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The Arctic is under increasing pressure from climate change 
and growing interests in economic opportunities (for 
example, natural resources like oil and gas, tourism, etc.)1. 

Microorganisms are foundational to the marine food web; thus, we 
need to understand how they adapt and thrive, as well as forecast 
their fate in a future ocean impacted by anthropogenic change. In 
addition, the predicted invasion of the Arctic Ocean by species from 
lower latitudes due to temperature increases might alter the dynam-
ics of the entire marine ecosystem, from microbes to large animals2.



















As an ecosystem, the Arctic Ocean is subject to extreme sea-
sonal variations (that is, solar radiation, ice cover, temperature) and 
receives large inputs of fresh water rich in dissolved organic mate-
rial from rivers and inflowing waters from the Pacific and Atlantic 
Oceans3. Thus, organisms inhabiting the upper water column have 
to adapt to a highly dynamic environment. Photosynthetic pri-
mary production occurs mostly during spring and summer with 
blooms forming under the ice cover and in the marginal ice zone4. 
Such blooms trigger a succession of bacterial populations, mostly 
heterotrophs from the phyla Bacteroidetes and Proteobacteria5. 
During winter, the lack of light makes productivity almost negli-
gible, resulting in very low vertical carbon export from the surface 
layers6. Since photosynthesis is limited, heterotrophic bacteria and 
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protists become the dominant players in the ecosystem7. During the 
polar night, prokaryotic mixotrophs and chemolithoautotrophs8–12 
increase in importance.

Geographically, the Arctic Ocean has been divided into eight 
regions of ecological significance13. The record of microbial diver-
sity in most regions is generally limited to a few surveys and is 
largely based on PCR amplicon sequencing and other molecular 
approaches14–17. Other studies have also attempted to study func-
tions such as nitrification11,18, heterotrophy19,20 or photoheterot-
rophy21. The uniqueness of polar microbial communities is now 
recognized22,23 and recent technological advances, such as the 
reconstruction of genomes from metagenomes, allow to go beyond 
the community level and explore the functional capabilities of 
specific taxa23–25. Nevertheless, our understanding of the complex 
Arctic ecosystem is limited by the lack of a thorough analysis of key 
active microbial players including their habitat range and metabolic 
potential in the Arctic Ocean.

The Tara Oceans Polar Circle expedition26 circumnavigated the 
Arctic Ocean performing a holistic sufrvey of its marine microbial 
diversity. In this study, we built 3,550 genomic bins using the 41 
prokaryote-enriched metagenomes from photic to mesopelagic lay-
ers. These bins collectively constitute a large fraction of the Arctic 
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ronmental change. We applied genome-resolved metagenomics to 41 Arctic seawater samples, collected at various depths 
in different seasons during the Tara Oceans Polar Circle expedition, to evaluate the ecology, metabolic potential and activ-
ity of resident bacteria and archaea. We assembled 530 metagenome-assembled genomes (MAGs) to form the Arctic MAGs 
catalogue comprising 526 species. A total of 441 MAGs belonged to species that have not previously been reported and 299 
genomes showed an exclusively polar distribution. Most Arctic MAGs have large genomes and the potential for fast generation 
times, both of which may enable adaptation to a copiotrophic lifestyle in nutrient-rich waters. We identified 38 habitat general-
ists and 111 specialists in the Arctic Ocean. We also found a general prevalence of 14 mixotrophs, while chemolithoautotrophs 
were mostly present in the mesopelagic layer during spring and autumn. We revealed 62 MAGs classified as key Arctic species, 
found only in the Arctic Ocean, showing the highest gene expression values and predicted to have habitat-specific traits. The 
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prokaryotic diversity detected by metagenomics and metatranscrip-
tomics. Within the pool of 3,550 genomic bins, 530 are of medium 
or high quality27 (hereafter referred to as metagenome-assembled 
genomes (MAGs)). We performed an exhaustive Arctic ecogenomic 
analysis to study the most relevant uncultured Arctic prokaryotic 
MAGs, exploring their gene expression patterns, habitat preferences 
and metabolic potential. We identified key polar species by selecting 
those MAGs found exclusively in polar metagenomes and highly 
transcribed, to serve as baseline for future monitoring of the state 
of the Arctic Ocean.

Results
Co-assembly and trends of prokaryotic Arctic bins. The 41 
metagenomes (from 0.22 to 3-μm fractions) cover a broad range 
of environmental and spatio-temporal conditions in the Arctic 
(Fig.  1a,b). We considered three different ocean layers (surface, 
subsurface chlorophyll maximum (SCM) or deep chlorophyll 
maximum (DCM) and mesopelagic) in five Arctic Ocean regions 
(four stations in the Atlantic Arctic, five stations in the Kara-Laptev 
Sea, four stations in the Pacific Arctic, one station in the Arctic 
Archipelago and four stations in the Baffin Bay and Davis strait) and 
two stations in the sub-Arctic North Atlantic. The sampling period 
encompassed spring, summer and autumn conditions with a wide 
range of water temperatures (from −1.7 to 11.1 °C), sea ice condi-
tions and photoperiods.

We applied a new assembly strategy aimed at obtaining a less 
redundant set of bins with higher genome completeness that 
co-assembles samples that are most similar in their community 
composition (assessed with 16S miTags and non-metric multidi-
mensional scaling (NMDS) with 100 iterations and a stress value of 
0.08), followed by binning together all resulting contigs (Extended 
data Fig.  1). This strategy produced 3,550 bins. According


 to a 

genome-based taxonomic classification28, 1,834 bins were classified 
as bacteria and 146 as archaea. The remaining bins (1,570) could 
either be of eukaryotic or viral origin, or could not be classified due 
to a lack of single-copy core genes.

The complete set of 3,550 bins recruited 43.3% of Arctic metage-
nomic reads and 35.1% of North Atlantic metagenomes (Fig. 1d). 
In turn, a subset of 725 Arctic bins that fulfilled the quality stan-
dards used by Delmont et al.29, recruited 23% of Arctic metage-
nomic reads. This is a threefold difference compared to the 6.84% 
read recruitment by the 892 MAGs generated in the Delmont et al.29 
study with Tara Oceans metagenomes, which excluded Arctic sam-
pling29. Such differences could be due to the lower diversity reported 
in polar prokaryotic communities, compared to those from the tem-
perate ocean30.

Interestingly, mean metagenomic recruitments in the Arctic’s 
mesopelagic were lower than in the photic layer (Fig. 1d), probably 
indicating that we are missing genomes from deep Arctic waters. 
In addition, the mean metagenomic read recruitment increased 
with depth in the temperate and Southern Ocean metagenomes, 
suggesting that some Arctic genomes may reach the mesopelagic 
layers of other latitudes through ocean circulation22,31. To obtain 
biogeographical patterns at a global scale, we used metagenomes 
and metatranscriptomes collected in all the oceanographic regions 
sampled by the Tara Oceans expedition23. Metatranscriptomic read 
recruitment in the photic layers of the Southern Ocean was fourfold 
that of temperate samples, suggesting a polar preference of certain 
bins and confirming bipolar expression patterns (Fig. 1d).

We detected a positive correlation between metagenomic and 
metatranscriptomic read recruitments by Arctic bins. Similar cor-
relations have been found at the gene level in the eastern subtropical 
Pacific Ocean’s microbiome32, suggesting that, as may be expected, 
expression profiles depend on gene abundance33. The strength of the 
correlation decreased with depth and was stronger in polar samples 
compared to temperate latitudes, which could be associated with 
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genomes that have been exported vertically from the photic zone 
and/or transported by deep ocean currents to/from more temperate 
latitudes. This result could be affected by a higher species richness 
of temperate mesopelagic waters compared to the Arctic, as well as 
differences in microeukaryote diversity30. Individual metatranscrip-
tomic recruitments tended to be lower than metagenomic recruit-
ments in temperate latitudes, suggesting a resting stage of polar 
prokaryotic cells in transit between polar habitats34. These results 
reinforce the polar habitat preference of a significant fraction of our 
Tara Arctic genomic dataset.

