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Dynamical system theory has recently shown promise for uncovering causality and directionality in complex
systems, particularly using the method of convergent cross mapping (CCM). In spite of its success in the
literature, the presence of process noise raises concern about CCM’s ability to uncover coupling direction.
Furthermore, CCM’s capacity to detect indirect causal links may be challenged in simulated unidrectionally
coupled Rossler-Lorenz systems. To overcome these limitations, we propose a method that places a Gaussian
process prior on a cross mapping function (named GP-CCM) to impose constraints on local state space neigh-
borhood comparisons. Bayesian posterior likelihood and evidence ratio tests, as well as surrogate data analyses
are performed to obtain a robust statistic for dynamical coupling directionality. We demonstrate GP-CCM’s
performance with respect to CCM in synthetic data simulation as well as in empirical electroencephelography
(EEG) and functional near infrared spectroscopy (fNIRS) activity data. Our findings show that GP-CCM provides
a statistic that consistently reports indirect causal structures in non-separable unidirectional system interactions;
GP-CCM also provides coupling direction estimates in noisy physiological signals, showing that EEG likely
causes, i.e., drives, fNIRS dynamics.

DOI: 10.1103/PhysRevE.104.064208

I. INTRODUCTION

Coupling statistics are crucial for describing the relation-
ship between dynamical systems observed in physical data.
Many traditional coupling estimation methods, such as corre-
lation or mutual information measures, are by mathematical
definition pairwise analysis of samples [1], thus encode no
inherent causal temporal structure. While these measures have
been prevalently used—for example, functional connectivity
analysis of high dimensional spatial data [1–3]—they neglect
to account for the dynamical structure of a time series, and
related causal graphs can make no reference to directionality
[2]. Among the coupling methods handling the dynamical
structure of time series data, Granger causality is widely used
[4]. Granger causality was initially introduced in the field
of economics, e.g., to analyze economic growth [5,6], and
was thereafter adopted by the neuroscience community for
effective brain connectivity. In the framework of stochastic
processes, the usage of the probabilistic notion underlying
Granger causality increased even more with the introduction
of its nonparametric counterpart, transfer entropy [7], which
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has rapidly become a reference tool for effective connectivity
analysis in network physiology [8,9]. In spite of the huge po-
tential of tools like Granger causality and transfer entropy, the
computation of the relevant measures is strongly influenced by
issues including the effects of hidden or unobserved variables,
the dependence on the temporal resolution through which the
observed time series are sampled, the difficulty of operating
in high-dimensional spaces, and the presence of observational
noise [10,11].

Another issue with Granger causality, raised, e.g., in
Ref. [12], regards its assumption of nonseparability between
the states being analyzed. Precisely, Granger causality is
specified as a multivariate autoregressive model where states
have no synergistic coupling (such as a quadratic coupling),
an effect that is indeed commonly seen in complex systems
[13]. An example of nonseparability in neurophysical systems
particularly arise in the neurovascular system, as seen in the
hemodynamic model, where deoxyhemoglobin has synergis-
tic coupling with blood volume [14]. In addition, literature
has shown that in the event of incompletely observed states,
e.g., when there is error in the sampling time of events as
common in planetary, geological or any other sciences where
temporal resolution is low, GC (and transfer entropy) further
fail [15,16]. Thus, ambiguous results can be obtained from
Granger causality due to the difficulty to attain the condition
of separability of the information about the putative cause of
the time series from the dynamics of the effect series even
if single fit models specified by state space parameters can
be identified [17,18]. To overcome these limitations, conver-
gent cross mapping (CCM) has been proposed as a method
that treats two time series as deterministic signals, using em-
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bedding dynamical systems theory attempts to measure the
extent that states from one series’s reconstructed phase space
maps onto another [12]. This formulation lends it powerful
in detecting causality in such synergistically coupled sys-
tems in which Granger causality may fail. Despite its recent
introduction, CCM has already shown several applications.
For example, it has been applied in the analysis of functional
brain connectivity during resting state for uncovering default
networks [19], in several studies investigating how the cardio-
vascular system is coupled with the central nervous system
through brain-heart interactions [20–24], and in describing
ecological systems such as those relating anchovy population
dynamics to sea-temperature and sardine population dynamics
[12] or plant species richness and soil nitrate levels [25].

In spite of the successful use of CCM in previous research,
some of its properties can limit its applicability in the analysis
of general coupled dynamic systems. Particularly, this method
assumes that the time series under investigation are generated
from deterministic systems, thus CCM contains no considera-
tion of process noise [26]. To overcome these limitations, we
develop and demonstrate a new method for inferring causality
between pairs of time series measured as outputs of potentially
coupled dynamical systems. The method is formulated as a
Bayesian model comparison between models of state spaces
composed of states of one time series predicting the states
of a second series, with zero-mean Gaussian process priors
placed on each model. Furthermore, as CCM, the proposed
method maintains the benefit that underpins CCM of being
a nonparametric statistic, yielding its results primarily as a
function of the whole data rather than parametric estimates.

Bayesian model evidence, particularly evidence lower
bound methods, have been used in the past also for determin-
ing causal structures as in Ref. [27]. Typically, one specifies
a set of forward models that may hypothetically explain the
data. Note that we do not use such Bayesian models as we
are primarily interested in causal inference in datasets where
a physical model hypothesis does not immediately exist for
the forward model. Other Bayesian models, called Bayesian
networks, can be constructed using causal directed acyclic
graphs that describe the causal flow between observables of of
a system, such as the PC and PCMCI method [28,29]. These
methods find the causality between two random variables, let
us say X and Y , by determining whether they are conditionally
independent given a set of variables S. This process is repeated
through all variables to create the originating causal directed
acyclic graphs.

In regards to causal analysis methods based on interven-
tions, as formalized by Judea Pearl [30], there have been
some interesting frameworks such as the so called “dynam-
ical causal effects” [31], which implements the interventional
approach for stochastic dynamic systems. More precisely, this
approach requires some experimental procedure to invoke
causal interventions or a mathematical model to perform “vir-
tual interventions” to see “how coupling manifests itself in
the dynamics,” a very curious question indeed given how it
may be possible causal effects manifest differently between
variables in different areas of state space space. This approach
has even shown that transfer entropy and Granger causality are
in fact particular instantiations of the dynamical causal effects
framework [32]. Though this is an elegantly designed method

for investigating causal interactions, we focus on causal dis-
coveries in instances where we have no possible intervention
framework to work in.

We must note that Gaussian processes have been investi-
gated already for the sake of ameliorating the CCM algorithm
as in Feng et al. [33]. Their method particularly tried to ad-
dress an optimal reconstruction of the system’s phase space by
placing priors on the embedding dimension and lag time pa-
rameters, formulated using a maximum evidence lower bound
in a variational Bayesian setting with a Gaussian process
approximating variational distribution. Instead, we develop a
new statistic that leverages the fact that we are provided with
posterior probability distributions for the data with Gaussian
processes which can be used for calculating evidence likeli-
hood ratios for models [34]. Particularly, we aim to develop
a statistic to reveal the presence and direction of a directional
coupling between noisy dynamical systems, when unidirec-
tionality is a priori assumed.

Here, we test the performance of the proposed Gaussian
process convergent cross mapping (GP-CCM) in synthetic
data gathered from coupled multidimensional systems, and in
real multivariate data from brain recordings of electroenceph-
elography (EEG) and functional near infrared spectroscopy
(fNIRS) activity data. Simulations are used to assess the
comparative ability of CCM and of the proposed method to
identify coupling direction in bidirectionally and unidirection-
ally coupled dynamics, as well as the robustness to noise; such
simulations are performed in benchmark systems such as the
paradigmatic coupled logistic map investigated in and both
simple and chaotic differential equation systems.

