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Training  an artificial neural network for handwriting classification requires a sufficiently 
sized annotated dataset in order to avoid overfitting. In the absence of sufficient instances, 
data augmentation techniques are normally considered. In this paper, we propose the troika 
generative adversarial network (T-GAN) for data augmentation to address the scarcity of 
publicly labeled handwriting datasets. T-GAN has three generator subnetworks architectured 
to have some weight-sharing in order to learn the joint distribution from three specific domains. 
We used T-GAN to augment the data from a subset of the IAM Handwriting Database. We 
then compared this with other data augmentation techniques by measuring the improvements 
brought by each technique to the handwriting classification accuracies in three types of artificial 
neural networks (ANNs): deep ANN, convolutional neural network (CNN), and deep CNN. The 
data augmentation technique involving the T-GAN yielded the highest accuracy improvements 
in each of the three ANN classifier types – outperforming the standard techniques of image 
rotation, affine transformation, and combination of these two – as well as the technique that uses 
another GAN-based model, the coupled GAN (CoGAN). Furthermore, a paired t-test between 
the 10-fold cross-validation results of the T-GAN and CoGAN, the second-best augmentation 
technique in this study, on a deep CNN-made classifier confirmed the superiority of the data 
augmentation technique that uses the T-GAN. Finally, when the generated synthetic data 
instances from the T-GAN were further enhanced using the pepper noise removal and median 
filter, the classification accuracy of the trained CNN and deep CNN classifiers were further 
improved to 93.54% and 95.45%, respectively. Each of these is a big improvement from the 
original accuracies of 67.43% and 68.32%, respectively of the 2 classifiers trained on the original 
unaugmented dataset. Thus, data augmentation using T-GAN – coupled with the mentioned two 
image noise removal techniques – can be a preferred pre-training technique for augmenting 
handwriting datasets with insufficient data samples.
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INTRODUCTION
Handwriting classification involves processing images 
of a handwritten text to accurately produce the matching 
digital form of the text. It has been a topic of much interest 
for many years, and the current state-of-the-art techniques 
involve deep learning neural network models (Abiodun 
et al. 2018). However, training such models, because of 
the sizable number of parameters, normally requires a 
large amount of annotated data samples in order to avoid 
overfitting. 

With the scarcity of publicly labeled handwriting datasets 
in the global market, the expensive collection of correctly 
labeled images, and the lack of access to substantial 
amounts of data, it is a challenge to train a deep neural 
network that performs robustly. Thus, it is sensible 
to explore ways to increase the instances of a limited 
dataset through the generation of synthetic data to enable 
achieving good accuracy at handwriting classification. 
This process of generating additional training data is 
referred to as data augmentation.

For most image-processing applications, data 
augmentation is normally done through the utilization of 
annotation-preserving transformations on the input data 
from the existing dataset (Goodfellow et al. 2016). These 
transformations include randomly rotating, shearing, 
translating, cropping, flipping, or deforming the image. 
Through the random nature of data augmentation, 
an endless (in theory) supply of training data can be 
generated. Data augmentation, however, is not universally 
applicable to all problem domains (Neff et al. 2018). For 
example, in handwriting classification, the horizontal flips 
(mirroring) and 180-degree rotations cannot be applied 
because they would produce invalid samples.

In 2014, Goodfellow et al. introduced the generative 
adversarial network (GAN). It offers a promising method 
of automatically learning a generative model by just training 
standard deep neural networks. A GAN consists of two 
adversarial subnetworks – a generator and a discriminator. 
The generator synthesizes data from an input noise vector, 
aiming to fool the discriminator into misclassifying the 
synthetic data as a real instance. The discriminator is a 
standard classification network that receives both real 
and generator-synthesized instances and aims to perfectly 
classify each input image as either real or synthetic.

Since the emergence of GANs with impressive outcomes 
in various domains, numerous variants of GAN have been 
proposed. These include the deep convolutional GAN 
(Radford et al. 2015), CycleGAN (Chu et al. 2017), 
Wasserstein GAN (Arjovsky et al. 2017), DeLiGAN 
(Gurumurthy et al. 2017), DeblurGAN (Kupyn et al. 
2017), SimGAN (Dilipkumar 2017), DualGAN (Yi et al. 
2017), CoGAN (Liu and Tuzel 2016), InfoGAN (Chen et 

al. 2016), conditional GAN (Mirza and Osindero 2014), 
and more. 

