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Abstract: Type 2 diabetes mellitus is a complicated metabolic disorder characterized by
hyperglycemia and glucose intolerance. It is considered a new pandemic and its control
involves numerous challenges. Although many of the measures are based on improving
life habits, diet is also of vital importance due to bioactive compounds present in food. In
this  regard,  several  raw materials  have  been  investigated  whose  bioactivities  seem to
slow the progression of this disease. Within these matrices, there are algae of importance,
such as brown algae, showing to have beneficial effects on glycemic control. These pie-
ces of evidence are increasing every day due to the development of cell or animal mod-
els, which lead to the conclusion that bioactive compounds may have direct effects on de-
creasing  hyperglycemia,  enhancing  insulin  secretion  and  preventing  the  formation  of
amyloid plaques.
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1. INTRODUCTION

1.1. Definition and Classification of Diabetes
Diabetes mellitus (DM) is a complex metabolic dis-

order  caused  by  the  deficiency of  insulin  effects  and
characterized by a high level of blood glucose (hyperg-
lycemia)  [1].  The  elevated  levels  of  glucose  in  the
blood can interfere with the metabolic pathways of pro-
teins, carbohydrates, and fats in the organism causing
severe complications [2]. Insulin, a peptide hormone,
is produced by the β-Langerhans islet cells of the pan-
creas from precursors preproinsulin and proinsulin. In
a  normal  physiological  state,  a  higher  blood  glucose
level (after a meal) triggers the release of insulin from
the pancreas, which thereafter spark the metabolism of

*Address correspondence to these authors at the Nutrition and Bro-
matology Group, Analytical and Food Chemistry Department, Fac-
ulty of Food Science and Technology, University of Vigo, Ourense
Campus, E-32004 Ourense, Spain; Tel: +34-654-694-616;
Fax: +34-988-387060; E-mails: mprieto@uvigo.es (M.A.P),
jsimal@uvigo.es (J.S.-G).

glucose in the liver, but also the elimination of glucose 
from the blood by muscle and adipose cells. All of the 
above lead to a reduction of high blood sugar concen-
tration to ordinary values [2].

However, if the production and secretion of insulin 
(Fig. 1) are disrupted by various factors (genetic and/or 
environmental) or if the insulin action is injured, the 
or-ganism will be producing sugar through glycogen, 
pro-tein, and lipid metabolisms, leading to 
hyperglycemia. Besides, this state can increase 
protein catabolism and lipolysis and induce liver 
impairments manifested by  metabolic  acidosis  and  
overproduction  of  ketone bodies [3, 4]. 
Additionally, in the state of diabetes, the following 
conditions can also develop: polyuria or forming high 
quantities  of  urine  accompanied  by  glycosuria (high 
concentration of glucose in urine), polyphagia or 
increased  appetite,  polydipsia  or  higher  need  for 
liquids, possible weight loss, and severe consequences 
such as ketosis, acidosis, and coma. Hereby, there is an 
elevation of lipolysis and reduced possibility of amino 
acids entering the muscle tissues [1]. All above-
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Fig. (1). Illustrative presentation of effects of insulin deficiency. Created in BioRender.com. (A higher resolution/-colour 
version of this figure is available in the electronic copy of the article).

mentioned factors, in particular, hyperglycemia, cause
an  increment  of  oxidative  stress,  boost  inflammation
processes,  activate  the  polyol  pathway  and  lead  to
long-term damage, micro- and macrovascular compli-
cations,  severe  failure  of  numerous  organs  (kidneys,
eyes, brain, heart, cardiovascular system), and fatal out-
come, death [3, 5].

Diabetes, as a debilitating, chronic disease, is threat-
ening because of complications arising on different lev-
els that can lead to serious acute and chronic manifesta-
tions. With severe problems that occur in diabetic pa-

tients, their quality of life is significantly disturbed and
life expectancy is reduced [6].

There are several types of diabetes, but two are the
most  prominent.  Type  1  diabetes  mellitus  (T1DM),
formerly known as insulin-dependent DM or “juvenile
diabetes”, represents an autoimmune disorder in which
β–cells  in  the  pancreatic  islets  are  rapidly  destroyed,
causing impaired insulin secretion, which further leads
to insulin deficiency in the organism [7, 8]. T1DM af-
fects mostly children and adolescents and accounts for
3–5% of total cases [1]. The children with T1DM are
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inclined to develop ketoacidosis, so the essential thera-
py is based on insulin administration on a daily basis
to control the glucose concentration in the blood [3].

On the other hand, type 2 diabetes mellitus (T2D-
M), formerly identified as non-insulin-dependent dia-
betes  mellitus,  is  characteristic  for  adults.  Generally,
the incidence of T2DM increases in patients who are
more than 30 years old [6]. T2DM occurs because of
impaired insulin release from the pancreatic β-cells fol-
lowed by insulin  resistance (IR) in  peripheral  tissues
(brain, liver, skeletal muscle, and adipose tissues). Be-
cause of IR, the secretion of insulin increases greatly,
but also the hyperglycemia [1, 8].

Another type of diabetes, which receives more at-
tention nowadays, is gestational diabetes (GDM). Con-
ferring with the Centers for Disease Control and Pre-
vention, it is deemed a category of diabetes that occurs
first time during pregnancy [9]. The cause of this mani-
festation  is  still  unknown.  On  a  yearly  level,  around
10% of all pregnancies in the USA are affected by this
type  of  diabetes  [10].  It  usually  develops  in  middle
pregnancy and may cause the development of chronic
diabetes in the mother, as well as the baby.

Still,  T2DM  holds  a  devastating  record  affecting
more than 90% of total diabetes cases in Western coun-
tries. Nowadays, there is an alarming upward trend of
T2DM development in children [3]. The genetic predis-
position, ethnicity, older age, unhealthy lifestyle, smok-
ing, and bad dietary habits promote the probability of
T2DM development. The initial stage in T2DM is indi-
cated by hyperfunction of  pancreatic  β-cells,  causing
their dysfunction and promoting apoptosis [7]. It is in-
teresting  that  years  can  pass  before  the  presence  of
type 2 diabetes is properly diagnosed due to the lack of
recognizing the symptoms of this disease. T2DM in pa-
tients, initially, does not require insulin treatment since
the first symptoms could be monitored and prevented
by a healthy diet, physical activity, lifestyle change in
general, and using medication if necessary [6]. Howev-
er, if there is a serious disturbance of β–cells activity,
regular doses of insulin are of the greatest necessity so
that  the  organism  can  survive  a  condition  that  is
brought  upon it  [6].  Also,  the IR acts  in  a  disturbing
manner on signaling pathways affecting all metabolic
reactions  connected to  insulin  activity,  in  addition to
causing dysfunction of the endoplasmic reticulum, ac-
cumulation of lipids and development of an inflamma-
tion response [6].