Following published quality thresholds27, the 3,550 bins were 
classified into 3 quality groups based on genome completeness and 
quality values (Fig. 1b and Supplementary Table 1): 96 high-quality 
bins (manually curated with ≥90% completeness and <5% contam-
ination); 434 medium-quality bins (with ≥50% completeness and 
<10% contamination); and 2,642 low-quality bins. The 530 high- 
and medium-quality bins with sufficient quality ratings were des-
ignated MAGs and are presented in this study as the Arctic MAGs 
catalogue. The MAGs catalogue reflects diversity across three sea-
sons: late spring, summer and autumn, representing the most com-
prehensive resource of uncultured prokaryotic genomes from the 
Arctic Ocean to date.

Diversity, novelty and abundance of the Arctic MAGs cata-
logue. The Arctic MAGs catalogue consists of a high diversity 
of non-redundant MAGs. Only 8 combinations (0.006%) of the 
140,185 genome pairs could be considered as closely related spe-
cies, showing average nucleotide identities (ANIs) >96%35 (Fig. 1c). 
Collectively, our analyses indicate that the Arctic MAGs represent 
consensus bacterial and archaeal genomes of 526 non-redundant 
species. Genomes were annotated using a genome-based phylogeny 
approach and the Genome Taxonomy Database (GTDB)28,36.

Assembling conserved genes, such as the ribosomal operon, is 
a common challenge in MAG reconstruction37. In our study, only 
27 MAGs (5%) contained full or partial 16S ribosomal RNA genes 
(Extended data Fig.  2) that could not be annotated further than 
family level, reflecting that an important fraction of the microbial 
diversity in this ecosystem may have been consistently missed in 
previous studies. Therefore, we assessed their taxonomic annota-
tion and novelty through a phylogenomics approach against a data-
base that includes both cultured and uncultured taxa28. The Arctic 
MAGs catalogue included 472 bacteria and 58 archaea assigned to 
21 known phyla (Fig. 2a), with >83% of unclassified genomes at the 
species level (Fig. 2b). This species novelty percentage is similar to 
the 81% found in a recent study that reconstructed MAGs from the 
Baltic Sea38, calculated using the same methodology of our study. In 
the Tara Oceans MAG dataset29, 44% of MAGs could not be anno-
tated to any known species in the GTDB. This value, however, could 
be underestimated since the GTDB includes MAGs generated in a 
previous study from the Tara Oceans temperate metagenomes39 (see 
the Supplementary Information on the taxonomical classification of 
Arctic MAGs for more details).

The catalogue is predominated by rare Arctic taxa (Extended 
data Fig. 3). The 12 most abundant MAGs, recruiting at least 200 
reads per kilobase of genome per gigabase of metagenome (RPKG) 
belong to unknown species of the Bacteroidota, Actinobacterota, 
Alphaproteobacteria, Gammaproteobacteria and SAR324 phyla.

The Arctic MAGs catalogue contains a set of diverse 
non-redundant Arctic genomes. We found a high degree of taxo-
nomic novelty, with unknown lineages being representative of 
abundant and rare species in Arctic waters, active in terms of  
gene expression.

Metabolic potential and genomic expression among Arctic 
MAGs. Prevalence of mixotrophy in Arctic prokaryotic genomes. 
The greenhouse gas CO2 is central in the global carbon cycle and 
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the Arctic Ocean is considered a sink for atmospheric CO2 (ref. 40). 
Although primary production in Arctic waters is mainly performed 
by eukaryotic phytoplankton13, inorganic carbon fixation by pro-
karyotes in the dark might be an important process, particularly 
during the polar night11,12. However, the relevance and ubiquity of 
different inorganic carbon fixation pathways across different Arctic 
regions, depths and seasons is unknown, as so is the identity of 
the potential key players. In this study, we used a selection of 120 

marker genes (Supplementary Table  2) representative of carbon 
fixation processes and energy metabolism and investigated their 
transcript abundance throughout the expedition.

Fifteen Arctic MAGs belonging to 7 phyla contained RuBisCO 
(Kyoto Encyclopedia of Genes and Genomes (KEGG) K01601, 
K01602 or both), or RuBisCO and phosphoribulokinase (K00855) 
(Supplementary Table  3). Among them, we report for the first 
time RuBisCO-containing MAGs from the bacterial phyla 
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Fig. 1 | Metagenomic genome reconstruction of the Tara Oceans Polar Circle expedition. a, Tara’s trajectory and the stations at which metagenomes and 
metatranscriptomes were collected are shown. The coloured areas highlight the sampled regions: five Arctic regions and the sub-Arctic North Atlantic. 
The Polar Circle (66 °N) is shown with a dashed line. The outer circles show the month and season of sampling during the circumnavigation, starting in 
May 2013. b, Outline of the polar metagenomics and metatranscriptomics dataset, the number of bins assembled from the metagenomic samples and 
their quality-based classification, measured by combining genome completeness and contamination. Only those 530 bins of medium and high quality were 
designated as MAGs. c, Pairwise ANI comparisons of 530 medium- and high-quality MAGs, showing that only 8 pairs could be considered the same species 
(ANI > 96%). d, Distribution of metagenomic (metaG; filled box plots) and metatranscriptomic (metaT; empty box plots) read recovery per sample by all 
reconstructed bins per sample. n = 3,550 bins examined over 68 metagenomic samples (37 samples from the Tara Oceans Polar Circle, 4 samples from the 
Southern Ocean and 27 from the Tara Oceans expedition) and 53 metatranscriptomic samples (33 samples from the Tara Oceans Polar Circle, 3 samples 
from the Southern Ocean and 17 from the Tara Oceans expedition). Samples are divided by layer (columns) and latitudinal range (purple boxes for the Tara 
Oceans Polar Circle, yellow boxes for the temperate samples from the Tara Oceans expedition and red boxes for the Southern Ocean samples from the Tara 
Oceans expedition). Data are shown as horizontal box plots (Tukey style): the lower (left) and upper (right) hinges correspond to the first and third quartiles 
(25th and 75th percentiles), the vertical line indicates the median and the whiskers indicate the lowest and highest points within 1.5× the interquartile ranges 
(IQRs) of the lower (first) or upper (third) quartile, respectively. Data beyond the end of the whiskers are outlying points and are plotted individually. The 
mean percentage of read recruitments per group of samples is indicated at the right of each plot.
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Latescibacterota and UBA8248 (previously Tectomicrobia). Of 
these, we retrieved 14 RuBisCO large-chain sequences. These 
could be classified into phylogenetic groups corresponding to the 
RuBisCO ‘forms’ I, II, III-a, IV and IV-like defined in previous stud-
ies41,42 (Fig. 3a).

RuBisCO forms I and II are directly involved in the autotrophic 
CO2-fixing Calvin–Benson–Bassham pathway and were found in 
four MAGs. These showed whole-genome expression in the five 
Arctic regions during all seasons and at all depths. Nevertheless, 
expression of RuBisCO was found only for MAGs classified into 
form I (Fig. 3b) and was dominated by the Synechococcus MAG in 
the North Atlantic and Atlantic Arctic photic samples. For the rest 
of the sampling, the recruited transcripts belonged to Proteobacteria 
(Fig.  3c,d). Form II was detected in a new member of the family 
Thioglobaceae but was not transcribed. Since activity of the pho-
tosynthetic Synechococcus was only detected in the North Atlantic 
samples, genomic expression of form I RuBisCO MAGs in the Arctic 
suggests a larger contribution of chemoautotrophic processes.

RuBisCO form III-a was detected in a Crenarchaeota (UBA57 
sp., previously known as Thaumarchaeota) and expressed in a meso-
pelagic late spring sample in the Atlantic Arctic (Fig. 3c,d). Archaea 
containing RuBisCO form III-a but lacking phosphoribulokinase, 
like this Arctic MAG, are proposed to be involved in a modified 
nucleotide scavenging pathway43.

RuBisCO forms IV and IV-like do not perform CO2 fixation and 
may be involved in methionine salvage, sulphur metabolism and 
D-Apiose catabolism44. These were found in eight MAGs (Fig. 3a); 
their transcription occurs mostly in summer and early autumn pho-
tic samples peaking in station TARA_180 in similar magnitude to 
Cyanobacteria’s RuBisCO transcription in the North Atlantic.

