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Abstract: Cyclodextrins (CDs) are cyclic oligomers broadly used in food manufacturing as food
additives for different purposes, e.g., to improve sensorial qualities, shelf life, and sequestration
of components. In this review, the latest advancements of their applications along with the char-
acteristics of the uses of the different CDs (α, β, γ and their derivatives) were reviewed. Their
beneficial effects can be achieved by mixing small amounts of CDs with the target material to be
stabilized. Essentially, they have the capacity to form stable inclusion complexes with sensitive
lipophilic nutrients and constituents of flavor and taste. Their toxicity has been also studied, showing
that CDs are innocuous in oral administration. A review of the current legislation was also carried
out, showing a general trend towards a wider acceptance of CDs as food additives. Suitable and
cost-effective procedures for the manufacture of CDs have progressed, and nowadays it is possible
to obtain realistic prices and used them in foods. Therefore, CDs have a promising future due to
consumer demand for healthy and functional products.

Keywords: cyclodextrins; complexes; inclusion; applications; bioactive compounds; food

1. Introduction

Numerous investigations have been focused on developing relatively simple organic
compounds able to catalyze organic reactions, like enzymes. Since the discovery of enzymes’
active sites, new models of synthesis of nonpeptide organic systems that could simulate
the enzymatic behavior have been developed. Chemists have been developing more
sophisticated molecular structures within the nanometric order. However, even though
apparently the easiest way to solve it would be to assemble individual molecules directly,
the most efficient alternative is to generate molecules with a complementary form capable
of spontaneously self-organizing, resulting in orderly assemblies. This can be achieved,
for example, with host and guest molecules [1].

Host–guest complexes are molecular aggregates stabilized via noncovalent bonds
(for example, van der Waals, hydrogen bonds, and hydrophobic interactions), but never by
complete covalent bonds. Host molecules are characterized by having an inner cavity where
another molecule can be incorporated, this is, the guest molecule. Therefore, hosts will act
as receptors and guests as substrates, inhibitors, or cofactors [2]. The resulting molecular
inclusion complex can easily break under determined physiological environments [3].

Therefore, the establishment of these systems can improve physicochemical properties
of the guest molecule. Different types of host molecules have been developed, but they are
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all characterized by acting as non-natural receptors capable of partial or total enclosure
of the compounds of interest (drugs, active compounds, etc.). Likewise, numerous hosts-
guest complexes have already been synthesized. Among them, crown ethers, cryptands,
spherands, carcerands, and cyclodextrins (CDs) can be highlighted.

CDs are a group of relatively recent discovered compounds, which are also identified
as cycloamyloses, cyclomaltoses, and Schardinger dextrins [4]. Their first reference dates
from 1891. In this year, a crystalline product was isolated during a starch fermentation
carried out by Bacillus amylobacter. Some authors reflected that this production was prob-
ably due to impurities in cultures and, consequently, it was supposed that CDs might
be produced by cross-contamination with another species (B. macerans). Later, in 1903,
two crystalline components were isolated: dextrins A and B, which were characterized
by their lack of reducing power. Even so, the bacterial strain responsible of its production
was unfortunately not preserved [5]. A year later, the same authors were able to isolate
an organism capable of producing acetone and ethyl alcohol from plant materials that
contained sugar and starch. In 1911, it was discovered that a strain of B. macerans produced
large amounts of crystalline dextrins (25–30%) from starch too. These resulting products
were named as crystallized dextrin α and crystallized dextrin β [4]. It was not until 1935
that the third type of dextrin (dextrin γ) was isolated. Several fractionation processes were
also developed in order to produce CDs [5]. At that point, the structure of said molecules
was still a mystery. It was not fully discovered until 1942, when the structure of two CDs
(α and β) was established through X-ray crystallography. A few years later (1948), the
same method was applied to γ-CDs. Later, in 1961, more types of CDs (9–12 residues) were
discovered [6].

CDs are one of the most used hosts-guest complexes for organic molecules. Their
structure consists of a cyclic arrangement of D (+)-glucopyranose units joined by α-(1→ 4)
glycosidic links. They can be differentiated according to their number of glucoses in α-,
β- and γ-CDs (6, 7, and 8 glucose units, respectively) (Table 1) [7,8]. Regarding its form,
it is a truncated cone characterized as bearing primary and secondary OH groups, respec-
tively, in the slim and wide rim. It is characterized by having cavities with hydrophobic
properties. In this case, as in other complexes, Van der Waals and hydrophobic forces are
responsible for keeping guest and host together with a partial or total adjustment of the
cavity. Due to the establishment of an inclusion complex, guest reactivity can vary, making
possible its use in a wide variety of fields [9]. Furthermore, as these receptors can improve
bioavailability, they are suitable for functional delivery systems [10]. They can be found
in food, pharmaceuticals, cosmetics, the textile industry, conversion and fermentation
processes, and environmental and other chemical systems and applications. However, the
development of hosts is still ongoing, the development of processes not only simple and
reproducible, but also economically profitable is fundamental so that their widespread
acceptance would be guaranteed in diverse fields such as food and drug production [11].

Regarding the importance and new advances on the field of CDs and food science,
some recent reviews have been focused on the latest updates of the use of CDs in food
products such as nanoparticles, nanosensors, extraction enhancers, active or smart pack-
aging, and their most widespread use as carriers and complexes formers to protect and
stabilize bioactive compounds with the aim of improving the final product [12,13]. How-
ever, future research is also focused on CDs properties and their interaction with other
materials (e.g., durability, stability, or dispersion), new applications (e.g., CDs immobiliza-
tion for wastewater treatment) or the development of green chemistry processes [14]. They
have also been used for sequester certain molecules (i.e., cholesterol), as modulators for
medicinal biomaterials, as elicitors or as synergistic agents for the production of secondary
metabolites in plants [15,16].

This review will be focused on the main applications of CDs in the food industry as
well as in other applications, revising toxicity and legislation aspects and performing a
discussion about the advantages and disadvantages of their use. Nevertheless, some appli-
cations such as nanoparticles, nanosensors, or active packaging have not been reviewed in
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this manuscript. Complementary information on these fields can be found along the most
recent bibliography cited in this article.

Table 1. Main cyclodextrins (CDs) properties [5,17].

Properties Unit α-CDs β-CDs γ-CDs

Formula C36H60O30 C42H70O35 C48H80O40

Structure
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tion, depending on the grade of chemical replacement and the type of the substituents, 
the maximum concentration of CDs in aqueous mediums was improved. The maximum 
concentration that most chemically modified CDs can reach is 50% (w/v) in water by car-
rying out substitutions at the 2, 3, and 6 hydroxyl like (2-Hydroxypropyl)-β-CDs [8]. 