Many  pharmacological  and  non-pharmacological
treatments  are  in  use  in  T2DM  therapy,  but  there  is
still  no  completely  efficacious  treatment  of  the  DM
causes.  Patients  are  advised  to  change  their  lifestyle

and diet,  to reduce stress levels,  and to monitor their 
condition. If that is not helpful, drug therapy is includ-
ed, but this is still  just focused on treating the symp-
toms of diabetes, not its cause [5]. The routine injec-
tion of insulin is the most common therapy, and also 
the administration of synthetic drugs. The antidiabetic 
drugs have different targets of actions, such as reduc-
ing the resistance of insulin, postponing the carbohy-
drate  absorption,  boosting  the  release  of  insulin,  the 
sensitivity  to  insulin  can  be  enhanced  by  drugs  and 
some can act in the same way as insulin [11, 12]. The 
therapies  with  antidiabetics  are  mostly  considered  to 
be lifelong, but many drugs are reported to exert quite 
serious side effects, moderate like nausea or diarrhea, 
weakness,  weight  gain,  but  also  severe  like  haema-
turia, proteinuria, gastrointestinal disturbances, and car-
diovascular  mortality  [4,  5,  12].  Therefore,  the  quest 
for  new  drug  candidates  with  advanced  antidiabetic 
properties and the absence of negative effects still cont-
inues. In this respect, medicinal plants, mushrooms, al-
gae, and pure natural compounds may be used as safe 
alternatives  with  many  benefits  for  human  health, 
among which  crucial  are  antidiabetic  properties  with 
various modes of action [6, 13-15].

1.2. Considering Diabetes as a New Pandemic of the 
21st Century

World Health Organization (WHO) proclaimed dia-
betes as an epidemic illness, and the unique non-infec-
tious  disease  with  such  categorization  [11].  Factors 
such as behavior, genetics and socioeconomics have a 
great impact on diabetes. The literature shows that the 
global burden of diabetes is on the rise [16, 17].  Ac-
cording to the recent data, it was estimated that about 
463 million adult people (age 20-79 years) 
worldwide were affected by diabetes in 2019, which is 
four-fold higher  compared  to  the  number  in  the  
1980s  [8].  It should be emphasized that nearly 50% 
of people with diabetes are not aware of the fact that 
they have diabetes [17]. Continuing this trend, the 
number of people  with  diabetes  will  increase  over  
600  million  by 2040 [11, 17]. Data related to the 
global burden of dia-betes,  its  prevalence  and  
associated  risks  are  summarized  in  Fig.  (2).

The observation regarding the area of living and the 
county income suggests that higher prevalence is in ur-
ban rather than in rural areas, and in high-income than 
in low-income countries. Among adults with diabetes 
in 2019, nearly half of them lived in five nations: Chi-
na, India, the USA, Pakistan and Brazil [18]. Looking 
by gender, the prevalence is higher in men compared 
to women [19]. In 2012, about 3.7 million deaths were 
associated with diabetes or glucose levels higher than
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Fig. (2). Global burdens of DM. (A higher resolution/colour version of this figure is available in the electronic copy of the arti-
cle).

optimal,  and  43%  of  deaths  occurred  in  people 
younger than 70 [5]. The latest figures show that about 
11.3% of global deaths are due to diabetes, on a global 
level, and almost half of these deaths are people un-der 
60 years of age [18].

Among  the  major   types  of  this   chronic  disease, 
T2DM is the most prevalent, accounting for about 90% 
of people with diabetes [3, 11, 20]. Children and ado- 
lescents   (aged  under  20)  are  the  most  vulnerable 
groups   with   respect  to  T1DM.  On  the  other   hand, 
T2DM is diagnosed in adults (>20), but there has been 
some evidence that it  is increasing in some countries 
among  children  and  adolescents   [18].  Risk   factors 
closely linked to the development of T2DM are obesi- 
ty/overweight,   lack  of  physical  activity,  smoking 
habits, excessive consumption of alcoholic beverages, 
ethnicity (South Asian, Afro-Caribbean, Hispanic), etc. 
[21]. Unlike for T2DM, genetic susceptibility and un- 
known environmental causes are risks for T1DM. Un- 
fortunately, with the standard of living increasing, so is 
the  prevalence  of  both  diabetes types worldwide 
[17, 21, 22]. 

Although  DM  is  a  chronic  disorder,  individuals 
with diabetes can lead a normal life at the same time, 
taking  care  that  diabetes  is  under  control.  Lifestyle 
changes (changes in daily habits) and nutritional thera-
py  are  essential  components  of  any  diabetes  control 
plan.  Lifestyle  changes  can  be  an  effective  mode  to 
control diabetes. Better blood sugarcontrol can slow the 
evolution of long-term compli-cations. Nutrition 
modification in people with diabetes is often very 
complex, and should take into considera-tion 
individual  nutritional  needs,  cultural  preferences and 
lifestyle. Often, the help of a skilled dietitian is crucial 
in ensuring the proper nutrition therapy. Changing the  
type  and quantity  of  food intake  can  help  people 
with diabetes to lose weight, improve control of blood 
sugar  levels  and  lower  blood  cholesterol  levels  and 
blood pressure. Dietary practices differ from region to 
region, but socioeconomic status also has a great influ-
ence  on  diet  habits.  The  main  advice  of  diabetes  ex-
perts is to reduce carbohydrate levels in diet along with 
reducing the fat intake and to use higher quality food 
ingredients [23]. A well-balanced diet should contain 
carbohydrates (preferably from grains,  fruits,  vegeta-
bles and low-fat milk), proteins, fats, suitable quanti-
ties of vitamins and minerals from natural food sources 
[24]. The usual days’ meals and snacks should supply 
about 1,500–2,000 calories provided by carbohydrates,
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proteins and fats in approximate relation of 50, 20 and 
30%, respectively [25].

Besides  proper  nutrition,  physical  activity  is  also
important for people with diabetes. Even people with 
long-term  diabetes  or  its  complications  can  benefit 
from exercise. The exercise improves the patients' car- 
diovascular condition and helps with weight loss, low- 
ers blood pressure, improves lipid profiles, in some cas- 
es improves blood sugar control and leads to a better 
overall condition of the body. In some people, it can al- 
so prevent the development of T2DM [26, 27].

1.3. Problems Arising from T2DM
As a metabolic disorder, diabetes of any type is as- 

sociated with different health problems and shorter life 
expectancy.  Over  time,  elevated  glucose  levels  may
provoke both acute and chronic complications and de- 
velopment of eye diseases (retinopathy), cardiovascu- 
lar diseases, chronic kidney disease, nerve and vascu- 
lar damage and stroke blindness [16, 18]. The risk of 
fetal death and other complications is increased in preg- 
nancy if diabetes is not properly controlled [18, 27]. In 
addition  to  adequate  anti-diabetic  therapy  (both  drug 
and nutrition), psychological adjustment to diabetes is 
equally  important,  as  diabetes-related  emotional  dis- 
tress may negatively influence glycemic control [28].