These results indicate that at least 28% of RuBisCO-containing 
MAGs are putative autotrophs (forms I and II), prevalent in the 
Arctic Ocean and whose genomes are expressed across all regions, 
depths and seasons. RuBisCO-containing MAGs possessed multiple 
protein domains (15–134) annotated as ATP-binding cassette trans-
porters suggesting a mixotrophic lifestyle. Mixotrophy is likely in 
the case of the photosynthetic Synecochoccus MAG, a lifestyle that 
has already been reported in other marine Cyanobacteria45.

Mixotrophy has also been proposed to be relevant for specific 
Arctic heterotrophs, which can perform CO oxidation46. This pro-
cess is suggested to serve as a supplemental energy source during 
organic carbon starvation46 and is catalysed by carbon monoxide 

dehydrogenase form I (cox


 genes)47. To our knowledge, the poten-

tial for CO oxidation by prokaryotes in the Arctic Ocean has never 
been addressed. We found 114 MAGs (21.5%) transcribing the coxL 
(K03520) gene, of which 9 were expressing the CO-fixing coxL form 
I in all regions and seasons in the photic layer and in the North 
Atlantic-influenced mesopelagic (Extended data Fig. 4a).

The transcription of key markers for alternative inorganic car-
bon fixation pathways, like the 3-hydroxypropionate bicycle (here-
after 3-HP) and the 3-hydroxypropionate/4-hydroxybutyrate cycle 
(hereafter 3-HP/4-HB), were also detected in certain MAGs; how-
ever, considering the lack of complementary genes for carbon fixa-
tion, their autotrophic capacity is putative.

Chemolithoautotrophic potential of Arctic prokaryotic genomes. We 
investigated the whole-genome recruitment of metatranscriptomic 
reads of five MAGs that contained reliable markers for the chemo-
lithoautotrophic processes associated to ammonia and nitrite oxida-
tion (Fig. 4). We could identify three ammonia-oxidizing archaea, 
two annotated as new Nitrosopelagicus spp. (containing 31% of 
the 3-HP/4-HB KEGG module, the full urease complex and, in 
MAG 1708, the ammonia-monooxygenase coding amoA) and one 
Nitrosopumilus sp. (containing 21% of the 3-HP/4-HB KEGG mod-
ule and the full urease complex). One Alphaproteobacterium (GCA-
2728255 sp.) was classified as an ammonia-oxidizing bacterium and 
contained the characteristic nitrification marker hydroxylamine 
oxidoreductase. One Nitrospinae species, LS-NOB sp., was classi-
fied as a nitrite-oxidizing bacterium (NOB), with 35% of reverse 
tricarboxylic acid cycle module completeness, including ATP citrate 
lyase, the nitrite oxidoreductase and a nitrate/nitrite transporter. 
Their expression patterns showed an overall preference for meso-
pelagic depths, especially in the North Atlantic-influenced Arctic 
stations (in spring and autumn). Ammonia-oxidizing archaea and 
ammonia-oxidizing bacteria are also active in the Kara-Laptev’s 
mesopelagic, the former recruiting more metatranscriptomic 
RPKGs, in agreement with previous results18. NOB expression is 
restricted to the photic zone in the North Atlantic (spring) and 
the mesopelagic zone in the Labrador Sea (North Atlantic) during 
autumn. To our knowledge, the LS-NOB sp. MAG is the first NOB 
found to be active in the region in both photic and aphotic layers.

Therefore, it appears that the set of Arctic MAGs consists of a 
majority of heterotrophic and mixotrophic organisms, with a few 
chemolithoautotrophs that are mostly active transcriptionally in the 
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mesopelagic during spring and autumn. Future experimental vali-
dation is required to confirm quantitatively the relevance of these 
processes.

Ecological preferences and biogeographical patterns. The Arctic 
MAGs were used as reference genomes in the mapping of metage-
nomic reads from 68 samples, representing all the polar and tem-
perate oceanographic regions sampled by Tara Oceans. Bray–Curtis 
dissimilarities of MAG abundance composition showed that polar 
and temperate samples clustered separately (Fig. 5a) (NMDS with 

100 iterations and 0.8 stress value, permutational multivariate anal-
ysis of variance (MANOVA) R2 = 0.14, P < 0.001). This pattern is 
consistent with the 16S miTAG-based clustering of the global Tara 
Oceans. Within polar and non-polar samples, MAG assemblages 
were significantly structured by depth (permutational MANOVA 
R2 = 0.14, P < 0.001) (Fig. 5a) in agreement with the reported verti-
cal stratification of marine microbial communities17,22,48. This con-
firms both the unique diversity of prokaryotes in the Arctic and the 
presence of bipolar taxa, previously described in surveys based on 
PCR amplicon sequencing22,49.
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Fig. 3 | Potential autotrophy in RuBisCO-coding MAGs. a, Maximum-likelihood phylogenetic reconstruction of the 15 RuBisCO large-chain (K01601) amino 
acid sequences found in Arctic MAGs, coloured by RuBisCO form. b, Polar maps with the transcript abundance of RuBisCO forms I and II, involved in the 
Calvin cycle pathway (K01601), colour-coded by Arctic region. The size of the dot is proportional to the accumulated metatranscriptomic RPKMs. c, Stacked 
bar plot of metatranscriptomic RPKMs recruited by the ruBisCO gene, coloured by ruBisCO form. d, Metatranscriptomic RPKMs of ruBisCO genes collapsed 
by the phylum (or class in the case of Proteobacteria MAGs) of the genome they were found and separated by form. The black dashed line represents the 
total recruited metatranscriptomic RPKMs by RuBisCO in each sample; the numbers in parenthesis in the legend display the MAG identification code.
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Even though non-detection of a taxon in metagenomic stud-
ies cannot be directly translated to its absence in the environment, 
we delineated the geographical distribution of individual MAGs 
using metagenomes representative of the global ocean and a strin-
gent read mapping filtering of at least 20% of genome coverage. We 
found 153 MAGs (28.9%) detected exclusively in Arctic metage-
nomes and 23 (4%) showing a bipolar distribution (that is, recruit-
ing reads only from the Arctic and Southern Ocean) (Fig. 5b). The 
somewhat higher proportion of bipolar MAGs compared to the 
15% retrieved by 16S rRNA sequencing in a previous study22 can 
be attributed to either methodological differences or the difference 
between sampling years. The bipolar subset of MAGs showed less 
diversity of phyla than other biogeographical categories, which is 
consistent with latitudinal diversity gradients30, and lacked MAGs 
representative of Actinobacteriota and Verrucomicrobiota found in 
every other studied latitude (Fig. 5b).

On a pan-Arctic scale, we found that 4.9% of MAGs (26) are 
found in all five Arctic regions at high occupancy (≥90% occur-
rence in Arctic stations), of which only 1 is exclusively found in 
latitudes above the Arctic Polar Circle (MAG 2328, an unknown 
Ascidiaceihabitans sp. Alphaproteobacteria). Pan-Arctic prokary-
otes in the catalogue are represented by Alphaproteobacteria and 
Bacteroidota, including a reduced number of Gammaproteobacteria 
and Actinobacteriota. Additionally, taxonomic diversity increases 
in the set of MAGs with a very limited distribution among Arctic 
regions (Extended data Fig. 5a). We found that the Atlantic Arctic 
sampled during spring and the Baffin Bay and Davis strait region 
sampled during autumn, had the highest numbers of MAGs with 
a highly restricted distribution, detected only in one of these two 
regions (Extended data Fig. 5b). It is important to note that the defi-
nition of pan-Arctic MAGs in this study can be biased towards taxa 
prone to thrive during spring and summer (the seasons when most 
of the sampling occurred), overlooking prokaryotes dominant dur-
ing autumn and winter.

Nearly 60% of our MAG dataset is represented by polar-specific 
genomes (Fig.  5b). Genomes with an Arctic-only distribution 
were estimated to be significantly larger (2.9 mega base pairs 
(Mbp) on average) than those present in temperate latitudes 
(2.5 Mbp) (Dunnett–Tukey–Kramer pairwise multiple compari-
son test P < 0.05) (Fig. 5c). However, we did not find significant 
differences between their coding densities. These also showed 
lower potential minimum generation times and optimal growth 
temperatures (Dunnett–Tukey–Kramer pairwise multiple com-
parison test P < 0.05 in both analyses) (Extended data Fig. 6a,b). 
Faster growth in environments with high resource availability 
(like polar regions during spring and summer) has been related to 
larger genomes and higher numbers of ribosomal gene copies50. 
Even though we did not find differences in ribosomal operon copy 
numbers between biogeographically distinct MAGs, due to their 
completeness values and the limitations of resolving ribosomal 
regions in de novo assemblies, we found that community-wide 
metagenomes from polar latitudes had higher numbers of rRNA 
operon copies than metagenomes from lower latitudes (Extended 
data Fig. 6c).

