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Abstract: The presented case study illustrates the possibility of adding value to the biological surplus
remaining from the mushroom cultivation industry. In essence, the unused mushroom parts were
submitted to UV-C irradiation, with the purpose of increasing the vitamin D2 content and validat-
ing its extraction. Vitamin D2 concentration in three different mushroom species (Agaricus bisporus,
A. bisporus Portobello, and Pleurotus ostreatus) was obtained by high-performance liquid chromatogra-
phy (HPLC), by means of an ultraviolet (UV) detector. The method was validated using an A. bisporus
Portobello sample, and its reproducibility and accuracy were confirmed. Independently of the UV-C
irradiation dose, the effect on vitamin D2 concentration was significant, allowing it to increase from
less than 4 µg/g dry weight (dw) to more than 100 µg/g dw in all mushroom species. These results
are good indicators of the feasibility of industrial surplus mushrooms as sustainable vitamin D2 food
sources, besides contributing to strengthen the circularity principals associated to the mushroom
production chain.

Keywords: surplus mushroom; natural resources; UV-C irradiation; vitamin D2; natural-based
ingredients; circular economy

1. Introduction

The global mushroom market share is dominated by Agaricus bisporus (J.E.Lange)
Imbach (button mushroom), Lentinula edodes (Berk.) Pegler (shiitake mushroom) and
Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. (oyster mushroom) [1]. The production of mush-
rooms and truffles is dominated by Asia (78.2%), followed by Europe (14.7%), and then the
Americas (6.2%) [2]. During mushroom production, a percentage as high as 20% of surplus
might be generated [3]. These mushrooms have low industrial application, because they
are in an advanced stage of maturation, or they have deformed lids and/or stems that do
not meet the specifications established by retailers, so they are considered mushrooms of
low economic value. These unused mushrooms are often discarded, even though their high
nutritional compounds (e.g., proteins, carbohydrates) and valuable chemical compounds
(e.g., amino acids, polysaccharides, sterols) are not compromised [3–6].

Currently, the disposal procedures (such as incineration, burying, and landfilling)
employed to eliminate these surplus mushrooms generate some cost and may have an
environmental impact; these techniques can cause water source contamination, acidifi-
cation, eutrophication, air pollution, depletion of natural resources, eco-toxicity, among
others [3,6].

In this sense, innovative alternatives to add value to this surplus mushroom produc-
tion need to be explored. The irradiation of surplus mushrooms to obtain vitamin D2 is a
sustainable strategy to increase vitamin D availability. In Europe, for example, assessments
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of vitamin D intake showed that for 77–100% of adults (19–64 years old) and 55–100%
of elderly adults (>64 years old), vitamin D intake is inadequate [7,8]. In recent years,
with advances in the food industry, in parallel with consumer demand for natural-based
options, fortified or enriched foods with natural vitamin D2 are an innovative alternative,
particularly for specific groups such as vegans [9,10]. In addition, surplus mushroom
production can be used to prepare vitamin D2-enriched extracts that could be applied by
the pharmaceutical industry as nutritive supplements [3].

In their natural state, mushrooms present very low concentrations of vitamin D2 [11].
Nonetheless, several researchers have found them to be a rich source of ergosterol (a
precursor of vitamin D2), which can be converted into vitamin D2 by artificial UV irradia-
tion [11,12]. Studies assessing the effects of radiation on ergosterol conversion into vitamin
D2 using UV light are mostly available for cultivated species namely the ones with high
production value [11,13]. There are several examples of mushroom species where some
amounts of vitamin D2 have been developed after irradiation [11,13–16]. To the best of
the authors’ knowledge, the present study provides the first report of the use of surplus
mushrooms as a sustainable source of vitamin D2.

For natural vitamin D2 to be a real and promising alternative, it is necessary to find
suitable methodologies for its extraction, and to develop effective recovery processes.
Several technologies are available to extract and quantify vitamin D2 [17]. However, the
effectiveness of the employed methodologies is affected by factors such as time, temper-
ature, power, and solvent type. It is therefore important to combine the best operational
conditions to achieve the best vitamin D2 recovery indices [3,18].