Economic and social impacts imposed by diabetes 
should not be neglected. For the treatment of diabetes 
and its complications, billions of dollars are spent ev- 
ery year [22].  This includes both direct (treatment of 
complications) and indirect (premature death, disabili- 
ty and other health complications) costs of the annual 
global health expenditures associated with the condi- 
tion. The discrepancy between diabetes-related health 
expenditure and the number of people suffering from 
diabetes  in  countries  of  different  income  levels  is 
notable. It is estimated that 95% of the global health ex-
penditure on diabetes is allocated from the world’s rich-
est countries, North America (57%), Europe (28%) and 
Western Pacific (10%) [29]. The mortality related to di-
abetes-related premature deaths (90%) and all  deaths 
due to diabetes (87%) is the highest in low- and mid-
dle-income countries. The low rate of diabetes diagno-
sis  and  difficulties  in  acquiring  the  proper  medicinal 
care in these countries are closely associated with such 
mortality outcomes [18].

Nonetheless, several trials have demonstrated that 
changes in lifestyle and pharmacology could postpone 
or  prevent  the  development  of  T2DM.  Additional 
studies showed that implementing lifestyle changes for 
diabetes prevention in primary medical care and other 
approaches  such  as  remote  support  (phone,  email,

DVD, and the Web), meal replacement, etc. might give 
satisfactory results. It is necessary to put effort at both 
national  and  international  levels  to  identify  persons 
that are at risk of diabetes, and systematically imple-
ment these interventions. Health education in schools, 
food policy, acts that promote early detection and inten-
sive management of type 2 diabetes, as parts of social 
in-terventions should be promoted [30]. Regular 
control of  metabolic  parameters  (glucose,  HbA1c,
lipids, blood pressure, body weight, and renal 
function), and the quality of life, are important factors 
in providing ef-fective outcome in diabetes and 
diabetes-related diseas-es management.

2. MECHANISMS OF NATURAL PRODUCTS- 
BASED DIETS IN TREATING IR

Considering the  increase  in  the  number  of  people 
with DM, it is necessary to investigate mechanisms to 
combat  it.  However,  there  are  also  several  measures 
whose objective is to prevent the appearance of the 
dis-ease.  IR  may  be  a  predictor  of  T2DM,  so  taki n g  
t h e  measures to prevent this problem could reduce the  
number of patients with T2DM [31]. Basically, these  
measures focus on changes in diet and lifestyle,  
especially in the case  of  the  aging  population  [32].  In  
this  regard,  increasing the consumption of plants an d 
algae may be interesting,  as  they  have  considered  
effective  tools  for the prevention and control of T2DM 
[33]. In fact, leguminous  plants,  whole  grains,  
vegetables,  fruits,  nuts and seeds, have been linked with 
inferior rates of obesity, hypertension, hyperlipidemia,  
cardiovascular mortality  and  cancer.  Therefore,  it  is  
of  great  interest  to study  eating  patterns  [34].  
Nevertheless,  additional studies are still required to  
adequately comprehend the action  of  macronutrients
and  factors  such  as  the amount in which they are  
present or the metabolic and genetic differences between  
persons. All of this makes it complicate to standardize a 
diet, requiring their monitoring.

Nowadays, there is a negative trend between high 
levels of glycemic index and consumption of saturated 
fatty acids and carbohydrates. In contrast, diets with a 
low content in carbohydrates and high content in pro-
teins induce weight loss, but cause long-term 
metabolic damage [35]. Moreover, high-fat (especially 
saturated) diets have negative effects on insulin sensi-
tivity and could contribute to the development of 
T2DM [36, 37]. In this regard, fiber and phytonutrient 
consumption, which are only present in plant foods, is 
remarkable. Different studies show that a high con-
sumption of fiber (> 25 g / day in women and > 38 g / 
day in men) reduces the probability of developing 
T2DM by 20-30%, observing a higher effect when con-
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suming large amounts of whole grains and insoluble ce-
real fibers, since they do not significantly affect post-
prandial  glucose  responses.  This  would  not  happen 
with fruits and vegetables because they contain soluble 
and,  therefore,  digestible  fibers  [38].  However,  these 
fermentable fibers give rise to short-chain fatty acids 
that  increase  glucose  response  and  insulin  signaling 
and  sensitivity  [39].  Regarding  cereals,  t he i r 
fiber s  prevent the  absorption  of  proteins,  
regulating  the metabolism of amino acids [38]. 
Moreover, fibers have a satiating effect, which leads 
to weight loss and conse-quent reduction in IR 
[40]. IR begins in the hypothala-mus, creating an 
imbalance of satiety and hunger sig-nals.  This  
imbalance  causes  an  excessive  increase  in calorie 
consumption, compromising the storage of the 
excess of fat, which can have a noteworthy role 
in the control of IR [41]. Thus, satiety is important to 
manage IR.

Another interesting mechanism to prevent T2DM is 
the  promotion  of  healthy  body  weight  since  visceral 
obesity  (not  subcutaneous)  leads  to  increased IR and 
excessive accumulation of lipids in the liver, augment-
ing the risk of developing the disease. The accumula-
tion of lipids can result in impaired insulin signaling or 
inflammation, which entails deterioration of the action 
of insulin due to the action of macrophages. In the case 
of subcutaneous fat, this does not happen since it pre-
vents  the  fat  from reaching the  liver  [42].  In  conclu-
sion, to improve metabolic parameters of IR it is prefer-
able to maintain a negative energy balance better than 
maintaining a stable lower weight [43].

However, obesity is also associated with variations 
in the intestinal microbiota, which are potential contrib-
utors to metabolic diseases. In this regard, high-weight 
individuals  show an increase  in  Firmicutes  and Acti-
nobacteria and a decrease in Bacteroidetes groups. Th-
ese changes in the intestinal microbiota caused altera-
tions  in  the  intestinal  permeability,  which  lead to 
greater  activation  of  the  inflammatory  pathways  and 
impaired insulin signaling. Specifically, a reduction in 
insulin receptor phosphorylation, insulin receptor subs-
trate (IRS) and protein kinase B (Akt) was observed, 
while phosphorylation IRS-1 serine inhibitory was in-
creased.  Therefore,  the  modification  of  the  intestinal 
microbiota  gives  rise  to  diverse  signaling  activations 
and alterations,  which can be an attractive option for 
the  management  of  obesity  and  T2DM  [44].  Several 
genera  have  been  described  to  be  positively  related 
with  T2DM,  among  them  Ruminococcus,  Fusobac-
terium, and Blautia, whereas the genera Bifidobacteri-
um, Bacteroides, Faecalibacterium, Akkermansia and 
Roseburia  were  negatively  associated  with  T2DM

[45]. Therefore, knowing the role of the human gut mi-
crobiota in obesity and T2DM is a priority [46].

