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Abstract

Drosophila suzukii (spotted wing drosophila, SWD) is a pandemic quarantine pest that

attacks mostly red fruits. The high number of life cycles per year, its ability to rapidly invade

and spread across new habitats, and highly polyphagous nature, makes this a particularly

aggressive invasive species, for which efficient control methods are currently lacking. The

use of native natural predators is particularly promising to anchor sustainable and efficient

measures to control SWD. While several field studies have suggested the presence of

potential predatory species in infested orchards, only a few confirmed the presence of SWD

DNA in predators’ gut content. Here, we use a DNA-based approach to identify SWD preda-

tors among the arthropod diversity in South Europe, by examining the gut content of poten-

tial predator specimens collected in SWD-infested berry fields in North Portugal. These

specimens were morphologically identified to the family/order, and their gut content was

screened for the presence of SWD DNA using PCR. New SWD predatory taxonomical

groups were identified, as Opiliones and Hemerobiidae, in addition to known SWD preda-

tors, such as Hemerobiidae, Chrysopidae, Miridae, Carabidae, Formicidae and Araneae.

Additionally, the presence of a spider family, Uloboridae, in the orchards was recorded for

the first time, posing this family as another SWD-candidate predator. This study sets impor-

tant bases to further investigate the potential large-scale use of some of these confirmed

predator taxa for SWD control in South Europe.

Introduction

The spotted wing drosophila (SWD), Drosophila suzukii (Matsumura), is a pandemic and

highly invasive pest that recently arrived to Europe, with first reports in 2010 occurring in Italy

and France (data from the European Plant Protection Organization (EPPO) [1]). SWD inte-

grates since 2011 the A2 List of pests recommended for regulation as quarantine pests [2].

Being extremely polyphagous, this pest is able to develop in a wide range of cultivated and wild
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fruits [3], thus causing severe production losses in different fruit chains of value. Its most sus-

ceptible host fruits are thin-skinned berries, including several Vaccinum spp. such as cranber-

ries and blueberries, strawberries, or table and wine grapes [4]. But SWD also attacks stone

fruits, such as cherries or plums [5,6]. Each SWD female has the capacity to lay hundreds of

eggs in its lifespan and a rapid life cycle that easily originates millions of descendants during

the months of the fly’s reproductive season (up to 10 generations per year) [7]. In addition, as

the larvae feed on the fruit flesh, infested fruits become unmarketable, which associated with

loss of crops, pest management and fruit selection, leads to substantial economic losses [8].

Current SWD control methods rely on the use of broad-spectrum insecticides (spinosyns,

organophosphates, pyrethroids and neonicotinoids), whose active ingredients work predomi-

nantly against adult flies, as the larvae are protected inside the fruits [9]. Other methods such

as mass trapping, sanitary measures, netting or the use of kaolin/chalk have also been recom-

mended for SWD control, but they are extremely time consuming and expensive, and end

up not improving the control of the pest [10]. Moreover, insecticide resistance has been identi-

fied [11], making biological control strategies for SWD attractive approaches that promise

to reduce long-term management costs, being also more sustainable and environmentally

friendly [12,13].

The success of a biological invader such as SWD depends on reduced impacts of natural

enemies in the invaded environments [5,14–19]. Predators and parasitoids are frequently used

in biological control and may constitute a relevant strategy to reduce SWD populations, both

in wild and crop host species [12,20,21]. A revision of 12 studies on potential predators showed

22 families of interest (excluding spider families, also SWD predators [10,22]), of which only

eleven were confirmed as SWD predators, namely Forficulidae (earwigs) [10,23,24], Nabidae

(damsel bugs) [10], Formicidae (ants) [25,26], Anthocoridae (pirate bugs) [20,24,25,27,28],

Carabidae (ground beetles), Gryllidae (crickets) [29], Chrysopidae (green lacewing, larvae)

[20,24] Staphylinidae (rove beetles) [10,30], Mantidae (praying mantis) [22], Miridae (mirid

bugs) [20] and Labiduridae (striped earwigs) [28]. Only in three studies the confirmation of

predatory activity by SWD DNA presence in the gut content of the predator was shown (S1