The application study in neurovascular systems involving
fNIRS and EEG are particularly interesting to investigate as
there exists a unique link between the metabolic signal as
measured by fNIRS and the electrophysiological signals cap-
tured by EEG. In the case of EEG, signals arise as neurons
activate, leading to ionic currents caused by polarization ac-
tivity in the neuron through active and passive ion channels
[35,36]; this movement of charged ions and their electric field
give rise to an extracellular volume conduction effect whose
volume integral is sensed by the electrode of the EEG array
[37]. In fNIRS, with neuron activation the aforementioned
active ionic channels demand oxygen for reduction reactions
to produce ATP for metabolic purposes [38]. As this leads to
a change in oxy- and de-oxyhemoglobin concentrations [39],
fNIRS then operates on detecting changes in absorbtion of
near infrared light mediated by changing concentrations of
hemoglobin [40]. Considering the common thread of active
ion channels being the genesis of both metabolic and electro-
physiological signals, it begs the question of the coupling of
the two systems through this link which we explore in this
study.

II. MATERIALS AND METHODS

A. Embedding techniques for reconstructing phase space

Takens theorem [41,42] permits a reconstruction of the
state-space of a dynamical system X that generated an ob-
served time series X with samples xi. The ith state of the
system X is represented by a mx-dimensional delay coordinate
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embedding φ(X )i as follows:

φ(X )i = {
xi, xi+τ , ..., xi+(mx−1)τ

}
,

i ∈ 1, 2, ..., N, (1)

where N is the number of states observed, τ is the time-delay,
and mx is the embedding dimension associated with time
series X for dynamical system X . Given a time series with
N + (mx − 1)τ samples, φ(X ) results in a matrix in RN×mx ,
where each row is a state, and each column is a variable in the
state space.

B. Convergent cross mapping

Introduced in Ref. [12] as a method to investigate cou-
pling in weakly or moderately coupled complex systems with
nonseparable dynamics, CCM was shown to perform well
in complex system cases such as ecosystems problems to
detect unidirectional coupling with robustness against false
positives. CCM leverages Takens’ theorem by considering
whether the system that generates the time series Y is causal
to the system that generates the time series X through the
idea of cross-mapping, i.e., the delay coordinate map for Y
should cross map with high correlation to X (see Appendix 1
for a visualization of this cross-mapping effect). The reverse
may not be exactly true, however, for a delay coordinate map
φ(Y ) cross-mapping to X , as φ(Y ) may not contain all the
dynamical information of φ(X ).

For testing whether system Y drives X , a local region of
the states φ(X ) around a cross-mapped state φ(X )i should be
predictive of yi. Formally, the prediction of yi given the states
in φ(X ) is:

yi|φ(X ) =
mx∑

k=1

wikytk , (2)

where tk, k = 1, . . . , mx, are the mx time indices of the neigh-
bors of φ(X )i in φ(X ) (sorted in ascending order by their
distance to φ(X )i); according to [12], the weights wik are
determined by:

wik = uik∑m
j=1 ui j

, (3)

where

uik = exp

{
−d[φ(X )i, φ(X )tk ]

d[φ(X )i, φ(X )t1 ]

}
, (4)

with d being the euclidean distance between two mx-
dimensional vectors. If X and Y are dynamically coupled,
then the weighted sum in Eq. (2) should be predictive of yi.
This is determined by the Pearson’s correlation coefficient:

ρY |φ(X ) = Cov[Y,Y |φ(X )]√
Var(Y ) · Var[Y |φ(X )]

, (5)

where Cov[Y,Y |φ(X )] = E{(Y − E[Y ])(Y |φ(X ) −
E[Y |φ(X )])} and Var(Y ) = E{(Y − E[Y ])2}, Var[Y |φ(X )] =
E{(Y |φ(X ) − E[Y |φ(X )])2}.

Reversing the role of the two time series in the analysis,
one can compute the causal coupling from X to Y , ρX |φ(Y ).
Then, the sign of the difference between ρX |φ(Y ) and ρY |φ(X )

can be taken as indicative of the causal direction:

� = ρ2
X |φ(Y ) − ρ2

Y |φ(X ), (6)

with positive values being indicative of prevalent causal cou-
pling from X to Y .

C. The proposed method: Gaussian process
convergent cross mapping

GP-CCM has its foundation in Gaussian process regres-
sion, which is a Bayesian regression technique where each
point in a set of data is assumed to be sampled from a mul-
tivariate Gaussian distribution [43]. Before introducing the
framework of Gaussian processes, we provide an illustrative
example of obtaining posterior distributions given a bivariate
joint probability distribution.

Let us consider two scalar random variables X i and X j

that generate samples xi and x j , respectively, where xi is
considered as the observed state and x j is considered as the
unobserved state. Then, the bivariate Gaussian joint probabil-
ity density function between X i and X j is as follows:

p(X i, X j ) = N (μ,C) = N
(

[μi, μ j],

[
Cii Ci j

Cji Cj j

])
, (7)

where μ and C represent the mean vector and the covariance
matrix of the two variables X i and X j , with Cii = E[(X i −
μi )2] being the variance of X i, and μi = E[X i].

The objective is then to find the conditional probability
p(X j |X i ), which can be achieved by dividing the joint proba-
bility p(X i, X j ) by the marginal Gaussian probability density
function:

p(X i ) =
∫ ∞

−∞
p(X i, X j )dX j = N (μi,Cii ). (8)

A known result in linear Gaussian regression is that X j |X i is
a Gaussian random variable with mean μX j |X i and variance
σ 2

X j |X i depending on μ and C:

p(X j |X i ) = N (μX j |X i = μ j + CjiC
−1
ii (X i − μi ),

σ 2
X j |X i = Cj j − CjiC

−1
ii Ci j . (9)

1. Formulation of the proposed method

In our work, Gaussian processes generalize the aforemen-
tioned statistical framework into functional spaces where the
mean function is considered null a priori and the a priori co-
variance function K[φ(X ), φ(X )] is referred to as the “kernel”
function. φ(X ) and φ(Y ) are considered realizations of the
random Gaussian process. The kernel is a priori selected as a
squared exponential covariance with automatic relevance de-
termination [44] with hyperparameters θ ard

x = {A, l1, l2...lmx }:

K[φ(X )i, φ(X ) j] = Ae
− ∑mx

n=1
|φ(X )in −φ(X ) jn |22

2l2n , (10)

where φ(X )in = xi+(n−1)τ and φ(X ) jn = x j+(n−1)τ are the nth
scalar components of φ(X )i and φ(X ) j . The kernel function
defined in Eq. (10) returns a scalar value quantifying the
distance between the two states φ(X )i and φ(X ) j in analogy
to how CCM computes the weights in Eqs. (3) and (4). When
evaluated for all possible pairs of observed states φ(X )i and
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φ(X ) j , i, j = 1, . . . , N , the kernel function forms the N × N
matrix Kx = {K[φ(X )i, φ(X ) j]}, which represents an autoco-
variance on the state space φ(X ). Similarly, we can form a
kernel matrix for the states in Y , Ky = {K[φ(Y )i, φ(Y ) j]}, and
a “cross” kernel matrix Kxy = {K[φ(X )i, φ(Y ) j]}, represent-
ing, respectively, the autocovariance on the state space φ(Y )
the cross-covariance between the state spaces φ(X ) and φ(Y );
assuming that φ(X ) and φ(Y ) have the same number of states
N , all kernel matrices have dimension N × N .