These GANs have been used purposively in many data 
generation tasks such as image generation (Marchesi 2017; 
Wang and Jiang 2016), domain-transfer (Bousmalis 2017), 
auto-painter (Liu et al. 2017b), synthetic data generation 
(Zhu et al. 2018; Nazki et al. 2018; Frid-adar et al. 2018), 
and text to photo-realistic image synthesis (Zhang et al. 
2017). Though GANs show impressive results when 
trained on large datasets, how GANs perform when trained 
on a small amount of data is still a topic of active research.

The proposal of CoGAN opens the first attempt to tackle 
the generation of data from two domains (Bang and 
Shim 2018). The incorporation of autoencoder, encoder, 
decoder, classifiers, and loss function modifications are 
some of the enhancements or variations performed to 
the CoGAN architecture. Liu et al. (2017a) extended 
CoGAN by integrating variational autoencoders for GAN 
to achieve image translation by mapping the data between 
two domains into a shared latent space through the shared 
weighted encoder. To attain the unpaired and unsupervised 
image-to-image translations, CycleGAN (Zhu et al. 
2017) and DiscoGAN (Kim et al. 2017) use a cyclic 
consistent loss term in addition to the adversarial loss, 
while  DualGAN (Yi et al. 2017) takes advantage of dual 
learning by expanding the basic GANs into two CoGANs, 
two generators, and two discriminators. On the other hand, 
triangle GAN (Gan et al. 2017) consists of four neural 
networks, two generators, and two discriminators, whereas 
triple GAN (Li et al. 2017) comprises two conditional 
GANs with a generator, a discriminator, and a classifier 
to perform semi-supervised learning. Bang and Shim 
(2018) introduced the resembled GAN, which employs 
a feature statistic matching algorithm and implicitly 
induces two generators to match feature covariance from 
both domains leading to share semantic attributes. The 
multitask CoGAN (Lin et al. 2018) consists of CoGAN 
networks for scene Chinese character style transfer and 
classifier networks trained by the style-transferred data 
generated by the CoGAN. More recent studies that extend 
or tweak the CoGAN architecture include the Conditional 
CoGAN (Wang and Gupta 2019), which implements 
CoGAN as a conditioning model to capture the joint 
distribution of dual-domain samples in two different tasks. 
These include the spatio-temporally CoGAN (Qi et al. 
2020) for predictive scene parsing, which employs both 
CNNs and convolutional long short-term memory in the 
encoder-decoder architecture; and TriGAN (Roy et al. 
2020) for data-generation from multiple source domains, 
which is composed of a generator network comprising of 
an encoder and decoder, and a discriminator network that 
is based on the projection discriminator. 

Most of the image-to-image translation or domain 
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adaptation works that cited the CoGAN architecture focus 
on datasets of characters or digital images, biomedical 
images, artworks, paintings, sketches, animal images, 
human images, human poses, road scenes, vehicle images, 
cityscapes, object images, 3D and 2D images, music, and 
videos. Although existing works have achieved promising 
results, in most of them, there was an ample amount of 
instances to perform multiple domains or one-to-one 
domain adaptations. Our extensive literature review 
revealed no previous work that focused on a limited size 
of handwritten text datasets and added a third branch to 
CoGAN for data augmentation.

In this paper, we extend the CoGAN architecture and 
propose a new GAN variant – the T-GAN. The T-GAN 
contains a group of three GANs working together to 
learn good models for generating synthetic data from 
three specified domains (original handwriting image 
data, randomly rotated data, and affine transformed data).  
The generated image data are then used to increase the 
number of available instances to improve the training of 
various ANN classifiers, as demonstrated by significant 
improvements in the accuracies of these classifiers. The 
rest of the paper details the proposed T-GAN further and 
also describes the preparations, experiments conducted, 
the results produced, and the insights from the analyses 
of these results.

METHODOLOGY

Initial Dataset for Handwriting Classification
The IAM Handwriting Database (Marti and Bunke 2002) is 
a large publicly available database of handwritten English 
text written by 657 writers. This database is commonly 
used to train and test handwritten text recognizers. It has 
a handwriting sample of 115,320 images of isolated and 
labeled words scanned at a resolution of 300 dpi and saved 
as PNG images with 256 gray levels. 

In this paper, a small subset of the IAM Handwriting 
Database was used in order to simulate the usual scenario 
where only a small-sized dataset is available. This enables 
us to investigate the effectiveness of using T-GAN as a 
data augmentation technique for situations involving very 
limited real data instances. Previous studies (Dilipkumar 
2017, Wigington 2017) on handwriting classification 
also used a subset of the IAM Handwriting Database, 
but where some words actually contain a good enough 
number of samples. To add challenge in our study, we used 
only 439 images corresponding to the 20 least frequently 
occurring words from this set. A list of these words with 
their corresponding frequencies is presented in Table 1.