Table). Araneae families were addressed in five studies, and 20 families of potential spider

predators were reported in literature, of which seven families were confirmed (S2 Table). Of

these, only two studies used the presence of SWD DNA in predator’s gut content to confirm

predation (S2 Table). Based on the same revision, most of the studies with SWD predators are

focused on laboratory assays, while field predation remains relatively understudied. Wolf et al.
[10] collected candidate SWD predators in Switzerland and detected feeding in earwigs, spi-

ders and predatory bugs; in the United States of America (USA), Schmidt et al. [22] also col-

lected field predators, and detected SWD DNA in spiders and in one individual from the

Mantidae family. Ballman et al. [29], placed SWD pupae on a berry field (USA) in three meth-

ods of exposure to predators (fully-exposed, caged and buried) and determined that predation

rates were higher in exposed pupae, and although potential predators were collected in the

field, the identification of SWD predators was made as laboratory assays. Kamiyama et al.
[31] detected natural field predation of SWD sentinel pupae in the USA, but specific predator

groups were not identified.

Even though previous information about SWD predators can be used to guide local studies,

the identification of native field predators is essential to define adequate control measures, not

only to avoid the introduction of non-native predators in a region, but also to improve and

increase native populations of actual predators, as recommended under a conservation biolog-

ical control approach. Despite still scarcely used, the confirmation of SWD-DNA in predators’

gut has emerged as the most reliable method to confirm predation [32].
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The aim of this study was to identify potential SWD predators among the arthropod diver-

sity in North Portugal, using as case study berry fields, and identify field SWD predation. The

results obtained should represent an important first step to the management of the pest by sup-

porting populations of natural enemies present in the region and further contribute to the gen-

eral knowledge of SWD predators in other environments.

Materials and methods

Arthropod collection and identification

Arthropods were collected in the Northern region of Portugal, in August 2019, in four blue-

berry orchards and one blackberry orchard, in five distinct locations: Santiago de Piães

(Location 1 (L1); 41.079528,-8.155139; blueberry), São Martinho de Mouros (L2; 41.119639,-

7.890639; blueberry), Baião (L3; 41.143306,-8.066306; blueberry), Vieira do Minho (L4;

41.635250,-8.160306; blackberry) and Vale de Cambra (L5; 40.838972,-8.359917; blueberry)

(temperature ranged from�20–30˚C during collection time) (Fig 1). All orchards were devel-

oped and maintained under organic farming for 1–5 years upon arthropod collection time;

time average size of the orchards was 2 ha, and an average of 6 years of age. All producers used

homemade or commercial SWD traps to monitor the pest presence in the orchard; in L2, mass

trapping was employed with a D. suzukii attractive bait. Additionally, the producers used

mainly Spinosad as a SWD control agent, following all the legal procedures and recommenda-

tions. L1, L3 and L4 had wild vegetation between rows, and only L2 and L5 used mulching

films—L2 along the blueberry bush rows, and L5 with the complete orchard’s soil covered.

In L4 and L5 nets were used, but while in L4 the nets were only placed above the blackberry

trees in order to provide protection against UV-rays, in L5 the net covered the entirety of the

orchard as protection against birds. The orchards’ surrounding wild vegetation contained

mainly oaks, pine trees, eucalyptus and olive trees; in some cases, there were also vineyards,

cherry trees or other fruit trees (L2 and L4). Representative photos of each location are sup-

plied in S1 Fig. The presence of D. suzukii in the orchard was confirmed by collecting the

insect in arthropod samplings and/or in traps used by producers.

Arthropods were collected in three different rows of the orchard: in the first row of bushes

in the orchards’ periphery; in the middle of the orchard; and in a row closer to wild vegeta-

tion, a water source and/or shade. The wild vegetation present in the last sampled row was

characterized by large non-cultivated trees, usually surrounding a small water stream, which

contributed to the presence of shade in the nearby rows. On the contrary, the first row in the

Fig 1. Arthropod sampling locations in Northern Portugal. Scale bar: 60 km (left map), 200 km (right map) Map

downloaded from Natural Earth (naturalearthdata.com) and edited in QGIS v3.16.0 (qgis.org).

https://doi.org/10.1371/journal.pone.0249673.g001
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orchards’ periphery did not have any shade or abundant wild vegetation in the surrounding

area.

