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Abstract 
Lentinus crinitus is a wild fungus, which produces mushrooms consumed by some Amazonian Indians. Besides, it is rec-
ognized for its diverse biological activities and biotechnological applications. However, there are few reports with limited 
information on basidiocarp chemical composition and cytotoxicity. Our study determined and evaluated the chemical com-
position, cytotoxicity, and antioxidant activity of L. crinitus pileus and stipe separately. Chromatographic methods were used 
to evaluate basidiocarp chemical composition. Cytotoxicity was verified using a cell culture from porcine liver and against a 
panel of human tumor cells from different models. Antioxidant activity was assessed by different in vitro methods. The pileus 
had higher levels of protein, ash, tocopherols, and organic acids, mainly malic acid, than the stipe. The stipe revealed higher 
contents of carbohydrates, energy, soluble sugars, and phenolic acids, mostly p-hydroxybenzoic acid. L. crinitus basidiocarp 
has mainly trehalose as soluble sugar, and less than 1% fat being ~60% polyunsaturated fatty acids (mostly linoleic and oleic 
acids), and ~13% saturated fatty acids (mostly palmitic acid). L. crinitus revealed high antioxidant activity for most methods 
and no cytotoxic activity against tumor and non-tumor cells. L. crinitus basidiocarp can be considered a functional food with 
applicability in food, cosmetic, and pharmaceutical industries.
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Introduction

Mushrooms are prized for their taste, nutritional value, 
and bioactive compounds used for health and well-being 
[1–5] but just some of them are cultivated in industrial 
scale worldwide such as Pleurotus, Lentinula, Auricularia, 
Agaricus, Flammulina, Coprinus, Agrocybe, and Volvari-
ella genera [6–13].

Lentinus crinitus (L.) Fr. (Basidiomycota) is a sapro-
trophic wild fungus growing on decaying tree trunks [14, 
15] with a pantropical and neotropical distribution [16]. It 
is an important part of a regular diet of ethnic groups from 
the Amazon such as the Yanomami (Yąnomamö) Indians, 
and it is boiled in water or roasted in banana leaves before 
eating [14]. This author also reported that the Yanomami 
Indians from Tototobi village have two words for eating, 
one for meat and one for other foods. The word for meat 
consumption is also applied to mushrooms, and they are 
supposed to consider this protein source equivalent to meat 
and eat it, despite being tough and leathery.

Lentinus crinitus has broad ligninolytic activity, pro-
ducing several enzymes such as laccases and proteases 
[17–20]; high antioxidant potential [21]; having been 
reported as a producer of antimicrobial [22, 23], antibi-
otic [15], and antitumoral [24, 25] compounds. In addi-
tion, it is simultaneously able to bioaccumulate lithium 

in the mycelial biomass, which makes it an option as a 
functional food [26, 27]. L. crinitus also has been used 
for degradation and discoloration of textile dyes [28, 29] 
and bioremediation of contaminated soils with chemicals 
such as organochlorines [30] and dichlorophenoxyacetic 
acid (2,4-D) [31].

Mushroom production can be a low environmental 
impact and profitable activity, mainly for Brazilian rural 
farmers. To promote mushroom consumption and produc-
tion of L. crinitus, it is necessary to evaluate its biologi-
cal and cytotoxic activities. There are few studies on L. 
crinitus chemical composition [23, 32, 33] and no reports 
were found on the cytotoxicity activity of this mushroom. 
Moreover, L. crinitus stipe has a higher toughness than 
the pileus, and can be considered a by-product of mush-
room production. Both pileus and stipe could have differ-
ent chemical compositions [34] and, therefore, they can be 
used for different purposes. Though, no reports compar-
ing the chemical composition and biological activity of L. 
crinitus pileus and stipe have been found.

Despite L. crinitus biological activities, biotechnologi-
cal applications, and ethnomycological studies, no reports 
on its basidiocarp chemical composition and cytotoxic 
activity have been found. Thus, the objective of this study 
was to determine and evaluate the chemical composition 
and antioxidant and cytotoxic activities of L. crinitus 
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basidiocarp, cultivated in agro-industrial residues, com-
paring the results obtained for the pileus and stipe.

