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Effect of characteristic size on the collective phonon transport in crystalline GeTe
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We study the effect of characteristic size variation on the phonon thermal transport in crystalline GeTe for
a wide range of temperatures using the first-principles density-functional method coupled with the kinetic
collective model approach. The characteristic size dependence of phonon thermal transport reveals an intrigu-
ing collective phonon transport regime, located in between the ballistic and the diffusive transport regimes.
Therefore, systematic investigations have been carried out to describe the signatures of phonon hydrodynamics
via the competitive effects between grain size and temperature. A characteristic nonlocal length associated with
phonon hydrodynamics and a heat wave propagation length has been extracted. The connections between phonon
hydrodynamics and these length scales are discussed in terms of the Knudsen number. Further, the scaling
relation of thermal conductivity as a function of characteristic size in the intermediate size range emerges as a
crucial indicator of the strength of the hydrodynamic behavior. A ratio concerning normal and resistive scattering
rates has been employed to understand these different scaling relations, which seems to control the strength and
prominent visibility of the collective phonon transport in GeTe. This systematic investigation emphasizes the
importance of the competitive effects between temperature and characteristic size on phonon hydrodynamics
in GeTe, which can lead to a better understanding of the generic behavior and consequences of the phonon
hydrodynamics and its controlling parameters in low-thermal conductivity materials.
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I. INTRODUCTION

Detecting phonon hydrodynamics and associated collec-
tive phonon transport in low-thermal conductivity materials is
a challenging task due to the not-so-overwhelming differences
between the normal and the resistive phonon scattering rates.
This leads to the exploration of very low cryogenic tempera-
tures to see a visible effect of collective motion of phonons.
On the other hand, 2D materials draw an appreciable amount
of studies [1–3] concerning phonon hydrodynamics because
of their enhanced normal scattering phenomena. This helps in
realizing phonon hydrodynamics even at higher temperatures
and therefore can be understood using experiments. Neverthe-
less, collective phonon transport holds fundamental interest
in materials as it draws parallel to the hydrodynamic flow in
fluids. Investigating this collective phonon transport in low-
thermal conductivity materials is crucial to understand the role
of different competing effects that influence phonon hydrody-
namics and invokes fundamental questions on its generality
and validity in both high and low conductivity materials. The
complete understanding of the origin of this phenomena thus
demands a systematic decoupling between various controlling
parameters that dictate phonon hydrodynamics in materials.

Phonon hydrodynamics is a heat transport phenomena
where the collective flow of phonons dominate the heat
conduction in materials [1,4–8]. This is enabled by sig-
nificantly higher momentum conserving normal scattering
(N) events compared to other dissipative scattering events
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[umklapp (U), isotope (I), and boundary scattering (B)],
favoring damped wave propagation of temperature fluctua-
tions [9,10]. In their consecutive two pioneering theoretical
works [11,12] published in 1966, Guyer and Krumhansl
distinguished the phonon hydrodynamics for nonmetallic
crystals using the comparison between normal and resistive
average scattering rates. Phonon hydrodynamics have also
been realized by the deviation from Fourier’s law at certain
length and timescales [2,13]. The concept of the kinetic the-
ory of relaxons to characterize phonon hydrodynamics have
been introduced by Cepellotti and Marzari [14]. Very recently,
Sendra et al. [15] introduced a framework to use hydrody-
namic heat equations from phonon Boltzmann equation to
study the hydrodynamic effects in semiconductors.

Experiments and theoretical investigations over the years
suggest that only few and mostly two-dimensional (2D) ma-
terials possess phonon hydrodynamics [2,3,5,16,17]. Some of
these 2D materials like graphene and boron nitride [1] can
even persist in phonon hydrodynamics at room temperature
due to the presence of strong normal scattering realized via
first-principles simulations. Recently, the relation between the
thickness and thermal conductivity and, consequently, their
connection to the phonon hydrodynamics was studied for
graphite [18]. The presence of second sound, a prominent
manifestation of phonon hydrodynamics, was also observed
in graphite at a temperature higher than 100 K via the
experiments carried out by Huberman et al. [19]. This vali-
dates the predictions of the simulation studies done by Ding
et al. [20] on graphite. Similarly, theoretical evaluations by
Markov et al. [9] confirmed the experimental observation [21]
of hydrodynamic Poiseuille phonon flow in bismuth (Bi)
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at low temperature. A faster than T 3 scaling of the lattice
thermal conductivity was described as a marker to identify
phonon hydrodynamics in bulk black phosphorus [8] and
SrTiO3 [22,23]. Koreeda et al. [24] studied collective phonon
transport in KTaO3 using low frequency light-scattering and
time-domain light-scattering techniques and phonon hydro-
dynamics was found to exist below 30 K. Further second
sound was also observed in solid helium (0.6–1 K) [25], NaF
(∼15 K) [26] at low temperatures.