Thus, the Gaussian process framework allows us to place
a Gaussian probability density function at each point on the
reconstructed state space. Consequently, the concept of cross-
mapping turns into a posterior probability analysis of the
likelihood p(φ(Y )|φ(X )). To develop a causal metric where Y
drives X , we first create a multivariate Gaussian distribution
from the Gaussian Process model:

p
[
φ(X ), φ(Y ); θard

x , j
] = N

(
[0, 0],

[
Kx Kxy

Kyx Ky

])
, (11)

where the means 0 are zero vectors with length equivalent to
the number of states in φ(X ) or φ(Y ), j specifies the variable
of state space, and Kx, Ky, and Kxy are the auto- and cross-
covariance matrices defined above (Kyx = KT

xy). Considering
that the squared exponential kernel is defined as a distance
metric over states, it can be considered stationary. This can
be proven by showing how K[φ(X )i, φ(X )i] will always be a
scalar A given this kernel, thus the prior Gaussian marginal
statistics are the same over all data for each data point. Fur-
thermore, due to how it operates over multidimensional state
space, the kernel function can be seen as quantifying the
spatial covariance in state space.

Kernels can be further tailored if we have more prior in-
formation on the data, e.g., if we have prior knowledge that
i.i.d. white noise with zero mean and standard deviation σx is
added on each observation (i.e., in our problem, on the state
variables).

If we are only concerned about points φ(X ) and φ(Y ) and
we are developing a posterior model for the likelihood of
Y GP-CCM causing X , then σx can be prior knowledge of
noise on φ(X ), i.e., a zero-mean Gaussian with a diagonal
covariance matrix on elements corresponding to φ(X ), i.e.
� = [σxI 0

0 0]. As a consequence, we augment Eq. (11) as
follows:

p
[
φ(X ), φ(Y ); θ ard

x , σx, j
]

= p
[
φ(X ), φ(Y ); θ ard

x , j
]
p[φ(X ), φ(Y ); σx, j]

= N
(

[0, 0],

[
Kx + σxI Kxy

Kyx Ky

])
. (12)

Let us have θx be a set of all kernel parameters and Kθx

denote our composite kernel. To find optimal parameters we
maximize the log marginal likelihood that φ(X ) is a zero-
mean Gaussian process over all variables j. Note that if
instead one has knowledge of what the hyperparameters can
be, then the optimization step can be skipped. The optimal
point estimate of kernel parameters is denoted as θ∗

x . From
here, we can obtain the posterior distribution for φ(Y ) using

the rule we learned earlier in Eq. (9):

p[φ(Y )|φ(X ); θ∗
x , j] = N

[
μy|x, j = Kθ∗

x
yx Kθ∗

x
x

−1
φ(X )· j

]
,

�y|x, j = Kθ∗
x

y − Kθ∗
x

yx Kθ∗
x

x
−1

Kθ∗
x

xy . (13)

Similarly we can obtain p[φ(X )|φ(Y ), θ∗
y , j]. These

probabilities draw the causal strength statistics: p[φ(Y ) →
φ(X )] = ∏mx

j=1 p[φ(Y )|φ(X ), θ∗
x , j]; p[φ(X ) → φ(Y )] =∏my

j=1 p[φ(X )|φ(Y ), θ∗
y , j]. We determine the most likely

causal direction by a Bayesian model evidence comparison
(BF) test:

BF = sup
{∏mx

j=1 p[φ(X )|φ(Y ); θ∗
x , j]

}
sup

{∏my

j=1 p[φ(Y )|φ(X ); θ∗
y , j]

} . (14)

Considering φ(X ) and φ(Y ) are realizations of mul-
tivariate Gaussian distributions, p[φ(X )|φ(Y ); θ∗

x , j] and
p[φ(Y )|φ(X ); θ∗

y , j] result in scalar values. From the loga-
rithm of BF a statistic for the strength of evidence for causality
can be found in one direction or the other. When BF is posi-
tive, there is greater evidence for Y driving X . Negative BF
indicates the opposite direction. Furthermore, a hyperbolic
tangent can be taken on the log evidence comparison:

κ = tanh[0.5log(BF)]. (15)

This operation restricts the statistic to an open interval of
(−1, 1) such that |κ| � 0.5 corresponds to a BF � 3, i.e.,
substantial evidence as noted in prior literature in Ref. [34].

To assess the statistical significance of the proposed GP-
CCM estimate κ , i.e., to reject the null hypothesis that the
GP-CCM result occurred from an acausal distribution, a sur-
rogate analysis was performed. Particularly, acausal pairs of
time series X and Y were generated by shuffling (i.e., per-
muting) the time points series of the original time series,
thus destroying eventual temporal coupling structure of the
time series. Performing GP-CCM on this permutation dataset
provides a distribution of the GP-CCM statistic for temporally
uncoupled time series that share the histogram of the original
coupled time-series through which we can perform statistical
significance tests. An α of 0.05 is used to determined whether
the true GP-CCM directional coupling value is outside the
95% confidence interval of the surrogate distribution, the
statistic κ is deemed significant for discriminating the pre-
dominant direction of coupling, i.e., predominant direction is
Y → X if positive, otherwise directionality is X → Y .

To summarize, the step-by-step instructions to obtain the
proposed statistic are as follows:

(1) Reconstruct state spaces φ(X ) and φ(Y ).
(2) Find kernel parameters that maximize the marginal log

likelihoods for each time series.
(3) Obtain posterior probability distributions for time se-

ries X and Y to obtain causal strength between series.
(4) Perform Bayesian model comparison to obtain statistic

on substantiality of whether one time series GP-CCM causes
another, i.e., causally influences the other.

(5) Perform a surrogate data analysis on κ to assess the
reliability of the estimate.

We note that exact modeling with Gaussian process priors
may be a strong assumption. Furthermore, input to kernels are
noisy as well. The next section introduces a nonstationary ker-
nel that may potentially augment the model in such cases that
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TABLE I. Parameters of the systems.

Logistic Maps

Rx 3.8
Ry 3.55

Lorenz
σL 10−6

dt 0.001 s
σ 10
β 8

3
ρ 28

Rossler
σR 0.005
dt 0.001 s
ω1 1.015
ω2 0.985
a 0.15
b 0.2
c 10

RL Circuit
dt 0.01 s
R 1k


Realizations 100

may help finding critical points in state space to determining
a more robust posterior distribution.

2. Sparse kernel representation

It is known that taking the inverse of the kernel is
an operation of computational cost O(N3), which can be
prohibitive for large datasets. Furthermore, storage cost
scales at O(N2). Beyond this, inputs to the kernel can be
contaminated by noise. To act against these limitations, we
propose a sparse kernel approximation as in Ref. [45] to obtain
a set of “pseudoinputs” P in sample space K � N, where K
is the dimensionality of the pseudoinputs. The key to this is
leveraging the following Nystrom approximation:

Kn ≈ K̃n = KnkK−1
k Kkn. (16)

The set of pseudoinputs P in Rmx×k are then assumed as
hyperparameters in θ as discussed previously, to be learned
by maximum marginal likelihood. To assure that the learned
pseudopoints are well representative of the data, a parameter
� = diag(λ); λnn = Knn − kT

n K−1
k kn is used to determine

how well the sparse kernel represents true marginal statistics.
Consequently, the marginal likelihood function is expressed
as

p[φ(X ); θx, j] = N
(
0, KnkK−1

k Kkn + � + σxI
)
. (17)

From Eq. (17), the Bayes rule is used as previously to ob-
tain the posterior distribution p[φ(Y )|φ(X ), j]. This solution
reduces the computational cost drastically to O(KN2), and the
storage cost to O(KN ). Furthermore, sparse kernels exploit
a rich history for parameterizing latent noise-in-variable re-
gression models [46–48] to learn a set of pseudopoints that
best represent the data. These set of pseudopoints turns the
marginal distribution nonstationary as seen by the � param-

eter being dependent on distance to pseudopoints which has
much lower sample dimensionality than the original dataset.