For the arthropod collection, two different methods were used: suction (with a Dietrick

Vacuum insect net (D-Vac) machine (Rincon-Vitova Insectaries, Inc., Ventura, CA, US,

model 122)), during�3min continuously walking along the row (orchards L1-L5), in which

arthropods from the canopy were sucked into a meshed bag [17]; and pitfall traps, in which

cups with 50% ethanol were inserted on the soil near the shrubs for 24h, for the collection of

soil arthropods [33] (L2-L5) (Fig 2). Arthropods collected using D-Vac were etherized on the

field by embedding a cotton ball in ether and placing it on a plastic bag with the meshed bag

inside during the transportation to the laboratory; they were preserved at 4˚C in 15 ml tubes

with 96% ethanol until identification. The pitfall contents were transferred to 50 ml tubes and

kept at 4˚C until arthropod identification.

Collected arthropods were sorted into morphospecies and identified to the order or family

level following Triplehorn et al. [34]. Moreover, in accordance with the same authors, arthro-

pods were assigned to feeding guilds and grouped accordingly into four trophic categories:

detritivores, phytophages, omnivores and predators. Spider family identification was based on

Nentwig et al. [35] and specimens were further grouped following Cardoso et al. [36]. Thus,

families of Araneae were grouped in 7 functional groups based on their foraging strategy (type

of web and hunting method), prey range (stenophagous or euryphagous), vertical stratification

(ground or foliage) and circadian activity (diurnal or nocturnal): (1) sheet web weavers (ShW),

(2) space web weavers (SpW), (3) orb web weavers (OrW), (4) specialists (Sp), (5) ambush

hunters (AH), (6) ground hunters (GH), and (7) other hunters (OH). After identification,

arthropods belonging to predator and omnivores trophic groups were preserved in 96%

ethanol, according to place of collection and family/order, and were kept at 4˚C until DNA

extraction.

Screening of field predation

Arthropods identified as potential predators were tested for field predation of D. suzukii.
Potential predators were washed with a 1.5% bleach solution (v/v, in milliQ H2O) to remove

any traces of D. suzukii DNA from their body surface. Screening of field predation was

assessed by molecular gut-content analysis according to Wolf et al. [10]. DNA of potential

predators was extracted with GeneMatrix Tissue Purification Kit (EURX Sp.zo.o., Poland) fol-

lowing the manufacturer’s protocol for insect DNA extraction. Arthropods (up to 50mg) were

homogenized with PBS (pH = 7,6). The arthropod’s DNA was extracted as a pool within the

same family, location and sampling method, except for Araneae families’ DNA, which was

Fig 2. Visual representation of the arthropod sampling methods.

https://doi.org/10.1371/journal.pone.0249673.g002
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extracted according to functional group and sampling method. DNA quality and quantity

were analyzed with μDrop™ (ThermoFischer Scientific, USA) on a microplate spectrophotom-

eter Multiskan Go (ThermoFischer Scientific, USA). Predation was confirmed by PCR amplifi-

cation with a primer specific for the identification of D. suzukii [10]. PCR amplification was

employed twice in order to confirm predation vs. no predation results. The reaction was per-

formed with the highest amount of DNA possible for the enzyme (DFS Taq MasterMix, Bioron

Life Science, Germany) in order to avoid false negatives due to lack of DNA quantity in the

reaction. The reaction was performed in a T100™ thermocycler (Bio-Rad Laboratories, USA)

and the conditions were 94˚C for 2 min, followed by 35 cycles of 94˚C for 10 sec, 48˚C for 20

sec, 72˚C for 15 sec, and a final extension at 72˚C for 3 min. A positive control consisting of

DNA extracted from a single D. suzukii was used (previously phenotypically identified accord-

ing to the EPPO identification key [37]). PCR results were visualized in an 1.4% agarose gel

and results were considered positive if a band appeared in the 179bp region.

Data analysis

The number of arthropods identified as potential SWD predators was expressed as a percent-

age of the number of all arthropods collected. Differences in species richness and diversity

were analysed with ANOVA. For the analysis of row diversity, the total number of potential

natural enemies both from D-VAC and pitfall sampling locations was used based on each row

location within the orchard. All graphs and statistical analysis were made using GraphPad

Prism 8 (GraphPad Software, USA).

Results

Arthropod diversity

Different groups of arthropods were collected in four different blueberry orchards and one

blackberry orchard (Table 1). In a total of 169 individuals identified as potential SWD preda-

tors collected with D-Vac (representing�25% of D-Vac collected arthropods), most belonged

to the taxonomic group of Chrysopidae (larva and adults) followed by Araneae, Formicidae,

Miridae, Coccinellidae (adults) and Hemerobiidae (adults) (Fig 3a). In the pitfall traps, from a

total of 59 arthropods identified as potential predators (�64% of pitfall collected arthropods),

most belonged to Formicidae, followed by Araneae, Carabidae and Opiliones (Fig 3b).