In view of the growing consumer demand for natural-based ingredients, the objective
of this case study was to set the UV-C irradiation and extraction conditions that maximize
vitamin D2 contents in the surplus mushrooms production and, meeting the concept reduce-
reuse-recycle to minimize the surplus in the mushrooms production sector. The bioactive
effects and potential toxicity of vitamin D2-enriched extracts were also evaluated.

2. Materials and Methods
2.1. Samples Information, UV-C Irradiation and Reagents

The surplus production from P. ostreatus and A. bisporus (Portobello and white mush-
room) were supplied by Ponto Agrícola, Baião, north of Portugal. Subsequently, the fresh
samples were sliced (2 to 3 mm) and divided into the following four groups with twenty
specimens in each group: control (non-irradiated, 0.0 mJ/cm2), sample 1 (200 mJ/cm2),
sample 2 (800 mJ/cm2) and sample 3 (3200 mJ/cm2) [12,19].

The irradiation was performed at the Centro de Investigação de Montanha of Instituto
Politécnico de Bragança, Portugal and took place in an ultraviolet (UV-C) radiation chamber
(JP Selecta, Barcelona, Spain) with the following different exposure times: 0, 2, 6 and 10 min.
Before analysis, the samples were lyophilized and reduced to a fine, dried powder, and
mixed to obtain homogenized samples.

The standard of pure vitamin D2 was purchased from Acrōs Organics (Fair Lawn,
NJ, USA). HPLC-grade acetonitrile (99.9%) and n-hexane (95%) were purchased from
Fisher Scientific (Lisbon, Portugal). Dimethyl sulfoxide was purchased from Fisher Scien-
tific (Loughborough, UK), sulforhodamine B and ellipticine were acquired from Sigma-
Aldrich (St. Louis, MO, USA), four human tumor cell lines were acquired from Leibniz-
Institut DSMZ and one non-tumoral cell line was obtained from ATCC, LGC Standards
(Middlesex, UK).

Water was treated in a Milli-Q water purification system (TGI Pure Water Systems,
Greenville, SC, USA). Methanol and acetonitrile were of HPLC grade, from Lab-Scan
(Dublin, Ireland).

2.2. Method Proof Assays

The sensitivity and linearity of the HPLC analysis were determined and the method
was validated by the instrumental precision, repeatability, and accuracy, using the best



Agriculture 2021, 11, 579 3 of 8

extract obtained. Precision was accessed after six extractions of the same sample; each one
being analyzed twice in the same day. The repeatability was accomplished by analyzing the
mushroom sample, six times in the same day. The accuracy of the method was evaluated
by the standard addition procedure (percentage of recovery), with three additional levels
(25%, 50%, and 100% of the peak/area concentration), each one in triplicate. The standard
mixture (vitamin D2) was added to the sample and the extraction procedure was carried
out [20].

2.3. Extraction Methodology and Chromatographic Analysis

Vitamin D2 was extracted and analyzed according to the method described by Huang
et al. [21], with some modifications. Mushroom powder (2.5 g) was mixed with 10 mL of
dimethyl sulfoxide and ultrasound-oscillated at 45 ◦C for 30 min. Then 10 mL of methanol
and water (1:1, v/v) and 20 mL of hexane were added, and the mixture was ultrasound-
oscillated at 45 ◦C for 30 min and centrifuged at 5200× g for 5 min (Centurion K24OR,
West Sussex, UK). The residue was extracted twice with 20 mL of hexane and centrifuged.
The combined filtrate was rotary evaporated (Hei-VAP Advantage, Heidolph, Germany) at
40 ◦C to dryness, redissolved in 1 mL of methanol (Fisher Scientific, Loughborough, UK),
and filtered using a 0.1 µm Whatman nylon filter (Millipore, Billerica, MA, USA) before
HPLC injection.

The HPLC system (Knauer system, Smartline 1000, Berlin, Germany) coupled to
a UV detector (Knauer Smartline 2500) was used under the same conditions described
and optimized by Barreira et al. [22]. Chromatographic separation was performed with
an Inertsil 100A ODS-3 reverse phase column (5 µm, 250 × 4.6 mm, BGB Analytik AG,
Boeckten, Switzerland) at 35 ◦C. The mobile phase used was acetonitrile/methanol (70:30,
v/v) at a flow rate of 1 mL/min, with an injection volume of 20 µL and the wavelength was
280 nm. Subsequently, the results were analyzed using the Clarity 2.4 software (DataApex,
Pod Ohradska, Czech Republic). Vitamin D2 was quantified based on a calibration curve
obtained from a commercial standard vitamin D2, and the results were expressed in µg per
g of dry weight (dw).