Materials and methods

Biological material

Lentinus crinitus (L.) Fr. U9-1 strain from the culture col-
lection of the Laboratory of Molecular Biology of the Para-
naense University, GenBank accession numbers MG211674, 
was used. The strain was registered under the code A04E776 
in the National System of Genetic Patrimony Management 
and Associated Traditional Knowledge (SisGen, its acro-
nym in Portuguese). The cryopreserved fungus at − 86 
ºC, according to Linde et al. [35], Zaghi Jr et al. [36] and 
Tanaka et  al. [19], was transferred to malt extract agar 
medium (39 g/L; MEA) and kept at 28 °C in the dark to 
recover mycelial vigor. Mycelia from the colony edge with 
homogenous branching and without sectoring were used as 
inoculum. For mushroom (basidiocarp) production, the cul-
tivation substrate consisted of sugarcane bagasse and rice 
husk (1:1), according to Colauto and Eira [37] and Machado 
et al. [32], and substrate carbon-to-nitrogen (C/N) was 48. 
Each substrate was kept at 28 °C until complete coloniza-
tion (30 days) without room ventilation, the top part of the 
cultivation bag was opened, the room temperature reduced to 
18 °C for 24 h (thermal shock), and ventilation was started to 
reduce carbon dioxide but relative humidity was kept at 80% 
throughout cultivation period [37]. Basidiocarps were har-
vested daily when the pileus border was flat, indicating the 
end of basidiocarp growth and the beginning of basidiocarp 
senescence. The basidiocarps (n = 512) were dehydrated in 
an oven with air circulation at 60 °C until constant mass. 
Basidiocarp pileus and stipe were separated, ground in an 
industrial blender, homogenized, and kept in separate Falcon 
tubes at − 20 °C.

Biological material and production and processing 
of basidiocarps

Nutritional value of basidiocarp pileus and stipe

The proximate composition (protein, fat, ash, and carbo-
hydrates content) of the samples was determined accord-
ing to standard procedures [38]. The crude protein content 
(N × 4.38) of the samples was estimated by the macro-
Kjeldahl method; crude fat was determined by extracting 
a known mass of powdered sample with petroleum ether, 
using a Soxhlet apparatus; ash content was determined 
by incineration at 600 ± 15 ºC. Total carbohydrates were 
calculated by difference [total carbohydrates (g/100  g; 
dry basis) = 100 − (gprotein + gfat + gash)]. The energy was 

calculated according to Regulation (EC) number 1169/2011 
of the European Parliament and of the Council, of 25 Octo-
ber 2011, on the Provision of Food Information to Consum-
ers [39], as: Energy [(kcal/100 g; dry basis) = 4 × (gprotein + 
gcarbohydrates) + 9 × (gfat)].

Hydrophilic compounds

Soluble sugars  The soluble sugars present in L. crinitus 
basidiocarp pileus and stipe were analyzed by high-per-
formance liquid chromatography (HPLC) using a refrac-
tion index (RI) detector. This methodology was conducted 
according to a previously described methodology [40]. The 
results were expressed in g per 100 g (dry basis).

Organic acids  The organic acid profile of the studied sam-
ples was determined following a procedure previously opti-
mized and described by Barros et al. [41]. The analysis was 
performed by ultra-fast liquid chromatography (UFLC) 
coupled to a photodiode array detector (PDA) following the 
previously referred procedure. The organic acids were quan-
tified by comparison of the peak area recorded at 215 nm 
(245 nm for ascorbic acid) with calibration curves obtained 
from commercial standards of each compound. The results 
were expressed in mg per 100 g (dry basis).

Other organic acids

Phenolic acids and  related compounds  The phenolic acid 
determination was performed by an UPLC system coupled to 
a PDA and a mass detector (LC-DAD-ESI/MSn), according 
to a previously described procedure [42]. The phenolic com-
pounds were identified by comparing their retention times, 
UV–Vis and mass spectra with those obtained with standard 
compounds, when available. Otherwise, compounds were 
tentatively identified, comparing the obtained information 
with available data reported in the literature. For quantita-
tive analysis, a calibration curve for each available phenolic 
standard was constructed based on the UV–Vis signal. For 
the identified phenolic compounds to which a commercial 
standard was not available, the quantification was performed 
through the calibration curve of another compound from the 
same phenolic group [42]. The results were expressed as µg 
per 100 g (dry basis).

Lipophilic compounds

Fatty acids  The fatty acids profile of the samples was deter-
mined by gas–liquid chromatography with flame ionization 
detection (GC-FID)/capillary column as described previ-
ously by Reis et al. [43]. The identification of the different 
fatty acids was made by comparison of the relative reten-
tion times of FAME (fatty acid methyl esters) peaks from 
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samples with standards. The results were expressed in the 
relative percentage of each fatty acid.

Tocopherols  The methodology used to determine the 
tocopherol composition was according to Heleno et al. [44]. 
The analysis was performed using the same HPLC system 
described for soluble sugar, but coupled to a fluorescence 
detector. The tocopherol identification was performed by 
chromatographic comparisons with authentic standards 
and the quantification was based on the fluorescence signal 
response of each standard. The results were expressed in µg 
per 100 g (dry basis).