2.2. Mechanism 
Some parameters must be considered for the study of CDs mechanism of action. The 

size of the cavity is essential to choose which type of CDs is more suitable to use in the 
interaction. The size is related to the degree of adjustment, which is a critical parameter to 
achieve optimal CDs incorporation. Therefore, each type of CDs will have different types 
of cavities. The α-CDs possess small cavities, so that they are not able to accept many 
molecules. The γ-CDs are larger in size compared to most molecules that can be com-
plexed. In addition, hydrophobic CDs loads cannot efficiently interact to simplify complex 
formation. Therefore, it is considered that the diameter of the cavity of β-CDs is the most 
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2. Cyclodextrins
2.1. Definition

Industrially, CDs are enzymatically produced with cyclodextrin glucosyltransferase
from modified starch. This is an economic process, whose production is estimated in
150 tons per year [7]. The resulting product is nontoxic, characterized by not being absorbed
in the upper gastrointestinal tract and being entirely processed by the colon microflora. [18].

Natural CDs are also characterized by poor solubility. At the beginning, this was
a major inconvenience since it prevented the use of CDs as effective complexing agents.
It was not until the end of the 1960s when it was revealed that, by means of chemical
replacements at positions 2, 3, and 6-hydroxyl, the solubility was highly increased. In ad-
dition, depending on the grade of chemical replacement and the type of the substituents,
the maximum concentration of CDs in aqueous mediums was improved. The maximum
concentration that most chemically modified CDs can reach is 50% (w/v) in water by
carrying out substitutions at the 2, 3, and 6 hydroxyl like (2-Hydroxypropyl)-β-CDs [8].

2.2. Mechanism

Some parameters must be considered for the study of CDs mechanism of action.
The size of the cavity is essential to choose which type of CDs is more suitable to use in the
interaction. The size is related to the degree of adjustment, which is a critical parameter
to achieve optimal CDs incorporation. Therefore, each type of CDs will have different
types of cavities. The α-CDs possess small cavities, so that they are not able to accept
many molecules. The γ-CDs are larger in size compared to most molecules that can be
complexed. In addition, hydrophobic CDs loads cannot efficiently interact to simplify
complex formation. Therefore, it is considered that the diameter of the cavity of β-CDs is
the most appropriate for molecules such as hormones, vitamins, and other compounds
commonly used in tissue and cell culture applications. All these features make β-CDs the
CDs of choice as complexing agent in most cases [19].

The structure of CDs allows the enclosure of hydrophobic molecules, such as vitamins
and lipid soluble hormones, improving their solubility in aqueous systems. The process can
be reversed by diluting the complex in a larger volume of solvent. As a result, the molecule
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of interest is released into the environment. The structure of the resulting complexes
(Figure 1) is like a cage, with the same characteristics as those formed by cryptands, cal-
ixarenes, cyclophanes, spheres, and crown ethers. As mentioned before, all these molecules
are involved in chemical reactions due to non-covalent bonds, with most of the reactions
happening as the “host–guest” type [19,20].
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Regarding their physical characteristics, CDs complexes can get wet; they are almost
odorless and non-hygroscopic powders [18,23]. Their mechanical properties (crystalliza-
tion, flow, etc.) depend on the complex formation process. The moisture content and
temperature present an enormous importance in controlling the deformation or release of
the CDs-guest. Other parameters to consider can be seen in Figure 2. CDs are crystallized
by two main mechanisms that, depending on the type of compounds that make up the
complex (CDs and guest), turn into to two key categories of crystal packing (channel
or cage structures) [5]. An example of these molecules is the flavor/β-CDs complexes,
which are formed after a co-crystallization, kneading, and suspension process [18].
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3. Applications in the Food Industry

CDs are used primarily in foods for the encapsulation of compounds of interest
and the improvement of water retention, since they are hygroscopic compounds [18].
Their use can enhance several technological advantages, such as more homogeneous
compositions that are easier to be standardized [18,24]. Numerous applications of CDs
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have been described, e.g., improving the organoleptic quality (total or partial elimination
of undesired flavors/odors), increasing food shelf life, component sequestration, and
pickering emulsions, among others (Figure 2).

3.1. Improving Sensorial Qualities
3.1.1. Color

Food color is the first quality parameter assessed by customers, so it is a key parameter
of food quality [25]. CDs can be applied to modulate food color by increasing solubility and
chemical stability of coloring compounds (natural ones and coloring components produced
during food processing). They can provoke the inhibition of pro-browning polyphenol-
oxidase reactions by complexing with several substrates or cofactors (e.g., chlorogenic acid,
polyphenols, cinnamic acid, Cu2+) [22]. Several studies have proven the utility of CDs
in food science. For instance, a study showed that the natural pigments curcumin and
lycopene can form a complex with CDs, improving their solubility and reducing the degree
of oxidation compared to the compounds separately [26]. Another study, conducted with
chopped ginger root, showed that by adding 1–4% of CDs, the sample could be enzymatic
browning stabilized for four weeks at 5 ◦C while being vacuum sealed. A similar inhibitory
effect was observed in another study carried out with maltosyl-β-CDs in apple and pear
juices. The mechanism consists of preventing ascorbic acid oxidation by an antioxidant
effect, which maintains the color and the food quality [5]. α-, β-, and γ-CDs (the only CDs
allowed in food industry by the U.S. Food and Drug Administration and EU) are commonly
used in the elaboration of different juices to improve the color of the final product. The
addition of these molecules has other effects as they can also change the concentration of
individual volatile molecules as well as their chemical grouping. In the case of pear juice,
adding α-CDs was recommended. By adding this molecule, the overall quality of the juice
was increased since browning reactions were reduced and no significant loss of aroma
quality is produced [27].

3.1.2. Flavor

Flavoring substances are historic in food, although their direct use presents a series of
disadvantages like having high volatility and sensitivity to light and heat. Part of these
inconveniences can be solved with the CDs based encapsulation of food flavors, which
is a frequent and simple solution to maintain the stability [22,24,28]. The price of the
resulting β-CDs encapsulated flavor (USD $5–6 per kg) would not be much higher than
other microencapsulated flavors price. CDs encapsulation provides an effective protection
of each flavor component found in a multicomponent food system to whichever process it
has been subjected (freezing, thawing, and/or microwaving). This factor is very important
since the substances responsible for flavor usually involve numerous compounds, so it
is interesting that all these molecules become part of the complex without seeing their
organoleptic properties altered [18,29,30]. This method can be also used in oils to achieve
a manipulability powder that can be added to food [22,24]. The liberation of aroma in
these complexes can be controlled by slow guest liberation, mask off-notes of aromatic
components by affinity with CDs cavity, and increase food flavor by water dissociation of
aroma due to the polar external part of CDs [22]. Due to the properties of CDs-complexes,
they can be applied to enhance flavor before extrusion, being a promising alternative for
applying during the process [31]. As for the evolution of aromas over time, α-, β-, and
γ-CDs are the best for initial flavor retention, α being better than γ for avoiding the loss of
volatiles after storage [32,33]. Some examples of the application of CDs in the flavor and
taste can be seen in Table 2.
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Table 2. Studies of cyclodextrins (CDs) for food flavor and taste improvement.