We were able to identify 14 different spider families, corresponding to 7 different functional

groups (S3 Table), with families related to hunting functional groups being the most abundant

in the collections (Fig 4). In all locations, adults of D. suzukii were collected with D-Vac, con-

firming the pest presence in the field. The highest number of D. suzukii was collected on the

blackberry fields, with more than 100 individuals (results not shown). When considering the

row of the orchard, most potential predators were collected in the middle rows of locations L1,

L2 and L3, but in two locations the number was higher near the vegetation margin (L4) and in

the periphery (L5) (Fig 5). Although no statistical differences were found between rows con-

cerning species richness and diversity, the highest arthropod diversity was found in the middle

row, with arthropods belonging to all of the taxonomic groups identified as potential SWD

predators in this study.

Assessment of field predation

Potential D. suzukii predators’ gut content was analyzed by PCR amplification of D. suzukii
cytochrome oxidase subunit I (COI) [10]. Of the 8 groups of potential D. suzukii predators, D.

suzukii DNA was detected in 7, namely Chrysopidae, Formicidae, Miridae, Hemerobiidae,
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Table 1. Number of arthropods collected with D-Vac and pitfall traps.

Trophic/Taxonomic group D-Vac Pitfall

Predators
Arachnida

Araneae
Agelenidae 4 1

Araneidae 0 0

Cheiracanthiidae 1 0

Dictynidae 3 0

Lycosidae 0 8

Oxyopidae 35 0

Philodromidae 2 0

Salticidae 3 0

Sparassidae 1 0

Tetragnathidae 0 1

Theridiidae 4 0

Thomisidae 11 0

Uloboridae 1 0

Zodariidae 35 2

Opiliones 0 3

Insecta

Coleoptera
Coccinellidae 3 0

Carabidae 0 8

Heteroptera
Miridae 10 0

Other 11 0

Neuroptera
Chrysopidae 67 0

Hemerobiidae 3 0

Omnivore
Insecta

Hymenoptera
Formicidae 21 36

Other 28 1

Phytophagous
Insecta

Coleoptera
Chrysomelidae 11 2

Mordellidae 3 0

Scolytidae 0 1

Tenebrionidae 0 1

Other 0 1

Hemiptera
Cicadomorpha 4 0

Cicadellidae 307 9

Cixiidae 8 0

Membracidae 5 0

Cydnidae 0 2

(Continued)
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Table 1. (Continued)

Trophic/Taxonomic group D-Vac Pitfall

Indetermined
Insecta

Diptera
Brachycera 115 17

Nematocera 23 0

Lepidoptera 5 0

Arthropods are grouped according to their feeding habits and taxonomical group.

https://doi.org/10.1371/journal.pone.0249673.t001

Fig 3. Arthropod diversity collected on berry fields. a) D-Vac collected arthropods; b) Pitfall traps collected arthropods. Values are presented as percentage of

individuals from each taxonomical group collected in each location.

https://doi.org/10.1371/journal.pone.0249673.g003

Fig 4. Spiders’ functional group diversity collected with D-Vac and pitfall traps in Portuguese berry fields. Values

are presented as percentage of individuals from each functional group collected with D-Vac and Pitfall traps.

https://doi.org/10.1371/journal.pone.0249673.g004
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Carabidae, Opiliones and Araneae, with no detection of D. suzukii DNA in Coccinellidae indi-

viduals (Fig 6a). Regarding the Araneae functional groups, D. suzukii DNA was detected only

on 2 of the 7 functional groups, namely orb web weavers (family Araneidae and Uloboridae)

and space web weavers (family Dictynidae and Theridiidae), all collected with D-Vac (Fig 6b).