Segmented instances of handwritten words were already 
provided in the database, so no segmentation technique 
was needed in this work. However, the dataset contained 
images of different sizes, whereas the neural network – 
because of its fixed-sized input layer – required all input 
images to have the same dimensions. Thus, we resized 
each original image to 100 x 100 pixels while preserving 
the aspect ratio of the image of the word. Figure 1 displays 
the sample size of the original image (first row) with the 
corresponding resized versions (second row).

Handwriting Classification Using ANN Models 
Three architecturally different ANNs were considered as 
classifiers to establish the baseline in the study. This is to 

Table 1. Frequency of handwritten words used in the study.

Vocabulary words Frequency

alone 22

answer 22

became 22

believe 22

charming 22

cure 22

enjoy 22

event 22

except 22

extraordinary 22

fire 22

foreign 22

heavy 22

hoped 22

master 22

met 22

Mr 22

rest 22

shops 22

stop 22

Grand total 439

Figure 1. Original image samples and their corresponding resized 
versions
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Table 2. Tables of the deep ANN handwriting classification model.

Layer (type) Output shape Param. #

dense_1 (dense) (None; 256) 2560256

dense_2 (dense) (None; 128) 32896

dense_3 (dense) (None; 64) 8256

dense_4 (dense) (None; 20) 1300

Total params.: 2,602,708
Trainable params.: 2,602,708
Non-trainable params.: 0

Table 3. Details of the CNN handwriting classification model.

Layer (type) Output shape Param. #

conv2d_1 (Conv2D) (None; 98, 98, 16) 160

max_pooling2d_1 
(MaxPooling2D)

(None; 49, 49, 16) 0

conv2d_2 (Conv2D) (None; 47, 47, 8) 1160

max_pooling2d_2 
(MaxPooling2D)

(None; 23, 23, 8) 0

flatten_1 (flatten) (None; 4232) 0

dense_1 (dense) (None; 10000) 42330000

Total params.: 42,531,340
Trainable params.: 42,531,340
Non-trainable params.: 0

Figure 2. Architectures of the handwriting classification models.
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Table 4. Details of the deep CNN handwriting classification model.

Layer (type) Output shape Param. #

conv2d_1 (Conv2D) (None; 98, 98, 32) 320

m a x _ p o o l i n g 2 d _ 1 
(MaxPooling2D)

(None; 49, 49, 32) 0

conv2d_2 (Conv2D) (None; 47, 47, 16) 4624

m a x _ p o o l i n g 2 d _ 2 
(MaxPooling2D)

(None; 23, 23, 16) 0

conv2d_3 (Conv2D) (None; 21, 21, 8) 1160

m a x _ p o o l i n g 2 d _ 3 
(MaxPooling2D)

(None; 10, 10, 8) 0

flatten_1 (flatten) (None; 800) 0

dense_1 (dense) (None; 10000) 8010000

dense_2 (dense) (None; 20) 200020

Total params.: 8,216,124
Trainable params.: 8,216,124
Non-trainable params.: 0

demonstrate that the data augmentation technique is able 
to bring forth improvements in accuracy regardless of the 
type of neural network classifier. These three ANNs are the 
deep ANN, the CNN, and the deep CNN. The architectures 
of the three different ANN models implemented in the 
study are presented in Figure 2 and detailed in Tables 2, 
3, and 4, respectively.

All the three ANN types were trained using the ADAM 
optimizer and the categorical cross-entropy was used as 
the loss function. Stratified 10-fold cross-validation was 
done, with the average accuracy in the 10 folds used as the 
baseline accuracy for each of the three ANN classifiers. 

generates batches of tensor image data with real-time data 
augmentation. The angles of rotation were all random and 
between –10 and 10 degrees. The affine transformation 
was also implemented by applying shearing and rotation 
attributes using the AffineTransform() method in 
the scikit-image library for the Python programming 
language. Figure 3 shows some examples of synthetic data 
produced using standard data augmentation techniques.

Measuring the Classification Accuracy 
Improvements from Data Augmentation
The training procedure for each of the three handwriting 
classification models is illustrated in Figure 4. While 
the baseline models (deep ANN, CNN, and deep CNN) 
used only real images for training during the first phase 
of the experiments, these models were trained using 
augmented dataset (real training data + synthetic data) 
in the second phase. This allows us to measure how 
much improvement, if any, is induced by a specific data 
augmentation technique.