CDs Extract Compounds Characteristic Effect Ref.

A. Food Flavor Improvement

α Shiitake Cyclic sulphur
compounds

Shiitake
mushroom Flavor retention [34]

α European pear Five ester types Pear Heat protection at 120 ◦C for
60 min. [35]

β Food - -
Encapsulation the best

protection against heat and
evaporation

[36,37]

β Food Several volatile
compounds -

Protection during high
temperature short time

extrusion cooking process
[38]

β
Polysaccharide

solutions

ketones, hexanal,
t–2-hexenal, ethyl

butanoate and 1-hexanol
-

Retain some aroma
compounds during thermal

processes (cooking,
pasteurization)

[39]

β Corn starch Eugenol Clove 79% odor retention during
extrusion [40]

β
Goat milk and its

yogurt 4-methyloctanoic acid Goat flavor Reduce goat flavor [41]

β
Thermally processed

foods l-menthol Menthol Improved flavor retention [42]

α, β, γ Aqueous ethanol

l-menthol, ethyl butyrate,
ethyl hexanoate,

benzaldehyde, citral, and
methyl anthranilate

- Temperature dependent [28]

B. Food taste improvement

α Soy protein

Phenylalanine,
tryptophane, tyrosine,
isoleucine, proline and

histidine

Taste
modification Reduce bitter taste [43]

β
Milk casein
hydrolysate - Bitter

Bitter taste eliminated by
adding 10% β-CDs to the

protein hydrolysate
[29]

β β-polymers Limonin, naringin Bitter Debittering agents [44]

β
Canned citrus and

citrus juice
Naringin, limonin,

hesperidin
Bitter,

precipitation

Reduce bitter taste of naringin,
limonin, and hesperidin and

prevent precipitation
[22]

β Fish oil - Taste,
oxidation

Eliminate unpleasant taste,
smell, and stabilization

against oxidation
[45]

γ Ginseng - Bitter Debittering agent [46]

α, β Navel orange and
grapefruit juices Limonin, naringin Bitter Improve flavor [47]

β, γ

Caffeine and bitter
natural extracts

(artichoke leaves, aloe,
and gentian)

β- and γ-CDs linked to
chitosan through succinyl

or maleyl bridges
Bitter Bitter-masking properties [48]



Int. J. Mol. Sci. 2021, 22, 1339 7 of 23

3.1.3. Taste

Bitterness is one of the factors that can generate the rejection of a food product.
However, there are exceptions to this rule, as some products are expected to have a certain
degree of bitterness, like coffee, beer, or wine [29]. By using appropriate CDs, the bitter taste
of certain substances may be totally or partially eliminated since complexed compounds
cannot react in the oral cavity with the taste buds. This type of taste is not perceived as only
dissolved substances have flavor. This system has been applied to the bitter and astringent
compounds of foods (e.g., soy), beverages (e.g., naringin in citrus juice or chlorogenic acid
and polyphenols in coffee), cigarette smoke (nicotine), or oral care products or drugs [49].

The mechanism of action consists of forming complexes of enough stability with the
selected CDs to make the substance, that gives the unwanted taste, insoluble in water and,
therefore, in saliva, and do not cause a bad taste sensation. The effectiveness of the process
will depend on the value of the complex association constant (usually 101–104 molK−1),
pH (less stable complexes with ionized guest molecules), and guest/host ratio (the higher
possible molar excess, the better) [49]. Finally, the complex is released throughout the diges-
tive system. Considering this, CDs are one of the best methods for masking the unpleasant
taste [22]. The most relevant publications dealing with the elimination of unwanted tastes
focus on the positive effect of β-CDs, the possibilities of α-, γ-, hydroxypropyl-CDs, and
maltosyl-CDs having not yet been explored. CDs can also be used in seafood and meat
products, to improve texture [29]. Other cases of study of CDs for food taste improvement
can be seen in Table 2.

3.2. Improving Shelf Life

CDs can protect several compounds present in foods from reactions such as oxida-
tion, light induced reactions, heat promoted decomposition, self-decomposition, and loss
through volatility or sublimation [24]. The encapsulation of CDs with lipophilic food
ingredients, physically and chemically, improves the stability of flavors, vitamins, dyes,
and unsaturated fats, among others. Consequently, the shelf life of the product will be
increased [18]. As an example, an in vitro study demonstrated that CDs encapsulation
improved the stability of rosemary bioactive compounds [24]. Different accelerated and
long-term storage stability tests showed that ingredients complexed with CDs have a
longer life than those traditionally formulated. Another study tested twelve different
complexes with β-CDs stored for 14 years. The results showed that encapsulation resulted
in a notable improvement of the stability during long-term storage. Its preserving power
depends on factors that affect the host–guest union such as the structure, the polarity of the
compounds, or their geometry. Different studies showed that the greatest protective effect
is observed in flavors with terpenoid, phenylpropane, and alkylsulfide structures [18]. In a
recent study, different nonalcoholic beverages used limonene complexes with α-, β-, and
γ-CDs to improve flavor and shelf life. The study showed that although limonene content
diminished in all cases, it did so to a lesser extent once β-CDs/limonene complexes were
adjoined. After 10 days, which mimic nine months of storage, 40% of limonene complexed
remained in the model drink [50].

3.2.1. Against Oxidation

CDs can form complexes with ingredients (flavors, unsaturated fatty acids, dyes, etc.)
sensitive to oxygen or oxidizing substances, which in most cases leads to an improvement
in the stability of encapsulated substrates. Several studies have shown that complexing by
means of this type of compounds almost completely prevents these oxidizable substances
from undergoing chemical modifications, even when warehoused in an atmosphere of
100% oxygen [18]. Another study showed that using cinnamon-CDs complexes in the
manufacture of dried apple slices with cinnamon flavor not only prevented a decrease
in the concentration of this compound due to evaporation, but also protected it from
oxidation [51].
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3.2.2. Against Light-Induced Decomposition

CDs can be also used to protect compounds of interest from deterioration factors
such as light, heat, or oxidation. In addition, if the CDs cavity is filled, the entry of other
molecules is prevented, so no unwanted reactions occur. Another mechanism of action
is preventing reactive molecules from approaching the active sites of the host molecule.
For instance, CDs have been used to protect vitamins and pharmaceutical products that
contain easily oxidizable double bonds (e.g., prostaglandins). It has been demonstrated
that hydroxypropyl-β-CDs protected peptides from hydrolysis and their consequent loss
of ability [51].