Bioactivity evaluation of basidiocarp pileus 
and stipe

Extract preparation

For each dried sample of basidiocarp pileus or stipe, 1 g 
(as described in “Biological material”) was extracted with 
30-mL ethanol under magnetic stirring for 1 h at room 
temperature (n = 3). Then, each residue was re-extracted 
maintaining the same operational conditions. The extracts 
were mixed and evaporated at 40 ºC in a rotary evaporator 
(Büchi R-210, Flawil, Switzerland) to remove alcohol and 
be lyophilized. Each lyophilized extract was re-dissolved at 
8 mg/mL in autoclaved distilled water to assess the cyto-
toxic activity. Subsequently, each solution was diluted suc-
cessively to obtain the concentration necessary to perform 
the experimental study.

Cytotoxic activity of basidiocarp pileus and stipe in human 
tumor cell lines and non‑tumor cells

Four human tumor cell lines were used, namely HeLa (cervi-
cal carcinoma), HepG2 (hepatocellular carcinoma), MCF7 
(breast adenocarcinoma), and NCI-H460 (non-small cell 
lung cancer). Cells were routinely maintained as adherent 
cell cultures. Cells were treated for 48 h with the diluted 
extract solutions [45]. The adherent cells were fixed by 
adding cold 10% trichloroacetic acid (TCA, 100 mL) and 
incubated for 60 min at 4 ºC. Plates were then washed with 
deionized water and dried; sulforhodamine B solution (0.1% 
in 1% acetic acid, 100 mL) was then added to each plate well 
and incubated for 30 min at room temperature. Unbound 
SRB was removed by washing with 1% acetic acid. Plates 
were air-dried, the bound SRB was solubilized with 10 mM 
Tris (200 ml, pH 7.4) and the absorbance was measured at 
540 nm. The results were expressed as GI50 values (sam-
ple concentration that inhibited 50% of the net cell growth). 
Ellipticine was used as a positive control.

For the possible hepatotoxicity evaluation, a culture cell 
obtained from porcine liver, designed as PLP2, was used [46]. 

The same procedure described above for the SRB assay was 
performed for the growth inhibition. The results were also 
expressed as GI50 values.

Antioxidant activity of basidiocarp pileus and stipe

To obtain the methanolic extract, 1 g basidiocarp pileus or 
stipe (dry basis) was homogenized with 10-mL methyl alcohol 
in Falcon tubes. The mixture was kept at 60 °C for 45 min, and 
centrifuged at 6000 g at 5 °C for 10 min. The supernatant was 
considered the crude extract. The total antioxidant capacity 
of L. crinitus extracts was evaluated by 2,2-diphenyl-1-pic-
rylhydrazyl (DPPH•) free radical sequestration method. The 
inhibitory concentration to reduce 50% of free radicals (IC50) 
in a sample was determined from a correlation among absorb-
ance and sample concentrations. All assays were performed in 
triplicate [47, 48].

The antioxidant activity was also evaluated by the ferric 
reducing antioxidant power (FRAP) method. The antioxidant 
activity of each reaction was calculated against a standard fer-
rous sulfate curve (2000 μM) and as positive control 800 µM 
trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic 
acid) was used [49]. All assays were performed in triplicate.

The antioxidant activity of basidiocarp pileus or stipe 
extract was also evaluated by co-oxidation of β-carotene/lin-
oleic acid (BCLA) method, according to Mattos et al. [50]. 
The reaction was maintained at 40 °C for 120 min and the 
absorbance was measured at 470 nm (SpectraMax Plus384 
Microplate Reader), every 5 min, from 0 to 120 min. Trolox 
(100 µg/mL) was used as a positive control. The results were 
expressed as the absorbance reduction along the reaction time. 
The β-carotene bleaching rate was calculated according to the 
following equation:

(1)R = ln (a∕b)∕t

Table 1   Macronutrient composition and energetic value of Lentinus 
crinitus basidiocarp pileus and stipe

Values expressed as arithmetic mean ± standard deviation (dry basis) 
expressed as g/100 g, except for energy expressed as kcal/100 g
p value indicates significant differences by the Student’s t test 
(p ≤ 0.05; n = 9)

Parameter Basidiocarp p value

Pileus Stipe

Ash (g/100 g) 4.29 ± 0.07 2.66 ± 0.02  < 0.001
Proteins (g/100 g) 14.4 ± 0.3 9.5 ± 0.1  < 0.001
Fat (g/100 g) 0.52 ± 0.03 0.55 ± 0.02 0.02
Carbohydrates (g/100 g) 80.8 ± 0.3 87.3 ± 0.2  < 0.001
Energy (kcal/100 g) 385.5 ± 0.4 392.15 ± 0.03  < 0.001
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where R is the bleaching rate of β-carotene in the mixture; 
ln is the natural log; a is the absorbance in zero time; b is the 
absorbance in t time (t = 0, 5, 10, … 120 min).