2.4. Bioactivity of the Vitamin D2-Enriched Extract

According to the extraction results, the most potent extract (A. bisporus Portobello
irradiated with UV-C, 6 min, 3200 mJ/cm2) was chosen to test the bioactivity in cell lines.
In this assay, four human tumor cell lines (MCF-7—breast adenocarcinoma, NCI-H460—
non-small cell lung cancer, AGS—gastric cancer, and CaCo-2—colorectal adenocarcinoma)
and one non-tumoral cell line of bone origin (h-FOB 1.19—human osteoblasts) were used.

Cell proliferation in the presence and absence of functional extract and pure vitamin
D2 was assessed using the sulforhodamine B (SRB) assay. For this assay, the extract
prepared above was dissolved in water at a concentration of 8 mg/mL, the procedures
were performed as described previously by the authors [23,24], and the final concentrations
were 400, 100, 25 and 6.25 mg/mL. Ellipticin was used as a positive control. Absorbance was
measured at 495 nm and the results were expressed as GI50 values (sample concentration
that inhibited 50% of cell growth) in µg per mL.

2.5. Statistical Analysis

All analyses (extractions) were performed in triplicate and each replicate was also quanti-
fied three times. Data were expressed as mean ± standard deviation, presenting the significant
numbers in agreement with the magnitude of the corresponding standard deviation.

All statistical tests were applied considering a 5% significance level (IBM SPSS Statis-
tics for Windows, Version 22.0. Armonk; IBM Corp., Armonk, NY, USA). The results were
compared through two-way analysis of variance (ANOVA) with type III sums of squares,
performed using the general linear model (GLM) procedure. The analyzed statistical fac-
tors were “exposure time” (ET) and “ultraviolet radiation” (UV-C) and their effects were
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classified through the HSD Tukey’s test. The statistical interaction among these two factors
was verified in all cases.

3. Results and Discussion
3.1. Method Validation

For this case study, before the surplus mushroom extract analysis, the correlation
coefficient (R2), linearity range, and limits of detection and quantification (LOD and
LOQ, respectively) of the methodology employed to determine vitamin D2, were fully
validated (Table 1). After the linearity check (linearity range: 0.78–50 µg/mL), a seven-
level calibration curve (y = 11.909x + 6.9688) was made, using the peak/area ratio versus
concentration of the standard concentration (µg/mL), reaching a correlation coefficient of
0.9992. The average of the double determinations for each level was used.

Table 1. Calibration parameters of the method for vitamin D2 detection and quantification, and method validation
parameters using Agaricus bisporus Portobello irradiated with UV-C (6 min, 3200 mJ/cm2).

Calibration Curve
Correlation

Coefficient (R2)
Linearity Range

(µg/mL)
Limit

LOD 1 (µg/mL) LOQ 2 (µg/mL)

y = 11.909x + 6.9688 0.9992 0.78–50 1.67 5.07
Precision CV, % (n = 6) Accuracy (recovery, %) Precision CV, % (n = 6)

0.82 1.35 94
1 LOD: limit of detection of the chromatographic method; 2 LOQ: limit of quantification of the chromatographic method; CV: coefficient
of variation.

The LOD, calculated as the concentration corresponding to three times the standard
error of the calibration curve, divided by the inclination, was 1.67 µg/mL, while the LOQ,
i.d., the concentration corresponding to ten times the calibration error, divided by the
inclination, was 5.07 µg/mL.

In order to evaluate the instrumental precision, the mushroom sample (A. bisporus
Portobello, irradiated for 6 min at 3200 mJ/cm2) was injected six times, and the chromato-
graphic method proved to be precise, according to the coefficient of variation (CV) of 0.82%.
Repeatability was evaluated by applying the whole extraction procedure six times to the
same sample, and the CV value obtained was low (1.35%). The method accuracy was
evaluated by the standard addition procedure (% of recovery). The standard mixture was
added to the samples in three concentration levels (25%, 50% and 100% of the peak/area
concentration, each one in duplicate) before the extraction. The method showed good
recovery results, with an average of 94% (Table 1).