Exposure to certain types of compounds also gener-
ates IR, such as streptozotocin (a nitrosamine-related
compound) and nitrosamines. The last are metabolites
with  a  high  presence  in  processed  foods  and  whose
chronic exposure prompts to IR and may progress to
T2DM and other diseases, like non-alcoholic steatohep-
atitis and Alzheimer’s disease. Thus, it is crucial to en-
hance  the  detection  and  decrease  exposure  to  ni-
trosamines  [47].  This  can  happen,  for  example,  with
the  consumption  of  red  meat  which  will  also  have
heme iron [48]. High levels of iron in the diet are also
an important factor in T2DM, since this compound has
a direct and causal role in the pathogenesis of the dis-
ease, interceded by β-cell insufficiency and IR. Other
adverse effects are related to insulin secretion and sen-
sitivity, as well as adipokine levels and metabolic flexi-
bility [49]. The scientific evidence indicates the great
importance of iron in the diabetic condition since it in-
fluences the risk of developing the disease and the risk
of  suffering  complications  of  the  disease  in  an  ad-
vanced  stage  [50].  However,  although  biomarkers  of
the iron metabolism pathway related to the appearance
of DM are known, the underlying mechanisms are not
yet discovered. Plasma levels of ferritin and TSAT are
strongly  related  to  various  indicators  of  IR  in  young
and healthy individuals. The weakest relationship has
been  observed  with  the  indicators  of  short  and  long-
term glucose controls. Therefore, iron metabolism has
a pronounced influence in IR, nonetheless has a minor
influence on blood glucose levels, with inflammation
and/or obesity playing a crucial role [51]. Insulin sensi-
tivity decrease due to the modulation of the transcrip-
tion and membrane expression/affinity of insulin recep-
tor expression in hepatocytes, which produces changes
in insulin-dependent gene expression. Thus, in people
suffering from non-alcoholic fatty liver disease, a posi-
tive effect of iron depletion can be achieved with the
help of  increased insulin  clearance and a  decrease in
IR [52].

It also has to be taken into account the development
of  advanced  glycation  end  products  (AGEs),  formed
due to non-enzymatic modification of proteins by re-
ducing sugars. During aging, the formation of AGEs in-
creases, being this growth faster in DM. In fact, AGEs
are implied in the pathogenesis of diabetic vascular dif-
ficulties. The interaction between AGEs and its recep-
tor  has  been proven to  cause oxidative stress  and in-
flammation, which are factors closely associated with
IR and later in the progress of diabetes [53, 54]. To pre-
vent IR and its consequences, different strategies can
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be applied with the common objective of limiting the 
accumulation and action of AGEs [55]. Moreover, 
several studies proved that AGEs also present 
negative effects on non-diabetic states, characterized 
by an increase in AGEs concentration and impaired 
glucose homeostasis. This effect encompasses 
activation of endoplasmic reticulum- and 
inflammatory-stress and repression of glucose 
transporter type 4 (GLUT4) expression [56]. 
Therefore, a diet with low content of AGEs may have 
less risk of developing T2DM [57]. Through control 
and limitation of AGEs intake, native oxidative de-
fenses and insulin sensitivity may be preserved [58].

As conclusions, among the mechanisms to prevent 
IR, we found maintaining healthy body weights, eating 
patterns, diets with high content in fiber and phytonutri-
ents, and decrease in saturated fats, advanced glycation 
end products, nitrosamines and heme iron as the most 
important ones [33].

3. EMERGING BOTANICAL ADVANCES FOR 
TREATMENT AND PREVENTION OF T2DM

As mentioned  before,  the  control  of  a  high  blood 
glucose level after eating is the main goal in T2DM pa-
tients. For this purpose, a restrictive diet, physical activ-
ity, and pharmacological methods are employed. The 
reduction of carbohydrates’ digestion and their bioavai-
lability, stimulation of insulin release, reduction of IR, 
increasing sensitivity to insulin, and mimicking insulin 
function are some of the mechanisms in which antidia-
betic  drugs  are  involved [12].  Several  of  these  drugs 
are derived from natural products, mainly from plants 
and microbes. A guanidine derivative, galegine, isolat-
ed from Galega officinalis  L.  (Fabaceae) possesses a 
clear antidiabetic effect and its chemical structure is rel-
atively comparable to the antidiabetic drug metformin 
[6,  11].  Pycnogenol  is  a  case  of  a  natural  compound 
with  antidiabetic  properties  obtained  from  Pinus  pi-
naster  Aiton  (Pinaceae),  which  possesses  α-glucosi-
dase inhibitory activity. Also, acarbose is presumably 
the most extensively used enzyme inhibitor for carbo-
hydrate  digestion  obtained  from  microbial  origin  [6, 
16].  Besides  the  historical  and ethnopharmacological 
importance of medicinal plants in the use of treatment 
of T2DM, antidiabetic preparations of botanical origin 
still have significant value in the treatment of DM and 
its  comorbidities.  The  research  of  botanical  products 
with antidiabetic potential has been stimulated by the 
numerous side effects of the long-term use of oral hy-
poglycemic drugs, limited efficacy of existing medica-
tions and the development of health complications asso-
ciated  with  unregulated  hyperglycemia  in  T2DM pa-
tients [6, 8, 16].

In vitro  laboratory and preclinical studies, as well
as several clinical studies in T2DM patients, reported
that  medicinal  herbs,  spices,  food  plants,  and  mush-
rooms had shown the potential to improve the condi-
tion of diabetes mellitus [14, 59-61].  In recent years,
many  research  papers  and  reviews  dealing  with  the
role  of  antidiabetic  potential  of  medicinal  plants  and
their  secondary  metabolites,  including  clinical  trials,
have  been  published.  The  most  studied  plant  species
and  plants  with  the  greatest  potential  in  therapy  for
T2DM referred to these studies and reviews were bitter
melon (Momordica charantia L.), cinnamon (Cinnamo-
mum cassia Siebold), aloe (Aloe barbadensis Mill), net-
tle  (Utrica  dioica),  chamomile  (Matricaria  recutita
L.), turmeric (Curcuma longa L.), “yerba mate” (Ilex
paraguariensis A.St.-Hil.), green and black tea (Camel-
lia  sinensis  (L.)  Kuntze),  fenugreek  (Trigonella
foenum-graecum  L.),  garlic  (Allium  sativum  L.),  and
onion (Allium cepa L.) [3, 6, 62, 63]. The mechanisms
of  natural  products  from  botanical  sources  for  con-
trolling  glycemia  include  inhibition  of  α-glucosidase
and α-amylase as targets for carbohydrate breakdown
reduction  and  prevention  of  the  glucose  increase  in
plasma [64], influence on glucose uptake and glucose
transporters, and regulation of insulin secretion [6, 61].
It  is  also  approved  that  some  plant  preparations  im-
proved  metabolic  abnormalities  caused  by  diabetes
such  as  advanced  glycation  end-product  formation,
free radical over-production, and oxidative stress [5].