The antioxidant activity was calculated according to the 
percentage of inhibition in relation to the control, using the 
following equation:

where Rcontrol and Rsample were the bleaching rates of 
β-carotene in the mixture without the antioxidant (Rcontrol) and 
with basidiocarp pileus or stipe extract (Rsample) [51].

Statistical analysis

Three dried samples of L. crinitus pileus or stipe (as 
described in “Biological material”) were used and all 
assays were carried out in triplicate (n = 9). Results were 
expressed as arithmetic mean values and standard devia-
tion. The results of each parameter were compared by means 
of the Student’s t test to determine the significant differ-
ence between samples (p ≤ 0.05). This analysis was carried 
out using SPSS software program (IBM SPSS software, 
Armonk, NY, USA). Antioxidant activity statistical analysis 
was determined by Tukey’s test (p ≤ 0.05).

(2)
Antioxidant activity =

[(

Rcontrol−Rsample

)

∕Rcontrol

]

× 100

Results

The whole basidiocarp has an average natural pileus:stipe 
proportion of 76:24 (mass:mass) based on the assay cultiva-
tion conditions. The basidiocarp is leathery (tough) when 
harvested at the senescence phase, as found in our study, 
but it is tender when harvested at the beginning of the fruc-
tification (young phase). The pileus that is tenderer than the 
stipe had 1.5- and 1.6-fold higher proteins and ashes than the 
stipe, respectively (Table 1). The pileus also had sevenfold 
more organic acids than the stipe and the major ones were 
malic and oxalic acids (Table 2). The pileus had 5.8-fold 
more malic acid than the stipe and more oxalic acid than that 
stipe, which has only traces (Table 2). Malic acid represents 
83 and 100% of total organic acids in the pileus and the 
stipe, respectively (Table 2).

The stipe presented a higher content of carbohydrates 
and energy than the pileus, but fat content was the same 
(Table 1). The stipe also had 1.1-fold higher total soluble 
sugars than the pileus, mainly sucrose that was 2.6-fold 
higher than the pileus, but mannitol was 2.2-fold lower than 
the pileus (Table 2). Trehalose content was the same for 
the pileus and the stipe, and it represents 88 and 82% of the 
total soluble sugar content, respectively (Table 2). The stipe 
had also 1.5-fold higher phenolic acids than the pileus and 
the major acids were p-hydroxybenzoic and cinnamic acids 
(Table 2). The stipe had 1.5-fold more p-hydroxybenzoic 
acid than the pileus, but the cinnamic acid was 2.1-fold 
higher in the pileus than the stipe (Table 2). p-Hydroxyben-
zoic acid represents almost 100% of the phenolic acids in the 
pileus and the stipe (Table 2).

The lipid fractions of basidiocarp pileus and stipe pre-
sented similar compositions with 21 fatty acids identified 
by GC analyses (Table 3). Polyunsaturated fatty acids were 
the predominant class (~ 63%), followed by saturated fatty 
acids (~ 23%), and monounsaturated fatty acids (~ 14%) 
(Table 3). The amount of each lipophilic acid was similar in 
the pileus and the stipe (Table 3). The major compounds in 
the pileus and the stipe were C18 series such as the linoleic 
(~ 60%) and oleic (~ 13%) acids and C16 series such as the 
palmitic (~ 13%) acid (Table 3). The basidiocarp pileus and 
stipe presented important unsaturated fatty acids such as 
arachidic, eicosenoic, cis-11,14-eicosadienoic, cis-11,14,17-
eicosatrienoic, and heneicosanoic acids (~ 0.2% each) from 
the C20 series, and behenic (~ 2.5%) acid from the C22:0 
series, which are important essential fatty acids even in small 
amounts. In addition, basidiocarp pileus had β-tocopherol 
1.2-fold higher than the stipe (Table 3).

The basidiocarp pileus and stipe extracts presented 
low antioxidant activity by DPPH• method of ~ 6000- 
and ~ 12,000-fold lower than the control quercetin (Table 4). 
However, the pileus and stipe extracts had high antioxidant 

Table 2   Chemical composition in the hydrophilic extract (sugars, 
organic acids, and phenolic acids) of Lentinus crinitus basidiocarp 
pileus and stipe

Values expressed as arithmetic mean ± standard deviation (dry basis)
tr trace
p value indicates significant differences by the Student’s t test 
(p ≤ 0.05; n = 9)

Compound Basidiocarp p value

Pileus Stipe

Sugars (g/100 g)
 Mannitol 0.18 ± 0.001 0.08 ± 0.02  < 0.001
 Sucrose 0.260 ± 0.007 0.69 ± 0.02  < 0.001
 Trehalose 3.13 ± 0.07 3.2 ± 0.3 0.528
 Total soluble sugars 3.57 ± 0.06 3.97 ± 0.50 0.039