The most abundant taxonomic groups with positive results were Chrysopidae, Formicidae and

Fig 5. Arthropod row diversity (D-VAC+Pitfall traps). Periphery—row in the periphery of the orchard; Middle—row in the middle of the orchard; Vegetation

margin—row closer to wild vegetation, a water source and/or shade. Values are presented as the total number of individuals collected in each row of each location.

https://doi.org/10.1371/journal.pone.0249673.g005

Fig 6. Molecular gut-content analysis of arthropods identified as potential SWD predators. a) PCR amplification results for the 8 families/orders identified,

with the representation of the number of identified individuals from each family/order; b) PCR amplification results of the 7 spider functional groups, with the

representation of the number of identified individuals from each functional group. Circled are the most relevant taxonomic groups (a) and functional group (b),

with the highest number of identified individuals.

https://doi.org/10.1371/journal.pone.0249673.g006
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Araneae, however, the most abundant functional group of Araneae, Other hunters (Oxyopi-

dae, Sparassidae, Cheiracanthiidae, Philodromidae and Salticidae), collected with D-Vac, did

not predate on D. suzukii. If frequency of detection is considered, Formicidae was the only

group collected in all locations, with positive results in individuals from 3 of the locations (Fig

7a), and both positive results in spiders were from groups collected with D-Vac (Fig 7b).

Discussion

The need to develop new pest and disease management strategies is increasing. Biological con-

trol agents (BCAs) such as bacteria, fungi, parasitoids or predators [12] emerge as the most

promising sustainable strategies. Here, we used a DNA-based strategy to produce a detailed

catalogue of native predators of SWD in berry fields in Portugal, a critical first step to develop

efficient and sustainable control measures.

D-Vac was used to collect predators in plants and surroundings, while pitfall traps collected

the potential predators mostly on the ground. Hemerobiidae, Chrysopidae, Miridae and Coc-

cinellidae families were collected in the vegetation, Opiliones and Carabidae on the ground,

and Formicidae and Araneae in both cases. Comparing the three sampling rows, predator

abundance was higher in the middle of the orchard. Schmidt et al. [22] found a higher abun-

dance of natural enemies in a pine margin of a SWD infested orchard, which correlated with a

higher activity of SWD in the same area. The fact that most natural enemies were collected in

rows in the middle of the orchard suggests a higher activity of SWD in that area, probably due

to higher amount of food.

Of the collected arthropods, only those of the Coccinelidae family were negative for the

presence of SWD-DNA specific sequence in the gut. Coccinellids are unspecific predators, and

have been referenced as a potential BCA for other insect pests such as e.g., aphids, whiteflies,

mealybugs or psyllids (reviewed by Kundoo and Khan [38]). Similar negative results for the

presence of SWD in Coccinellids were previously reported in the USA and Switzerland

[10,22], supporting coccinellids as unlikely SWD predators.

Families Chrysopidae, Miridae, Carabidae and Formicidae, which field individuals’ gut

showed here to contain SWD DNA, had been proposed in laboratory assays as SWD predators.

However, laboratorial experiments are often not supported by field data. For example, Chryso-
perla carnea (Stephens) was in the laboratory a predator of SWD [20,24], but this predation

Fig 7. Frequency of D. suzukii DNA detection in potential predators’ gut-content. a) Detection in 7 of the different

familes/orders screened for D. suzukii DNA presence; b) detection in spiders’ functional groups screened for D. suzukii
DNA presence. Blank dots—predator was not found in the location; orange dots—predator collected in the location

but DNA detection was negative; green dots—predator collected in the location with positive DNA detection.

https://doi.org/10.1371/journal.pone.0249673.g007
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was never confirmed in the field [22,31]. Also, the laboratory predatory activities of the Carabi-

dae Pterostichus mutus (Say) and Bembidion quadrimaculatum (LeConte) and the Miridae

Dicyphus hesperus Knight against SWD were not confirmed in the field [13,14]. Field preda-

tion of SWD by Formicidae was previously suggested, as ants were observed not only digging

and carrying SWD pupae, but also preying on SWD pupae and larvae in dropped blueberries

[25,26]. Our data confirm these taxonomic groups as field SWD predators, thus being an

important clarification of those previous results.

Despite some inconsistent laboratory vs. field data for SWD predation [13,14,16,23], other

studies have shown that Chrysopids are promising predators to be used in the control of other

insect pests: Chrysoperla spp. larvae might be used to control Tuta absoluta (Meyrick) (tomato

pinworm) [39], Frankliniella occidentalis Pergande (western flower thrips) [40], Melanaphis
sacchari (Zehntner) (sugarcane aphid) [41] or Glycaspis brimblecombei Moore (eucalyptus

aphid) [42]. However, the role of chrysopids remains unclear, as the collected individuals were

adults, and not all adults of the family Chrysopidae are predators. For example, Chrysoperla
spp. adults feed on nectar, pollen or honeydew, contrarily to adults of the genus Chrysopa that

are predators [43].