As discussed earlier, the studies of phonon hydrodynam-
ics for low-thermal conductivity materials are substantially
less compared to its high-thermal conductivity counterpart.
However, a systematic decoupling of various controlling
parameters can help manipulate phonon hydrodynamic be-
havior in the low-thermal conductivity materials. Torres
et al. [27] showed a strong phonon hydrodynamic behav-
ior in low-lattice thermal conductivity (κL) materials such as
single layer transition metal dichalcogenides (MoS2, MoSe2,
WS2, and WSe2). In our earlier paper [28], we investi-
gated the low-temperature thermal transport in crystalline
GeTe, a chalcogenide-based material of diverse practical
interests [29,30], which shows even lower lattice thermal con-
ductivity compared to metal dichalcogenides and found that
it exhibits phonon hydrodynamics. However, we found that
the presence of hydrodynamic phonon transport in crystalline
GeTe is sensitive to the grain size and vacancies present in the
material. Further, temperature was found to play an important
role in favoring appreciable normal scattering events to enable
collective phonon transport.

For low-thermal conductivity materials like GeTe, the char-
acteristic size of the material and temperature are two crucial
parameters that influence the existence of phonon hydrody-
namics. Distinguishing the competing effects of these two
factors is important for general understanding of collective
phonon transport in GeTe. Therefore, in the current paper, we
investigate the effects of characteristic size (L) on the collec-
tive thermal transport in low-thermal conductivity crystalline
GeTe for temperatures ranging from 4 K to around 500 K.
We use first-principles calculations with a kinetic collective
model (KCM) approach [31] for this paper. We first iden-
tify the L regimes corresponding to ballistic and complete
diffusive regimes. Then we explore the regime of collective
phonon transport that comprises both ballistic and diffusive
phonons. Average scattering rates have been used to identify
phonon hydrodynamic regimes both in terms of temperature
and characteristic size. Further, temperature and L regimes
are quantified using the Knudsen number obtained using two
different length scales concerning phonon hydrodynamics.
The prominent signature of phonon hydrodynamics in GeTe is
found to depend on the scaling exponent of thermal conduc-
tivity as a function of L in the intermediate L regime where
phonon transport shifts from ballistic to complete diffusive.
The ratio of normal to resistive scattering rates at this L regime
seems to dictate the strength of the hydrodynamic behavior.

II. COMPUTATIONAL DETAILS

First-principles density functional methods are employed
to optimize the structural parameters of crystalline GeTe
(space group R3m). The details of the parameters for GeTe

can be found in our earlier paper [32]. The phonon life-
time is calculated using PHONO3PY [33] software package.
The supercell approach with finite displacement of 0.03 Å
is employed to obtain the harmonic (second-order) and the
anharmonic (third-order) force constants, given via

�αβ (lκ, l ′κ ′) = ∂2�

∂uα (lκ )∂uβ (l ′κ ′)
(1)

and

�αβγ (lκ, l ′κ ′, l ′′κ ′′) = ∂3�

∂uα (lκ )∂uβ (l ′κ ′)∂uγ (l ′′κ ′′)
, (2)

respectively. Density-functional method is implemented with
QUANTUM ESPRESSO [34] to calculate the forces acting
on atoms in supercells. The harmonic force constants are
approximated as [33]

�αβ (lκ, l ′κ ′) � −Fβ [l ′κ ′; u(lκ )]

uα (lκ )
, (3)

where F[l ′κ ′; u(lκ)] is atomic force computed at r(l ′ κ ′) with
an atomic displacement u(lκ) in a supercell. Similarly, third-
order force constants are calculated using [33]

�αβγ (lκ, l ′κ ′, l ′′κ ′′) � −Fγ [l ′′κ ′′; u(lκ ), u(l ′κ ′)]
uα, (lκ )uβ (l ′κ ′)

(4)

where F[l ′′κ ′′; u(lκ), u(l ′ κ ′)] is the atomic force computed at
r(l ′′ κ ′′) with a pair of atomic displacements u(lκ) and u(l ′κ ′)
in a supercell. These two sets of linear equations are solved
using the Moore-Penrose pseudoinverse as is implemented in
PHONO3PY [33].

Using the 2 × 2 × 2 supercell and finite displacement
method, we obtain 228 supercell configurations with dif-
ferent pairs of displaced atoms for the calculations of the
anharmonic force constants. A larger 3 × 3 × 3 supercell is
employed for the harmonic force constant calculation. For
force calculations, the reciprocal space is sampled with a
3 × 3 × 3 k-sampling Monkhorst-Pack mesh [35] shifted by
a half-grid distances along all three directions from the �

point. For the density-functional calculations, the Perdew-
Burke-Ernzerhof [36] generalized gradient approximation
is used as the exchange-correlation functional. Due to its
negligible effects on the vibrational features of GeTe, as
mentioned in earlier studies [37,38], the spin-orbit interaction
has been ignored. Electron-ion interactions are represented
by pseudopotentials using the framework of the projector-
augmented-wave method [39]. The Kohn-Sham orbitals are
expanded in a plane-wave basis with a kinetic cutoff of 60
Ry and a charge density cutoff of 240 Ry as specified by
the pseudopotentials of Ge and Te. The total energy con-
vergence threshold has been kept at 10−10 a.u. for supercell
calculations. The imaginary part of the self-energy has been
calculated using the tetrahedron method from which phonon
lifetimes are obtained.