3.2. Conversion Conditions

The starting point is the use of surplus mushrooms as a sustainable material to obtain
vitamin D2, avoiding the use of mushroom suitable for commercialization.

In this sense, Table 2 presents the vitamin D2-enriched extracts content in different
mushroom species, exposed to different UV-C radiation doses and exposure times.

As it is mandatory in any two-way ANOVA, the possible interaction among the
assayed factors was verified (ET × UV-C). Since the interaction proved to be significant
(p < 0.050) in all the cases, it became obvious that the effect of one factor depends on the
level of the second.

Therefore, the variation induced by every single factor could not be classified. Nonethe-
less, it was possible to observe some evident trends, as confirmed by the individual p-values
of each factor. A significant increase (from less than 4 µg/g dw to more than 100 µg/g
dw in all the cases) in vitamin D2 concentration was observed with the application of
this irradiation type, most likely due to the conversion of ergosterol naturally present in
the assayed mushroom. Furthermore, there were no significant differences in the result
of using 200, 800 or 3200 mJ/cm2, which indicates that the vitamin D2 increase may be
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achieved with the least energetic consumption, making this processing approach more
competitive and with minimal environmental impact.

Table 2. Vitamin D2 content in different mushroom species exposed to different UV-C radiation doses
and exposure times (ET). The results are presented as mean ± SD 1.

Vitamin D2-Enriched Extracts (µg/g dw)

A. bisporus A. bisporus Portobello P. ostreatus

ET/min

0 3.77 ± 0.02 3.7 ± 0.2 2.38 ± 0.04
2 84 ± 7 109 ± 6 97 ± 11
6 125 ± 8 124 ± 11 125 ± 11
10 122 ± 1 127 ± 5 119 ± 7

ANOVA p-value 2 <0.001 <0.001 <0.001

UV-C (mJ/cm2)

0 3.77 ± 0.02 3.7 ± 0.2 2.38 ± 0.04
200 104 ± 22 113 ± 9 107 ± 20
800 111 ± 21 119 ± 9 114 ± 12
3200 116 ± 19 128 ± 10 119 ± 14

ANOVA p-value 2 <0.001 <0.001 <0.001

ET × UV-C p-value 3 <0.001 0.035 <0.001
1 Results are reported as mean values of each parameter (ET or UV-C), combining all exposure times and
irradiation doses (from ET or UV-C). 2 If p < 0.05, the corresponding parameter presented a significantly different
value for at least one ET or UV-C. 3 The interaction among factors was significant in all cases; thereby the statistical
classification could not be indicated.

With regard to exposure time, there were no significant differences upon irradiating
mushrooms during 6 or 10 min, but the intermediate assayed time was better than the
2 min. Hence, the optimal exposure time, considering the results obtained with the surplus
of assayed mushroom species, turned out to be 6 min. The origin of the mushroom, applied
dose, time after harvest, positioning of the mushrooms to the light source, fresh or dried
samples, whole or sliced samples, the method by which vitamin D2 has been extracted,
among others, influence the results obtained [12].

3.3. Vitamin D2-Enriched Extracts

As for the mushrooms evaluated in this work (e.g., for 6 min at 3200 mJ/cm2), vita-
min D2-enriched extract levels in the Portobello A. bisporus samples reached a maximum
concentration of 124 µg/g dw, and in the white A. bisporus and P. ostreatus samples they
reached values of 125 µg/g dw (Table 2, Figure 1).

In UV-C-irradiated P. ostreatus samples, Hu et al. [13] reported a maximum concentra-
tion of approximately 24 µg/g dw of vitamin D2 content. Teichmann et al. [25] reported
10.14 µg/g dw in white A. bisporus samples, Guan et al. [26] reported 13.4 and 9.5 µg/g
dw in white and Portobello A. bisporus samples, respectively, and Jasinghe and Perera [14]
reported 34.4 µg/g dw in white button mushrooms. Similarly, for UV-C-irradiated shiitake
(Lentinula edodes) mushroom, Xu et al. [27] obtained an increase in vitamin D2 content, until
20.11 µg/g dw.