Organic acids (mg/100)
 Oxalic acid 165 ± 1 tr –
 Malic Acid 801 ± 12 137 ± 1  < 0.001
 Fumaric acid 0.0425 ± 0.0006 tr –
 Total organic acids 966 ± 15 137 ± 1  < 0.001

Phenolic acids (µg/100 g)
 p-Hydroxybenzoic acid 537 ± 4 791 ± 3  < 0.001
 Cinnamic acid 81.2 ± 0.2 38.2 ± 0.5  < 0.001
 Total phenolic acids 537 ± 4 791 ± 3  < 0.001
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activity by FRAP method of 3.4- and 2.5-fold higher, 
respectively, than the control trolox (Table 4). The pileus 
and stipe extracts at 100 mg/mL protected 56 and 42% of 
the β-carotene against oxidation, respectively. These values 
are equivalent to 62 and 47% of trolox protection activity 
(control), respectively (Fig. 1). The antioxidant activity of 
the basidiocarp pileus and stipe by FRAP, a polar aqueous 

method, and BCLA, a nonpolar method, are in agreement 
with the phenolic and the organic polar acids, and the non-
polar tocopherol, natural antioxidants found in L. crinitus of 
our study (Table 4 and Fig. 1). 

The basidiocarp pileus and stipe extracts were not effec-
tive to inhibit the growth of tumor and non-tumor cells at 
a concentration higher than 300 µg/mL against HepG2 and 

Table 3   Chemical composition 
in the lipophilic extract (fatty 
acids, relative percentage, 
and tocopherols) of Lentinus 
crinitus basidiocarp pileus and 
stipe

Values expressed as arithmetic mean ± standard deviation (dry basis)
nd not detected
p value indicates significant differences by the Student’s t test (p ≤ 0.05; n = 9)

Compound Basidiocarp p value

Pileus (%) Stipe (%)

Caproic acid (C6:0) 0.264 ± 0.001 0.317 ± 0.001  < 0.001
Caprylic acid (C8:0) 0.317 ± 0.005 0.189 ± 0.007  < 0.001
Capric acid (C10:0) 0.66 ± 0.02 0.1229 ± 0.0009  < 0.001
Lauric acid (C12:0) 0.546 ± 0.004 0.463 ± 0.003  < 0.001
Myristic acid (C14:0) 1.23 ± 0.02 1.33 ± 0.01  < 0.001
Pentadecanoic acid (C15:0) 0.919 ± 0.008 1.77 ± 0.03  < 0.001
Palmitic acid (C16:0) 13.40 ± 0.03 12.80 ± 0.07  < 0.001
Palmitoleic acid (C16:1) 0.216 ± 0.009 0.360 ± 0.002  < 0.001
Heptadecanoic acid (C17:0) 0.420 ± 0.007 0.77 ± 0.01  < 0.001
Stearic acid (C18:0) 2.94 ± 0.02 2.23 ± 0.01  < 0.001
Oleic acid (C18:1n9) 13.5 ± 0.4 12.65 ± 0.04  < 0.001
Linoleic acid (C18:2n6) 59.9 ± 0.4 61.80 ± 0.03  < 0.001
α-Linolenic acid (C18:3n3) 2.04 ± 0.03 1.20 ± 0.04  < 0.001
Arachidic acid (C20:0) 0.2448 ± 0.0008 0.197 ± 0.002  < 0.001
Eicosenoic acid (C20:1) 0.2974 ± 0.0005 0.118 ± 0.002  < 0.001
cis-11,14-Eicosadienoic acid (C20:2) 0.326 ± 0.009 0.28 ± 0.01  < 0.001
cis-11,14,17-Eicosatrienoic acid and heneicosanoic acid 

(C20:3n3 + C21:0)
0.271 ± 0.004 0.51 ± 0.02  < 0.001

Behenic acid (C22:0) 2.31 ± 0.05 2.452 ± 0.001  < 0.001
Erucic acid (C22:1n9) 0.053 ± 0.002 0.058 ± 0.002  < 0.001
Lignoceric acid (C24:0) nd 0.393 ± 0.006 –
Total saturated fatty acids (% total fatty acids) 23.23 ± 0.04 23.0 ± 0.1 0.001
Total monounsaturated fatty acids (% total fatty acids) 14.3 ± 0.3 13.18 ± 0.04  < 0.001
Total polyunsaturated fatty acids (% total fatty acids) 62.5 ± 0.4 63.74 ± 0.07  < 0.001
Tocopherols (µg/100 g)
 β-Tocopherol 491 ± 4 394 ± 3  < 0.001