III. LATTICE DYNAMICS AND KINETIC COLLECTIVE
MODEL (KCM)

In the theory of lattice dynamics, the crystal potential is
expanded with respect to atomic displacements and the third-
order coefficients associated with anharmonicity are used to
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calculate the imaginary part of the self-energy [33]. Gen-
erally, in a harmonic approximation, phonon lifetimes are
infinite whereas anharmonicity in a crystal yields a phonon
self-energy 	ωλ + i�λ. The phonon lifetime (τph−ph) has been
computed from the imaginary part of the phonon self energy
as τλ = 1

2�λ(ωλ ) using PHONO3PY [33,40] from the following
equation:

�λ(ωλ) = 18π

h̄2

∑
λ′λ′′

	(q + q′ + q′′) | �−λλ′λ′′ |2

×{(nλ′ + nλ′′ + 1)δ(ω − ωλ′ − ωλ′′ ) + (nλ′ − nλ′′ )

× [δ(ω + ωλ′ − ωλ′′ ) − δ(ω − ωλ′ + ωλ′′ )]}, (5)

where nλ = 1
exp(h̄ωλ/kBT )−1 is the phonon occupation number

at the equilibrium. 	(q + q′ + q′′) = 1 if q + q′ + q′′ = G,
or 0 otherwise. Here G represents reciprocal lattice vector.
Integration over q-point triplets for the calculation is made
separately for normal (G = 0) and umklapp processes (G �=
0) and therefore phonon umklapp (τU ) and phonon normal
lifetime (τN ) have been distinguished. Using second-order
perturbation theory, the scattering of phonon modes by ran-
domly distributed isotopes (τ−1

I ) is given by Tamura [41] as

1

τ I
λ (ω)

= πω2
λ

2N

∑
λ′

δ(ω− ω′
λ)

∑
k

gk

∣∣∣∣∣
∑

α

Wα (k, λ)W∗
α (k, λ)

∣∣∣∣∣
2

,

(6)

where gk is the mass variance parameter, defined as

gk =
∑

i

fi

(
1 − mik

mk

)2
. (7)

fi is the mole fraction, mik is the relative atomic mass of ith
isotope, mk is the average mass = ∑

i fimik , and W is a po-
larization vector. The database of the natural abundance data
for elements [42] is used for the mass variance parameters.
The phonon-boundary scattering has been implemented using
Casimir diffuse boundary scattering [43] as τB

λ = L
|vλ| , where

vλ is the average phonon group velocity of phonon mode λ

and L is the grain size, which is also called Casimir length,
the length phonons travel before the boundary absorption or
reemission [43].

We use the KCM [31] to obtain the lattice thermal con-
ductivity of GeTe. The KCM method has emerged as a useful
approach to depict heat transport at all length scales with the
computational cost being substantially less than that of the
full solution of the linearized Boltzmann transport equation
(LBTE). According to the KCM method, the heat transfer pro-
cess occurs via both collective phonon modes, emerges from
the normal scattering events, and via independent phonon
collisions. Therefore, lattice thermal conductivity can be ex-
pressed as a sum of both kinetic and collective contributions
weighed by a switching factor (� ∈ [0, 1]), which indicates
the relative weight of normal and resistive scattering pro-
cesses [27,31]. While each mode exhibits individual phonon
relaxation time in the kinetic contribution, the collective con-
tribution is designated by an identical relaxation time for all
modes [31,44]. In the kinetic contribution term, the boundary

scattering is included via the Matthiessen’s rule as

τ−1
k = τ−1

U + τ−1
I + τ−1

B , (8)

where τk is the total kinetic phonon relaxation time. On the
contrary, a form factor F , calculated from the sample geom-
etry, is employed to incorporate boundary scattering in the
collective term [31,44]. The KCM equations are

κL = κk + κc, (9)

κk = (1 − �)
∫

h̄ω
∂ f

∂T
v2τkDdω, (10)

κc = (�F )
∫

h̄ω
∂ f

∂T
v2τcDdω, (11)

� = 1

1 + 〈τN 〉
〈τRB〉

, (12)

where κk and κc are kinetic and collective contributions to
κL, respectively. 〈τN 〉 and 〈τRB〉 designate average normal
phonon lifetime and average resistive (considering U , I , and
B) phonon lifetimes, respectively. 〈τN 〉 and 〈τRB〉 are defined
in the KCM [31] as integrated mean-free times,

〈τRB〉 =
∫

C1τkdω∫
C1dω

(13)

and

〈τN 〉 =
∫

C0τN dω∫
C0dω

, (14)

where τk is the total kinetic relaxation time and phonon distri-
bution function in the momentum space, represented in terms
of Ci=0,1(ω), defined in Ref. [31] as

Ci(ω) =
(

v|q|
ω

)2i

h̄ω
∂ f

∂T
D, (15)

where v(ω) is the phonon mode velocity and | q | is modulus
wave vector. C0 represents the specific heat of mode ω. f
stands for Bose-Einstein distribution function, v is mode ve-
locity, and D(ω) is phonon density of states for each mode. τc

denotes the total collective phonon relaxation time and defined
as

τc(T ) =
∫

C1dω∫ (
τ−1

I + τ−1
U

)
C1dω

. (16)

� stands for the switching factor. F is the form factor approx-
imated via [44]

F (Leff ) = L2
eff

2π2l2

(√
1 + 4π2l2

L2
eff

− 1

)
, (17)

where Leff is the effective length of the sample (in our system,
we use Leff = L, the grain size) and l is the characteristic
nonlocal scale [11,44]. This characteristic nonlocal length
l emerges from the complete hydrodynamic description of
the KCM and is defined as a parameter that determines the
nonlocal range in phonon transport. In our earlier paper [28],
comparing the results for thermal conductivity obtained using
both direct solutions of LBTE and KCM for GeTe, we found
an excellent agreement between them at low temperature.
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FIG. 1. The variation of lattice thermal conductivity (κL) as a
function of characteristic length (L) of the GeTe sample at different
temperatures.