D. Experiments

The experiments performed to validate GP-CCM are
divided between simulations using coupled systems in de-
terministic chaos, and real-world data from physiological
systems. All parameters for the simulations are defined in
Table I. For the sake of consistency, all simulated time series
were of length 3000 samples regardless of their integration
time steps. When reconstructing state space, the embedding
time delay is taken to be the first minimum of the averaged
autocorrelation function [49]. As for the embedding dimen-
sion, it is taken to be the supremum of the optimal embedding
dimensions for the two time series obtained by the false near-
est neighbor algorithm [49]. The supremum is used based
on Takens’ embedding theorem discussed in Sec. II A stating
that a minimum of the optimal embedding dimension for
reconstructing a system’s state space is twice the box counting
dimension.

1. Simulations

a. Bidirectionally coupled logistic map. GP-CCM is first
benchmarked against CCM using bidirectional logistic maps
without the presence of process noise, as illustrated in the
original work introducing CCM [12], to compare the ability of
the two approaches in evaluating causal influence and deter-
mining coupling direction. The coupled bidirectional logistic
maps take on the following form:

X (t + 1) = X (t )[Rx − RxX (t ) − ByxY (t )],
(18)

Y (t + 1) = Y (t )[Ry − RyY (t ) − BxyX (t )],

where the parameters Bxy and Byx control the coupling
strength along the directions X → Y and Y → X , respec-
tively, and are here varied from 0 to 1 to simulate different
conditions of coupling strength and coupling direction. Rx and
Ry are parameters that control which regime of the bifurcation
plot the logistic maps are. Their values, seen in Table I, were
chosen such that they are in the chaotic regime.

b. Unidirectionally coupled attractors with process noise.
The second simulation considers the coupling between a
Lorenz system and a Rossler system. The formulation of the
two systems driven by a Wiener process is reported in Eq. (19)
for the Lorenz System and Eq. (20) for the Rossler system:

dX1 = [σ (X2 − X1)]dt + σL(t )dWX1,

dX2 = [X1(ρ − X3) − X2]dt + σL(t )dWX2, (19)

dX3 = (X1X2 − βX3)dt + σL(t )dWX3,

dY1 = (−ω2Y2 − Y3)dt + σR(t )dWY 1,

dY2 = (ω2Y1 + aY2)dt + σR(t )dWY 2,

dY3 = [b + Y3(Y 1 − c)]dt + σR(t )dWY 3. (20)

The variable W stands for the Wiener process, whose gen-
eralized time derivative is a zero-mean i.i.d. process, i.e.,
N (0, I ). Each state is integrated with their own indepen-
dent Wiener process. The diffusion terms of the stochastic
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FIG. 1. Causal graph depicting the interaction between variables
of the coupled Lorenz and Rossler systems. The direction and
strength of coupling between the two systems is modulated by the
parameter ε in Eqs. (21) and (22). Notice the indirect causal connec-
tion from X2 and X3 in the Lorenz system to Y1 via the connection
from X1, and vice versa the indirect causal connection from Y2 and Y3

to X1 mediated by Y1.

differential equations were made a constant term for one set
of experiments, and time varying linearly [e.g., σR(t ) = σRt]
for another set of experiments to check the effects of station-
ary and nonstationary diffusion on the causality metrics. The
values of the parameters for the Rossler and Lorenz systems
are shown in Table I. These parameters are selected in order
that the systems are in deterministic chaos when undriven by
external forcing terms.

To couple the systems, an additive term with form η =
εA1(1 − B1) can be used, where A1 is the first state of the
driving system, and B1 is the first state of the driven system.
Such a coupling function was used to ensure nonseparability
of forcing terms. For a Lorenz system being driven by a
Rossler system, Eq. (19) for dX turns into the following:

dX1 = [σ (X2 − X1) + εX1(Y1 − 1)]dt + σL(t )dWX1. (21)

Rossler driven by Lorenz has the following form:

dY1 = [ω2Y2 − Y3 + εY1(X1 − 1)]dt + σR(t )dWY 1. (22)

A causal graph of the interactions set for the two systems
can be seen in Fig. 1.

c. RL circuit with process noise. A simple equation for an
RL circuit is used to see if results of CCM and GP-CCM are
consistent to determine coupling direction for coupled linear
deterministic processes (voltage and current) in the presence
of stochastic noise. The system has equations:

Vt = sin(ωt ),
(23)

dI =
(

Vt

L
− R

L
It

)
dt + σI dWI ,

where W is a similar Wiener process as before describing
noise on the electrical current dynamics with sigmaI used as
a scalar for the variance of the stochastic dynamics, which we

tune in our experiments. The resistance parameter R is defined
in Table I.

2. Physiological data

The proposed real-data application regards the investiga-
tion between the electrical and hemodynamic activities of the
brain, monitored, respectively, by EEG and fNIRS recordings.

a. Theory of EEG and hemodynamic coupling. For a given
voxel (i.e., the elementary brain unit), the dynamics of trans-
membrane potential (hereafter called “neural activity”) can be
expressed as

dv = −Jv, (24)

where v is a vector of neural activity in a local region, and J is
a square Jacobian matrix describing the effective connectivity
between neurons. This is derived from a first-order approxi-
mation of an integrate and fire process described as

dv = −v

τ
+ u = f (v), (25)

where τ is the relaxation time constant coefficient, and u is a
nonlinear function describing depolarization of neural activity
([u = g(v)]. Then, the EEG signal is derived from a lead-field
row vector describing the linear mixture of neural activity to
an electrode:

e = lv. (26)

If we take the Samelson inverse of the lead-field vector,
equivalent to the Moore-Penrose pseudoinverse of a vector
where l−1 = l̄

||l||2 , with the bar denoting complex conjugate
and || · || denoting vector magnitude, then the electrical source
activity can be defined from the EEG signal as follows:

v = el̄

||l||2 . (27)

However, the hemodynamic signal for a voxel is propor-
tional to the time expectation of electrical activity, according
to

B ∝ c〈vT Jv〉 + εb, (28)

where c is the transmembrane capacitance and a (possi-
bly heteroskedastic) noise term εb is added to the model
of hemoglobin activity as we can expect hemoglobin being
driven by other factors such as glial cell metabolic demand.
Substituting (27) into (28), we can see are directly caused by
EEG in this model:

B ∝ c

〈
e2

||l||4 l̄ T J l̄

〉
+ εb. (29)

b. Data description and processing. Data taken from an
open dataset [50] was used to assess the directional coupling
between EEG band powers and fNIRS signals. Twenty-nine
subjects were recruited for this study (aged 28.4 ± 3.7 years
old, 15 female). The experiment explored trials of either men-
tal arithmetic activity compared to a baseline jointly or motor
imagery tasks. There were 10 repetitions of either mental
arithmetic, baseline activity, left-hand and right-hand motor
imagery tasks per trial and six trials in sum. To study coupled
hemodynamic and electrical activity, a careful selection of the
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FIG. 2. Position of the optodes to resolve fNIRS information are seen in panel (a). Positions of the EEG electrodes are in panel (b). The
four nearest EEG neighbors of D10 (12, 13, 14, 15), D15 (24, 25, 26, 27), D2 (3, 4, 8, 9), and D4 (11, 10, 12, 18) were taken to analyze
coupling with respect to spatial regions.

signals measured from the EEG electrodes and fNIRS optodes
positioned as shown in Fig. 2 must be performed.