Concerning UV-B irradiation, Urbain et al. [28] and Urbain et al. [29] obtained 56.8 and
67.1 µg/g dw of vitamin D2, respectively, in button mushrooms; Nölle et al. [30] reported
that fresh whole A. bisporus, followed by freeze-drying, obtained 45 µg/g dw of vitamin
D2, and slicing before UV-B irradiation led to a ten-fold increase.
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Figure 1. Vitamin D2-enriched extracts chromatogram profile of Agaricus bisporus Portobello (-),
white A. bisporus (.-.-) and Pleurotus ostreatus (...) irradiated with UV-C (6 min at 3200 mJ/cm2), and
A. bisporus Portobello control samples (..-..-).

There are dissimilarities in the irradiation process and conditions to maximize the
photoconversion of ergosterol into vitamin D2 in mushrooms, and most of these cited
studies were performed with the whole intact mushroom, with a longer irradiation time
(20 min) and higher irradiation dose.

In this sense, based on the case study considered in this work, we make the first
attempt to establish the irradiation conditions and extraction procedure needed to maximize
ergosterol conversion to vitamin D2 from surplus mushroom production, avoiding the
need to use mushroom samples that are suitable to be commercialized.

3.4. Bioactivity of the Vitamin D2-Enriched Extract

The in vitro cytotoxicity of the vitamin D2-enriched extract and pure vitamin D2
was analyzed. The effect of the vitamin D2-enriched extract and pure vitamin D2 in
human tumoral cell lines (MCF-7, NCI-H460, AGS and CaCo) and non-tumoral bone cell
line (h-FOB 1.19) growth are presented in Table 3. The GI50 values represent the extract
concentrations that cause a 50% inhibition of cell growth.

Table 3. Antiproliferative and cytotoxicity activities of vitamin D2-enriched extracts using Agaricus
bisporus Portobello irradiated with UV-C (6 min, 3200 mJ/cm2) and pure vitamin D2 (mean ± SD, n = 9).

MCF-7 NCI-H460 AGS CaCo h-FOB 1.19

Vitamin D2-enriched
extracts (GI50 µg/mL) >400 293 ± 17 b 82 ± 9 c 377 ± 24 a >400

Vitamin D2 pure
(GI50 µg/mL) >400 >400 >400 >400 >400

The cytotoxicity results were expressed as GI50 values, corresponding to the sample concentration that inhibited
50% of the net cell growth. In row, different letters mean significant differences (p < 0.05).

The sample of pure vitamin D2 tested did not reveal cytotoxicity at the evaluated
concentrations (GI50 values > 400 µg/mL) for all the cell lines tested (tumoral and non-
tumoral). However, the vitamin D2-enriched extract presented effective activity in the AGS
(82 µg/mL) tumoral cell line, and moderate activity in the NCI-H460 (293 µg/mL) and
CaCo (377 µg/mL) tumoral cell lines.

The results obtained indicate that these effects may be related to the compounds
(including ergosterol, phenolic compounds, organic acids, etc.) present in the mushroom
extract, since the mushrooms are a rich source of bioactive compounds [31]. It is noteworthy



Agriculture 2021, 11, 579 7 of 8

that neither vitamin D2-enriched extracts or pure vitamin D2 presented cytotoxicity against
the non-tumoral bone cell, h-FOB 1.19 (GI50 > 400 µg/mL).

4. Conclusions

Based on the case study considered, vitamin D2-enriched extracts were obtained by
HPLC-UV, using a methodology that proved to be reproducible and accurate. Vitamin D2
was identified and quantified, and A. bisporus Portobello was the species with the highest
total content. The recovery of vitamin D2 from surplus mushrooms presents an interesting
valorization and sustainable approach.

The use of vitamin D2-enriched extracts from surplus mushroom production could
benefit several bio-based industries, since the applications of vitamin D2 from this sus-
tainable material are nonexistent. Accordingly, the development of food applications of
mushroom vitamin D2-enriched extract, from surplus mushroom production, can be con-
sidered and valued. It could be of added value to promote the agricultural sector or the
pharmaceutical industries.
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