Table 4   Antioxidant activity 
from extract of Lentinus crinitus 
basidiocarp pileus and stipe by 
free radical reduction method 
2,2-diphenyl-1-picrylhydrazyl 
(DPPH•) and ferric reducing 
antioxidant power (FRAP)

Values expressed as arithmetic mean ± standard deviation (dry basis). Different letters in the same row indi-
cate significant differences by the Tukey test (p ≤ 0.05; n = 3)
na not applicable, IC50 half maximal inhibitory concentration

Parameter Quercetin Trolox Basidiocarp

Pileus Stipe

DPPH•
(IC50 in mg/mL)

0.02 ± 0.10a na 99 ± 2b 197 ± 4c

FRAP
(µmol Fe+2/g of sample)

na 10.5 ± 0.9c 35.4 ± 0.1a 26.1 ± 0.1b
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higher than 400 µg/mL for MCF7, NCI-H460, HeLa, and 
PLP2 cells compared to the control ellipticine (3.2 µg/mL) 
(Table 5). This and the GI50 values indicate that the basidi-
ocarp pileus and stipe had no cytotoxicity activity against 
tumor and non-tumor cell lines.

Discussion

The high protein and low fat and energy contents of edible 
basidiocarps are appropriated for using them in low caloric 
diets [52]. Basidiocarp pileus of Pleurotus ostreatus has 
threefold more protein content than the stipe [53–55]. Our 
study showed that L. crinitus basidiocarp pileus has 1.5-fold 
higher protein content than the stipe. This value is similar to 
those reported for most of consumed basidiocarps [52–55, 
59]. The whole basidiocarp protein content of 25 basidiomy-
cetes (without L. crinitus) ranged from 13.2 to 62.8 g/100 g 
[56], and for Lentinus strigosus from 18.0 to 21.6 g/100 g 
[57]. For L. crinitus, protein content of 9.8 g/100 g (value 
converted from 6.25 to 4.38 factor; original value was 
14.0 g/100 g) was reported [33], from 10.5 to 14.4 g/100 g 
[58], and from 20.0 to 27.0 g/100 g [32]. Our results showed 
the protein content was 13.3 g/100 g (14.5 g/100 g for the 
pileus and 9.5 g/100 g for the stipe), considering 76:24 
(mass:mass) proportion that could vary according to car-
bon dioxide level in the cultivation room. It indicates that 
the protein content in edible basidiocarps varies, but our 
results are like those found in the literature for L. crinitus. 
However, it is below the range reported by Chang and Miles 
[59] that is from 19 to 35 g/100 g for edible basidiocarps 
and some other foods such as soybean (39.1 g/100 g) and 
in milk (25.2 g/100 g), but higher than rice (7.3 g/100 g) 
and equivalent to wheat (13.2 g/100 g). Nevertheless, the 
protein content reported for basidiocarps must be compared 
with some caution because it may vary due to lack of moist 

Fig. 1   Antioxidant activity of the extract of Lentinus crinitus basidi-
ocarp pileus and stipe by the cooxidation of β-carotene/linoleic acid 
(BCLA) method. Values expressed as arithmetic mean ± standard 
deviation (dry basis). Different upper-case letters between basidi-
ocarp pileus and stipe, at same basidiocarp extract concentration, and 

different lower-case letters among basidiocarp pileus and/or stipe, at 
different basidiocarp extract concentrations, indicate statistical dif-
ference by Tukey’s test (p ≤ 0.05). Positive control trolox at 0.2 mg/
mL = 89.80 ± 4.13% β-carotene protection

Table 5   Cytotoxic activity of the methanolic extracts of Lentinus 
crinitus basidiocarp pileus and stipe and positive control ellipticine 
against human tumor cell lines and non-tumor cells

Values expressed as arithmetic mean ± standard deviation (dry basis). 
GI50 = extract concentration corresponding to 50% growth inhibition 
activity
MCF7 breast adenocarcinoma, NCI-H460 lung carcinoma, HeLa cer-
vical carcinoma, HepG2 hepato cellular carcinoma
p value indicates significant differences by the Student’s t test 
(p ≤ 0.05; n = 9)

Cell line Basidiocarp p value Ellipticine 
(GI50 µg/
mL)Pileus 

(GI50 µg/
mL)

Stipe (GI50 µg/
mL)

Tumor cell
 HepG2 303 ± 6 336.3 ± 0.5  < 0.001 3.2 ± 0.5
 MCF7  > 400  > 400 – 0.91 ± 0.04
 NCI-H460  > 400  > 400 – 1.42 ± 0.01
 HeLa  > 400  > 400 – 1.1 ± 0.2

Non-tumor cell
 PLP2  > 400  > 400 – 2.06 ± 0.03
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sample control and information of the conversion factor, 
which should be 4.38 instead of 6.25 (generally used for 
other foods), mainly because basidiocarps have high non-
protein nitrogen content [56, 59].