There were 36 fNIRS channels in total derived from each
source detector coupling (lines in Fig. 2). The fNIRS sig-
nals selected for the analysis were those recorded at optodes
D10, D15, D2, and D4, representative of left-central, right-
central, frontal, and posterior scalp regions. These signals,
sampled at 10 Hz, were frequency filtered using a sixth-order
Butterworth filter to extract the bands lower than 0.6 Hz to
capture hemodynamic response activity [51] and between 0.8
and 2 Hz to focus on pulsatile cardiac dynamics [52]. Each
filter was applied in the forward and backward directions
to obtain an overall zero-phase filter. Moreover, a wavelet
filtering procedure was performed to attenuate artifacts due to
motion, applying wavelet decomposition with a Daubechies
five mother wavelet with nine decomposition levels; the detail
coefficients with low probabilities were thresholded before
reconstructing the hemoglobin signals.

Thirty EEG electrodes were acquired per subject and trial
in the dataset. The EEG signals, sampled at 200 Hz, were band
pass filtered using a Butterworth filter of order 6 with a pass-
band 0.5 to 50 Hz; filtering was performed in both forward and
reverse direction to obtain zero-phase. Channels with signal
energy outside a 99% confidence interval were marked as
bad channels [53]. Considering EEG is likely to be contami-
nated from extraneous noise sources—such as muscle activity,
electrocular signals, electrocardiogram signals—algorithms
for artefact reduction need to be used. Each signal was then
decomposed using independent component analysis (ICA).
The number of ICA components was determined by using the
number of principal components that explained 99% of the
variance. From there, 20 s moving windows with no overlap
were taken for each ICA component. Similar to Ref. [54],

features such as kurtosis, spectral entropy, skewness, logAl-
pha power, and 1

f fit were extracted from each window. These
features were then taken to construct a multidimensional his-
togram, to reject windows in the ICA components that were
of low probability. The artefact cleaned ICA components
were then transformed back to the original EEG electrode
space, and bad channels were spatially interpolated from the
good channels using an inverse distance weighting method
[53].

The nearest four EEG electrodes were matched with D10,
D15, D2, and D4 optodes as seen in Fig. 2. From there,
windowed 1D Fourier transforms were performed on each of
the four electrodes with windows of 5 s and stride of 0.1 s,
resulting in a series of windowed fourier transforms of the
EEG signals at intervals of 0.1 s, or in other words a short
time fourier transform (STFT). For each FFT, the power of
the α (8–14 Hz), β (15–32 Hz), γ (32–50 Hz), θ (4–8 Hz),
and δ (1–4 Hz) bands [55] was calculated, thus resulting in a
time course for each EEG band power sampled at 10 Hz, i.e.,
the frequency of the fNIRS time series. Finally, for each band,
the average of the EEG bandpower across the four nearest
neighbors of an optode was taken to have a single time series
to match with a single fNIRS signal.

c. Statistical analysis. First, the analysis was performed
using the entire 10 minute time series for each trial performed
for each subject to assess the causal coupling between the
EEG bandpowers and the fNIRS signal. A second analysis
was then executed after separating the 10 min series into time
windows corresponding the tasks, to assess the causal cou-
pling specifically during each task window. After that, the four
brain regions were taken into consideration and an analysis
was performed to see how coupling changes with respect to
region for each task.
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FIG. 3. Heatmaps of coupling statistic for varying coupling strength in the coupled logistic maps for CCM (b) and the poprosed method
GP-CCM (a). White signifies stronger evidence for X driving Y while black signifies the reverse.

The Wilcoxon paired nonparametric statistical test was
used to compare the distribution of results for leading causal
driver (i.e., κ in the proposed method, or � for CCM) to see
which EEG bandpowers were statistically different from each
other for their statistic of coupling direction with fNIRS. Fur-
ther Wilcoxon tests were performed to compare distributions
of negative log likelihoods or CCM ρX |Y score to see which
EEG bands are different when describing causal strength with
fNIRS.

To assess the statistical significance of the actual GP-
CCM method, surrogate analysis was performed. Particularly,
acausal pair of time series were generated by shuffling (i.e.,
permuting) the time points of the original coupled time series,
thus destroying temporal structure of the time-series for test-
ing the null hypothesis that there is no causal relationship, i.e.,
performing GP-CCM on this permutation dataset provides a
distribution of the GP-CCM statistic for an acausal time series
that share the histogram of the original coupled time-series
from which we can thus perform statistical significance tests
with. An α of 0.05 was used to determined whether the true
GP-CCM value is outside the 95% confidence interval of the
bootstrapped distribution, thus p < 0.05 states the statistic is
significant. For the physiological time series, only statisti-
cally significant data points are shown in the boxplots below
(Figs. 7 and 8). For the unidirectional coupled Rossler and
Lorenz systems, we show an example of how a significance
test can look like in the appendix Fig. 13.

III. RESULTS

A. Simulations

1. Bidirectionally coupled logistic map

It can be seen in Fig. 3 that when systems are strongly
bidirectionally coupled (both Bxy and Byx are high), conver-
gent cross mapping has difficulty determining the coupling

direction. On the contrary the method we propose is further
capable to elicit the coupling direction in this regime (the
white and black areas extend closer to the diagonal in Fig. 3),
while still providing similar results as CCM in the cases when
one parameter is clearly stronger. However, a factor that needs
to be addressed is the fact that the substantiality is not reached
as defined in Eq. (15).

a. Unidirectionally coupled attractors with process noise.
Results from the Rossler system driving Lorenz are shown in
Fig. 4 as a function of the coupling parameter ε. For ε = 0,
there is no substantial evidence of one system driving another
in either CCM and GP-CCM, although GP-CCM provides es-
timates with deviation from zero larger than CCM. However,
as the magnitude of ε increases, we indeed see that GP-CCM
statistic indicates that Rossler causes Lorenz dynamics over
all states. CCM instead takes stronger coupling to indicate di-
rection, and only in the case of X1 of the Rossler system does
the coupling show towards all states of the Lorenz system.

However, results of increasing coupling for a Lorenz sys-
tem driving a Rossler system are shown in Fig. 5. While there
is a nonlinear relationship between the GP-CCM statistic κ

and ε, the GP-CCM identifies all causal links for the states
of Lorenz system driving the Rossler system; however, CCM
performs poorly, unable to determine any directionality in any
of the cases.

For both experiments performed, causal coupling from
Lorenz system to Rossler system and vice versa, the GP-CCM
statistic proved significant as outside the 95% confidence in-
terval of the permutation analysis. An example of a statistical
significance test can be seen in Fig. 13.

b. RL circuit with process noise. It can be seen in Fig. 6
that GP-CCM is far more robust to noise than CCM, as it is
barely decreasing in strength of evidence of V driving I at
increasing the noise contribution, whereas in CCM immediate
presence of noise brings the values of the coupling statistic
down to zero. This result illustrates the proposed Gaussian
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FIG. 4. Coupling statistics for CCM (d)–(f) and GP-CCM (a)–(c) plotted as a function of the coupling from the Rossler to the Lorenz state
spaces modulated by the coupling parameter ε with a constant diffusion term.

FIG. 5. Coupling statistics for CCM (d)–(f) and GP-CCM (a)–(c) plotted as a function of the coupling from the Lorenz to the the Rossler
state spaces modulated by the parameter ε with a constant diffusion term.
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FIG. 6. Coupling statistics for GP-CCM (a) and CCM (b) computed between voltage and current in the simulated RL circuit as a function
of the amount of noise on the current as illustrated in Eq. (23). The shaded area represents 95% confidence intervals over the realizations.

process method being robust to process noise, as well as the
high sensitivity of CCM to stochastic disturbances on the
deterministic dynamics.