At higher temperatures, a reasonable matching trend is re-
trieved, with KCM exhibiting slightly lower values than the
LBTE solutions. However, in the low temperature hydrody-
namic regime for GeTe, the solutions of LBTE and KCM
collapse satisfactorily. For all KCM [31] calculations of lattice
thermal conductivity and associated parameters, KCM.PY
code [31] is implemented with the outputs obtained using
PHONO3PY [33].

IV. RESULTS AND DISCUSSIONS

A. Ballistic and diffusive phonon transport

As a first step to elucidating the complex collective behav-
ior of phonons as a function of characteristic size (L), it is
imperative to explore the variation of κL with L and there-
fore to identify the effect of L on the ballistic and diffusive
phonon transport. Figure 1 describes this variation of GeTe
for a wide temperature range (4–500 K). As the L varies
almost 106 orders of magnitude (from 0.001 μm to 5000 μm),
κL undergoes a transition from a linear variation of L to a
plateaulike regime, and corresponds to complete ballistic and
complete diffusive transport, respectively. As we gradually go
from lower to higher temperatures, the ballistic regime shrinks
and the diffusive regime starts growing. Also, the onset of
diffusive transport gradually seems to take place at lower
values of L as we increase the temperature. It is well known in
literature [13,45] that ballistic conduction of phonons occurs
without ph-ph scattering and displays a linear variation with
L, whereas diffusive conduction of phonons manifests when
scattered phonons carry the heat. The effect of the character-
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FIG. 2. The variation of lattice thermal conductivity (κL) with
temperature as a function of L for crystalline GeTe.

istic size on κL can also be represented via the variation of κL

with temperatures for different L, as shown in Fig. 2. At higher
temperatures, it is well known [32] that κL decreases with
T , with 1/T scaling due to the dominant umklapp scattering
at high temperatures. As temperature is lowered, gradually
κL attains a peak following a gradual decrement at very low
temperature. As we go toward higher L, the peaks of κL as
a function of temperature are gradually seen to be shifted
toward lower temperatures (Fig. 2).

The effect of L on the temperature variation of κL gives rise
to an interesting feature as we increase L above a certain limit.
It is known that L plays a crucial role via phonon-boundary
scattering as gradual increment of L assists in weakening the
boundary scattering. This weakening of boundary scattering
and strong normal scattering rates (to be discussed later) at
low temperatures transforms the peak of κL into a cusplike
feature when L � 1 μm and κL is further seen to be increased
at very low temperatures.

To give a more precise account of ballistic and diffusive
conduction of phonons in GeTe, we further investigate the
characteristic size range of ballistic and diffusive conduction
as a function of temperature. The complete ballistic length
regime (Lball) is defined via the maximum value of L, until
which κL varies linearly with L. Similarly, the complete diffu-
sive length regime (Ldiff) is defined via the minimum length L,
above which κL reaches the thermodynamic limit and there-
fore reaches a plateau. In other words, Ldiff represents the
longest mean-free path of the heat carriers at a particular tem-
perature [13]. Figures 3(a) and 3(b) represent the variations
of Lball and Ldiff, respectively, as a function of temperature.
As temperature increases, we see a gradual decrement of both
Lball and Ldiff. We note here that at very high temperatures, we
hardly observe any ballistic conduction of phonons and Ldiff

acquires a very low value. This is representative of the fact
that at high temperatures, internal phonon-phonon scattering
is so dominant that no ballistic heat conduction is seen to exist,
even for very small grains of the order of 1 nm.

To delve deeper into the origin of length-dependent κL

in the ballistic phonon conduction regime of GeTe, we in-
vestigate the contribution of acoustic and optical modes in
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FIG. 3. The variation of (a) Lball and (b) Ldiff are represented as a function of temperature for crystalline GeTe. The insets of (a) and
(b) display the defining procedure of Lball and Ldiff, respectively, for a representative case of T = 10 K.

the ballistic propagation of heat. Earlier, molecular dynam-
ics simulations and experiments on suspended single-layer
graphene [46,47] suggested the ballistic propagation of long-
wavelength, low-frequency acoustic phonon to be solely
responsible for the length-dependent κL in the ballistic regime.
Our previous studies on GeTe [28,32] suggested that GeTe
shows a clear distinction between acoustic and optical modes
in the frequency domain around 2.87 THz. The density of
states goes to zero around a frequency of 2.87 THz [32], dis-
tinguishing two distinct frequency regimes: acoustic regime
(ω < 2.87 THz) and optical regime (ω > 2.87 THz). We
calculate the cumulative lattice thermal conductivity (κc

L) as a
function of phonon frequency defined as [33,40]

κc
L =

∫ ω

0
κL(ω′)dω′, (18)

where κL (ω′) is defined as [33,40]