In summary, about 30% of our MAGs were exclusively present 
in Arctic regions. Their larger genomes, overall smaller minimum 
generation times and the increased numbers of ribosomal operon 
copies in polar metagenomes suggest that Arctic-specific MAGs 
could be associated with a copiotrophic lifestyle.

Disentangling generalist and specialist Arctic MAGs. We defined 
two subsets of MAGs based on their niche breadth: habitat general-
ists, evenly distributed; and habitat specialists, with an uneven dis-
tribution51,52. The latter are thought to be more sensitive to changes 
in environmental conditions53 since they might have narrow envi-
ronmental requirements. Generalists, on the other hand, are less 
dependent on environmental conditions, have a wide habitat tol-
erance and high functional plasticity54. In the current scenario of 
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Fig. 4 | Chemolithoautotrophic Arctic Ocean MAGs. Five MAGs contained the specific marker genes to be putative chemolithoautotrophs in the Arctic 
Ocean. They are classified into ammonia-oxidizing archaea and bacteria and nitrite-oxidizing bacteria. Their metatranscriptomic recruitments in RPKGs is 
depicted by the size of the dots, while their shape indicates the water column layer. The colour of the dots depends on the taxonomic annotation of each 
MAG. The numbers between parentheses correspond to the MAG’s code.
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climate change, it is essential to identify which Arctic species may 
be more susceptible to environmental alterations.

We calculated the niche breadth of MAGs based on their abun-
dance across the Arctic metagenomic dataset using the Levins niche 
breadth index51 with random permutations, providing statistical 
support for the classification of MAGs into generalists or special-
ists since it considers potential biases of metagenomic sequencing 
analyses55. For this study, each Arctic sample was considered as 
an individual habitat. Most MAGs (71%) could not be categorized 
into generalists or specialists, while 21% (n = 111) were habitat spe-
cialists and 7% (n = 38) were generalists (Extended data Fig.  7a). 

The high contributions of specialists have been reported in other 
polar environmental extremes, such as coastal Antarctic lakes56, or 
in highly productive marine sites compared to oligotrophic open 
ocean stations57.

Since habitat generalists are likely to adapt to a broader range 
of habitats54, we expected their complete genome size to be larger 
than that of habitat specialists. This difference was apparent but 
not statistically significant in the median genome size of MAGs 
that showed Arctic and North Atlantic distributions (Dunnett–
Tukey–Kramer pairwise multiple comparison test; Extended 
data Fig.  7b). Overall, the specialist MAG genome size was  
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Sea, South Atlantic Ocean, Southern Ocean and South Pacific Ocean. The middle and right panels represent the same NMDS ordination of only polar 
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the 530 Arctic MAGs. The stacked bar plots represent the number of MAGs in each category, coloured by taxonomic annotation; the top bars represent 
the percentage within the medium- and high-quality Arctic MAGs dataset. c, Differences between complete assembly sizes from MAGs classified by 
their biogeographical categories (n = 153 MAGs classified as Arctic-only, 123 MAGs classified as Arctic and North Atlantic Ocean, 23 MAGs classified as 
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of the whiskers are outlying points and are plotted individually. Statistical support was calculated using the two-sided Dunnett–Tukey–Kramer pairwise 
multiple comparison test adjusted for unequal variances and unequal sample sizes (Dunnett–Tukey–Kramer) and 95% CIs. The Dunnett–Tukey–Kramer 
test shows significant differences (P < 0.05) between MAGs specific to the Arctic and MAGs present at lower latitudes.
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significantly lower than those of uncategorized MAGs (Dunnett–
Tukey–Kramer pairwise multiple comparison test P < 0.05; 
Extended data Fig. 7c).

While generalists were assigned to the bacteria phyla 
Actinobacterota, Proteobacteria, Bacteroidota and Myxococcota 
(Extended data Fig.  7b), specialists displayed a larger taxonomic 
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Fig. 6 | Expression patterns and metabolic potential of sentinel polar MAGs in the Arctic Ocean. The plot contains a selection of 62 MAGs, which are the 
most expressed per sample within the subset of polar-specific MAGs that are either generalists, specialists or uncategorized. The top tile plot represents 
which of the selected marker genes are encoded in each of these MAGs. The bottom heatmap represents the relative expression of each of these MAGs 
(x axis) in each sample (y axis). Recruitment normalizations were done for every niche breadth category. Samples on the y axis are coloured based on 
the Arctic region they belong to and the sampling season is indicated. MAGs on the x axis are coloured based on phylum; the number in parentheses 
corresponds to the identification number of each MAG.
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diversity, including the archaeal phyla Thermoplasmatota and 
Crenarchaeota.

Interestingly, specialist and generalist MAGs recruit similar 
RPKGs in photic samples. In contrast, recruitment in the mesope-
lagic was much higher for specialists (Extended data Fig. 7c, note 
the change of scale in the y axis). This difference might be explained 
by the wider range of estimated optimal growth temperatures of 
specialists compared to generalists (Extended data Fig. 7c), as well 
as nutrient availability and niche compartmentalization in deeper 
waters, in contrast with the wider gradients in nitrate, temperature 
and salinity of the upper Arctic Ocean (Supplementary Table  4). 
Even though we did not find differences between specialists and 
generalists in relation to in situ seawater temperature (Extended 
data Fig.  8a), we found that in the mesopelagic layers, generalist 
MAGs had maxima of metagenomic RPKG in warmer stations than 
specialists (Extended data Fig.  8b) located in the Baffin Bay and 
Davis strait region. In the photic layers, temperature ranges were 
similar between both niche breadth groups (Extended data Fig. 8b).

The comparison of the genetic content between niche breadth 
groups showed that all KEGG-annotated genes found in general-
ists were found in specialists, whereas 814 genes from specialists 
were not detected in generalists. This difference might result from 
the higher number of specialists, a higher functional redundancy in 
generalist MAGs, the incomplete nature of MAGs or a combination 
of all. Genes found only in specialists were typical of the aphotic 
ocean and were enriched functions related to genetic processing, 
energy metabolisms and environmental information processing 
(Extended data Fig. 9).

Since the abundance or expression of microbial generalist or 
specialist MAGs as a whole could not be explicitly linked to any 
of the environmental variables tested (Supplementary Information  
Fig. 7), it is likely that community turnover in polar communi-
ties (suggested to drive changes in community gene expression in 
response to ocean warming23) could also transcend niche breadth.

Polar ocean key prokaryotic species. To define key prokary-
otic species specific to polar regions and whose existence may be 
threatened by the expected changes in the polar environment, we 
examined MAGs that were detected only in polar metagenomes and 
showed higher genetic expression in every sample and within their 
niche breadth category. A total of 62 MAGs fell within these criteria 
(Fig. 6) (7 generalists, 25 specialists and 30 uncategorized), repre-
senting potential ecologically relevant taxa in the polar ecosystem 
that we advocate monitoring as a means to assess the health status 
of the Arctic Ocean.

For example, Polaribacter is one of the most common genera in 
polar waters and its bipolar distribution has been described previ-
ously58. It showed the highest number of MAGs with a bipolar distri-
bution and highest expression in photic samples (Fig. 6). Polaribacter 
MAGs were assigned to both generalists and specialists. Interestingly, 
Polaribacter is predicted to be an ecologically central species in a 
polar cross-kingdom interactome, being one of the highly connected 
taxa59 and ranking high according to the general keystone index 
(keystone index rank = 86 of 4,000) (ref. 60). Another heterotrophic 
Flavobacterium (UA16 family) dominated gene expression in the 
mesopelagic, together with a MAG from the Myxococcota family 
UBA4427 (Fig. 6). Photic generalists were mostly heterotrophic but 
we also found a generalist annotated as Myxococcota thriving in the 
mesopelagic with a putative autotrophic metabolism.