B. Physiological data

a. Non-task-separated. Figure 7 shows that if we take the
entire 10 min from each trial for causality analysis, GP-CCM
consistently provides substantial evidence for the time se-
ries of each EEG band driving the fNIRS series. This result
holds also when CCM is used, though the middle quartile
presents some values that are negative, i.e., suggesting that
fNIRS drives EEG. The GP-CCM, however, demonstrates that
EEG is driving fNIRS in all bands, with stronger evidence in
slower wave bands α, θ and δ. These results agree with the
hypothesis as presented in Sec. 2.4.1 as well as the findings
of Pfurtscheller et al., in which slow wave oscillations found
in cardiac signals are strongly coupled with electrophysiology
[56]. As it pertains to the comparison between the coupling
statistic assessed for different EEG bandpowers, GP-CCM
displays statistically significant differences between all pairs
of distributions, while CCM detects differences only between
the β and γ bands. This result suggests that the ability to
identify EEG as the coupling direction with GP-CCM is band-
specific, with the dynamics of the EEG at lower frequencies
(δ and θ ) providing a more clear indication of the EEG →
fNIRS coupling as the prevalent one.

b. Task-separated. When the analysis is performed sepa-
rating the baseline and task epochs in Fig. 8, we still see
that EEG is the driver of the system for all bands in GP-
CCM, where all estimates display a median clearly above
0. However, the strength of evidence is not as large as it
was previously. This could suggest either a large uncer-
tainty in state-space reconstruction due to the considerably
shorter length of the analyzed time series (10 min down to
30 s), or also the fact that NIRS and EEG may become
slightly uncoupled at the moment of activation. The lower
evidence of a coupling direction was observed also for CCM,

where also we again see that it has higher variance than
the GP-CCM further emphasizing the point made previously
on its consistency. As discussed previously, the model of
EEG with fNIRS in Ref. [57] suggests that the hemody-
namic signal is directly caused by EEG. According to the
model, the frequency profile shifts to higher frequencies upon
activation and to lower frequencies upon deactivation; this,
however, does not appear evident in either CCM or GP-
CCM, though summarily EEG appears to be the coupling
direction.

IV. DISCUSSION AND CONCLUSIONS

We have introduced a methodology for inferring causal-
ity in dynamical systems through Gaussian process theory.
Leveraging both the concept of cross-mapping onto state
spaces (see Fig. 9) and zero mean Gaussian process priors
on functional spaces to create a Bayesian model evidence
comparison between the causal strength computed separately
along the directions X → Y and Y → X , we have developed a
robust metric for inferring coupling direction in noisy dynam-
ical systems. We demonstrated the robustness of GP-CCM
using synthetic data simulations first in bidirectional logistic
maps without any process noise, to compare with a benchmark
with known results; then in unidrectionally coupled chaotic
systems with high order of complexity and indirect causal
links, in order indirect causal links and show how increasing
a forcing parameter induces stronger evidence of coupling;
and finally an RL circuit to show that, even when the driving
force presents simple dynamics, a clear driving direction can
be determined even in the presence of process noise of high
variation.

Having demonstrated the robustness of GP-CCM on the
simulations performed, experiments were then performed on
real physiological data. Interactions between complex systems
in neuroscience provide an interesting setting for testing our
method as it itself has high level of noise not only at the level
of the dynamics, because uncertainty of metabolism dynamics
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FIG. 7. Overall (non-task-separated) assessment of leading drivers in EEG-fNIRS coupling. The top panels report the distributions across
subjects of the coupling statistic of GP-CCM and CCM computed at varying the EEG bandpower time series used for coupling analysis;
positive values correspond to the case of EEG being the coupling direction. The bottom panels report the p values of the Wilcoxon pairwise
test, color-coded so that black and white represent statistically significant and nonsignificant comparisons.

FIG. 8. Task-separated assessment of coupling direction in EEG-fNIRS coupling. Panels report the distributions across sub-
jects of the coupling statistic of GP-CCM and CCM, computed separately for the baseline and task conditions at varying the
EEG bandpower time series used for coupling analysis; positive values correspond to the case of EEG being the coupling
direction.
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is being propagated by neural activity but also by extraneural
activity. Also, on the topic of complex systems, neuroscience
is a natural example of many body interactions such as the
interactions seen in neurons. The acquisition of signals from
these systems also have high degree of uncertainty with re-
gards to the sensor systems themselves. We hypothesized that
our GP-CCM not only provides more a consistent detection
of causality compared to CCM, but also greater strength of
evidence. Indeed we showed consistently prevailing causal
strength in the direction of EEG → fNIRS, meaning that data
shows more evidence that the electrophysiological activity
is the leading causal driver of the metabolic, we also see
that over realizations of a noise-driven dynamical system,
when causality is strongly present, there is low variation in
the statistic, giving confidence that our results are meaning-
ful. On the topic of the decreasing causal strength observed
when a subject performed a task, the additive noise term in
the model as presented in Eq. (26) can possibly give ex-
planatory power, demonstrating that predictability of fNIRS
given the EEG decreases when there are extraneural activity
present. Beyond that, a trove of literature has demonstrated
how low frequency oscillations in hemodynamics demon-
strate synchrony with EEG oscillations, reflecting potential
forcing from hemodynamics on EEG oscillations [58,59].
Moreover, results of Ref. [58] demonstrated Granger causal-
ity for hemoglobin causing EEG to be higher than EEG to
hemoglobin. Speculatively, this may be linked to the argument
discussed by Ref. [12] that Granger causality suffers from
poor separability in systems that are weak or moderately cou-
pled systems as in the case of the bidirectional logistic maps
(see Ref. [12] for further discussion). Importantly, the task-
and time-dependence on the EEG-fNIRS causality may occur,
especially in a closed loop fashion (i.e., electrophysiology
continuously causes hemodynamics changes and vice versa).
Nonetheless, further investigation needs to be performed to
understand why this may be the case; in particular, a direct
comparison between Granger causality implemented in the
known form of predictability improvement from driver to
target and cross prediction schemes implemented in the spirit
of CCM from target to driver [60] is envisaged to investigate
differences both in simulated and physiological data.

Furthermore, investigation needs to be done to truly parse
why certain physiological oscillations are significantly dif-
ferent from others in determining the causal strength from
activity to activity or region to region. A potential investi-
gation in an extension of the mechanistic model presented
in prior study that was used to create the hypotheses can be
done to investigate such effects. For example, in the integrate-
and-fire function used to derive the first-order approximation,
perhaps the relaxation time constant coefficient (which in the
physical model is transmembrane conductance) can instead
be looked into as a time varying function; presently, the first-
order approximation treats it as a constant, where the varying
Jacobian is an approximation the nonlinear depolarization
function u seen in Eq. (25). The time-varying transmembrane
conductance can reflect an extra variation of rate of change of
electrical polarization.

In terms of extensions to the causal method proposed, it
is possible that the signal may not be well characterized by
Gaussian functions with a state space and covariance structure

as we defined in this study. To that effect, future research
should find an adequate map onto a zero-mean Gaussian pro-
cess that preserves topological properties of the reconstructed
phase space. This can be done by warping observation space
via a basis expansion series as proposed in Ref. [61], where
a neural networklike series of hyperbolic tangent functions
in res-net fashion for invertibility was used. Another exten-
sion may comprise the use of invertible functions known as
“normalizing flows” [62] to better approximate a true poste-
rior from a base simple Gaussian density. Beyond that, one
can investigate looking to deep Gaussian processes as an-
other alternative to learn complex non-Gaussian spaces using
compositions of Gaussian processes, where each layer has a
zero-mean Gaussian prior placed on it [63].