According  to  Choudhury  et  al.  [61],  most  of  the
highly  effective  plants  possess  multimodal  activities
on the control of T2DM. In Fig. (3) [73-85], some of
the active principles of main medicinal plants with anti-
diabetic  effects  are  summarized.  Cinnamon has  been
considered  as  a  nutraceutical  for  T2DM  since  1990.
Numerous studies on animal models show that the con-
sumption of cinnamon stimulates insulin secretion, en-
hancing the production of gut glucagonlike peptide 1
(GLP-1) and induces overexpression of GLUT4, which
increases the glucose uptake in the myocytes and adipo-
cytes. Moreover, cinnamon also possesses a preventive
effect on complications of diabetes, mainly by lower-
ing  glycation  end-product  formation,  thought  high
phenolic content with antioxidant effects [6, 65]. Also,
several  mechanisms  of  hypoglycemic  activity  of  M.
charantia (bitter melon) have been proposed in differ-
ent  in  vitro  and  in  vivo  studies.  This  plant  increases
adiponectin release, improves glucose uptake, and acti-
vates peroxisome proliferator-activated receptors α and
γ, regulating lipid and glucose hemostasis, and control
IR [66, 67]. Seeds of fenugreek (T. foenum-graecum)
are widely used as a herbal medicine for diabetes. In
addition, relevant scientific studies reported its antidia-
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Fig. (3). Some of the active principles of main medicinal plants with antidiabetic effects [73-85].

betic effects by inhibiting α-amylase and sucrase activi-
ties,  stimulating  insulin  secretion,  and  increasing
the number of insulin receptors [68]. Similar effects 
were reported for U. dioica [69-71]. Green and black 
tea (C. sinensis) is reported as an epigallocatechin 
gallate-en-riched plant with antidiabetic properties and 
positive ef-fects  on  diabetes  complications  [72].  
Several  mush-rooms are also reported as a potential 
class anti-dia-betic  phytotherapeutics.  Some 

 medicinal   and   edible mushrooms  showed  the 
potential to reduce blood glu-cose  levels,  stimulate  
insulin  secretion,  improve  in-sulin  sensitivity,  and 
reduce  hepatic  glucose  output [60]. Considering

mechanisms of action of botanical natural products in 
the treatment and control of T2DM, different 
polyherbal formulations with hypoglycemic activity 
were developed. The studies on diabet-ic animals 
showed that polyherbal formulations avail-able on the 
market possess antihyperglycemic effects and may 
improve endogenous antioxidant status [61].

There are several clinical studies, including plants, 
herbal formulations, or herbal extracts as antidiabetic 
agents. However, the number of in vitro screening and 
preclinical studies in animals of medicinal plants used
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for  treating  diabetes  are  more  numerous  compared
with  clinical  trials.  The  major  interest  in  research  of
plant species in the treatment of T2DM could be the in-
crease of clinical trials and systematic reviews that can
establish  definitive  conclusions  for  using  a  certain
plant  in  antidiabetic  therapy.

4. ALGAE AS A NEW RESOURCE
Nowadays, several authors have considered the al-

gae  as  organisms  not  only  of  high  ecological  impor-
tance but also of economic significance [86].  In fact, 
the use of algae has undergone exponential growth and 
their  application  is  already  possible  in  various  areas 
such  as  energy  production,  agriculture,  food science, 
cosmeceutical  and  pharmacology  [87].  One  of  its 
emerging applications is their use as a source of bioac-
tive compounds with interesting biological properties 
at a medical level, including compounds for the preven-
tion  of  T2DM. In  this  field,  numerous  investigations 
have been carried out using various species, especially 
with brown algae from the orders Laminariales and Fu-
cales [88].

Among the compounds from algae for the preven-
tion of T2DM, several could be highlighted, specially 
sugars. For example, alginate has demonstrated advan-
tageous properties on glucose metabolism [89] and fu-
coidan has been reported to reduce α-glucosidase 
activity,  blood glucose and glycated hemoglobin and 
glucagon-like  peptide-1  in  type  2  diabetes  patients 
[90].  Other  interesting compounds are phlorotannins, 
which present numerous antidiabetic activities, such as 
α-glucosidase and α-amylase inhibitory effect, modula-
tion of glucose uptake effect in skeletal muscle, protein 
tyrosine phosphatase 1B (PTP1B) enzyme inhibition, 
improvement  of  insulin  sensitivity  in  type  2  diabetic 
db/db mice, and protective effect against DM complica-
tion [91]. Pigments also have beneficial properties. For 
example, fucoxanthin, present in brown algae, has dis-
played  inhibitory  activities  against  α-amylase,  α-glu-
cosidase and glucose oxidase in 3T3-L1 cells linked to 
T2DM [92] Chemical structures of algae’ compounds 
with antidiabetic activity have been presented in Fig.
(4). In this work, the species have been selected accord-
ing to previous bibliographic research and their pres-
ence in the Iberian Peninsula.

4.1. Brown Algae
This  group  of  algae  present  characteristic  com-

pounds, such as phlorotannins, fucoidans, fucoxanthin 
or fucosterols, whose antidiabetic properties have been 
evaluated and their importance has increased in recent 
years  [93].  Within  this  group,  multiple  species  have

been investigated. Those available in the study region
and  that  have  been  employed  in  several  studies  are
shown below and have been summarized in Table 1.

4.1.1. Ecklonia spp.
The  genus  Ecklonia  has  been  one  of  the  most

studied due to its extensive variety of therapeutic and
health properties and biological activities, including an-
tidiabetic, antioxidant, anti-inflammatory and hypolipi-
demic, among others [143]. Regarding antidiabetic ac-
tivity,  it  is  attributed  to  phenolic  compounds,  which
have demonstrated inhibitory activity against two en-
zymes  belonging  to  the  gluconeogenesis  pathway:
phosphoenolpyruvate  carboxykinase  and  glu-
cose-6-phosphatase. This inhibition leads to the regula-
tion of blood glucose levels, reducing the risk of hyper-
glycemia [97]. The phlorotannin eckol, considered one 
of  the  most  representative  compounds  of  this  genus, 
has shown numerous biological activities, such as an-
tioxidant, anti-inflammatory, antimicrobial, hepatopro-
tective or anti-hypertensive. According to this variety 
of properties, several studies have been focused in elu-
cidating pharmacological potential [144].

4.1.2. Laminaria spp.
Within this genus, several species have been tradi-

tionally consumed in Asian cuisine, but the most promi-
nent is Laminaria japonica, traditionally known as 
“kombu”. This species contains a great number of com-
pounds with confirmed biological activities and appli-
cations. According to the different scientific studies, 
the compounds responsible for the antidiabetic activity 
of Laminaria spp. are polysaccharides, butyl-i-
sobutyl-phthalate and phenols. These compounds have 
been evaluated, both in vitro and in vivo. In fact, the 
Laminariaceae family was already used in traditional 
Chinese medicine for the treatment of DM [107].

4.1.3. Saccharina spp.
Like  genus  Laminaria,  Sacharina  spp .  have  

been consumed in China and other oriental countries as 
traditional seafood products and also as medicine in 
traditional  medicine.  Saccharina japonica  is  one of 
the most studied algae within the genus, being rich in 
fucoidan, alginate, and laminarin [145]. Its antidiabetic
properties  have  been  associated  with  these
polysaccharides  since  they  augmented  insulin  levels,
accumulation of glycogen in the liver and reduced the
blood  glucose  level  in  diabetic  mice,  among  other
molecular mechanisms to palliate diabetic pathologies
[146]. Although research is still preliminary and more
studies should be conducted, this genus may have great
potential for diabetes and obesity.
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Fig. (4). Some of the active principles of algae with reported antidiabetic effects.