The genetic expression of key polar specialists were not domi-
nated by any particular taxonomic group (Fig.  6). We found 
potential for autotrophy (Calvin–Benson–Bassham cycle) in a 
Gammaproteobacterium (Methylophilaceae) and the 3-HP cycle 
in a new Gemmatimonadetes species and two Alphaproteobacteria 
(Rhodobacteraceae). Most metatranscriptomic recruitments in 
photic summer samples by key specialists were associated with 

Gammaproteobacteria (heterotrophic with denitrifying potential) 
and Alphaproteobacteria. In contrast, spring and autumn photic 
samples showed the highest expression values from Flavobacteria and 
Verrucomicrobia. In the mesopelagic, the specialists with the high-
est gene expression were MAGs from the phyla Verrucomicrobiota 
(spring), Chloroflexi (summer) and Marinisomatota (autumn).

For those MAGs uncategorized in terms of niche breadth, we 
found higher expression in surface waters through spring and sum-
mer associated with (1) those showing heterotrophic metabolism 
and (2) potentially chemolithoautotrophic or mixotrophic MAGs 
(Chloroflexi and Alpha- and Gammaproteobacteria). During these 
times, Thalassoarchaeaceae MGIIb and Chloroflexota were the 
most active in the mesopelagic. Autumn photic samples were clearly 
dominated by archaea MAGs from the family Poseidoniaceae 
MGIIa. Oceanicoccus Gammaproteobacteria were predominantly 
active in the SCM and a new family of Planctomycetota was most 
expressed in the mesopelagic (Fig. 6).

Overall, we uncovered a pool of 62 key polar MAGs (11% of 
the Tara Arctic MAG dataset), of which 7 were classified as habitat 
generalists and 25 as habitat specialists. While key polar general-
ists seem to be mostly heterotrophic, key polar specialists display a 
wider variety of metabolic markers, including autotrophic potential 
and denitrifying genes.

Conclusions
Modelling the impacts of climate change on the Arctic ecosystem 
requires knowledge of the key players, their dynamics, activity pat-
terns and metabolic potential. Our finding that 83% of our Arctic 
Ocean MAGs represent previously unknown species shows evi-
dence of how limited our knowledge is of prokaryotic communities 
in the Arctic Ocean.

Genome-resolved metagenomics in recent years has substan-
tially expanded the tree of life61. Thousands of MAGs built from the 
global ocean29,39,62,63 serve as a resource for microbial ecogenomic 
studies that shed light into new lineages with remarkable ecological 
impact. In this study, we present the most comprehensive dataset of 
uncultured prokaryotic genomes to date, providing a high number 
of new Arctic reference genomes including thousands of potentially 
non-prokaryotic bins for the exploration of keystone Arctic viral or 
eukaryotic genomes. Despite the wide seasonal and spatial gradient 
covered by the 2013 Tara Oceans Arctic expedition, the catalogue 
is representative of microbial diversity in the Arctic Ocean from 
spring to autumn. We encourage future studies to complement this 
catalogue with additional spatial and temporal coverages.

Our in-depth, genome-centric analysis of new lineages in the Arctic 
Ocean shows a prevalence of mixotrophic activity, while chemolitho-
autotrophy is mainly found in mesopelagic waters. Arctic MAGs show 
a tendency towards increased genome size and copiotrophy in MAGs 
present exclusively in the Arctic Ocean, compared to those also pres-
ent at lower latitudes. Niche breadth analysis of the Arctic Ocean 
MAGs has revealed a predominance of habitat specialists, which show 
higher abundances and gene expression in the mesopelagic, as well as 
a wider range of estimated optimal growth temperatures, compared 
to habitat generalists. Finally, those genomes with the highest genetic 
expression and so far found only in polar metagenomes were identi-
fied as key polar species of the Arctic’s seawater ecosystem, some of 
which might be more susceptible to the effects of climate change due 
to their restricted niche breadth. The description of their functional 
capabilities and relevance in terms of genome expression is also key 
for future design of monitoring, experiments and ecosystem models 
in this rapidly changing environment.

Methods
Sample and environmental data collection. As described previously23, genetic and 
environmental data were collected during the Tara Oceans expedition (2009–2013), 
which includes the Tara Oceans Polar Expedition (TOPC, 




2013). Polar stations had Q8
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absolute latitudes above 64°. Sampling was conducted within the epipelagic (in the 
Arctic: surface, 5 m and SCM, 17–40 m; in the sub-Arctic North Atlantic, temperate 
and Southern Ocean latitudes: surface, 5 m and DCM, 30–120 m) and mesopelagic 
layer (in the Arctic: mesopelagic, 299–651 m; in the sub-Arctic North Atlantic, 
temperate and Southern Ocean latitudes: mesopelagic, 350–1,000 m). The sampling 
strategy and methodology have been described elsewhere64. Environmental data 
measured or inferred at the depth of sampling are published at the PANGAEA 
database (https://doi.org/10.1594/PANGAEA.875582).

Extraction and sequencing of DNA and complementary DNA. Metagenomic 
DNA and RNA were extracted from free-living prokaryote-enriched size fraction 
filters (0.2–3 μm) as described previously65. A detailed description of the DNA 
sequencing protocols is given in Salazar et al.23.

Co-assembly, binning and curation. Co-assembly. Bins were generated from 41 
Tara Oceans Arctic metagenomes, including 28 samples from the photic layer (20 
from the surface, 7 from the SCM and 1 from the DCM), 9 from the mesopelagic 
layer and 4 integrated samples, in which waters from different layer were mixed. 
To maximize the recovery of environmental genomes from the dataset, we 
opted for an approach that involved the co-assembly of several samples together, 
hence increasing the sequencing depth for each co-assembly while keeping the 
computational needs attainable. The pools of samples to be co-assembled were 
chosen based on their taxonomic composition. Samples that clustered together 
in an NMDS based on 16S miTag abundance profiles were assembled jointly 
with megahit v.1.1.2 (--presets meta-large --min-contig-len 2000; Supplementary 
Table 5 and Extended data Fig. 1) (ref. 66). All assembled contigs were pooled 
together and de-replicated with CD-HIT-EST v.4.6.8-2017-0621, compiled from 
source with MAX_SEQ = 10000000, options -c 0.99 -T 64 -M 290000 -n 10 (ref. 67), 
reducing the dataset from 3.95 to 1.91 M contigs.

Binning and curation. The reads of the input metagenome reads were back-mapped 
to the remaining contigs with Bowtie 2 v.2.3.2 (ref. 68) with default options, 
keeping only mapping hits with quality >10 (SAMtools v.1.5; options -q 10 
-F 4)69,70. Mapping hits were processed with jgi_summarize_bam_contig_
depths from MetaBAT 2 v.2.12.1 (ref. 70) with options --minContigLength 
2000--minContigDepth 1 and then binned with MetaBAT 2 with default options.

The completeness and contamination of each bin, as well as a first estimation 
of their taxonomic classification, based on single-copy marker genes was assessed 
with CheckM v.1.0.11 (ref. 71) using the lineage_wf workflow.

Contigs of 96 bins with an estimated completeness >95% and contamination 
<5% were reassembled in Geneious v.10.2.4 with a minimum overlap identity of 
95%, maximum mismatches per read of 5, no minimum overlap and with no gap 
allowed options to find overlaps that allowed to reduce genome fragmentation; the 
results were curated manually. These were considered to be high-quality MAGs. 
Additionally, contigs of 434 bins with estimated genome completeness >50% and 
contamination <10% were also reassembled with CAP3 v.021015 (ref. 72) with 
overlap length and percentage identity cut-offs of 25 bp and 95%, respectively. 
These were considered to be medium-quality MAGs.

All 3,550 genomes were given a numeric identifier, with the prefix ‘TOA-bin-’, 
which stands for Tara Oceans Arctic bin.

Taxonomic and functional annotation. All 3,550 bins were classified taxonomically 
with GTDB-Tk v.0.3.2 (ref. 36) (GTDB release 89) using the classify_wf workflow. 
Genome completeness and contamination estimates were reassessed with CheckM as 
above. For those bins encoding the 16S rRNA gene, their taxonomic annotation was 
done using the SILVA 132 database and SINA aligner tool v.1.2.11 with a minimum 
of 50% of identity (higher thresholds could not classify the ribosomal genes) and last 
common ancestor algorithm (Supplementary Table 6).