3.2.3. Against Heat-Induced Changes

Another important problematic event is thermal degradation of natural compounds. In
most cases, the application of heat causes the volatilization of less stable compounds, which
might have interesting biological properties. One possible solution can be the encapsulation
of bioactive compounds with CDs, resulting in a complex that would provide a barrier
for preventing their loss [52]. Several studies have shown that these complexes are very
useful when it comes to protecting volatile flavor compounds and essential oils against
heat, generally achieving better flavor retention with CDs than with various traditional
formulations [53]. For example, this system has been used in vitro for the encapsulation
of vitamin A palmitate to produce enriched foods using β-CDs. As a result, there is an
increase of both, in its solubility in aqueous media and in its stability against different
external factors (temperature, light, and oxygen) [54]. Other examples of the application of
these complexes to protect several compounds can be observed in Table 3.

Table 3. Studies of cyclodextrins (CDs) for heat protection of food ingredients.

CDs Subtract Properties Study Effect Info Ref.

β 2-nonanone Aromatic,
antifungal

TGA, DSC,
against B.

cinereal

Improve antifungal,
thermal stability

complex 1:0.5 (80%
growth inhibition). [55]

β
cyanidin-3-O-

glucoside Several DSC Improve bioavailability,
thermal protection - [56]

β S. baicalensis BA

Anti-
inflammatory,
antioxidant,
antitumor

Increase solubility,
stability 13672.67 L/mol [57]

β S. salar EO DSC, KFT Thermal and oxidative
stability Complex 1:1 and 3:1 [58]

β

Benzyl
isothiocyanate

(papaya)
Antimicrobial DSC, TGA Improve stability,

controlled release 600.8 L/mol [59]

β O. basilicum EO Aromatic,
medicinal GC-MS

Improve stability
against air/oxygen and

temperature
- [60]

β

Methanolic
extract of H.
perforatum

Antioxidant DSC
Intact at temperatures

at which the free
extract was oxidized

Food supplement or a
novel additive to

enhance the
antioxidant capacity of

fresh or thermally
processed food

[61]

β Garlic Antimicrobial,
antioxidant

TGA, DSC,
SEM

Thermal and oxidative
stability

Nanoencapsulation
yields >60% [62]
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Table 3. Cont.

CDs Subtract Properties Study Effect Info Ref.

β Garlic oil Antimicrobial,
antioxidant DSC Improve protection

against oxidation Complex 1:1 [63]

β Oils Antimicrobial
DSC, against S.
enterica and L.

innocua
Thermal protection

Masking the sensory
effect of the attributes

of antimicrobial agents
and potentiate their

activity.

[64]

HP Clove EO Antioxidant DPPH

Prevent degradation
and loss of active

compounds. prolong
shelf life

Complex 1:1 [65]

γ Geraniol

Aromatic, to
treat infectious

diseases,
preserve food

SEM analysis

High thermal stability
and enhanced

durability of active
agents and functional

food ingredients

- [66]

HP: hydroxypropyl beta-cyclodextrin; BA: baicalein; EO: essential oil, DSC: differential scanning calorimetry, TGA: thermogravimetric anal-
ysis, GC-MS: gas chromatography-mass spectrometry, DPPH: 2,2-diphenyl-1-picryl-hydrazyl-hydrate, SEM: scanning electron microscope,
KFT: Karl Fischer titration.

3.3. Modifying Solubility

As mentioned before, CDs are capable of changing the solubility of a compound [67].
They have the ability to form stable emulsions of water in oil (e.g., mayonnaise, salad
dressings), due to differences in polarity between the inside and outside of the molecule [18].
In addition, CDs can also increase the solubility of certain compounds in water, by forming
dynamic, noncovalent, water-soluble inclusion complexes [68]. However, in many cases,
the solubility of the complex is not appropriate, so it is necessary to modify the external
surface of CDs. Neutral (hydroxypropyl) or ionic groups (hydroxy, carboxymethyl, tertiary
amine, or quaternary amine) can be used to increase the solubility up to 60%. On the other
hand, to improve solubility in organic solvents, the modification is carried out with aliphatic
groups or smaller groups (hexyl, acetyl). Thus, complexation with CDs is a mechanism
to increase or decrease the solubility of a guest component. A common example of its
application is to reduce the bitterness in citrus juices, by creating naringin-β-CDs complex.
In fact, the rate of transformation of naringin to naringenin in inclusion complexes or free
can reach 98.7% and 56.2%, respectively. It might be concluded that β-CDs can improve the
aqueous solubility, which also means that the rate of enzymatic hydrolysis of naringin will
be increased [69]. The increase in solubility will also affect aromatic compounds, such as
vanillin, used at the vanillin/β-CDs inclusion complex. This complex increased solubility
in water with respect to the free compound. Moreover, the formation of this complex
protects vanillin inside the CDs cavity, which avoids damage from several factors such
as oxidation according to the results obtained in differential scanning calorimetry (DSC)
studies. Therefore, the vanillin/β-CDs complex can be used as a food additive for its higher
antioxidant activity [70]. CDs may be also applied to improve the solubility of vitamins
(Figure 3). The union of β-CDs with the essential oil from guava leaves also increases
solubility and stability. The resulting complex presented antioxidant (against light) and
antibacterial (Staphylococcus aureus and Escherichia coli) activities [71]. Similar effects were
achieved by encapsulation of black pepper essential oil or yarrow essential oil [72,73].
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3.4. Sequestration of Selected Components

Among the most recent CDs applications, reduction of unwanted compounds (flavor,
trans-fats, allergens, toxins) is included [24]. Allergens can be avoided with β-CDs. It has
been demonstrated that they form host–guest systems with allergenic aroma molecules
(eugenol, isoeugenol, benzyl alcohol, or anisyl alcohol) and proteins [78,79]. An example of
this possible application is the preparation of soybean milk of low allergenicity. They are
also able of forming complexes with mycotoxins like ochratoxin A from cereals, coffee,
beer, wine, and cocoa [80]. CDs have been demonstrated to sequestrate other mycotoxins,
such as aflatoxin, ochratoxin, patulin, zearalenone, zearalenol, and citrinin [79]. A study
used 1% β-CDs during apple juice processing to reduce mycotoxins (patulin) and inhibit
enzymatic browning by 70% and 75%, respectively [81].

Other application of CDs is the sequestration of cholesterol from food products [24,82].
They can be applied in food with high content of these fatty acids to make it healthier.
This is the case of milk, butter, and egg yolks [83]. In fact, this property is widely used in
the industry to produce products without cholesterol since this compound is retained in
the β-CDs cavity. CDs did also sequester reducing sugars capable of reacting with proteins
(Maillard reaction) and that could give an undesirable color and adverse effects in the
nervous system and fertility, being a possible carcinogen. The mechanism is based on the
complexation of proteins with CDs, which protect them from reaction. They can also be
applied to decrease acrylamide content in food products and food intermediates [84].