4.1.4. Sargassum spp.
Sargassum spp.  contain  numerous  bioactive  com-

pounds,  like  phenolic  compounds,  sulphated
polysaccharides, dietary fibers, carotenoids, etc. These
compounds have been proven to exert various activi-
ties like antioxidant, anti-inflammatory, anti-tumor and

also anti-diabetic, among others [147]. Among the spe-
cies studied, Sargassum fusiforme, formerly known as
Hizikia  fusiformis,  is  one  of  the  most  relevant,  but
other species have shown antidiabetic properties. Other
species of the same genus also have anti-diabetic prop-
erties. For example, Sargassum polycystum suppressed
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Table 1. Activity of the different species of brown algae genera mentioned and their compounds of interest.

Algae Compounds Extract / For-
mat Main Outcomes Test System Ref.

E. cava

Phloroglucinol C.E
α-glucosidase and α‐amylase inhibition (IC50 10.8
and 124.9 µmol/L, respectively)

In vitro [94]

N.A C.E
α-glucosidase and α-amylase inhibition (IC50 0.58 and
0.35 mg/mL, respectively)

In vitro [95]

N.A Supplement Treatment against high glucose-induced oxidative
stress In vitro [96]

Phloroglucinol C.E Inhibiting hepatic gluconeogenesis via modulating the
AMP-activated protein kinase α signaling pathway In vivo (mice) [97]

Dieckol W Improving the glucose and lipid metabolism and an-
tioxidant enzymes In vivo (mice) [98]

N.A Powder
Hypoglycemic and hypolipidemic agent, prevents the
loss of β-cell mass resulting in the increase of insulin
secretary capacity

In vivo (mice) [99]

E. maxima

Fucoidan W α-glucosidase inhibition (IC50 0.27–0.31 mg/mL) In vitro [100]
Eckol, dibenzo [1,4]
dioxine-2,4,7,9-tetraol,
phloroglucinol

EA
α-glucosidase inhibition (IC50 11.16, 33.69 and 1991
μM, respectively)

In vitro [101]

E. kurome

Phlorotannins C.E
Inhibitory activities on carbohydrate-hydrolyzing en-
zymes and decreased postprandial blood glucose lev-
els

In vivo (mice) [102]

N.A Gametophytes

Regulated metabolism by manipulating the balance
among cytokines, including interferon-gamma or
leptin, resulting in the down-regulation of blood glu-
cose

In vivo (mice) [103]

E. stolonifera

Phlorofucofuroeckol-A EtOH Advanced glycation end-products formation inhibition
(40% inhibition) In vitro [104]

Polyphenols MeOH Suppressed the increase in plasma glucose and lipid
peroxidation, inhibition of α -glucosidase In vivo (mice) [105]

Phlorotannins C.E
PTP1B and α-glucosidase inhibitory activity (IC50 rang-
ing between 0.56 to 2.64 µM and 1.37 to 6.13 µM., re-
spectively)

In vitro [106]

Laminaria spp. N.A W Effects on the postprandial blood glucose level in car-
bohydrate-loaded mice. In vivo (mice) [107]

L. digitata Alginates W Reduced blood glucose and insulin responses In vivo (pigs) [108]

L. japonica

BIP C.E α-glucosidase inhibition (IC50 35.00 µM) In vitro [109]

BIP EA α-glucosidase inhibition (IC50 38.00 μM) In vitro and in
vivo (mice) [110]

BIP EA α-glucosidase inhibition (IC50 19.23 µM) In vitro [111]

Pheophorbide A MeOH
Aldose reductase activity (IC50 12.31 μM), prevention
of diabetic complications

In vitro [112]

Polyphenols W α-glucosidase inhibition, attenuate muscle IR In vitro and in
vivo (mice) [113]

Polysaccharides W Reduced blood glucose and increased the levels of in-
sulin and amylin in serum In vivo (mice) [114]

Polysaccharides W Prevented body-weight loss, increased serum insulin
levels In vivo (mice) [115]

(Table 1) contd....
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S. latissima

Pheophorbide-A, Pheophyt-
in-A C.E Aldose reductase inhibition (IC50 12.31 μM) In vivo (mice) [93]

- Pellets Lower bodyweight, lower HbA1c and insulin levels In vivo (mice) [116]
Fucoidan Water Stimulating the pancreatic release of insulin In vivo [117]

N.A Power Influences glycemic control lowers blood lipids, and
increases antioxidant enzymes activity

In vivo 
(humans) [118]

Phenolic compounds Fermented
α-amylase and rat intestinal α-glucosidase inhibition
(IC50 0.98 μM) In vivo (rats) [119]

N.A Powder
Recovery of the the islet cell secreting function and re-
duction of the level of fasting blood glucose by an an-
tioxidant effect

In vivo (rats) [120]

S. fusiforme

Fucosterol, fucoxanthin MeOH α-glucosidase inhibition (IC50 1.4 μM) In vitro [121]

Phenols Vegetable ex-
tract with algae

α-glucosidase inhibition, weaker α-amylase inhibition
activity In vitro [122]

Polyphenols W
α-glucosidase inhibition, decreased tumor necrosis, at-
tenuated muscle IR (IC50 12 μM)

In vitro and in
vivo (mice) [113]

Fucoidan EtOH

Decreased fasting blood glucose, diet and water in-
take. Attenuation of pathological change in heart and
liver. Better liver function. Suppression of oxidative
stress.

In vivo (mice) [123]

Polysaccharides C.E Renal protection due to inhibition of the expression in-
flammatory compounds In vivo (rats) [124]

S. ringgol-
dianum Phlorotannins MeOH

Decrease postprandial blood glucose level via inhibit-
ing α-glucosidase (IC50 = 0.12 mg/mL)

In vitro and in
vivo (mice) [125]

S. oligocystum N.A EtOH
Decreased fasting blood glucose and HOMA-IR. Re-
generation and reconstitution of damaged pancreatic
β-cells

In vivo (rats) [126]

S. longiotom N.A EtOH Effective hypoglycemic and hypolipidemic effect In vivo (rats) [127]
S. duplicatum Laminaran EtOH α-glucosidase inhibition (IC50 36.13 ppm) In vitro [128]

S. patens Phloroglucinol EtOH
Inhibition of α-glucosidase (IC50 25.4 μg/mL), human
salivary and pancreatic α-amylases (IC50 3.2 μg/mL) In vivo (rats) [129]

S. polycystum Pigments EtOH, W Reduced blood glucose, HbA1c, triglyceride and
serum total cholesterol levels In vivo (rat) [130]

S. hemiphyllum Polyphenols, fucoxanthin EtOH, AcO, W
α-amylase (IC50 0.35 mg/mL), maltase (IC50 0.09
mg/mL) and sucrase (IC50 1.89 mg/mL) inhibition In vitro [131]

S. hystrix N.A EtOH Lowers the levels of preprandial and postprandial glu-
cose, prevents necrosis In vivo (rat) [132]

S. binderi N.A W α-glucosidase inhibition (IC50 6.39 mg/mL) In vitro [133]

S. serratifolium Plastoquinones EtOH
PTP1B and α-glucosidase inhibition (IC50 1.83 to7.04
and 3.16 to24.16 µg/mL, respectively).