Similar to what was done in the first phase, stratified 
10-fold cross-validation was implemented in the second 
phase of the experiment. We made sure that the images 
used for generating synthetic data came only from the nine 
training folds and all the generated images were used only 
for training the ANN classifier. The remaining fold, having 
no synthetic test data, served as the test set to evaluate 
the model. Iteratively, each of the models was gauged 10 
times to calculate the accuracy rating for each fold. The 
average classification accuracy from the 10 folds was used 
as an estimate of the model’s performance.

Using only the original dataset for training, the deep 
ANN yielded poor results while the CNN and deep CNN 
handwriting classifiers were able to produce relatively good 
results, as shown in Table 5. As shown also in the same 
table, the baseline accuracies from these three ANNs have 
been improved with the application of a data augmentation 
technique compared against the baseline results.

Figure 3. Generated synthetic handwriting data using augmentation 
techniques.

Standard Image Data Augmentation Techniques
To investigate the improvements in the classification 
accuracy induced by the application of data augmentation, 
we first explored the following standard techniques: image 
rotation, affine transformation, and the combination 
of these two. The rotation was implemented using an 
ImageDataGenerator class, a Keras library class that 

Figure 4. Training procedures of the handwriting classification 
models
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Improving the Augmentation Technique Using 
GAN-based Models
We explored different architectures of GAN models to 
determine which can produce good quality synthetic images 
that can be used in training more accurate neural network 
classifiers. One such GAN is the CoGAN proposed by 
Liu and Tuzel in 2016. CoGAN is designed to learn a joint 
distribution of images in two different domains. It consists 
of a pair of GANs (GAN1 and GAN2), each of which is 
responsible for synthesizing images in one domain. These 
two share the weights in the first few layers (responsible for 
decoding high-level semantics) of the generative models. 
They also share the weights in the last few layers of the 
discriminative models (see Figure 5a). This weight-sharing 
constraint allows CoGAN to learn a joint distribution of 
images. Both the weight-sharing constraint and adversarial 
training are essential in learning this distribution even 
without correspondence supervision. Figure 5 illustrates 
the architectures of the two networks.

In the original paper, the MNIST (handwritten digit) 
dataset was used to train CoGAN for two specific tasks. 
An experiment for learning a joint distribution was 
performed in which the first domain consisted of the 
original handwritten digit images, and the second domain 
consisted of the digits 90-degree in-plane rotation.

To our knowledge, data augmentation using CoGAN has 
not yet been explored for handwriting classification. In our 
experiments, the CoGAN architecture (Liu and Tuzel 2016) 
was modified to receive and produce images with size 100 
x 100 pixels. We constructed CoGAN using a deep ANN 
unlike in the original paper where CoGAN was structured 
using deep CNN. Training a GAN made with deep CNN 
takes a long time and so, we modified the construction of 
CoGAN using a deep ANN to reduce the time consumed for 
training. The 90-degree in-plane rotation used in a previous 
paper (Liu and Tuzel 2016) was also not adopted because 
doing so will produce generally unrealistic handwriting 
images. We, therefore, paired the original dataset (first 

domain) with images randomly rotated from –10 to 10 
degrees angle, which served as the second domain. The 
parameters of the generators and discriminators were 
also adjusted to generate promising synthetic handwriting 
images. After the training, we kept the generator models for 
each class to generate synthetic data to be added to the real 
training data of the handwriting classification networks.

There were actually three different CoGAN-based data 
augmentation techniques experimented on in this study. 
CoGAN1 was trained using the original dataset and the 
randomly rotated instances of the handwriting samples. 
Another model of CoGAN was trained on original 
dataset and affine transformed data, and we refer to 
this as CoGAN2. The last model was the combination 
of CoGAN1 and CoGAN2, which we represented as 
CoGAN1 + CoGAN2 in the paper. These variations of 
CoGAN were made to have a reasonable comparison of 
the improvements induced in the classification accuracy 
when compared to our proposed synthetic image generator.

Since the results of using CoGAN looked promising, 
we explored extending the architecture by including an 
additional subnetwork, thus having a group of three GANs 
(GAN1, GAN2, and GAN3) working together to synthesize 
images from three different domains. We refer to this new 
GAN variant as the Troika GAN (T-GAN).

The T-GAN was trained to add the third domain obtaining 
an instance of the original data, which are generated using 
affine transformation to the first and second domains used to 
train CoGAN. Afterward, the generator models from this data 
augmentation technique were kept for each class and utilized 
in generating synthetic data for handwriting classification.