3.5. Pickering Emulsions

Pickering emulsions are strictly defined as emulsions that are stabilized by an ad-
sorbed layer of solid particles at the emulsion drop surface [85]. Their properties are
usually determined by particle size, particle wettability, particle concentration, oil/water
ratio, pH, salt concentration, and solvent type [86]. CDs can form CDs-oil complexes,
however, in most cases, high concentration of CDs is needed. To solve this inconvenience,
modified CDs can be used such as soft colloidal CDs polymer (CDs nanogel) [87]. Ther-
mal stability in water of this type of emulsions with different oils has been investigated,
observing activity at room temperature and the dissolution/fusion of inclusion complexes
with high melting temperatures (near to or higher than 100 ◦C) [86]. Another study has
considered the union between β-CDs and octadecenylsuccinic anhydride (ODS) under al-
kaline conditions. ODS-β-CDs particles exhibited a higher emulsifying capacity compared
to β-CDs. The resulting pickering emulsions formed by ODS-β-CDs particles were more
stable during storage [88].
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3.6. Other Food Applications

Apart from food processing, CDs also have other technological advantages such as
improving nutritional properties and for developing nutraceutical products [18]. Several
studies have been conducted in this aspect. α-CDs complex can be used to keep certain
products (cereal, snacks) crunchy after storage and also as soluble dietary fiber in bev-
erages and foods [30]. Other CDs complexes can be used in the preservation of food.
They can be used indirectly in the prevention of microbial growth, being added in plastic
packaging films. In this way, they preserve food during storage and also prevent loss of
aroma [18]. Finally, CDs have been demonstrated to be useful to remove contaminants
from food products, including herbicides, insecticides, fungicides, repellents, pheromones,
and growth regulators [5].

4. Other Applications
4.1. Pharmaceutical Applications

CDs are used for numerous purposes in pharmaceutical applications (Table 4). In drug
formulation, CDs have been described to increase the bioavailability, solubility, stability,
reduce hemolysis and adverse effects, prevent admixture incompatibilities and act as excip-
ients, among other uses [89–91] (Table 5). Improving the solubility of drugs is interesting,
since the compound will have greater therapeutic efficacy, and lower doses will be nec-
essary [68]. Numerous anticancer CDs-based drugs are being clinically evaluated [91].
CDs have been also used to delivery oligosaccharides, proteins, and oligonucleotides due
to their capacity to interact with cellular membranes, improving cellular uptake. Another
application is the delivery of gene-therapeutic agents, such as plasmids, viral vectors,
and antisense constructs [92]. CDs have been demonstrated to protect carbamates in vitro,
increasing their half-life [93]. Its ability to sequestrate determined compounds is also
useful for pharmaceutical applications. CDs can sequester neuroactive steroids, which are
potent modulators of GABAA receptors [94]. They can be used to elaborate pickering emul-
sions that can be used for topical applications in the formulation of antifungal econazole
derivatives delivery [95].

Table 4. Examples of some cyclodextrins (CDs) studied in pharmaceutical applications. Adapted from [87,96–100].

CDs Drug Trade Name Admin. Route Use Market

α Alprostadil Prostavastin,
Caverject, Edex Intravenous

Erectile dysfunction; certain heart,
lung, and blood vessel problems
in infants; temporarily keep the

arteriosus duct open before
having a surgery

EU, Japan, USA

Cefotiam hexetil
HCl Pansporin T Oral Infections Japan

Limaprost Opalmon, Prorenal Oral Vasodilator

β Benexate Ulgut, Lonmiel Oral Treatment of peptic ulcer Japan
Albendazole Zentel, Colidetol Oral Anti-microbial EU

Gliclazide Diamicron Oral Anti-diabetic EU
Danazol Danatrol Oral Endometriosis EU

Dexamethasone Glymesason Dermal Anti-inflammatory, treat
eczema/dermatitis Japan

Ibuproxam Calmatel, Deflogon Oral, topical Anti-inflammatory EU
Iodine Mena-Gargle Topical Infections Japan

Fenoprofen Nalfon, Mylan,
Naprofen Oral Anti-inflammatory EU

Chlordiazepoxide Transilium Oral Reduces anxiety Argentina

Isradipine Almodipino Oral Enhance solubility and
photostability -

Cephalosporin Meiact Oral Antibiotic Japan



Int. J. Mol. Sci. 2021, 22, 1339 12 of 23

Table 4. Cont.

CDs Drug Trade Name Admin. Route Use Market

Nicotine Nicorette Sublingual Aid to smoking cessation EU

Nimesulide Nimedex, Mesulid Oral Analgesic, antipyretic, and
anti-inflammatory EU

Diphenhydramin Stada-Travel Oral Neurological treatments EU

Glimepiride

Amaryl,
glimepiride

ALTER,
glimepiride,

Roname,
Tandemacte

Oral Increase dissolution rate, time of
action and efficacy -

Sulindac Clinoril Oral Anti-inflammatory EU

Nitroglycerin Nitropen Sublingual Treat / prevent chest pain or
pressure Japan

Omeprazole Omebeta Oral
Intestinal / esophagus ulcers,

reflux disease, heartburn,
syndromes of stomach acid

EU

Dinoprostone Prostarmon E Sublingual Oxytocic Japan

Piroxicam Brexin Oral Analgesic, antipyretic,
anti-inflammatory EU

Tiaprofenic acid Surgamyl Oral Analgesic, antipyretic,
anti-inflammatory EU

2-HP-β Cisapride Propulsid Rectal Gastro-esophageal reflux EU

Voriconazole Voriconazole Teva,
Vfenf Oral. injection Enhance solubility, dissolution

rate, and chemical stability EU

Hydrocortisone Dexocort Buccal Relieve the soreness of mouth
ulcers and speed up healing EU

Rhein Rhein Oral Improvement in photostability -
Indomethacin Indocid Eye drops Anti-inflammatory EU
Itraconazole Sporanox Oral, intravenous Fungal infections EU, USA
Mitomycin Mitozytrex Intravenous Cancer USA

ME-β 17β-Oestradiol Aerodiol Nasal spray Menopausal climacteric
symptoms EU

Chloramphenicol Clorocil Eye drops Ear infections EU

SP-β Voriconazole Vfend Intravenous Fungal infections EU, USA
Ziprasidone

maleate Geodon, Zeldox Intramuscular Acute agitation in adults with
schizophrenia EU, USA

2-HP-γ Diclofenac
sodium Voltaren Eye drops Eye surgery, hay fever EU

Admin route: administration route; HP: hydroxyprpyl; ME: methylated; SP: sulphobutylether; EU: Europe.

Table 5. Example of some improved drug functions achieved by CDs complexation. Adapted from [89,101]

Improved Function Mechanism Type Drugs

Increase in bioavailability Increased solubility and
stability β, γ, natural

Thalidomide, nimuselide,
prednisolone, oteprednol

etabonate, tacrolimus,
sulfhamethazole

Increased availability Increase in solid stability β Quinapril

Increased solubility
Forming inclusion complexes
with their nonpolar molecules

or functional groups
β

Bromazepan, ibuprofen,
naproxen, ofloxacin, ketoralac,

nimesulide, omeprazole,
tenoxicam



Int. J. Mol. Sci. 2021, 22, 1339 13 of 23

Table 5. Cont.