κL(ω′) ≡ 1

NV0

∑
λ

Cλvλ ⊗ vλτλδ(ω′ − ωλ), (19)

with 1
N

∑
λ δ(ω′ − ωλ) the weighted density of states. Fig-

ure 4 presents the variation of average κc
L(= (κC

xx+κC
yy+κC

zz )
3 ) with

phonon frequency. The density of states goes to zero at a
frequency where κc

L reaches a plateau defining the separa-
tion between acoustic (frequency < 2.87 THz) and optical
(frequency > 2.87 THz) modes. Except at low temperature
(T = 10 K), the contribution from optical modes seem to
present at all other temperatures. As we gradually increase
the temperature [from Figs. 4(b)–4(d)], the contributions from
optical modes are seen to be enhanced. For example, for L =
0.003 μm, the contribution of optical modes at T = 10 K,
30 K, 50 K, and 300 K are 0 %, 9.9 %, 24.2 %, and 37.7 %,
respectively. Therefore, contrary to the understanding of bal-
listic propagation for a 2D material like single-layer graphene,
except for very low temperatures, GeTe also shows a weak
contribution from optical modes in the ballistic phonon prop-

agation regime. However, the significant contributions come
from acoustic modes in this regime.

To visualize the consequences on the mean-free path of
the phonons at small L, we present the variation of the ef-
fective mean-free path variation with phonon frequency for
different L at different temperatures in Fig. 5. In the KCM
nomenclature, the kinetic mean-free path [lk (ω)] and the col-
lective mean-free path [lc(T )] are defined as lk (ω) = vτk and
lc(T ) = vτc, respectively, where v is the group velocity and

v =
∫

vh̄ω
∂ f
∂T D(ω)dω∫

h̄ω
∂ f
∂T D(ω)dω

(20)

is the mean phonon velocity [31]. As the kinetic MFP is a
function of phonon frequency whereas the collective MFP is
frequency independent and varies only with temperature, we
present an effective MFP as leff(ω) = (1-�)lk (ω) + � lc. The
separate contributions from collective and kinetic MFPs are
described in Supplemental Fig. S1 [49]. Two effects can be
observed from this representation. First, at low temperature,
as the L is increased, the optical modes at higher frequencies
exhibit more scattered mean-free paths. Figure 5(a) shows
that at T = 10 K, at higher frequencies in the optical modes,
L = 0.003 μm persists more scattered MFPs compared to the
L = 0.001 μm case. This feature indicates that the ballistic
conduction is stronger for L = 0.001 μm, where L strongly
controls the mean-free path than that of the L = 0.003 μm
case. Second, increasing temperature for fixed L also leads to
the gradual weakening of the ballistic conduction of phonons,
as can be seen from Fig. 5. This is evident from the gradual
broadening of MFPs with temperature [follow fixed color
points for four different temperatures in Figs. 5(a)–5(d)] due
to the gradually weakening control of L on dictating the mean-
free paths of the system.

B. Collective phonon transport

After understanding the effect of characteristic size (L) on
the ballistic and diffusive conduction of phonons, we turn our
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FIG. 4. The variation of cumulative lattice thermal conductivity (κc
L) of crystalline GeTe as a function of phonon frequency (ω) for four

different temperatures: (a) 10 K, (b) 30 K, (c) 50 K, and (d) 300 K. For each temperature, the variation of κC
L with ω is presented for three

different L: 0.001, 0.002, and 0.003 μm. The gray shaded region denotes the acoustic modes regime for GeTe.

attention to the effect of L on the collective phonon transport
of crystalline GeTe. The connection between ballistic and dif-
fusive phonon transport and the collective motion of phonons
are crucial to determine the origin of the exotic hydrodynamic

FIG. 5. Effective mean-free path (MFP) of crystalline GeTe are
presented as a function of frequencies for three different L: 0.001 μm
(blue points), 0.002 μm (green points), and 0.003 μm (red points)
at four different temperatures: (a) T = 10 K, (b) T = 30 K, (c) T =
50 K, (d) and T = 300 K. The gray shaded region denotes the acous-
tic modes regime for GeTe.

phonon transport in materials. In our earlier paper [28], unusu-
ally, low-thermal conductivity chalcogenide GeTe emerged as
a possible candidate to feature phonon hydrodynamics with
the characteristic size being a dominant factor.

In this context, we start by investigating the relative
strengths of the average phonon scattering rates, which is
defined as

〈τ−1
i 〉ave =

∑
λ Cλτ

−1
λi∑

λ Cλ

. (21)

Here, λ denotes phonon modes (q, j) comprising wave vector
q and branch j. Index i denotes normal, umklapp, isotope,
and boundary scattering processes used, marked by N, U, I,
and B, respectively. Cλ is the modal heat capacity, given by
the following equation:

Cλ = kB

(
h̄ωλ

kBT

)2 exp(h̄ωλ/kBT )

[exp(h̄ωλ/kBT ) − 1]2
, (22)

where T denotes temperature, h̄ is the reduced Planck’s con-
stant, and kB is the Boltzmann constant. In one of the earliest
works on phonon hydrodynamics, Guyer and Krumhansl [12]
found that the hydrodynamic regime exists if〈

τ−1
U

〉
ave � 〈

τ−1
N

〉
ave, (23)

Further, Guyer’s condition [12] for the presence of second
sound and Poiseuille’s flow reads〈

τ−1
U

〉
ave <

〈
τ−1

B

〉
ave <

〈
τ−1

N

〉
ave. (24)
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FIG. 6. Thermodynamic average phonon scattering rates as a function of temperature for GeTe for different characteristic sizes (L). N , U ,
I , and R denote normal, umklapp, isotope, and resistive scattering, respectively. Boundary scattering rates for different L are also presented.
The shaded regions in (a) and (b) correspond to the validation of the Guyer’s condition [12] for Poiseuille’s flow [Eq. (24)] for L = 0.08 μm
and L = 0.8 μm, respectively.