Functional annotation of 530 MAGs, including gene prediction, transfer 
RNA, rRNA and CRISPR detection was done with Prokka v.1.13 (ref. 73) using 
default options and the estimated domain classification from CheckM as the 
argument in the --kingdom option. Additionally, predicted coding sequences were 
annotated against the KEGG Orthology database (KEGG release 89.1) (ref. 74) with 
DIAMOND v.0.9.22 (ref. 75) using options blastp -e 0.1--sensitive and against the 
Pfam database release 31.0 using HMMER v.3.1b2 (ref. 76) and options --domtblout 
-E 0.1. Functional annotation of MAGs can be accessed in the Supplementary 
Information.

Genome redundancy analysis. ANI was calculated with FastANI v.1.2; default 
options77 were estimated for each possible pair of MAGs with >50% of genome 
completeness and <10% of genome contamination to check whether the 
reconstructed genomes could belong to the same species (defined at >95% ANI). 
Since alignment fraction between genomes lower than 20% may provide spuriously 
large ANIs, the average amino acid identity, which considers only the fraction of 
orthologous genes, was also estimated (CompareM v.0.0.23 with default options; 
https://github.com/dparks1134/CompareM).

Read recruitment. Selection and subsampling of samples. The samples chosen for 
read recruitment included the 32 surface, SCM and mesopelagic metagenomes 

from the Tara Oceans Arctic Ocean sampling and the 5 metagenomes (surface, 
DCM and mesopelagic) obtained from the Tara Oceans sub-Arctic North Atlantic 
sampling (Figs. 1a,b), the 4 Tara Oceans metagenomes sampled in the Southern 
Ocean and a selection of 27 Tara Oceans expedition metagenomes from temperate 
latitudes (Supplementary Table 4 and Extended data Fig. 10). These were selected 
based on their sequencing depth, which had to be at least as large as the smallest 
Tara Oceans Arctic metagenome, geographical location (covering the different 
oceans and seas sampled by the Tara Oceans expedition) and the coverage of 
different water layers. For the metagenomic samples selected, recruitment was also 
done with their available metatranscriptomes (33 from the Tara Oceans Arctic 
Stations, 3 from the Southern Ocean and 17 from the temperate ocean).

Paired-end libraries were used individually for fragment recruitment analysis 
after cleaning and a step of random subsampling. The latter was done with the 
DOE JGI’s BBTools reformat.sh script v.38.08 (https://sourceforge.net/projects/
bbmap/), selecting as the subsampling value the smallest sequencing depth 
of the Tara Oceans Arctic expedition meta-omic dataset (that is, 140,658,260 
and 45,212,614 fragments for metagenomic and metatranscriptomic libraries 
respectively). Read length was 101 bp.

Competitive fragment recruitment analysis. Nucleotide-Nucleotide BLAST v.2.7.1+ 
was used to recruit metagenomic and metatranscriptomic reads similar to any 
of the 3,550 Arctic bins. BLAST is slower than other high-throughput aligners 
but allows for finer-tuned alignment parameters, plus it is the criterion standard 
against which all high-throughput aligners are compared. Recruitment was 
competitive, meaning that individual samples were aligned against the pooled 
contigs of all 3,550 bins. The BLAST alignment parameters were the following: 
-perc_identity 70, -evalue 0.0001. Only those reads with >90% coverage and 
mapping at identities equal to or higher than 95% were considered to be 
representative of the bin. In case of hits with the same e-value, larger bit-score 
or larger alignment length were used sequentially to choose the best hit. If ties 
persisted, the best hit was selected at random from the candidate reads. Best hits 
that corresponded to rRNAs (according to the Prokka annotation) were also 
discarded.

Detection and filtering of false-positive recruitments. Putative false-positive 
recruitments were detected and excluded considering their horizontal genomic 
coverage, which was calculated using the R package GenomicRanges v.1.34.0 (ref. 
78).

A minimum horizontal genomic coverage threshold was set testing the effect 
of different thresholds on the final number of bins recruiting (richness) and the 
number of samples in which they recruited (occurrence). The variation of species 
richness in each metagenome was tested for a range of increasing minimum 
horizontal genomic coverage thresholds (0, 0.1, 0.5, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 
35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 98, 100). Recruitments where the 
horizontal coverage was equal to or higher than the thresholds were considered 
true; those covering a smaller percentage of their genome than the cut-off value 
were discarded.

The number of species present in each metagenome decreased with the 
increase of minimum horizontal coverage, reaching an apparent saturation in 
richness when the minimum horizontal coverage was 20% for metagenomes from 
temperate latitudes (Supplementary Information Fig. 8).

Setting a horizontal genomic coverage threshold had an effect on the 
occurrence of each bin in the metagenomic samples. In all metagenomic datasets 
(Arctic, Southern Ocean and temperate), the distribution of occurrence versus 
mean abundance (RPKG) of bins stabilized when the minimum horizontal 
coverage was 10% or higher (Supplementary Information Fig. 9). Lower thresholds 
showed different patterns of distribution, increasing the number of higher 
occurrences at very low mean abundances (Supplementary Information Fig. 9). To 
date, there is no consensus about the minimum horizontal coverage thresholds to 
discard false mappings.

Based on our analyses, we chose 20% as the minimum horizontal genomic 
coverage to consider recruitments valid. The metagenomic read recruitments can 
be found in Supplementary Table 7 and the metatranscriptomic read recruitments 
are in Supplementary Table 8.

Abundance and distribution of bins. Estimation of bin abundance and occurrence. 
Only those read recruitments aligning with an identity ≥95% were considered 
to be representative of the bins. Recruitments passing the minimum horizontal 
genomic coverage threshold of 20% were considered to represent an actual 
presence of the bin in the sample. In comparison, those with a horizontal genomic 
coverage <20% were considered not representative of the bin and thus absent in 
the sample. Read recruitments were transformed to RPKGs. Metagenomic RPKGs 
are found in Supplementary Table 9 and metatranscriptomic RPKGs are found in 
Supplementary Table 10.

Distribution of communities based on medium- and high-quality MAG composition. 
The ordination of samples based on their MAG composition, with RPKG as 
an abundance estimate, was done with an NMDS approach using the function 
metaMDS from the vegan package




 in R. Permutational MANOVA was calculated Q9
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using the function adonis (vegan package) with Bray–Curtis distances and 999 
permutations.

Pan-Arctic categorization. MAGs were classified as pan-Arctic if they were present 
in at least 16 out of the 18 Arctic surface metagenomes and also in the 5 Arctic 
regions sampled.

Minimum generation time predictions. Estimations of minimum generation 
time and optimal growth temperature were performed for high-quality (n = 96) 
and medium-quality MAGs (n = 434) using Growthpred79 and can be found 
in Supplementary Table 11. Growthpred relies on codon usage biases in highly 
expressed genes identified in genomes. First, for each MAG, we extracted the 
coding sequence using GffRead





80. Growthpred then assessed the number of highly 
expressed genes present in the MAG. If this number was low (<10), then the MAG 
was discarded; otherwise, Growthpred estimated the optimal growth temperature 
(option -t) since we did not know it a priori. Usage codon bias was calculated 
using universal genetic code (option -c 0). Highly expressed genes (ribosomal 
protein genes) were retrieved from coding sequences using BLAST (option -r). 
Growthpred v.1.08 was used and a Snakemake pipeline is available at https://gitlab.
univ-nantes.fr/combi-ls2n/growthsnake.

Statistical support for minimum generation time and optimal growth 
temperature differences between the different biogeographical groups was 
calculated using the Dunnett–Tukey–Kramer pairwise multiple comparison test 
adjusted for unequal variances and unequal sample sizes and 95% confidence 
interval (CI) with the DTK R package




 (https://cran.r-project.org/package=DTK).

Niche breadth and classification of MAGs as specialists or generalists. Habitat 
specialist-generalist patterns in the Arctic Ocean. Specialist-generalist classification 
of MAGs was based on Levins’ index (B)51. To avoid sampling bias, the function 
spec.gen from the R package EcolUtils v.0.1 (https://github.com/GuillemSalazar/
EcolUtils) was used to calculate B for 1,000 random permutations of the 
metagenomic RPKG table and categorize MAGs into generalists if the original B 
index was larger than its 95% CI or specialists if the original B index was smaller 
than its 95% CI. Since sampling occurred in a spatial and temporal gradient, each 
individual sample was considered as a habitat.