The generative models (generators) were structured 
with five layers. Batch normalization processing with a 
momentum of 0.8 and LeakyRelu having an alpha of 0.2 
were employed in all layers of the models, whereas the 
output layer used the tanh activation function. As shown 

Table 5. Accuracy results of the handwriting classification models.

Training data Dataset size Deep ANN
classification accuracy

CNN
classification accuracy

Deep CNN
classification accuracy

Without data augmentation 439 4.78% 67.43% 68.32%

With rotational transformation 1317 5.47% 69.02% 73.13%

With affine transformation 1317 5.24% 67.64% 68.56%

With rotational + affine 
transformations

1317 5.01% 69.93% 70.86%

With CoGAN1 1317 5.24% 77.89% 81.11%

With CoGAN2 1317 5.01% 67.73% 80.87%

With CoGAN1 + CoGAN2 1317 5.24% 79.05% 83.62%

With T-GAN 1317 5.92% 83.38% 87.27%
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in Figure 5b, the training parameters were shared in all 
layers (WA, WB, and WC) except for the last hidden layer 
(WD1, WD2, and WD3) and the output layer (WE1, WE2, 
and WE3). Output images were generated having a random 
noise vector of size 100 as an input (z).

For the discriminative models (discriminators), two layers 
were shared – namely, the input layer (WF) and a hidden 
layer (WG) – except for the output layer (f1, f2, and f3). The 
models implemented LeakyRelu having a 0.2 alpha and 
dropout of 0.4, while the output layer employed sigmoid as 
the activation function. Batches containing output images 
from the generative models and images from the training 
subsets (each pixel value is normalized to be in the range 
[–1, 1]) were the inputs to the discriminator models. 

For training the CoGAN and T-GAN, we used the 
ADAM optimizer setting the learning rate to 0.0002 and 
momentum parameter to 0.5. Since we have a limited 
dataset, batch size was set to 20. The number of iterations 
to train the two GANs was extended arbitrarily until 
the model produces synthetic handwriting images that 
have merits to the handwriting classification networks. 
We visually checked the produced synthetic images 
to determine if it is a realistically looking handwriting 
sample. Once it did so at 30000 epochs, we then stopped 
the training and employed the generated models for each 
class to determine the impact of using CoGAN and T-GAN 
as data augmentation approaches. 

Figure 5. (a) CoGAN and (b) T-GAN Architectures: GAN1 is used to generate synthetic data from 
the original dataset,GAN2 is responsible of synthesizing rotaed images, and GAN3 learns 
to synthesize synthetic data featuring affine transformations.
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The training period took approximately 24.80 min 
and 35.54 min, respectively, for CoGAN and T-GAN. 
Although the two GAN architectures took a long time for 
training, the generation of synthetic data is much faster. 

A summary of the network architectures of CoGAN 
and T-GAN is presented in Figure 6. This details the 
parameters used in the experiments in which the generator 
and the discriminator contain networks shared by each 
domain. Note that the highlighted sections using broken 

Figure 6. The discriminator and generator networks used for CoGAN and T-GAN.

Figure 7. Pseudocode implemented  for the CoGAN (left) and T-GAN.
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lines indicate the shared layers of the networks, while 
the shaded parts of the figure emphasize the added GAN 
network for T-GAN. Furthermore, Figure 7 shows the 
pseudocode implemented for the CoGAN and T-GAN, 
and the highlighted statements denote the added processes 
employed to devise T-GAN.

Implementation Details
The different augmentation techniques and the ANN 
classification models were implemented using open source 
frameworks such as a) Python 3.6.4, the programming 
language; b) OpenCV 3.3.1, the image processing 
library; c) scikit-image 0.13.1, a Python package dedicated 
for image processing; d) Keras 2.1.6, an open-source 
neural network library that runs using Tensorflow as the 
backend; and e) Jupyter Notebook 5.4.0, an open-source 
web application program interface. On the other hand, 
experiments were performed on an ASUS laptop with 
Intel Core i7-8750H CPU and NVIDIA GeForce GTX 
1050 Ti GPU running at 2.20GHz~2.21GHz using 8.00 
GB RAM and Windows 10 Home Single Language 64-bit 
Operating System.