In Fig. 6, we explore the L window that satisfies the
aforementioned Guyer and Krumhansl condition of phonon
hydrodynamics in crystalline GeTe. Figure 6 presents the
average scattering rates due to normal (N), resistive (R)
[comprised of umklapp (U) and isotope scattering (I)] and
the phonon-boundary scattering as a function of temperature
for GeTe. We observe a substantial width of L that persists
phonon hydrodynamic conditions as the boundary scattering
rates decrease gradually on increasing L. This is shown via the
gray shaded regions in Figs. 6(a) and 6(b) for two representa-
tive grain sizes: L = 0.08 μm and L = 0.8 μm, respectively.
In the scattering rate approach, we also identified the ballis-
tic conduction region, mentioned earlier through the linear
dependence of κL with L, as the region where 〈τ−1

B 〉ave 

〈τ−1

ph−ph〉ave. Similarly, the purely diffusive conduction region,
mentioned earlier as the L regime where κL is independent of
L, as the region where 〈τ−1

B 〉ave � 〈τ−1
ph−ph〉ave. At this point,

we go back to Fig. 2 to explain the cusplike behavior of κL

as a function of temperature. This cusplike pattern of κL is
found to present for L > 1 μm, as we gradually decrease
the temperature. In Fig. 6(b), this L regime is identified as L
values for which normal scattering overpowers boundary scat-
tering rates. At low temperatures, umklapp scattering is rare
and boundary scattering acts as the dominant resistive phonon
scattering. So, the effect of boundary scattering tries to reduce
the κL while the momentum conserving normal scattering tries
to increase κL. Overpowering normal scattering compared to
boundary scattering for L > 1 μm forces κL to increase after
an apparent shallow dip or a plateau and gives rise to the
cusplike pattern in Fig. 2.

Once the Guyer and Krumhansl conditions are satisfied
and a prominent L window is observed to feature phonon
hydrodynamics, we next investigate the spectral representa-
tion of lattice thermal conductivity (κL) in this L window.
In Fig. 7, using the KCM approach, we present a spectral
representation of κL, distinguished by its kinetic (κkinetic) and
collective contributions (κcollective), as a function of phonon
frequency at T = 10 K for four different L. We choose

T = 10 K as a representative temperature to feature collective
transport of phonons. The four different L values have been
chosen such that it covers a wide range that traverses from
ballistic transport to the hydrodynamic regime at T = 10 K.
As we gradually increase the L [from Figs. 7(a) to 7(d)],
a gradual increment of the contributions coming from the
collective transport is observed (shown via the red shaded
regions inside the curve). The spectral κL goes to zero be-
fore 2.87 THz, indicating the sole contribution of acoustic
phonons in thermal transport at 10 K, as was realized earlier in
Fig. 4(a).

To quantify the collective motion as a function of tem-
perature for different L, we investigate the variation of
characteristic nonlocal length (l) in GeTe at different tem-
peratures and grain sizes. In a complete hydrodynamic
description of thermal transport, the extension of the Guyer
and Krumhansl equation [11] done in the KCM frame-
work [44], namely, the hydrodynamic KCM equation,
yields

τ
dQ
dt

+ Q = −κ∇T + l2(∇2Q + 2∇∇ · Q), (25)

where τ is the total phonon relaxation time, Q is the heat
flux, κ is phonon thermal conductivity, and l is the nonlocal
length that determines the nonlocal range in phonon transport.
If we employ the steady state, strong geometric effects, and
neglect the term 2∇∇ · Q, then the equation can be visualized
as analogous to Navier-Stokes equation with l resembling heat
viscosity. The Knudsen number (Kn) can be obtained from
Kn = l/L to study the collective motion quantitatively. Lower
values of Kn define the recovery of Fourier’s law whereas
the hydrodynamic behavior becomes prominent when Kn gets
higher values [7,44]. Figure 8 presents the variation of Kn as
a function of temperature for different L. As temperature is
lowered, a gradual increment of Kn is observed, concomitant
with the gradual prominence of nonlocal behavior. Kn has ear-
lier been described [7,9] to indicate a phonon hydrodynamic
regime when 0.1 � Kn � 10, bearing similarities with fluid
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FIG. 7. The spectral representation of lattice thermal conductivity (κL) as a function of phonon frequency at T = 10 K for four different
characteristic size or grain sizes (L): (a) 0.2 μm, (b) 0.5 μm, (c) 1 μm, and (d) 5 μm. The kinetic contribution (κkinetic) is defined using light
violet and the collective contribution (κcollective) is defined using light brown color.

hydrodynamics. We denote this region via a shaded region
in Fig. 8. In Fig. 8, we also superpose the hydrodynamic
L window, identified using average scattering rates follow-
ing Guyer and Krumhansl conditions for three representative
temperatures: T = 6 K, 10 K, and 20 K. We observe that

both definitions match well and the hydrodynamic L window
obtained by scattering rate analysis falls within the Kn range
for hydrodynamics.