From the simulations of a Lorenz system driving a Rossler
system along with the inverse case, we have seen that the
causal GP-CCM metric provides significant results at all cou-
pling strength values. To that extent, future studies should
focus on the development of a new statistical analysis devised
ad hoc for uncoupled dynamical systems. For example, sen-
sitivity analysis test on hyperparameters can be performed, or
perhaps a latent model method could be interest to impose a
distribution over the input parameters as in Ref. [64]. This
may even further help substantiate results in Figs. 4 and 5
where we are on the fringe of the concept of “substantiality”
of the metric proposed in Eq. (15), or for the physiological
dataset where, even though we see a clear directionality, it is
below the threshold for.

Though the results in Figs. 10 and 11 in the Appendix do
show the ability to infer proper causal direction given nonsta-
tionary diffusion in the stochastic dynamics, the theory itself
needs to have better founding for it. Indeed, the sparse kernel
we derive does account for noise in variables by optimally
finding points in state space that maximizes the marginal
likelihood of our state space reconstruction, however no
guarantees are particularly given with the theory. This, in
turn, may improve the calculation in dynamical systems char-
acterized by many timescales as physiological systems. For
example, the method could be extended to a moving window
method that considers short transient interactions alongside
extended long-timescale analysis (see Fig. 12 for in the
Appendix an example of a moving window analysis for a non-
stationary diffusion signal). If not multiple timescales, then a
covariance kernel composed by other nonstationary Gaussian
processes such as the Wiener kernel could be utilized as well.
This is also important to consider as pertaining to the task
of deciding proper embedding dimension and delay times for
mapping to time series to a reconstructed phase space; non-
stationarity poses indeed inherent difficulties where the full
system effects cannot be described in a single scale, requiring
extended embedology analyses [65].

CCM and GP-CCM inherently focus on tackling the prob-
lem of synergistic nonlinear coupling in dynamical systems,
which was cause of interest due to its prevelance in com-
plex systems, e.g., such as neurophysical systems. As stated
in Ref. [12], its predication is based on a system that ex-
plores its entire state space as sample size increases, creating
a denser simplex for cross-mapping prediction, i.e., having
a causal metric that converges. An inherent cause for con-
cern, however, is the error in sampling times causing poor
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reconstructions of the state space with Takens’ theorem. This
may need to be further validated that it does not affect the
proposed method. However, the proposed GP-CCM method
appeared promisingly robust to observational and noise in
dynamics, i.e., process noise as revealed in Figs. 4–6, which
could be a sign of the robustness that the imposed prior im-
poses on inferring a posteriori causal direction.

It may be tempting from results such as Fig. 3 to make
statements such as the predominant direction of coupling
between bidirectional systems given our statistic. While this
inference is not the main aim of the proposed methodology,
we may elaborate on cyclic flow diagrams by determining
which state space reconstruction has higher likelihood of
cross mapping to another one. On that note, the statistical
significance positive value of κY X can only make the claim
of a single direction of information from Y → X . To formally
make wider predominant coupling direction statements for a
bidirectional system, first we must develop an ad hoc statistic
evaluating that there are indeed bidirectional interactions, i.e.,
that indeed there is also information flow from X → Y ; the ad-
ditional mathematical formulation required for this inference
can be a future case of study. Other tempting interpretations
may be to look at, for example, p(φ(X )|φ(Y ), θ∗

y ) for a stan-
dardized metric of strength of information flow from Y → X .
We avoid such analysis as scale of the likelihood is impacted
by the number of samples, e.g., for very large number of sam-
ples N and a diagonal posterior covariance the log likelihood
is

∑N
n=1 log[p(μY |X n

, �Y |X nn
)], where if p is strictly <1 the

posterior likelihood would tend to −∞, i.e., likelihood almost
zero. Given that, we suggest the proposed method GP-CCM
to be used for time series of equal sample size. However, we
provide in the Appendix Fig. 14 to demonstrate the posterior
likelihood and correlations maps used to construct Fig. 3.

Moreover, future works may also be directed toward the
investigation of causal graphs via a set of conditional tests to
see if information is gained from introducing another parame-
ter into the reconstructed phase space, i.e., M = {X (t ), X (t −
τ ), ...X (t − mτ ),Y (t ),Y (t − τ )...Y (t − mτ )} to test causal-
ity on a third. Also, as mentioned previously, further a
posterior analysis on the GP-CCM statistic with sensitivity
analysis on hyperparameters, or probabilistic latent models,
can be researched to address a rigorous power of statistic term.
Beyond that, a thorough multiscale analysis using GP-CCM
can be assessed to determine causality that addresses the full
system effects.

ACKNOWLEDGMENTS

The research leading to these results has received par-
tial funding from the European Commission Horizon 2020
Program under Grant Agreement No. 813234 of the project
RHUMBO and by the Italian Ministry of Education and Re-
search (MIUR) in the framework of the CrossLab project
(Departments of Excellence).

APPENDIX

1. Convergent cross mapping illustration

Principles of convergent cross mapping leverage the dif-
feomorphic properties between state spaces reconstructed

FIG. 9. Illustration of cross-mapping a single state from one
time series onto a reconstructed attractor of a second time series.
Taking a state as illustrated using a white dot (seen in the southwest
corner of the plot) from a reconstructed phase space X (full phase
space in black) in a Lorenz system. V is the three nearest neigh-
bors to the white dot, as embedding dimension m = 2; thus simplex
E = 3. W is then the distance to each of those three neighboring
points V.

from single variable time series to the original state space
of the dynamical system. If dynamical system Y recon-
structed from observed time series Y causes time series X ,
the delay-coordinate map of the driving time series φ(Y )
should cross map well with high correlation onto the de-
lay coordinate map φ(X ) (see Fig. 9). The vice-versa, φ(X )
cross-mapped onto the φ(Y ) would not necessarily yield high
correlation.

2. Nonstationary noise effect on the statistics

In order to assess the effect that nonstationary noise has
on determining causality with either GP-CCM or CCM, we
simulated the Rossler and Lorenz unidirectionally coupled
systems in order to see whether the statistics are still able to
uncover the proper directionality of coupling. Figs. 10 and
11 illustrate that indeed for GP-CCM we are still able to
uncover the proper direction of causality for either variable
of the system, though with a lower value than the stationary
case seen in Figs. 4 or 5. CCM again seems to not be able to
uncover any causal effect in the system coupling the Lorenz
equations to the Rossler equations. For the Rossler equations
driving Lorenz equations, CCM still provides inconsistent
results.

3. Sliding windows

Sliding window techniques are popular for resolving po-
tential transient and nonstationary phenomenon that occur in
time series analysis that would not be able to be uncovered
with only full window analysis of a time series. In Fig. 12 we
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FIG. 10. Coupling statistics for CCM (d)–(f) and GP-CCM (a)–(c) plotted as a function of the coupling from the Rossler to the Lorenz
system modulated by the coupling parameter ε with a noise diffusion term that linearly increases with time.

FIG. 11. Coupling statistics for CCM (d)–(f) and GP-CCM (a)–(c) plotted as a function of the coupling from the Lorenz to the the Rossler
attractors modulated by the coupling parameter ε with a noise diffusion term that linearly increases with time.
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FIG. 12. Coupling statistics for CCM (d)–(f) and GP-CCM (a)–(c) plotted as a function of time from the Rossler to the Lorenz system
modulated by the coupling parameter ε with a noise diffusion term that linearly increases with time. The physical coupling ε between Rossler to
Lorenz systems was fixed to 0.3 as seen as the plateau of our causality graph in Fig. 10. Time series contain 4000 samples, thus the integration
time is evenly spaced 0.1 s. The window analysis for causality considers 400 samples with no window overlap. The function for diffusion is
g(t ) = 10−4 t , so time zero has no diffusion, at end time the noise diffusion amplitude is 0.04.