Our study showed that trehalose represents more than 
80% of the total soluble sugars in the basidiocarp with 
similar amounts in the pileus and the stipe. Trehalose is 
the main carbohydrate in fungus, mainly because the glu-
cose by active transport is converted to trehalose [59], and 
according to Kalač [56], basidiocarps have an average of 
3.92 g/100 g, which is a close value found in our study for 
L. crinitus (3.2 g/100 g). Trehalose migrates from mycelia 
to basidiocarps, and protects the cells against stresses such 
as desiccation, temperature, and oxygen pressures [60, 61]. 
This protection mechanism seems to be related to malondial-
dehyde inhibition, a free radical naturally produced by lipid 
peroxidation with mutagenic and carcinogenic activities, and 
it could explain the capacity of L. crinitus enzymatic produc-
tion [19] and mycelial biomass growth [62] under extreme 
conditions of temperature and pH.

Species belonging to the genus Pleurotus contain carbo-
hydrates ranging from 47 to 82 g/100 g whereas Agaricus 
bisporus has 60 g/100 g; these water-soluble polysaccha-
rides have been reported to inhibit tumors [59]. Thus, the 
high carbohydrate (87 g/100 g) content, mainly trehalose 
(3.2 g/100 g) from L. crinitus of our study, has several appli-
cations such as functional food and cosmetic and therapeutic 
applications [63–65]. Trehalose has been obtained in rela-
tively small amounts by extraction from natural sources, 
chemical synthesis, microbial fermentation, and enzymatic 
conversion from maltose, but with low yield even using 
genetic engineering techniques [64, 66, 67]. According to 
Martirosyan and Singh [68], functional foods are natural or 
processed foods that contain known or unknown biologically 
active compounds at non-toxic amounts, and that provide a 
health benefit for the prevention, management, or treatment 
of a disease. L. crinitus basidiocarp, which is already regu-
larly consumed by the Yanomami Indians, can be a source 
of trehalose, as the fungus is robust and can easily grow in 
several lignocellulolytic substrates [58].

The fat content of commercial basidiocarps ranges from 
0.6 to 3.1 g/100 g (A. bisporus, Auricularia spp., Flam-
mulina velutipes, Lentinula edodes, Pholiota nameko, 
Pleurotus spp., Tremella fuciformis, and Volvariella volva-
cea) [59] and of wild basidiocarps from 0.4 to 3.8 g/100 g 
(Cortinarius glaucopus, Fistulina hepatica, Hygrophoropsis 
aurantiaca, Hypholoma capnoides, Laccaria laccata, Lac-
tarius salmonicolor, Lepista inversa, Russula delica, Suillus 
mediterraneensis, and Tricholoma imbricatum) [69]. In our 
study, L. crinitus basidiocarp showed 0.52 and 0.55 g/100 g 
fat content for the pileus and the stipe, respectively. Silva 
Neto et al. [33] reported 1.5 g/100 g of fat content for L. 
crinitus. This indicates that L. crinitus basidiocarp is an 

excellent alternative for low calorie diets. According to 
Chang and Miles [59], the energy value of the main culti-
vated basidiocarps ranged from 261 to 392 kcal/100 g, and 
L. crinitus basidiocarp, in our study, had 385 kcal/100 g in 
the pileus and 392 kcal/100 g in the stipe, which is simi-
lar to the main commercial basidiocarps. In addition to the 
reduced fat and caloric content, the fatty acids of L. crinitus 
basidiocarp in our study had a high nutritional value since 
the unsaturated fatty acid amount is threefold higher than 
the saturated ones. The linoleic acid (⍵-6) represents more 
than 60% fatty acids in L. crinitus basidiocarp in our study, 
and this polyunsaturated essential fatty acid is one of two 
essential ones to human diet. The linoleic acid represents 
28–76% of the total lipids in commercial basidiocarps, and 
has been identified as the main substance with antimutagenic 
activity in Agaricus blazei and Grifola frondosa [59]. In the 
cell metabolism, the linoleic acid is the precursor of the ara-
chidonic acid that promotes the production of inflammation 
mediators such as eicosanoids, prostaglandins, thrombox-
anes, and leukotrienes [70]. Thus, L. crinitus basidiocarp is 
associated with a healthy diet due to the low caloric value 
and a high polyunsaturated fatty acid content.