Knudsen number calculation also reveals the Ziman hydro-
dynamic regime for GeTe. Looking at the vertical dashed lines
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FIG. 8. The variation of Knudsen number (Kn) with temperature for different L values of crystalline GeTe. The shaded region satisfies
0.1 � Kn � 10 while the rectangular boxes define phonon hydrodynamic regimes calculated from average scattering rates. Blue dashed lines
to guide the eye for T = 6 K, 10 K, and 20 K.
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corresponding to T = 6 K and T = 10 K in Fig. 8, a small
L region is observed which does not fall into the rectangles,
defined to indicate a hydrodynamic regime using scattering
rate hierarchy. However, they fall inside the regime of 0.1 <

Kn < 10, especially in the regime where Kn is close to 0.1.
This corresponds to the Ziman hydrodynamic regime which
corresponds to a regime where N scattering dominates but
dissipates mostly by R scattering contrary to the Poiseuille
hydrodynamic regime where N scattering dissipates mostly
by the boundary scattering of the phonons. On the other
hand, looking at L values that lie inside 0.1 < Kn < 10 but
with values close to 10 also sometimes do not lie inside the
rectangular region (see the case of L = 0.04 and 0.1 μm at
T = 10 K in Fig. 8). Recalling Fig. 6(a), we observe that
L = 0.04 μm at T = 10 K designates a scattering rate hier-
archy, where 〈τ−1

B 〉ave > 〈τ−1
N 〉ave > 〈τ−1

R 〉ave, but 〈τ−1
B 〉ave is

not 
 〈τ−1
ph−ph〉ave. Therefore, though it follows the prescribed

hierarchy for hydrodynamics, the L values do not enable a
complete ballistic propagation and a competition between bal-
listic and diffusive phonons operates. This competition makes
it difficult to distinguish sharp boundaries between different
regimes. We will discuss more about this competition later.
To characterize the repopulation of phonons in a different way,
following Markov et al. [9], we extract a length scale related
to the propagation of heat wave before being dissipated, called
the heat wave propagation length (LHWPL), defined as a length
at which the completely diffusive thermal conductivity decays
1/e times:

κL(T, L) |L=LHWPL= κL(T, L > Ldiff )/e, (26)

where Ldiff is the minimum length L, above which κL reaches
the thermodynamic limit, as mentioned earlier in Fig. 3.
LHWPL is connected to second sound, a typical character-
istic for hydrodynamic heat transport phenomenon, which
demonstrates the heat propagation as damped waves in a
crystal [1,12,48] as a result of coherent collective motion of
phonons due to the domination of N scattering. In this context,
drift velocity of phonons (v) and phonon propagation length
(λph) are defined as

v2
j =

∑
α Cαvg

α j · vg
α j∑

α Cα

(27)

and

λph = v/〈τ−1〉ave, (28)

where Cα is heat capacity of mode α, vg
α j is phonon group ve-

locity of mode α and j can be either the component along the
a axis (x) or the hexagonal c axis (z). Heat transfer of GeTe is
anisotropic, as can be recalled from our earlier studies [28,32],
featuring different group velocities along the hexagonal c axis
and its perpendicular (a axis) direction and therefore yields
different drift velocities and different phonon propagation
lengths along x and z. Figure 9 presents the variation of heat
wave propagation length (LHWPL) with temperature along with
the variation of phonon propagation lengths along x and z.
Phonon propagation lengths are distinguished [9] as λhydro and
λgas via

λhydro = v
/〈

τ−1
R

〉
ave (29)

λgas = v
/(〈

τ−1
R

〉
ave + 〈

τ−1
N

〉
ave

)
(30)
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FIG. 9. Heat wave propagation length (LHWPL) as a function
of temperature for crystalline GeTe. The temperature variation of
phonon propagation lengths, correspond to the damping due to resis-
tive scattering (λhydro) and both resistive and normal scattering (λgas)
along a and hexagonal c axis are also presented.

Figure 9 shows the variation of heat wave propaga-
tion length (LHWPL), superimposed with phonon propagation
lengths with temperature along both a- and c-axis directions
of GeTe. We observe that LHWPL follows well the trend of
λhydro as a function of temperature in the whole temperature
range studied. λgas, the phonon propagation length corre-
sponds to the uncorrelated phonon gas where both N and R
scattering processes contribute to damping of the heat wave,
on the other hand, seems to diverge from LHWPL as the tem-
perature is lowered. This feature is an indication of gradual
prominence of hydrodynamic behavior of phonons as the tem-
perature is lowered. Similarly, the reasonable match between
LHWPL and λhydro predicts that heat wave propagation length is
well captured by phonon flow with resistive damping caused
by umklapp and isotope scattering. At very low temperature
(T = 4 K), a slight deviation is observed between LHWPL and
λhydro, which can be attributed to the importance of boundary
scattering as a significant damping process at very low tem-
perature.

Therefore, LHWPL can lead to the identification of the length
scale at different temperatures at which phonon hydrody-
namics can exist and therefore Poiseuille’s flow and second
sound phenomena can be observed. Interestingly, comparing
LHWPL and characteristic size (L) of the sample, we can define
Knudsen number in another approach as [9] Kn = LHWPL/L.
The variation of Kn obtained using LHWPL is presented as a
function of temperature in the Supplemental Material (Fig.
S2 [49]). The variation of Kn with T is found similar to our
earlier evaluation of Kn using nonlocal length (Fig. 8).