In vitro [134]

U. pinnatifida

Phenols C.E α-glucosidase inhibition, weaker α-amylase inhibition
activity In vitro [122]

Fucoxanthin C.E Regulates mRNA expression of inflammatory adipocy-
tokines involved in IR

In vitro and in
vivo (mice) [135]

N.A Dried Reduced IR In vivo (mice) [136]

N.A Dried Reduces postprandial glucose concentration In vivo 
(humans) [137]

N.A Dried Improves postprandialglucose homeostasis, reduces
glycemic excursions in prediabetes

In vivo 
(humans) [138]

(Table 1) contd....
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U. pinnatifida

Fucoidan C.E Suppresses adipocyte differentiation by inhibition of
inflammation-related cytokines In vivo (mice) [139]

Fucoxanthin Lipid extraction Increased Adrb3 and GLUT4 activities, with glucose
uptake into cells In vivo (mice) [140]

Fucoxanthin Lipid extraction Suppression of adipose tissue weight gain via up-regu-
lation of UCP-1 expression

In vivo (rats
and mice) [141]

Fucoxanthin C.E Inhibited the activities of HRAR, PTP1B, RLAR, as
well as AGEs formation. In vivo (rat) [142]

Compounds: Not Analyzed (N.A); Butyl-isobutyl-phthalate (BIP)
Solvent: Water (W); Ethanol (EtOH); Methanol (MeOH); Acetone (AcO); Ethyl Acetate (EA); Commercial extract (C.E)
Diabetes-related compounds and enzymes: Glycated hemoglobin (HbA1c); Homeostatic Model Assessment for Insulin Resistance (HOMA-IR); beta-3
adrenergic receptor (Adrb3); glucose transporter type 4 (GLUT4); Uncoupling protein one (UCP-1); Human recombinant aldose reductase (HRAR); Protein ty-
rosine phosphatase 1B (PTP1B); Rat lens aldose reductase (RLAR); Advanced glycation end-products (AGEs)

endocrine cell damage and necrotic cells, which have 
been  attributed  to  antioxidant-related  mechanisms 
[148]. According to these results, it could be conclud-
ed that the extracts obtained with these algae have cura-
tive properties on DM and may be considered as a new 
approach for the therapy of this disease.

4.1.5. Undaria Pinnatifida
This  species,  traditionally  known as  wakame,  has 

been  widely  consumed  [149].  It  contains  carbohy-
drates, proteins and many types of secondary metabo-
lites,  such as  polyphenols.  These  compounds  present 
strong biological activities, including antioxidant, anti-
cancer, anti-inflammatory and anti-diabetes [150]. Sev-
eral benefits have been described when used as supple-
ments  in  the  diet,  including  in  glucose  metabolism 
[151]. The main component responsible for this activi-
ty is alginate, which reduces glucose uptake in humans 
[152]. Other important components are the fucoidans, 
which regulate the blood glucose homeostasis, and al-
so fucoxanthin. In particular, this carotenoid has been 
reported to inhibit PTP1B, human recombinant aldose 
reductase (HRAR), rat lens aldose reductase (RLAR), 
AGEs formation, regulates blood glucose and insulin 
levels,  suppress  monocyte  chemoattractant  protein-1 
expression and promote beta-3 adrenergic receptor (A-
drb3) and GLUT4 expression [150].

4.2. Green Algae
Although most antidiabetic compounds of algae are 

characteristic of brown algae, there are also other com-
pounds with this activity present in green and red al-
gae, such as polyphenolic compounds, dietary fibers or 
unsaturated fatty acids [153]. For example, the adminis-
tration of Ulva rigida reduced blood glucose levels in 
diabetic rats submitted to streptozotocin and also com-
plications related to the disease. In this study, the au-
thors  considered  that  phenolic  compounds  were  in-
volved  in  the  anti-hyperglycemic  effects  observed 
[154]. Another example of green algae with anti-diabet-

ic effects is Capsosiphon fulvescens. Capsofulvesin A, 
capsofulvesin B and chalinasterol from this species has 
demonstrated to inhibit alsode reductase [155]. Several 
studies  have  estimated  the  antidiabetic  potential  of 
Chlorella  sp.,  which  has  inhibitory  effects  
against AGEs production, especially pentosidine and 
N(6)-Carboxymethyllysine. In addition, carotenoids of 
this mi-croalgae,  such  as  neoxanthin,  lutein  or  
violaxanthin, have shown strong antiglycation activity 
[156]. These properties and also the ability to inhibit 
α-amylase and α-glucosidase enzymes, have 
encouraged the develop-ment of different patents 
which use these species in the treatment of diabetes. 
For example, the biotechnology company Solazyme of 
the United States owns a patent that  employs  C.  
protothecoides  for  people  with  im-paired  glucose  
tolerance  and  DM  (US  8747834  B2). Other examples 
can be found in Table 2.

4.3. Red Algae
Red algae also contain compounds of great interest 

for the treatment of T2DM.  As  an  example,  Odon-
thalia corymbifera’ bromophenols show α-glucosidase 
inhibition, with IC50 values varying between 0.098 μM 
and 89.0 μM. Specifically, the compound 
bis(2,3-dibro-mo-4,5-dihydroxybenzyl)  ether  was  the  
most  potent. Similar results were observed in 
Symphyocladia latius-cula,  with  IC50  of  0.03 μM for  
the  same compounds, followed by 2,3,6-
tribromo-4,5-dihydroxybenzyl alco-hol with IC50 of 11.0 
μM [169]. Another red alga, Poly-opes lancifolia, 
inhibited α-glucosidase from Bacillus 
stearothermophilus and S. cerevisiae, with IC50 of 0.12 
and 0.098 μM, respectively. The alga was also effec-
tive  against  rat  intestinal  maltase  (and  sucrose,  with 
IC50 of 1.20 and 1.00 mM, respectively [170]. This ac-
tivity is also present in other species such as Gratelou-
pia elliptica  [166],  Rhodomela confervoides  [171]  or 
Laurencia  similis  [172].  Phenolic  extracts  obtained 
from Palmaria sp. showed inhibitory effects on α-amy-
lase enzyme [164]. Protein hydrolysates of the same
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Table 2. Activities of the other two big groups of algae.

Algae Compounds Extract/Format Main outcomes
Test
system

Ref.