Miridae, like chrysopsids, are potential BCAs of pests like T. absoluta [44], Bactericera cock-
erelli (Sulc), Spodoptera exigua (Hübner), Spodoptera frugiperda (JE Smith) [45,46], all tomato

pests; or Cacopsylla pyri (Linnaeus), a pear psyllid [47]. In the only study of SWD predation by

Miridae species [20], D. hesperus was confirmed as a SWD predator. Pérez-Hedo et al. [48]

reviewed the use of mirid bugs as predators in horticultural crops, like tomato. Whilst com-

mercially mirid bugs are already available, such as D. hesperus (in North America), Macrolo-
phus pygmeus (Rambur) and Nesidiocoris tenuis (Reuter) (in Europe, Africa and Asia), their

use as BCAs in pest management should be further explored [48].

Contrarily to chrysopids and mirid bugs, the use of carabid beetles as BCAs for insect

pests has not been suggested. Carabids are generalist predators, feeding on insect pests but

also weed seeds, which decreases consumption rates of one or the other [49]. Still, Carabidae

species were already reported as predators of pests such as Ragholetis mendax Curran (blue-

berry fruit fly) [50], Itame argillacearia Packard (blueberry spanworm), Altica sylvia Mal-

loch (blueberry flea beetle) [51] or Acalymma vittatum (Fabricius) (striped cucumber

beetle) [52].

Among the taxa detected in our work, ants may be those with most potential as a BCA, con-

sidering its abundance and capacity to rapidly consume a large number of victims. The use of

ant species as a BCA is not recent [53], and besides controlling pests in different agroecosys-

tems [54], they also improve the soil quality [55]. Besides predating on D. suzukii, ants also

predate other pests as C. pyri [56] and Hypothenemus hampei (Ferrari) [57].

This study identified for the first-time arthropods from the Opiliones and Hemerobiidae as

SWD predators. Kamiyama et al. [31] had recovered Hemerobiidae individuals from traps

with sentinel larvae, but did not confirm if the Hemerobiidae individuals were predators or

predation was done by individuals from other taxa, such as Formicidae, Anthocoridae or Sta-

phyilinidae [31]. Previous studies showed that Opiliones collected in orchards infested with

SWD had negative results for the presence of SWD DNA [10,22]. Hemerobiids are predators

of e.g., Pineus strobi (Hartig) (pine bark adelgid, a pine tree pest) [58], Aulacorthum solani
(Kaltenbach) (foxglove aphid, in sweet peppers) [59] or Planococcus citri (Risso) (citrus mealy-

bug) [60] but their predatory activity on SWD remains unknown. Similarly, harvestmen (Opi-

liones) were already identified as predators of Lobesia botrana (Denis & Schiffermüller) (grape

berry moth) [61] or A. vittatum (striped cucumber beetle) [52]. Considering our results and

that individuals belonging to this taxonomic group were already found in SWD infested
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orchards in North America and Europe, harvestmen should be considered for further preda-

tion studies on SWD, as they may be a suitable predator for the control of this pest.

Here, we also examined the presence of SWD DNA in spiders’ gut content. The use of spi-

ders as BCAs has been explored for a long time now, as they are known as generalist predators,

representing a good strategy for certain agroecosystems [62]. Updated insights highlight that

the effect of spiders as BCAs depends on the type of pest or existence of alternative preys and

environmental conditions (as with any other generalist predator), and on the phenotype of spi-

ders, namely its hunting strategy or behavior (functional group) [63]. Spiders are commonly

identified in the field as predators of various pest species, namely A. vittatum [52], Frankli-
niella spp. [64], or Phyllocnistis citrella (Stainton) (citrus leafminer) [65]. In this study, SWD

DNA was found in the gut content of spider families belonging to two functional groups, orb

web weavers (family Araneidae and Uloboridae) and space web weavers (family Dictynidae

and Theridiidae), both web-building groups. Individuals belonging to the family Araneidae

and Theridiidae had already been identified as predators of SWD, by testing positive for SWD

DNA [10,22], while Dictynidae individuals, although collected in infested orchards, tested neg-

ative [22]. Thus, our work is the first report of Uloboridae spiders being collected in SWD

infested orchards, although further studies are needed as our study, based on functional

groups, did not identify which family specifically predated on SWD, which also applies to the

Dictynidae individuals.