Improved Function Mechanism Type Drugs

Increased stability
Obstruction of the reactants to

diffuse into the cavity and
react with the protected guest

β
Metoprolol, nifedipine,

quinapril

Increased absorption

Oral delivery B, HP-β Ketoconazole, testosterone

Rectal delivery 2HP-β Flurbiprofen, carmafur,
biphenyl acetic acid

Nasal delivery 2HP-β Morphine, antiviral drug,
insulin

Trans-dermal delivery 6-O-(carboxymethyl)-O-
ethylβ Prostaglandin

Ocular delivery 2HP-β, β Dexamethasone,
carbonicanhydrase inhibitors

Delivery Protein and peptide delivery Modified CDs
Growth hormone,

interleukin-2, aspartame,
albumin and MABs

Reduction of local irritancy
and toxicity

Forming inclusion complexes
with toxicity or irritant

compounds
2-HP-β (2,6-diOmethyl), β

Pilocarpine, phenothiazine
euroleptics, all-transretenoic

acid

Prevention of incompatibility Prevent drug-drug or
drug-additive interaction. β, γ Piroxicam, omeprazole

4.2. Cosmetics and Personal Care

CDs are also used is cosmetics [96]. Its application has numerous advantages, such
as stabilizing compounds, obtaining odors and flavors of greater acceptability, improving
the action of the compound by transforming a liquid constituent to a solid form, reducing
vapor pressure, changing the solubility in water, and improving the thermal stability of
oils, among others [6]. They are used in the suppression of the volatility of perfumes, air
fresheners, and detergents since they allow a controlled release of fragrances from the
host–guest complex, producing more doubtful fragrances [92]. They are also used in the
formulation of toothpaste, skin creams, fabric softeners (liquid and solid), paper towels,
tissues, and underarm shields. Therefore, CDs represent a valid formulation support, since
they can improve the performance of the resulting product and solving problems that
may arise during its formulation. Several studies have been performed to study different
cosmetical applications of CDs. For instance, an in vitro study has proven that CDs are
a useful delivery vehicle of ferulic acid (a compound with well-known antioxidant and
photoprotective properties), improving its photo-stability, which could be an interesting
property for cosmetic formulations [102].

4.3. Packing and Textile Industry

In recent years, the textile industry has directed its research towards making functional
and sustainable fabrics [89]. In this field, the β-CDs can play a fundamental role since it
can form complexes with different types of compounds, which makes a new wide variety
of textile products and applications with advanced properties, such as antimicrobial or
photoprotective. The incorporation of CDs to the textiles may also serve to deliver aromas
and capture malodors (sweat, smoke) or increase the ability of fabrics to retain dyes with the
consequential benefit of decreasing the amount lost in wastewater [89,92,103]. Moreover,
they can also be flame-retardants [103]. In medicine, medical tissues containing CDs are
used to release chemical compounds (both topically or inside the body) with beneficial
properties, such as antibacterial, anti-allergic, antifungal, anti-inflammatory, and protection
against insects [23]. Different studies seem to indicate that the most promising way to bond
CDs in fabrics would be to generate complexes of monochlorotriazinyl-CDs by binding CDs
with trichlorotriazines [104]. β-CDs can also be used as a novel molecular phosphorescent
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material as light sensitive phosphorescent color changes have been detected, which makes
it a promising candidate as dynamically photo-functional material [105]. Other applications
of CDs in fabrics and textiles can be seen in Table 6.

Table 6. Examples of studies using cyclodextrins (CDs) system on textile surface.

Activity CDs Compounds Fabric Study Ref.

Antibacterial

MCT-β Ag NPs, triclosan Wool Activity more than 75%, even
after 15 washing cycles. [106]

MCT-β
Aqueous/alcoholic

extracts from
plants

Cotton Other effects associated [107]

MCT-β Miconazole nitrate Cotton C. albicans, Aurococcus and
Bacillus [108]

MCT-β Ag NPs Cotton Staphylococcus aureus, E. coli [109]

TCA-β Octenidine
dihydrochloride Cotton Reasonable activity after 20

washing cycles [110]

CTR Silver (I) Cotton E. coli [111]

MCT-β
Ferulic acid, caffeic
acid, ethyl ferulate

allantoin
Hemp

Sanogenetic properties of the
hemp fibers are significantly

modified by the chemical
treatments

[112]

Antiallergic,
anti-psoriasis

2,6-di-O-
methyl Tacrolimus Cotton Drug delivery [113]

Anti-psoriasis - Dithranol Cotton Clinical test [114]

Chronic venous
insufficiency β Troxerutin Pa-66/PU in

stockings
In vivo tests on Wistar rats,

clinical studies [115]

Anti-
inflammatory,
antioxidant,
antitumor

β Curcumin Nanofibre Two sequential stages for drug
release [116]

Against mosquitos β

Cypermethrin,
prallethrin,
permethrin,

N,N-diethyl-m-
toluamide

Cotton Treated fabrics retain high
number of insecticides [117,118]

MCT-β Limonene Cotton Effect of washing and storing [119]

4.4. Bioconversion and Fermentation

Bioconversion and fermentation processes are frequently limited due to the toxic or
inflammatory effect produced by the substrate or product in the catalyst. In addition, the
medium is also of great importance given that most of the organic substrates are lipophilic
and, thus, they have low water solubility and the catalyst is usually more active. As a
result, only a small part of the substrate is reachable to the biocatalyst [92]. Different
techniques have been carried out to overcome these problems. Among them, there are
the addition of the inhibitory substrate to the fed batch, in situ recovery of the inhibitory
product or the solution of the lipophilic substrate with surfactants and organic solvents.
The solution may be achieved by the use of CDs [120]. Some studies have used CDs
to improve the production efficiency of different compounds. For instance, production
efficiency of spiramycin was enhanced by CDs [121]. Modified β-CDs also increase the rate
of deacetylation of spironolactone [122].

4.5. Environment

The role of this type of compounds in the environmental field is mainly due to its ability
to solubilize organic pollutants, enhance and eliminate organic contaminants and heavy
metals from the environment. In this field, CDs studies and new applications are expected
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to grow in the following years. β-CDs have been used in the adsorption of contaminants
since they do not generate additional pollution [123]. Regarding water treatment, several
possible applications have been described. An example of this application would be the
treatment of textile wastewater contaminated with dyes [103]. CDs nanosponge adsorbents
have been studied for water treatment. To achieve this, CDs nanosponges are modified
with adsorbent nanomaterials (nanotubes made with carbon, titanium oxide, and silver
nanoparticles). The obtained results proved the efficiency of these systems for removing
contaminants from water [124].

