTCTCCACAGTT-3’ 

Reverse primer 5’-CATGTGTGCAGGTTTTCAAAGC-3’ 

GAPDH Forward primer 5'-CTACCCCCAATGTATCCGTTG-3' 

 Reverse primer 5'-AGCCCAGGATGCCCTTTAGT-3’ 
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Table 2. Number of corticotrophin releasing factor (CRF) positive neurons 

throughout the rostrocaudal axis of the iP rat nucleus incertus. Numbers shown 

as an average across two ethanol naïve iP rats. Sections cut at 50 µm in a 1 in 2 

series from -9.30 mm to -10.0 mm relative to bregma. Abbreviations: NIc, nucleus 

incertus compacta; NId, nucleus incertus dissipata; CRF, corticotrophin releasing 

factor; RLX3, relaxin-3 

 

 

Table 2. 

Distance 
(bregma) NIc NId Total 

 CRF CRF/RLX3 CRF CRF/RLX3 CRF CRF/RLX3 

- 9.3 mm 1.5 0.5 1.5 0 3 0.5 

- 9.4 mm 3 0 3 0 6 0 

- 9.5 mm 3.5 0 8.5 0 12 0 

- 9.6 mm 2 0 6.5 0 8.5 0 

- 9.7 mm 4.5 0.5 8 0 12.5 0.5 

- 9.8 mm 9.5 0 10.5 0 20 0 

- 9.9 mm 6.5 1 4 0 10.5 1 

- 10.0 mm 4 0 6.5 0 10.5 0 

Total 34.5 2 48.5 0 83 2 
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Table 3. Number of corticotrophin releasing factor (CRF) positive neurons 

throughout the rostrocaudal axis of the Crh-IRES-Cre+/−;Ai14+/− mouse 

nucleus incertus. Numbers shown as an average across two ethanol naïve Crh-

IRES-Cre+/−xAi14+/− mice. Sections cut at 40 µm from 5.4 mm to 5.6 mm relative to 

bregma. Abbreviations: NIc, nucleus incertus compacta; NId, nucleus incertus 

dissipata; TdT, tdTomato; CRF, corticotrophin releasing factor; RLX3, relaxin-3 

 

Table 3. 

Distance 
(bregma) NIc NId Total 

 CRF/TdT CRF/TdT + 
RLX3 CRF/TdT CRF/TdT + 

RLX3 CRF/TdT CRF/TdT+ 
RLX3 

-  5.40 mm 16.5 0.5 8.5 
0 

25 0.5 

-  5.44 mm 17.5 
1 

10.5 
0 

28 1 

-  5.48 mm 18 0 12.5 
0 

30.5 0 

- 5.52 mm 20 1 13.5 
0 

33.5 1 

- 5.56 mm 19.5 0 11 
0 

30.5 0 

- 5.60 mm 19 0 18 
0 

37 0 

Total 110.5 2.5 75 0 184.5 2.5 
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