Statistical support for assembly size differences between the different niche 
breadth and biogeographical groups was calculated using the Dunnett–Tukey–
Kramer pairwise multiple comparison test adjusted for unequal variances and 
unequal sample sizes and 95% CI with the DTK R package (https://cran.r-project.
org/package=DTK).

Functional analysis of MAGs and transcript abundance. To explore the ubiquity 
of representative biogeochemical cycling metabolisms related to carbon, sulphur, 
nitrogen and methane, a selection of 120 marker genes (Supplementary Table 2) 
were searched in the Arctic MAG dataset; only those pathways with enough 
encoded markers were considered valid.

To estimate the transcript abundances of interesting marker genes, we filtered 
those metatranscriptomic read recruitments falling within the coordinates of 
the gene of interest (according to the quality standards explained in the read 
recruitment section). Read recruitments were normalized by gene size and 
sequencing depth using the reads per kilobase of transcript per million mapped 
reads (RPKM) unit.

Phylogeny of RuBisCO large-chain amino acid sequences. A total of 14 RuBisCO 
large-chain amino acid sequences were detected by their KEGG Orthology 
annotation (K01601) in Arctic MAGs. They were aligned against the RuBisCO 
large-chain reference alignment profile published by Jaffe et al.41 and the RuBisCO 
large-chain sequences from heterotrophic marine Thaumarchaeota published 
by Aylward and Santoro81 using Clustal Omega v.1.2.3 (default options and 100 
iterations)82. Maximum-likelihood phylogenetic reconstruction was done using 
the Jones–Taylor–Thorton model with FastTree v.2.1.11 (default options)83. 
Phylogenetic tree editing was done in iTol 




(https://itol.embl.de)84.

Definition of polar key Arctic MAGs. Those MAGs that showed metagenomic 
recruitment exclusively in polar samples were selected and sentinel classification 
was done for the ones showing higher metatranscriptomic RPKGs per sample 
within each niche breadth category. For each sample and niche breadth category, all 
individual RPKGs were calculated relative to the highest in the sample; only those 
RPKG recruitments representative of at least 50% of the highest RPKG recruitment 
per sample were selected as sentinels and are shown in Fig. 




7.

Estimation of ribosomal copy numbers in Tara Oceans samples from miTags. 
We assigned to each 16S miTag an estimated 16S rRNA gene copy number 
and calculated a mean value per sample weighted by the relative abundances. 
Prediction uncertainty of gene copy number for each 16S miTag depends on 
their phylogenetic distance to the closest complete genome and this parameter 
determines the mean degree of uncertainty per sample, also weighted by relative 
abundances. To evaluate the potential variation of the 16S rRNA gene copy number 
in the Tara Oceans samples, we made use of resources available in Louca et al.85, 

Q10

Q11

Q12

Q13

which offered estimated values for SILVA accessions, plus an uncertainty measure 
based on their phylogenetic distance to the closest sequenced genome. In fact, this 
source of uncertainty prevents highly accurate estimations, for which results should 
be taken with caution85. Through the SILVA accessions of the Tara Oceans 16S 
miTags we calculated a mean copy number weighted by their relative abundance in 
all Tara Oceans epipelagic samples.

Data visualizations. All maps and data visualizations included in this manuscript 
have been generated with the R package ggplot2 v.3.3.2. Multi-panels and 
post-processing were done in Illustrator CC 2018 (Adobe).

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
Accession numbers for the data used and generated in this study can be found 
in Supplementary Table 12, which includes the Arctic MAGs Catalogue and 
their functional annotation (European Bioinformatics Institute BioStudies ID: 



S-BSST451) and the co-assembly of metagenomic samples used to generate 
the metagenomic bins (European Nucleotide 




Archive PRJEB41575). Accession 

numbers for the metagenomic and metatranscriptomic samples used in the 
fragment recruitment analyses can be found in Supplementary Table 13. Publicly 
available datasets used in this study include the CheckM v.1.0.11 (https://github.
com/Ecogenomics/CheckM/releases/tag/v1.1.0), the GTDB release 89 (https://
data.gtdb.ecogenomic.org/releases/release89/) and SILVA 132 databases (https://
www.arb-silva.de/documentation/release-132/), KEGG release 89.1 (https://www.
genome.jp/kegg/docs/relnote.html) and Pfam database release 31.0 (http://ftp.ebi.
ac.uk/pub/databases/Pfam/releases/Pfam31.0/). Source data are provided with  
this paper.
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de la Recherche Scientifique, Laboratoire d’Océanographie de Villefanche, Villefranche-sur-mer, France. 17Centre National de la Recherche Scientifique 
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Extended Data Fig. 1 | NMDS of the 16S miTAG community composition of the 41 Tara Oceans Polar Circle metagenomes. Colors delimit the 9 groups of 
samples used for co-assembly in order to build Arctic bins. Shape indicates the ocean layer from which each metagenomic sample was collected.
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Extended Data Fig. 2 | Taxonomic classification of the 27 partial ribosomal genes encoded in the 530 MQ and HQ Arctic MAGs. a, Number of Arctic 
MAGs assigned to each phylum in the Bacteria domain. b, Number of Arctic MAGs assigned to each phylum in the Archaea domain.
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Extended Data Fig. 3 | Rank-abundance curve of Arctic MAGs in Arctic metagenomes. MAGs are sorted in X axis by their accumulated RPKGs in the 37 
Arctic metagenomes (including the sub-Arctic North Atlantic) used in this study. MAGs are colored by phyla and the those recruiting at least 200 RPKGs 
are labelled with extended taxonomic annotation. Taxonomic annotation reaches the furthest level of classification for each MAG and the number in 
parenthesis is the MAG’s identification code.
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Extended Data Fig. 4 | See next page for caption.