4.6. Catalytic

In recent years, research efforts have been focused on the development of CDs capable
of catalyzing organic reactions since they can bind to the substrate and form inclusion
complexes with small compounds. CDs have been considered as artificial enzymes, gen-
erally characterized by having substrate specificity due to the structure and properties of
the CDs cavity, even showing stereospecificity [125]. These complexes have been used
for advanced homogeneous or heterogeneous catalytic processes. Moreover, they can
be used to make alternative reaction media, such as hydrogels or low melting mixtures.
These mixtures are capable of stabilizing active catalytic species, resulting in an increase
of the catalytic activities and selectivity in transition metal reactions. In addition, after
the catalysis is processed, artificial enzymes can be recovered by only a phase separation.
With this catalytic systems process, safety is greatly improved [126]. Some advantages of
CDs-based molecular catalysts are their easy preparation and isolation, economical and
effortlessly obtainable starting materials, possibility of reuse and likelihood of acting in
mild aqueous conditions (ecologically sustainable technology) [127].

A recent advance in this field consists of using CDs as an enzymatic mimic, since a
molecular recognition phenomenon occurs due to the groups substituted in the CDs [92].
For example, β- or γ-CDs can be used in benzoin condensation with a rate increase of
7-fold [128]. Another example is a molecular catalyst of Pd/β-CDs, which shapes inclusion
complexes with small organic compounds. It was utilized with remarkable results to
reduce toxic aromatic components and the degradation of harmful dyes [129].

4.7. Analytical

CDs and their derivatives are utilized in a wide diversity of analytical chemistry fields,
especially in analytical separations as they could distinguish between positional isomers,
functional groups, homologues, and enantiomers [92]. They can be used in different
areas such as chromatography, waste-water treatment, and other separation techniques
(extraction, complex formation) [130]. For instance, they are used in chromatographic
separations as they increase the selectivity in comparison to separations carried out with
an eluent and stationary phase without any additional help [131]. Nevertheless, further
development is necessary to reduce preparation costs, particularly for environmental
applications. CDs could be also used as a reagent in several methods, including UV-visible
spectrophotometry, photoluminescence and nuclear magnetic resonance [132]. This use
is related to the ability of CDs to increase the emission intensity of the reactions that are
taking place due to several aspects. Higher reaction rates and a greater efficiency in the
process of excitation and protection of species that emit the quenching phenomena are
some examples of these aspects [132].

5. Advantages and Disadvantages of Their Use

Using CDs complexes in food systems has several advantages, which have been
explained relating them to their application in the industry. These advantages can be
grouped in blocks. The first of these would be the increase of shelf life of the resulting
products, due to the ability of CDs to protect compounds against different factors such as
oxidation, light-induced reactions, decomposition, and thermal decomposition. Therefore,
these types of molecules act as a potential stabilizing agent. For example, making possible
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its application to target orally administered water-insoluble drugs. They can also increase
the stability of emulsions. The second block is related to physical properties changes,
which has advantages such as increasing the solubility of different compounds. They also
eliminate hygroscopicity, which is the ability to absorb moisture from the surrounding
environment. Rheological properties as well as viscosity are also modified by the physical
characteristics of these compounds. Other advantage is that its structure allows the union
with a great variety of compounds, achieving even high order complexes. Moreover, as CDs
have a well-defined chemical structure, they possess many potential sites for chemical
modification or conjugation, giving rise to a great variety of complexes. In terms of their
advantages at technological level, CDs are characterized for being stable, having simple
dosing and being able to handle dry powders. This makes the reduction of packing and
storage costs possible, resulting in more economical technological processes and manpower
saving. Standardization allows products that do not vary over time to enter in the market,
which means that they are more accepted by consumers. The ability to sequester unwanted
compounds is also a big factor in terms of flavor. This quality is closely related to its
application when it comes to improve sensory quality since CDs are able to eliminate
or reduce undesired tastes and odors and preserve the desirable ones protecting them
from loss by evaporation and sublimation. They can also form complexes that allow the
development of new additives in order to improve important factors in the food industry
such as color and flavor. In addition, CDs would satisfy consumers’ demand for more
natural products, being one of the most promising compounds to use as additives to
improve sensory quality.

Despite everything, they also present a series of drawbacks. Even though they are
characterized for having a low toxicity, in some cases, it has been shown that they can have
an irritating effect. Thus, there are safety concerns, which limit their use for parenteral
administration showing renal toxicity in most species. However, despite these adverse
effects, their toxicity as well as its immunogenicity remains low, which is the reason that
CDs have extremely appealing pharmaceutical applications. In many cases, they can
accelerate reactions, for example, the hydrolysis of esters, amides and organophosphates,
decarboxylation and oxidation reactions. Furthermore, royalty payments may be required
as many patents are still enforceable. In all cases, binding constants of the complex need to
be optimum, especially in drugs for pharmacokinetics.

6. Toxicity and Legislation

When CDs were discovered, they were considered poisonous substances, so their
application in complex formation was considered an anecdote. Afterwards, it was shown
that they had no toxic effects and that they could also be very versatile for their protective
properties [29]. β-CDs have been the most studied within the CDs, having proved its safety.
At the maximum dose of β-CDs orally presented, no mortality has been observed. As a
result, a nontoxic quantity of 650 mg/Kg/day (1.25% of diet) of β-CDs was designated
in rats. In contrast, the injection of β-CDs resulted in the decease of the animals, as it
caused kidney damage due to crystallization of the complex in the kidneys [51]. It is
worth mentioning that only very little β-CDs were completely absorbed as salivary or
pancreatic amylases had no effect. Therefore, the complex reached the colon without
having undergone any modification and enzymes from the intestinal flora opened CDs
ring generating a maltoheptaose. This compound is catabolized like the other starch
fragments that reached the colon [51]. CDs are widely used in food since its applications
include acting as a vehicle of ingredients (flavor, vitamins, polyunsaturated fatty acids,
etc.) and as a stabilizer. The available data estimates an acceptable daily intake (ADI)
for all its applications in foods of 4.1 g/person/day for consumers of foods containing
γ-CDs. Several studies have been conducted to verify the risks of this consumption [133].
Different studies concluded that γ-CDs had no toxic effects and were well tolerated by
the body. This may be because their similar metabolism to starch and linear dextrin,
according to the results obtained in metabolic studies in rats (rapidly and digested by
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amylases present in saliva and pancreatic juice). Moreover, γ-CDs will not affect the
absorption of lipophilic nutrients since inclusion complexes are reversible and they have
a similar gastrointestinal tolerance of maltodextrin. All these studies included γ-CDs
as a product generally recognized as safe (GRAS) for its use in food [134]. The acute
oral LD50 was 8000 mg/kg for rats [51]. It should also be added that CDs, as well as
their hydrophilic derivatives, can only penetrate lipophilic membranes with considerable
difficulty. Consequently, its absorption in the gastrointestinal tract is very low, thus, its
oral administration presents almost no toxicity [103]. The World Health Organization
(WHO) concluded that, according to all available studies on α-, β-, and γ-CDs and their
allocated ADIs, these food components contained an almost insignificant toxicity. Therefore,
according to the available information, their consumption levels (total dietary intake)
and their acceptable background levels in food, CDs do not entail a threat to health.
Not showing cytotoxic effects is vitally important in applications such as food and flavors
but also in cosmetics, packaging, textiles, separation processes, environmental protection,
fermentation, and catalysis [5]. These types of compounds have not shown any allergic
impact according to OECD experiments. Since 2000, β-CDs are commercialized in Germany
as a food additive [103].