The hydrophilic fraction of L. crinitus basidiocarp, 
specifically organic acids, had malic (801 mg/100 g in 
the pileus) and oxalic (165 mg/100 g in the pileus) acids 
as major compounds. Organic acids in basidiocarps are 
related to taste and flavor formation such as malic acid that 
varies from 15 to 700 mg/100 g for Cantharellus cibarius 
[71], 217 mg/100 g for Agaricus brasiliensis [72], and 
2200 mg/100 g for Polyporus squamosus [73]. Oxalic acid 
has been reported with 76 mg/100 g P. squamosus [73] and 
115 mg/100 g for A. brasiliensis [72]. It indicates that the 
malic and oxalic acids in our study are among the highest 
levels found in the literature. The main phenolic acid found 
in our study was p-hydroxybenzoic acid, found in the pileus 
(537 µg/100 g) and stipe (791 µg/100 g) of L. crinitus basidi-
ocarp. The p-hydroxybenzoic acid content has been reported 
from 0 to 23.9 mg/100 g (average of 3.4 mg/100 g) among 
16 wild basidiocarps [74], and from 0.5 to 2.4 mg/100 g 
(average of 1.3 mg/100 g) among eight commercial basidi-
ocarps [75]. This indicates that the p-hydroxybenzoic acid 
in our study is among the lowest levels found in the cited 
literature in this paragraph. Cinnamic acid is a precursor of 
other complex phenolic compounds, mainly found in several 
plants, and with anticancer, antituberculosis, antimalarial, 
antifungal, antimicrobial, antiatherogenic, and antioxidant 
activities, and also used to alter the potency, permeability, 
solubility or other parameters of drugs [76]. Phenolic com-
pounds could improve chemical stability and shelf life of 
foods and cosmetics as they are strong antioxidants [77]. 
However, the phenolic acid content of L. crinitus basidiocarp 
in our study may explain its high antioxidant activity by the 
FRAP method, as the phenolic acids can chelate metals or 
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displace the electrical charge stabilizing free radicals [78, 
79]. In addition, as far as we know, this is the first report 
concerning the organic and phenolic acid contents of L. 
crinitus basidiocarp pileus and stipe.

Different basidiocarp compounds are associated with 
antioxidant activity [80], but tocopherols and phenolic 
compounds are the most important studied ones, although 
the organic acids have been associated with the antioxidant 
activity of A. brasiliensis, mainly for BCLA method [72]. 
Our results showed that L. crinitus basidiocarp pileus and 
stipe have high antioxidant activity by the FRAP and BCLA 
methods and high amounts of antioxidant compounds such 
as malic and p-hydroxybenzoic acids and β-tocopherol. 
Reis et al. [81] reported β-tocopherol contents of 48.2 and 
1.61 µg/100 g, respectively, for Pleurotus eryngii and A. 
bisporus. In our study, L. crinitus pileus and stipe had ~ ten-
fold more β-tocopherol (491.0 and 394.0 µg/100 g, respec-
tively) than cited P. eryngii and A. bisporus. In general, the 
basidiocarp antioxidant activity can be attributed to the abil-
ity to donate hydrogen, chelate metals, and its effectiveness 
as good scavengers of superoxide and free radicals [82]. Our 
results showed that L. crinitus pileus and stipe have 2.4- and 
1.5-fold more antioxidant activities than the positive control 
trolox, reinforcing that this basidiocarp is a functional food.

L. crinitus basidiocarp pileus and stipe had very low cyto-
toxicity against HepG2 and no cytotoxicity against MCF7, 
NCI-H460, and HeLa tumor cell lines. Cytotoxicity activity 
for several cell lines was reported for the panepoxydone-
compound isolated from L. crinitus [24, 83–87]. In addition, 
there were no cytotoxicity against PLP2 non-tumor cells—a 
mandatory cytotoxicity test [88]—showing that this basidi-
omycete might be used in diets as it is already done by the 
Amazonian Indians in Brazil [14].

Conclusions

The basidiocarp of L. crinitus has a pileus:stipe proportion 
of 76:24 (mass:mass). The pileus has high levels of protein, 
ash, tocopherols, and organic acids, mainly malic and oxalic 
acids. The stipe has a high content of carbohydrates, energy, 
soluble sugars, and phenolic acids, mostly p-hydroxybenzoic 
acid. Basidiocarp pileus or stipe has trehalose as the main 
soluble sugar and less than 1% fat being ~ 60% polyunsatu-
rated fatty acids, mostly linoleic and oleic acids, and ~ 13% 
saturated fatty acids, mostly palmitic acid. It has high antiox-
idant activity by FRAP and BCLA methods, but low antioxi-
dant activity by DPPH• method; it has no cytotoxic activity 
against tumor and non-tumor cells. The basidiocarp pileus 
and stipe of L. crinitus are functional foods with antioxi-
dant activity, and sources of protein, polyunsaturated fatty 
acids, malic acid, p-hydroxybenzoic acid, trehalose, and 

tocopherols. The basidiocarp has no cytotoxicity, enabling 
its use in the food, cosmetic, and pharmaceutical industries.
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