RESULTS AND DISCUSSION

Sample Images of Augmented Data
Figure 8 shows some sample images of generated synthetic 
data using the limited real dataset applying the rotation, 
affine transformations, CoGAN1 (trained using the original 
dataset and rotational transformation), CoGAN2 (trained 
using the original dataset and affine transformation), 

Figure 8. Sample images of the generated handwriting data using 
image rotation, affine transformations, CoGAN1, 
CoGAN2, and T-GAN. 

and T-GAN as data augmentation techniques. The 
resulting synthetic instances of the handwriting dataset 
offer diversity and are expected to contribute to better 
classification accuracy through the improvement of the 
training of the different ANN classifiers. Table 5 shows 
the comparison of classification accuracy results after 10 
epochs of training the three models (deep ANN, CNN, 
and deep CNN) with the augmented dataset as opposed 
to the non-augmented dataset. The table also displays the 
size of datasets that served as training data for each model 
in which training-set size was increased using rotational 
transformation, affine transformations, CoGAN, and 
T-GAN augmentation techniques. 

Classification Accuracies
The first row of Table 5 shows the baseline accuracies of 
4.78% (deep ANN), 67.43% (CNN), and 68.32% (deep 
CNN) for the three ANN classifiers using the original dataset 
only. The much higher accuracies of CNN-based models are 
expected since CNN models have generally been shown in 
the literature to work very well with image datasets.

The next three rows show the results of the three ANN 
classifier types trained on datasets that are augmented with 
the specified traditional techniques. Observe that the size of 
the dataset is three times that of the original dataset. For all 
but one case, the baseline accuracy for each ANN classifier 
type was improved with the application of data augmentation. 
The improvements, though, are generally small.

The last four rows of Table 5 show the results of using 
GAN-based data augmentation. Note that for all three 
ANN classifier types, the highest improvements from 
the baseline accuracies were obtained when the T-GAN 
data augmentation was performed. Table 6 further details 
these improvements, showing significant increases (i.e. 
more than 23% relative to the baseline) across all 3 ANN 
classifier types.

We next investigated if the T-GAN is statistically superior 
to the second-best data augmentation technique in our 
experiments. For this, we performed a paired t-test of the 
accuracies in the 10-fold cross-validations of the T-GAN 
and the CoGAN1 + CoGAN2. As shown in Table 7, the 
difference is significant (α = 0.05), with a p-value of 
0.0233. Thus, there is strong evidence of the superiority 
of the T-GAN as a synthetic image generator. 

Table 6. Accuracy Improvements in using T-GAN for data augmentation.

ANN classifier type Baseline accuracy T-GAN induced 
accuracy

Absolute increase in 
accuracy

Relative increase in 
accuracy

Deep ANN 4.78% 5.92% 1.14% 23.85%

CNN 67.43% 83.38% 15.95% 23.65%

Deep CNN 68.32% 87.27% 19.84% 27.74%
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Table 7. Paired t-test results comparing the two best-performing data 
augmentation techniques for the Deep CNN handwriting classification 
model.

Fold number CoGAN1 + CoGAN2 T-GAN

1 88.64% 86.36%

2 79.55% 81.82%

3 81.82% 90.91%

4 86.36% 93.18%

5 81.82% 86.36%

6 93.18% 90.91%

7 70.55% 84.09%

8 86.05% 88.64%

9 88.64% 88.64%

10 79.55% 81.82%

Mean 83.62% 87.27%

p-value 0.0233 <= α, therefore, significant

Legend: α = 0.05

Caveats: Data Augmentation Time and Model 
Training Time
While the previous results show that the use of T-GAN 
induced the biggest accuracy improvements across the 
different ANN classifier types, it did come at the cost 
of higher data augmentation time. There is a possibility 
that the seemingly better augmentation technique of 
T-GAN can be overcome by the other techniques by 
simply spending the “extra” time available to generate 
more synthetic instances. We show that this is unlikely 
to be the case by performing another set of experiments. 
Specifically, for each data augmentation technique, the 
dataset size was expanded further until the accuracies 
in all three ANN classifier types showed a decreasing 
trend or increased just marginally. Table 8 summarizes 
the results related to this.  Observe that for all three ANN 
types, the best accuracies (shown in the bold and italicized 
font) were still obtained with the use of the T-GAN data 
augmentation. Equally important, a trend analysis of the 
effect of increasing the size of the dataset showed that the 
accuracy in each of the other data augmentation techniques 
tend to plateau at lower levels (refer to Figure 9). From 
this, we infer that allotting even much more time to other 
augmentation techniques to produce more synthetic data 
will not produce results that are better than those garnered 
from the T-GAN augmentation.

We also performed a trend analysis on the effects of 
the training time. Figure 10 shows that the deep CNN 
classifier has relatively similar training times after 10 
epochs on the different data augmentation techniques; 
however, the T-GAN data augmentation technique 
obtained the best accuracies on the different dataset sizes.