Many studies concerning the toxicity of CDs are based on their medical applications.
Even though the safety aspects should have been considered during the development, and
safety assessment of each medication should be clearly established on the data sheet, in
practice, it does not occur. However, a high dose of CDs has adverse effects. Although
its oral availability is very low, high doses can lead to reversible diarrhea and caecum
enlargement. In addition, depending on the dose, the permeability of the tissues and,
consequently, the bioavailability of the active substances administered, may also be altered.
In cases of high systematic exposures in animals, nephrotoxic effects have been observed.
So far, there is no evidence of these effects in humans [135–137]. Moreover, as there is not
enough information about the effects of CDs in children under two years old, a case-by-case
judgment regarding the risk/benefit to the patient must be performed. Nevertheless, CDs
are not currently included in the European Commission Guide of excipients on the label
and the package leaflet of medicinal products for anthropological use [138]. For example,
the toxicity of hydroxypropyl-β-CDs (HP-β-CDs) was studied, i.e., a substance that has
been extensively used as a solubilizing agent in the pharmaceutical industry for many
years. Despite this, no studies on solubilizing capacity and toxicity have been conducted
according to the degree of substitution. The obtained results showed that the best option
for both solubility and toxicity would be HP-β-CDs with low degree of substitution (DS).
However, further studies are still necessary since the comparison of HP-β-CDs toxicity
with diverse DS must be executed in humans considering its dependence on the species.

The current legislation regarding CDs varies between Europe and other countries.
Within Europe, as they are considered as food additives, they are subjected to the same
legislation. In the USA α-, β-, and γ-CDs are considered a GRAS food additive. However, in
Japan the three CDs are recognized as natural products. Therefore, their commercialization
in the food sector will be only restricted by considerations of purity. Other countries in
which α- and γ-CDs are considered food (novel foods) are Australia and New Zealand
since more than fifteen years ago [30]. Despite α-, β-, and γ- CDs are being used as food
additives in those countries, in Europe β-CDs has been approved as an additive (E-459)
and lately α-CDs as a novel food. γ-CDs can be also used in the food industry; however,
its use is restricted to those countries in which it has been approved. An outline of the state
of the legislation worldwide can be seen in Table 7.

According to different reports (1996) from the Scientific Committee on Food (SCF), the
ADI of β-CDs (E 459) is 5 mg/kg of body weight per day. Giving the available reported
use and use levels, the EFSA Panel also determined that the ADI was surpassed in the
refined brand-loyal scenario (contemplated as the most relevant scenario) on average
in whole population groups excluding babies and in all population groups in the 95th
percentile [137]. According to data, FAO/WHO Expert Committee on Food Additives
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(JECFA) proposed a maximum level of β-CDs in foods of 5 mg/kg per day. Owing to
their positive toxicological profiles, neither α- nor γ-CDs have a defined ADI. Furthermore,
in July 2005 the U.S. Environmental Protection Agency (EPA) eliminated the need to create
a maximum allowed level for residues of α-, β- and γ-CDs on several food supplies.
Regarding the assessment of the levels of exposure on animal and human studies and
associated adverse effects, it is considered that α-CDs have very low toxicity and that,
at the proposed levels of dietary exposure when used as a food ingredient, would not have
toxicological effects.

Table 7. Summary of existing legislation.

CDs
Food Pharmacopoeia Monographs

US Europe Japan US Europe Japan

α GRAS Novel food Natural product Yes Yes Yes
β GRAS Food additive Natural product Yes Yes Yes
γ GRAS Pending Natural product In progress In progress Yes

HP-β - - - Yes Yes -

7. Future Perspectives and Conclusions

CDs and their derivatives have an extensive diversity of uses in various fields (food,
cosmetics, and drugs), but especially on the food industry and, thus, their use have in-
creased in recent years. These applications are mainly due to the capacity they possess
to form host–guest complexes with a wide diversity of compounds. This type of molecu-
lar encapsulation improves the stability of flavors, vitamins, colorants, unsaturated fats,
and other lipophilic molecules in physical and chemical senses leading to extended product
shelf life. Furthermore, by using this technology, sensorial qualities can be improved,
and microbiological contaminations can be avoided. In addition, due to their low toxicity,
they can be applied without risk to human health, not only resulting in healthier and more
functional products, but also less perishable. Cases of sold CDs-based food products for
demonstration of the importance of CDs technology in the food industry were reviewed.

CDs are an exceptional type of building blocks in innovative molecular architecture
due to their low toxicity, their capacity to hold, orient, conceal, modify their chirality,
and isolate their guest compounds. All these properties make possible to use them not
only as excipients, but also as extenders, chelating agents, or other multipurpose techno-
logical tools. Another application of great interest is the sequestration of toxic compounds,
which makes them capable of modifying the toxicity of the substrate [24]. Their use in
food, agriculture, pharmaceutical products, and chromatographic techniques has increased
considerably in the last decade. Therefore, the unique architecture of CDs makes them a
significant option in drug advance, in chiral separations and as complexing agents in food,
cosmetics, and pharmaceutical manufactures. Among them, it is worth mentioning the
scope of food since consumers’ demand more natural and healthy products with the conse-
quent expansion of the market of functional foods and nutraceutical products. This can be
achieved with the application of CDs, which has a promising future.

Another emerging use of CDs is as encapsulation agents at molecular level due to their
ability to absorb whole molecules or part of them into their cavity. They can be the key to
many future encapsulated formulation solutions. It is also expected that they will continue
to be applied due to many other advantages, including increased solubility, stability against
light, heat and oxidizing conditions, and decreased volatility. It must also be considered
that not only pure CDs but also their derivatives can be used, which increases their possible
applications. However, to carry out all these processes, a few main concerns are cost
reduction and the efficiency of manufacturing. In recent years, there have been great
advances in this regard, which makes it likely to increase their applications. In addition,
several studies showed that the formulation of CDs derivatives have better stability than
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those of the traditionally formulated ones. The number of publications carried out in recent
decades is a clear example of the growing interest in the potential applications of CDs.
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