FIG. 13. Results of a surrogate data analysis testing whether the GP-CCM causal statistic did not arise from random chance, particularly
for the Rossler state Y1 GP-CCM causing a Lorenz state X . In panels (a)–(c) the GP-CCM statistic is shown to be significant insofar as saying
the statistic did not arise by random chance. Distance from the surrogate data increases as coupling parameter increases. In panels (d)–(f)
boxplots of GP-CCM statistic over 30 realizations of coupled Rossler-Lorenz systems are shown, looking at the coupling direction between
Rossler Y1 and each lorenz state X .
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FIG. 14. Heatmaps of posterior likelihoods in panels (a), (b) for the GP-CCM statistic and correlations in panels (c), (d) used to construct
the κ and � statistics in Fig. 3.

show results of GP-CCM and CCM on determining coupling
direction using a sliding window technique.

4. Surrogate data analysis

In order to illustrate the surrogate data analysis for the
GP-CCM method, we provide scatter-plots in Fig. 13 demon-
strating for a single realization that the statistic will show
significance, with distance from the surrogate data mean (i.e.
0) increasing as coupling strength increases. Furthermore,

we illustrate the distribution of significant GP-CCM statistics
over 30 realizations for each coupling strength value.

5. Posterior likelihoods and correlations for Fig. 3

The statistics in the heatmap Fig. 3, as illustrated in Eqs. (6)
and (13) respectively for CCM and GP-CCM, are composed
of intermediate statistics of correlations and posterior like-
lihoods. Fig. 14 illustrates the precise intermediate statistics
used for constructing these heatmaps.
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deep Gaussian processes, in Proceedings of the 53rd Asilo-
mar Conference on Signals, Systems, and Computers (2019),
pp. 472–476.

[34] R. E. Kass and A. E. Raftery, Bayes factors, J. Am. Stat. Assoc.
90, 773 (1995).

[35] M. W. Barnett and P. M. Larkman, The action potential, Pract.
Neurol. 7, 192 (2007).

[36] T. Kirschstein and R. Köhling, What is the source of the EEG?
Clin. EEG Neurosci. 40, 146 (2009).

[37] R. Plonsey and D. B. Heppner, Considerations of quasistation-
arity in electrophysiological systems, Bull. Math. Biophys. 29,
657 (1967).

[38] P. Magistretti and I. Allaman, A cellular perspective on brain
energy metabolism and functional imaging, Neuron 86, 883
(2015).

[39] S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, Brain
magnetic resonance imaging with contrast dependent on
blood oxygenation, Proc. Nat. Acad. Sci. USA 87, 9868
(1990).

[40] T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, Diffuse
optics for tissue monitoring and tomography, Rep. Prog. Phys.
Phys. Soc. 73, 076701 (2010).

[41] F. Takens, Detecting strange attractors in turbulence, in
Dynamical Systems and Turbulence, Warwick 1980, edited
by D. Rand and L.-S. Young (Springer, Berlin, 1981),
pp. 366–381.

[42] T. Sauer, J. A. Yorke, and M. Casdagli, Embedology, J. Stat.
Phys. 65, 579 (1991).

[43] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes
for Machine Learning (Adaptive Computation and Machine
Learning) (MIT Press, Cambridge, MA, 2005).

[44] D. J. C. MacKay, Bayesian methods for backpropagation
networks, in Models of Neural Networks III: Association, Gen-
eralization, and Representation, edited by E. Domany, J. L. van
Hemmen, and K. Schulten (Springer, New York, NY, 1996),
pp. 211–254.

[45] E. Snelson and Z. Ghahramani, Sparse Gaussian processes
using pseudo-inputs, in Proceedings of the 18th Interna-
tional Conference on Neural Information Processing Systems,
NIPS’05 (MIT Press, Cambridge, MA, 2005), pp. 1257–1264.

064208-17

https://doi.org/10.1109/JPROC.2015.2476824
https://doi.org/10.1016/j.neuroimage.2014.06.062
https://doi.org/10.1126/science.1227079
https://doi.org/10.1002/sres.3850120204
https://doi.org/10.1006/nimg.2000.0630
https://doi.org/10.1209/0295-5075/100/10005
https://doi.org/10.1103/PhysRevE.87.042917
https://doi.org/10.1073/pnas.1704663114
https://doi.org/10.1103/PhysRevE.91.040101
http://arxiv.org/abs/arXiv:1407.3809
https://doi.org/10.1088/1361-6579/ab5050
https://doi.org/10.21035/ijcnmh.2014.1(Suppl.1).S20
https://doi.org/10.22489/CinC.2019.133
https://doi.org/10.1109/TBME.2016.2579021
https://doi.org/10.1890/14-1479.1
https://doi.org/10.1016/j.future.2016.12.009
https://doi.org/10.1016/S1053-8119(03)00202-7
https://doi.org/10.1126/sciadv.aau4996
https://doi.org/10.1103/PhysRevE.90.062921
https://doi.org/10.1103/PhysRevE.102.062139
https://doi.org/10.1080/01621459.1995.10476572
https://pn.bmj.com/content/7/3/192
https://doi.org/10.1177/155005940904000305
https://doi.org/10.1007/BF02476917
https://doi.org/10.1016/j.neuron.2015.03.035
https://doi.org/10.1073/pnas.87.24.9868
https://doi.org/10.1088/0034-4885/73/7/076701
https://doi.org/10.1007/BF01053745


GHOUSE, FAES, AND VALENZA PHYSICAL REVIEW E 104, 064208 (2021)

[46] A. C. Damianou, M. K. Titsias, and N. D. Lawrence, Variational
inference for latent variables and uncertain inputs in Gaussian
processes, J. Mach. Learn. Res. 17, 1 (2016).

[47] Y. Gal, M. v. d. Wilk, and C. E. Rasmussen, Distributed varia-
tional inference in sparse Gaussian process regression and latent
variable models, in Proceedings of the 27th International Con-
ference on Neural Information Processing Systems, NIPS’14
(MIT Press, Cambridge, MA, 2014), pp. 3257–3265.

[48] E. Snelson and Z. Ghahramani, Variable noise and dimension-
ality reduction for sparse Gaussian processes, in Proceedings of
the 22nd Conference on Uncertainty in Artificial Intelligence,
UAI’06 (AUAI Press, Arlington, VA, 2006), pp. 461–468.

[49] H. D. I. Abarbanel and M. B. Kennel, Local false nearest neigh-
bors and dynamical dimensions from observed chaotic data,
Phys. Rev. E 47, 3057 (1993).

[50] J. Shin, A. von Lühmann, B. Blankertz, D. W. Kim, J. Jeong,
H. J. Hwang, and K. R. Müller, Open access dataset for eeg+nirs
single-trial classification, IEEE Trans. Neural Syst. Rehabil.
Eng. 25, 1735 (2017).

[51] P. Pinti, F. Scholkmann, A. Hamilton, P. Burgess, and I.
Tachtsidis, Current status and issues regarding pre-processing
of FNIRs neuroimaging data: An investigation of diverse signal
filtering methods within a general linear model framework,
Front. Human Neurosci. 12, 505 (2019).

[52] G. Strangman, D. A. Boas, and J. P. Sutton, Non-invasive neu-
roimaging using near-infrared light., Biol. Psychiatry 52, 679
(2002).

[53] M. Junghöfer, T. Elbert, D. Tucker, and B. Rockstroh, Sta-
tistical control of artifacts in dense array eeg/meg studies,
Psychophysiology 37, 523 (2000).

[54] L. J. Gabard-Durnam, A. S. Mendez Leal, C. L. Wilkinson, and
A. R. Levin, The Harvard automated processing pipeline for
electroencephalography (Happe): Standardized processing soft-
ware for developmental and high-artifact data, Front. Neurosci.
12, 97 (2018).
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