Finally, we compare the performance of deep CNN classifier 
without any augmentation against the performance of deep 
CNN with T-GAN data augmentation. This is to determine 
whether or not the time spent for training the T-GAN for 
data augmentation could have been used to simply provide 
more training time for the deep CNN classifier (without any 
augmentation). The results (see Figure 11) shows a clear 
advantage for the use of T-GAN. Allotting more training 
time (up to 12000 epochs) for the deep CNN classifier 
(without any augmentation) does not produce better results 
than those acquired by the classifier trained (10 epochs) with 
T-GAN augmentation. Though the time spent for training 
the deep CNN classifier (without any augmentation) is 
still shorter than the time spent using T-GAN, its accuracy 
starts to plateau at a lower level. Setting too much training 
time for the deep CNN with the limited dataset can expose 
it to high risk of overfitting (Ying 2019; Srivastava et al. 
2014). The data augmentation using T-GAN to expand the 
training set can alleviate the overfitting encountered by 
the deep CNN handwriting classifier, thus improving the 
performance of the classifier. 

Post Processing: Noise Reduction 
Since the sample images generated by both the CoGAN 
and T-GAN appeared a bit noisy, we performed some post-
processing techniques to improve the generated images 
further. Specifically, we applied pepper noise removal to 
reduce the extraneous dots, and then afterward applied 
the median filter to intensify the black and white pixels. 
Samples of post-processed synthetic handwriting images 
are shown in Figure 12. 

Using the CNN and deep CNN based handwriting 
classifiers, the implementation of the post-processing 
technique yielded improvements in performance, as 
shown in Table 9. The T-GAN achieved the highest 
accuracy of 93.54% with a 3.78% increase from the 
previous accuracy result (89.76%) for the CNN-built 
handwriting classifier, while a 1.14% increase was carried 
for the deep CNN (from 94.31% to 95.45%). The post-
processing technique also enhanced the performance of 
the handwriting classification models when applied to 
the generated synthetic images using the three variants of 
CoGAN (CoGAN1, CoGAN2, and combination of both). 

A paired t-test was again conducted (refer to Tables 10 
and 11), and this revealed that the data augmentation 
using T-GAN, together with the post-processing noise 
reduction technique, yields (statistically) significantly 
better accuracies. The resulting p-values were 0.00676 
for CNN and 0.0261 for the deep CNN, both of which 
are significant (α = 0.05).
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Table 8. Accuracy results of the handwriting classification models with more images.

Training data Dataset size Augmentation time
(s)

Deep ANN
classification 

accuracy

CNN
classification 

accuracy

Deep CNN
classification 

accuracy

Without data augmentation 439 – 4.78% 67.43% 68.32%

With rotational transformation 1317       9.30 5.47% 69.02% 73.13%

2195     18.60 5.01% 69.23% 72.89%

3073      28.10 4.78% 69.01% 73.41%

3951     37.23 5.01% 70.60% 72.88%

4829     51.25 5.01% 70.61% 74.03%

5707     55.96 5.24% 71.75% 74.93%

6585     65.35 4.56% 69.25% 73.81%

With affine transformation 1317     17.80 5.24% 63.56% 68.56%

2195     35.63 5.47% 63.55% 68.11%

3073     53.45 4.78% 64.24% 69.92%

3951     71.24 4.78% 65.61% 70.17%

4829     89.42 5.01% 65.61% 67.44%

With rotational + affine 
transformations

1317     15.55 5.01% 69.93% 70.86%

2195     27.10 5.47% 72.91% 73.58%

3951     62.28 5.01% 66.05% 72.19%

5707     93.36 4.56% 68.78% 71.53%

With COGAN1 1317   107.40 5.24% 77.89% 81.11%

2195   222.12 5.47% 82.01% 84.06%

3073   325.92 5.47% 84.28% 86.57%

3951   432.72 5.24% 83.59% 87.47%

4829   534.12 5.01% 81.55% 87.02%

With COGAN2 1317  126.00 5.01% 67.73% 80.87%

2195   248.40 5.24% 78.37% 82.79%

3073   372.60 5.01% 80.64% 83.83%

3951   504.00 5.24% 80.41% 84.74%

4829   631.20 4.79% 79.96% 85.66%

With COGAN1 + COGAN2 1317   116.70 5.24% 79.05% 83.62%

2195   235.26 5.01% 80.41% 85.21%

3073   349.26 5.24% 81.32% 86.12%

3951   468.36 5.24% 82.46% 85.44%

4829   584.46 5.01% 82.01% 85.88%

With T-GAN 1317   167.40 5.92% 83.38% 87.27%

2195   355.80 5.47% 88.15% 90.89%

3073   523.20 5.01% 88.16% 92.72%

3951   691.80 5.70% 89.76% 93.64%

4829   859.20 5.24% 89.53% 93.86%

5707 1032.10 5.24% 88.61% 94.31%
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Figure 9.. Trend analysis of the effect of increasing the size of the dataset.