Green algae

C. lentillifera
N.A EtOH

Reduction of DM-related enzymes activity,
increment of insulin secretion and glucose
uptake

In vitro [157]

N.A EtOH
Regulated glucose uptake and homeostasis
via the PI3K/AKT pathway

In vivo
(mice)

[158]

C. sertularioides N.A W
Hypoglycemic effect, alterations in the
lipid levels

In vivo
(mice)

[159]

C. macrophysa Phenolic compounds EtOH
Reduction of dipeptidyl peptidase-IV and
α-glucosidase enzyme activities. Inhibition
of cell death and inflammation

In vivo [160]

Chlorella spp. Carotenoids, fatty acids EA Inhibition of the AGEs formation In vitro [156]

C. zofingiensis Astaxanthin EA
Antiglycative capacities (inhibition of
AGEs formation, glucose autoxidation, gly-
cation-induced protein oxidation)

In vitro [161]

U. rigida N.A Raw Reduce plasma glucose levels
In vivo
(rats)

[154]

U. lactuca Polysaccharides W Inhibition of enzymes
In vivo
(rats)

[162]

Red algae

P. palmata

Proteins W Dipeptidyl peptidase IV inhibition In vitro [163]

Phenols C.E α-amylase and α-glucosidase inhibition In vitro [164]

N.A Raw, dehydrated
Lower bodyweight, HbA1c and insulin lev-
els

In vivo
(mice)

[116]

R. confervoides
3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-
(ethoxymethyl)benzyl)benzene-1,2-diol

C.E PTP1B inhibition In vitro [165]

G. elliptica 2,4,6-tribromophenol, 2,4-dibromophenol C.E
α-glucosidase, sucrase and maltase inhibi-
tion

In vitro [166]

S. latiuscula Bromophenols C.E Aldose reductase inhibition In vitro [167]

G. amansii N.A Raw
regulates plasma glucose and lipid levels
and prevents adipose tissue accumulation

In vivo
(rats)

[168]

Compounds: Not Analyzed (N.A)
Solvent: Water (W); Ethanol (EtOH); Ethyl Acetate (EA); Commercial extract (C.E)
Diabetes-related compounds and enzymes: Glycated hemoglobin (HbA1c); Protein tyrosine phosphatase 1B (PTP1B); Advanced glycation end-products
(AGEs); phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt)

alga  also  showed  potential  anti-diabetes  properties
[163].  Other  examples  can  be  seen  in  Table  2.

5. FUTURE PERSPECTIVES
The number of patients with diabetes continues to 

growth,  being  considered  a  pandemic.  This  trend  in- 
volves a greater production of drugs to treat the disease 
and more research into methods to prevent it. This is a 
great interest, not only in terms of the health and wel-

l-being of the population, but also economically since
the production of drugs is expensive. Persistent efforts
and novel ideas are the driving force for the develop-
ment of relevant drugs [173].

The  approach to  treat  this  disease  has  changed in
the last few decades, especially at the dietary level. In
the past, nutritional management of diabetes drastically
eliminated all kinds of carbohydrate-rich foods [174],
but  nowadays,  it  is  known  that  this  disease  is  more
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linked to the quality of the carbohydrates and the fats 
ingested than to  the proportion that  they represent  in 
the total of ingested macronutrients [175]. It is consid-
ered that  the  best  dietary  management  of  T2DM and 
IR consists of a balanced diet adapted to the associated 
pathologies  of  the  patient.  Dietary  management  of 
each patient must be carried out by the dietician in a de-
tailed and individualized form. However, for all cases, 
the  management  of  T2DM  requires  well-monitored 
glycemic control in order to control the progressive de-
terioration of β-cell function.

Conventional  drugs  and  insulin  are  effective  in 
treating the disease but unable to repair the associated 
metabolic and glucoregulatory dysfunctions, so combi-
nation  therapies  (drugs  and  diet)  are  gaining  interest 
[176]. In this regard, incretin-based therapy and pep-
tide analogs should be highlighted, since this method 
would allow to restore and preserve β-cell function and 
stop the progression of T2DM [177]. Furthermore, the 
increasing knowledge of the metabolism of this disease 
has demonstrated the benefits of phenolic compounds 
[178]. However, it is important to explore the common 
background of DM-mediated changes in pharmacoki-
netic and bioactivities of these dietary compounds, elu-
cidate related mechanisms, and develop novel methods 
to  improve  the  benefits  of  phenolic  compounds  and 
clinical  outcomes  for  T2DM  [179].  Phenolic  com-
pounds may be provided through the diet in foods such 
as  tea  or  coffee,  although  its  bioavailability  is  small 
[180]. Due to their low bioavailability, it is important 
to develop products with greater bioavailability. In this 
regard, the study of new plants and algae is remarkable 
as they are matrices rich in phenolic compounds. More-
over, several technologies should be developed to im-
prove the bioavailability of dietary polyphenols, includ-
ing nanotechnology and homogenization, as bioavaila-
bility  depends  on  bioaccessibility,  molecular  struc-
tures, transporters, metabolizing enzymes, and food ma-
trix effect [179]. Furthermore, the advancement in so-
phisticated omics methodologies has allowed the deter-
mination  of  molecules  involved  in  nutritional  ge-
nomics, metagenomics and other environmental expo-
sures (mainly as markers of compliance). Consequent-
ly,  the  incorporation  of  techniques  such  as  gene  se-
quencing and omics will lead towards a molecular un-
derstanding of complex organisms [181].

However, to carry out all these advances in the mar-
ket, it is necessary to take into account the current legis-
lation.  As  it  has  been  observed,  many plant  matrices 
have been used in traditional remedies to treat this dis-
ease, so they would not be subject to the new food leg-
islation. However, the continuous progress of science,

the discovery of  new species  and the study of  others 
not used to date mean that many of them are consid-
ered as new food, which makes the process of commer-
cialization much slower [182].

CONCLUSION
The treatment of patients with DM is considered a 

medical challenge due to the continuous increase in pa-
tients. This disease also depends on numerous factors 
that  make  its  prevention  more  complex.  In  recent 
years, new therapeutic strategies have been developed 
based on traditional knowledge and the use of tradition-
al plants and new sources with high anti-diabetic poten-
tial, such as algae. In fact, numerous scientific studies 
have demonstrated the beneficial properties of algal ex-
tracts and compounds (such as polysaccharides, pheno-
lic compounds or pigments), both in vitro and in vivo 
studies. However, more clinical trials are still needed 
to determine its potential to develop new foods or anti--
diabetic products. In addition, algae are highly accept-
ed by consumers for being well valued as natural prod-
ucts. Dissemination of knowledge of diabetes as well 
as how to prevent or treat it to a wider audience is a po-
tential method to control the diabetes epidemic. In the 
future,  medical  perspectives  and  new  drug  develop-
ments will be implemented to change the landscape of 
antidiabetic therapeutic study.

LIST OF ABBREVIATIONS

Generic
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HOMA-IR

IR
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Diabetic-related
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GLP-1

= Diabetes mellitus
= Gestational diabetes mellitus 
= Homeostatic Model Assess-

ment for Insulin Resistance 
= Insulin resistance
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= Type 1 diabetes mellitus
= Type 2 diabetes mellitus
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= beta-3 adrenergic receptor
= Advanced glycation end-prod-
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= protein kinase B
= glucagonlike peptide 1
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GLUT4 = Glucose transporter type 4
HbA1c = Glycated hemoglobin
HRAR = Human recombinant aldose re-

ductase
IRS = Insulin receptor substrate
PI3K/Akt = phosphatidylinositol 3-ki-

nase/protein  kinase  B
PTP1B

RLAR
UCP-1
Solvents
AcO
C.E
EA
EtOH
MeOH
W

= Protein tyrosine phosphatase
1B

= Rat lens aldose reductase
= Uncoupling protein one

= Acetone
= Commercial extract
= Ethyl Acetate
= Ethanol
= Methanol
= Water
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