NATuRE MICROBIOLOGy | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


A B

DispatchDate:  09.10.2021  · ProofNo: 979, p.18

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

Articles Nature MicrobiologyArticles Nature Microbiology

Extended Data Fig. 4 | Transcript abundance (RPKM; reads per gene kilobase per million of sequenced reads) of the marker gene coxL (Carbon 
monoxide dehydrogenase large chain) K03520 from the aerobic carbon-monoxide dehydrogenase. a, Polar maps with the accumulated 
metatranscriptomic RPKMs of 9 Arctic MAGs expressing the CO fixing coxL Form I, color-coded by CAFF region. The size of the dot is proportional 
to the accumulated metatranscriptomic RPKMs. In the dot plot below, RPKMs of 9 Arctic MAGs expressing CO fixing coxL Form I colored based on 
taxonomic annotation at the phylum level. Accumulated RPKMs per sample is depicted with a dashed black line. b, Polar maps with the accumulated 
metatranscriptomic RPKMs of 105 Arctic MAGs expressing coxL Form II, color-coded by CAFF region. The size of the dot is proportional to the 
accumulated metatranscriptomic RPKGs. Absent maps mean that no recruitment was found for that specific metabolism/domain/layer. In the dot plot 
below, RPKMs of 9 Arctic MAGs expressing coxL Form II colored based on taxonomic annotation at the phylum level. Accumulated RPKMs per sample is 
depicted with a dashed black line.
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Extended Data Fig. 5 | Pan-Arctic profiles of Tara Arctic Ocean MAGs catalogue. a, Quantification and taxonomic classification of MAGs based on their 
pan-Arctic profiles. Stacked barplots representative of the number of pan-Arctic MAGs (left) and non pan-Arctic MAGs (right), colored by phylum. MAGs 
have been classified based on the number of Arctic regions they are present, represented in the X axis. Absolute number of MAGs per X axis category 
can be seen in the top barplots. More details for pan-Arctic categorization can be found in the Methods sections. b, Quantification and taxonomic 
classification of MAGs with a limited distribution, found only in one Arctic Region. Stacked barplots representative of the number of non pan-Arctic MAGs 
present only in one Arctic region, colored by phylum. The different Arctic regions and their season of sampling are found in axis X. Absolute number of 
MAGs per X axis category can be seen in the top barplots.
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Extended Data Fig. 6 | Differences in estimated minimum growth times and optimal growth temperatures across biogeographic categories, mean 16S 
rRNA gene copy number across latitude and differences in estimated complete genome sizes and optimal growth temperatures between different niche 
breadth categories. a, Distribution of Minimum Generation Times estimated for each individual MAG, grouped by their biogeographical categorization 
(n = 153 MAGs classified as Arctic only, 123 MAGs classified as Arctic & NAO, 23 MAGs classified as bipolar, 4 MAGs classified as NAO only and 227 
MAGs classified as Other latitudes). Data are shown as box plots (Tukey style): the lower and upper hinges correspond to the first and third quartiles (the 
25th and 75th percentiles), the horizontal line indicates the median and the whiskers indicate the lowest and highest points within 1.5× the interquartile 
ranges of the lower (first) or upper (third) quartile, respectively. Data beyond the end of the whiiskers are outlying points and are plotted individually. 
Statistical support was calculated using the two-sided Dunnett-Tukey-Kramer Pairwise Multiple Comparison Test Adjusted for Unequal Variances and 
Unequal Sample Sizes (DTK) and CI 95. DTK test shows significant differences between the ‘Arctic only’ and the ‘Other latitudes’ MAGs. b, Distribution 
of Optimal Growth Temperatures estimated for each individual MAG, grouped by their biogeographical categorization (n = 153 MAGs classified as Arctic 
only, 123 MAGs classified as Arctic & NAO, 23 MAGs classified as bipolar, 4 MAGs classified as NAO only and 227 MAGs classified as Other latitudes). 
Boxplots describe the data as in a. DTK was performed as in a and shows significant differences (p-value < 0.05) between the ‘Arctic only’ and the ‘Other 
latitudes’ MAGs. c, Dots correspond to Tara Oceans samples from surface and subsurface chlorophyll maxima and are place across latitude depending on 
their estimated number of ribosomal copies (derived from miTAGs, see Methods). d, Distribution of estimated complete assembly size of MAGs based on 
their niche breadth category. Statistical support was calculated using the two-sided Dunnett-Tukey-Kramer Pairwise Multiple Comparison Test Adjusted 
for Unequal Variances and Unequal Sample Sizes (DTK) and CI 95. DTK test shows significant differences in estimated complete assembly size (p-value < 
0.05) between MAGs classified as habitat specialists and those uncategorized (n = 38 MAGs classified as generalists, 111 MAGs classified as specialists, 
381 uncategorised MAGs). Data are shown as box plots (Tukey style): the lower and upper hinges correspond to the first and third quartiles (the 25th and 
75th percentiles), the horizontal line indicates the median and the whiskers indicate the lowest and highest points within 1.5× the interquartile ranges of 
the lower (first) or upper (third) quartile, respectively. Data beyond the end of the whiskers are outlying points and are plotted individually. e) Distribution 
of optimal growth temperatures of MAGs based on their niche breadth category (n = 38 MAGs classified as generalists, 111 MAGs classified as specialists, 
381 uncategorised MAGs). DTK was performed as in a and shows (p-value < 0.05) between the generalists and the uncategorised MAGs.
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Extended Data Fig. 7 | Disentangling generalists and specialists within the 530 Arctic MAGs. a, Distribution of Arctic MAGs based on their mean read 
recruitments in Arctic metagenomic samples (RPKG, X axis) and their Levin’s Index (i.e, niche breadth, Y axis). The color gradient depicts the occurrence 
(that is, % of samples where a given MAG is present) in the Arctic metagenomic dataset and shape indicates their niche breadth category (generalists, 
specialists and uncategorised). b, Number of habitat generalists (orange), specialists (blue) and uncategorised MAGs (grey) in each biogeographic 
category shown in bar plots (n = 530 MAGs examined over 32 Arctic metagenomes). The adjacent boxplots show the distribution of assembly sizes within 
each subcategory (upscaled to 100% of genome completeness) and statistically significant differences have been highlighted with an asterisk (DTK test, 
p-value < 0.05). Box plots are presented horizontally and in Tukey style: the lower (left) and upper (right) hinges correspond to the first and third quartiles 
(the 25th and 75th percentiles), the vertical line indicates the median and the whiskers indicate the lowest and highest points within 1.5× the interquartile 
ranges of the lower (first) or upper (third) quartile, respectively. Data beyond the end of the whiskers are outlying points and are plotted individually. 
Statistical support was calculated using the two-sided Dunnett-Tukey-Kramer Pairwise Multiple Comparison Test Adjusted for Unequal Variances and 
Unequal Sample Sizes (DTK) and CI 95. Adjacent stacked barplots indicate their taxonomic composition at the phylum level. Asterisks in the taxonomic 
annotation legend indicate phyla from domain Archaea, lack of asterisk indicates domain Bacteria. c, Abundances of generalists (n = 38 MAGs; orange), 
specialists (n = 111 MAGs; blue) and uncategorised (n = 381 MAGs; grey) MAGs in Arctic metagenomes (n = 32 samples, 18 SRF, 7 SCM, 7 MES; filled 
boxplots) and metatranscriptomes (n = 29 samples, 18 SRF, 7 SCM, 4 MES; empty boxplots) across the three ocean layers. Boxplots describe the data as in 
b. There are no significant differences between the groups.
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Extended Data Fig. 8 | Seawater temperature in samples where maximum metagenomic recruitment occurred per MAG, per niche breadth category. a, 
Histogram of the number of MAGs in the station where their maximum metagenomic RPKG occurred, colored by niche breadth category and horizontally 
separated by layer. Bottom heatmap above X axis represents the temperature of each sample. b, Distribution of temperatures in those samples where 
maximum metagenomic RPKG per MAG occurred, by niche category and layer (n = 38 MAGs classified as generalists and 111 MAGs classified as 
specialists tested against 32 metagenomes, including 18 SRF, 7 SCM and 7 MES). Data are shown as box plots (Tukey style): the lower and upper hinges 
correspond to the first and third quartiles (the 25th and 75th percentiles), the horizontal line indicates the median and the whiskers indicate the lowest 
and highest points within 1.5× the interquartile ranges of the lower (first) or upper (third) quartile, respectively. Data beyond the end of the whiiskers are 
outlying points and are plotted individually.
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Extended Data Fig. 9 | Genes found in specialists but not in generalists. Quantification of genes annotated against KEGG database that were found in 
specialist MAGs but not in generalist, colored by pathway.
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Extended Data Fig. 10 | Map with the reference stations with metagenomic and metatranscriptomic samples used in the study. Samples are colored 
based on the expedition. Supplementary Table 4 contains more details about environmental metadata of these stations.
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iterations. Minimum Generation Times prediction used Growthpred v1.08 using a snakemake pipeline available at https://gitlab.univ- 
nantes.fr/combi-ls2n/growthsnake. Phylogenies used Clustal Omega v1.2.3 for alignment and FastTree v2.1.11 for phylogenetic 
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Sample size Co-assembly used the 41 metagenomes collected during the Tara Oceans Polar Circle, including Arctic and Sub-Arctic North Atlantic 
metagenomes. These metagenomes are representative of all Arctic Regions surrounding the Arctic ice-cap and represent a balance between 
accurate representation of the Arctic Ocean, the limitations of navigating such waters and the amount of water to be collected by the 
scheduled time with the team that could be hosted in the Tara vessel. Further analyses focus on Arctic regions were done with the 37 
metagenomes with absolute latitude values above 64º. The 27 metagenomes from temperate latitudes are representative all the oceanic 
regions sampled in the Tara Oceans expeditions and have enough sequencing depth to be compared to the Arctic dataset. Another requisite 
of these samples was that they had a corresponding metatranscriptome with enough sequencing depth. The Tara Arctic MAGs catalogue 
includes 530 genomes selected according to common quality standards suggested in previous literature (Bowers et al., 2017).

Data exclusions There was no data exclusion in this analysis.

Replication The unique nature of the seawater sampling (unique cruises) and filtration (multitude of liters collected through sampling protocols that last 
hours) does not allow replication. 

Randomization Randomization was applied in the classification of Niche Breadth Analysis in 1000 permutations of Levin's Index calculations to avoid sampling 
or sequencing biases that would affect the MAG's read recruitments. Permutations were also applied in Permutational MANOVA test applied 
to the ordination of samples based on their MAG composition.
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cannot be influenced by human manipulation.
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