Figure 10.. Trend analysis of the effect of training time on Deep CNN classifer.
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Figure 11.. Comparison of Deep CNN without data augmentation and with TGAN augmentation.

Figure 12.. Sample images after the implementation of the post processing technique. Post Processing: Noise 
Reduction

Table 9. Accuracy results of the CNN handwriting classification models after post processing the generated synthetic data.

Data augmentation technique Dataset size CNN
classification accuracy

Deep CNN
classification accuracy

CoGAN1 1317 82.91% 85.42%

2195 85.42% 87.47%

3073 86.36% 89.06%

3951 88.64% 89.29%

4829 86.59% 89.06%

CoGAN2 1317 80.64% 83.89%

2195 81.55% 85.66%

3073 81.78% 87.93%

3951 82.24% 86.10%

4829 81.55% 86.57%

CoGAN1 + CoGAN2 1317 80.87% 84.75%

2195 81.33% 86.56%

3073 82.92% 87.02%

3951 80.41% 87.49%

4829 82.46% 86.80%

T-GAN 1317 83.84% 87.92%

2195 91.12% 92.94%

3073 92.03% 94.76%

3951 93.17% 94.98%

4829 93.18% 94.99%

5707 93.54% 95.45%
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Table 10. Significant difference between the accuracy results of 
implementing post processing techniques and without post 
processing using T-GAN data augmentation approach for a 
deep CNN handwriting classification model.

Fold number T-GAN 
(without post  
processing)

T-GAN 
(with post processing)

1 95.45% 95.45%

2 90.91% 93.18%

3 93.18% 95.45%

4 90.91% 93.18%

5 97.73% 97.73%

6 95.45% 95.45%

7 93.18% 93.18%

8 97.67% 97.67%

9 97.73% 97.73%

10 90.91% 95.45%

Mean 94.31% 95.45%

p-value 0.0261 <= α, therefore, significant
Legend: α = 0.05

Table 11. Significant difference between the accuracy results of 
implementing post processing techniques and without post 
processing using T-GAN data augmentation approach for a 
CNN handwriting classification model.

Fold number T-GAN 
(without post  
processing)

T-GAN 
(with post processing)

1 95.45% 97.73%

2 90.91% 93.18%

3 84.09% 90.91%

4 88.64% 93.18%

5 90.91% 99.24%

6 90.91% 90.91%

7 86.36% 95.45%

8 93.02% 93.02%

9 86.36% 93.18%

10 90.91% 88.64%

Mean 89.76% 93.54%

p-value 0.00676 <= α, therefore, significant
Legend: α = 0.05

CONCLUSION
In this paper, we have presented T-GAN, a new GAN 
variant inspired from CoGAN, to generate synthetic 
data from a limited handwriting image dataset. This data 
augmentation technique involves a group of three GANs 
working together, by sharing learned weights, to generate 

synthetic images (that appear quite realistic) from three 
different domains. In this study, the three domains selected 
were the original handwritten word images, random 
rotations, and random affine transformations.  

Using T-GAN as a synthetic image generator has 
brought forth the biggest improvements in the training 
of the different ANN classifier models, as manifested 
in the resulting superior classification accuracies. The 
superiority was statistically established by conducting a 
paired t-test. It was also demonstrated that the superiority 
of T-GAN was not due to the longer computational time 
required to learn the generative model and produce 
synthetic images, but is rather intrinsic to the nature of 
this data augmentation technique. 

Finally, it was shown that the T-GAN, together with 
the (image) post-processing techniques of pepper noise 
reduction and median filter, is a viable data augmentation 
combination. When used to generate synthetic images for 
the training of a deep CNN model, the resulting classifier 
had the best accuracy score of 95.45%, which is a big 
improvement from the baseline (unaugmented training 
set) accuracy of 68.32%. 

For future studies, it would be interesting to find out how 
the proposed T-GAN data augmentation technique can 
be helpful in developing a system with capabilities to 
decipher other insufficiently labeled handwriting datasets, 
such as those of prescriptions of doctors.
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