When considering the abundance of each predator group in the berry orchards of this

study, the most abundant were green lacewings, ants and spiders, suggesting that these are the

best candidates for SWD predator-based control, due to their natural abundance in these

fields. However, considering the spiders’ functional groups, the most abundant individuals

were identified as belonging to the group “other hunters”, which had no positive results for

SWD predation. Nonetheless, in previous studies, individuals belonging to this functional

group were found positive for SWD-predation [10,22], and it is important to take into consid-

eration that negative results for D. suzukii DNA presence in predators’ gut may be influenced

by a lack of predator-pest encounters at the time of sampling.

Our study did not identify anthocorids as SWD predators even though laboratory assays

have focused on this group, namely Orius spp. [20,24,27,28]. Only in two instances anthocor-

ids were considered potential SWD predators in field studies, but predation was not confirmed

[26,31]. Woltz et al. [25] introduced a commercially available anthocorid species in an infested

blueberry field with positive predation results, but there was no description if the species was

already native to the orchard. Our results illustrated the need to conduct field studies, with the

identification of native predators, in order to avoid the introduction of new species exclusively

based in laboratory assays.

Conclusion

This study focused on the assessment of SWD field predation in infested Portuguese berry

fields. The results confirmed the presence of SWD predators previously known or suspected,

and importantly identified new predatory taxonomical groups, Opiliones and Hemerobiidae.

This is the first study to confirm predation of SWD by individuals belonging to these families/

orders and to identify the spider family Uloboridae in SWD infested orchards, also with the

potential to be a SWD predator. Our results, together with previous studies, encourage addi-

tional field studies to further understand the role of the identified predator families/orders as

Biological Control Agents, not only of SWD but also other insect pests. Only that will allow

determining which native species would be more adequate for pest control, as field predation

by these arthropods is still poorly understood.
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Supporting information

S1 Fig. Representative photos of each arthropod sampling location. a) Location 1; b) Loca-

tion 2; c) Location 3; d) Location 4; e) Location 5. L1, L3 and L4 had wild vegetation between

rows, and only L2 and L5 used mulching films—L2 along the blueberry shrub rows, and L5

with the complete orchard’s soil covered. In L4 and L5 nets were used, being that in L4 the

nets were only placed above the blackberry trees in order to provide protection against UV-

rays, and in L5 the net covered the entirety of the orchard as protection against birds.

(PNG)

S1 Table. List of potential D. suzukii predators previously identified. In the Species column,

when a species is “Not specified”, it indicates that the predator was only identified to the family

level. In the Type of study column, studies were considered as “Laboratory” when predation

trials occurred under controlled conditions in the laboratory; “Field” when the predators or

potential predators were captured in the field or predation was observed in the field; when

predators were captured in the field but predation trials occurred in the laboratory or both in

the laboratory and in the field, studies are identified with “Laboratory” and “Field”. Predation

was considered “Positive” or “Negative” when specific predators predated or not on D. suzukii,
respectively; it was considered “Not confirmed” when the study identified potential predators

and predation was observed, but it was not possible to identify which specific arthropod was

the predator. DNA presence was considered “Positive” if DNA amplification occurred with

SWD specific primers, “Negative” when there was no DNA amplification with specific primers

to identify SWD, and “Not tested” when predation was not assessed based on SWD DNA pres-

ence. Origin refers to the country where the experiments took place, either in the laboratory

or field.

(DOCX)

S2 Table. List of spiders considered as potential D. suzukii predators. Spider families are

grouped according to its functional group into Undefined/Specialists, web-building and hunt-

ing spiders. Spiders in studies where family was not specified were classified as Spiders. In the

Type of study column, studies were considered as “Field” when the predators or potential

predators were captured in the field or predation was observed in the field. Predation was con-

sidered “Positive” or “Negative” when specific predators predated or not on D. suzukii, respec-

tively; it was considered “Not confirmed” when the study identified potential predators and

predation was observed, but it was not possible to identify which specific arthropod was the

predator. DNA presence was considered “Positive” if DNA amplification occurred with SWD

specific primers, “Negative” when there was no DNA amplification with specific primers to

identify SWD, and “Not tested” when predation was not assessed based on SWD DNA pres-

ence. Origin refers to the country where the experiments took place, either in the laboratory

or field.

(DOCX)

S3 Table. Spider families grouped in the corresponding functional group (identified

according to Cardoso et al. [1]) and general group (web-building spiders, hunting spiders

and other spiders).

(DOCX)
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