The blurry regions of transitions between ballistic, hydro-
dynamic, and diffusive transport are intriguing to understand
the competition between different phonons with a wide range
of mean free paths. Ideally, phonons with a wide spectrum of
mean-free paths can be distinguished as either ballistic (MFP
> L) or diffusive (MFP < L) phonons. However, the relative
strength between ballistic and diffusive phonons are crucial
to realize the competition between these two kind of phonons
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FIG. 10. (a) The variation of normalized thermal conductivity (κL/L) as a function of inverse Knudsen number, calculated using character-
istic nonlocal lengths for different temperatures. (b) The variation of normalized thermal conductivity (κL/L) as a function of inverse Knudsen
number, calculated using heat wave propagation length for different temperatures.

which eventually plays a decisive role in dictating the visible
hydrodynamic phenomena. The phonon Knudsen minimum is
such an indicator for the transition between ballistic and hy-
drodynamic phonon propagation regimes and had been used
for several materials including graphene [16], graphite [20],
SrTiO3 [23], black phosphorus [18] to detect phonon hydro-
dynamics. Figures 10(a) and 10(b) present the the variation of
normalized thermal conductivity (κ∗

L = κL/L), a quantity that
is similar to dimensionless κL as a function of inverse Knud-
sen number, calculated using nonlocal length and heat wave
propagation lengths, respectively. Figure 10(b) shows a wider
range of 1/Kn as the Kn obtained using heat wave propagation
length reaches higher values at low temperatures compared
to that of the nonlocal length calculation from hydrodynamic
KCM method. However, we observe almost similar trends of
κ∗

L with the variation of 1/Kn coming out of the two different
approaches in obtaining the Knudsen number. At T = 300 K,
a steep linear decreasing trend is observed which is associ-
ated with the diffusive phonon scattering events as phonons
behave as uncorrelated gas particles and resistive scattering is
prominent and dominating at this temperature.

Starting from T = 20 K, a gradual onset of a horizon-
tal regime is visible before the linearly decreasing trend
of κ∗

L as the temperature is lowered. At T = 4 K, sur-
prisingly, a cusplike trend, resembling that of a shallow
minimum followed by a prominent maximum is observed
before a linearly decreasing κ∗

L at higher 1/Kn. The cus-
plike shallow minimum at T = 4 K indicates the phonon
Knudsen minimum and predicts the presence of prominent
transition from ballistic to hydrodynamic regime. Further,
a prominent maximum in κ∗

L has only been observed at
T = 4 K, which designates the strong presence of hydrody-
namic phonon transport in GeTe. Similar observation can
be found by Li et al. [16] for suspended graphene, where
the increasing trend of κL, normalized by sample width, was
attributed to the strong presence of hydrodynamic phonon
transport.

The behavior of phonon Knudsen minimum of GeTe
convinces us to understand the competition between ballis-
tic and diffusive phonons in the quasiballistic regimes of
phonon transport. We specifically turn our attention toward
the reason behind the strong presence of hydrodynamics
at T = 4 K visible through Knudsen minimum in Fig 10.
We recall that even T = 6 K, T = 8 K persist in phonon
hydrodynamics, realized via the average scattering rate anal-
ysis and Knudsen number variation with temperature. To
perceive the reason behind the difference between strong
and weak phonon hydrodynamics, we investigate the scaling
relation between κL and L in the intermediate regime of trans-
port, where the transport is neither fully ballistic nor fully
diffusive.

Figure 11 describes the variation of κL with L at T = 4 K,
6 K, and 10 K. Three phonon propagation regimes have been
identified. At lower values of L, ballistic phonons dominate
the transport and therefore a linear dependency of κL on L is
observed. At very high L, the phonon transport is completely
diffusive and a plateaulike regime is observed, denoting an
independence of κL over L. The intermediate regime where
the phonon propagation shifts from complete ballistic to com-
plete diffusive, plays a crucial role in determining the strong
or weak presence of hydrodynamic propagation of phonons.
Figure 11(c) indicates a sublinear variation in the intermediate
regime at T = 10 K. At T = 6 K [Fig. 11(b)], a minute super-
linear behavior is observed while at T = 4 K [Fig. 11(a)], an
enhanced superlinear behavior is perceived in the intermediate
regime.

In the intermediate quasiballistic regime of phonon propa-
gation, where both ballistic and diffusive phonons operate and
compete with each other, seems to be a marker to designate
sample sizes (L) with strong hydrodynamic phonon transport
characteristics. To further quantify the intermediate nonliear-
ity (both sub and superlinearity), we evaluate and present the
scaling exponent [20] α = ∂log(κL )/∂log(L) as a function of
L for different temperatures in Fig. 12. α = 0 indicates the
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FIG. 11. The variation of lattice thermal conductivity (κL) as a function of characteristic length (L) in log-log scale for different
temperatures: (a) T = 4 K, (b) T = 6 K, and (c) T = 10 K. The inset of Fig. 11(b) refers to the zoomed in view around linear to superlinear
scaling at T = 6 K. The intermediate regimes, located in between the ballistic and diffusive propagation regimes are shown via gray shades.

size-independent behavior of κL and therefore describes the
completely diffusive phonon propagation regime. On the other
hand, α = 1 reveals the linear size dependency and hence-
forth the complete ballistic phonon conduction regime. The
superlinear dependence of κL on L in the intermediate regime
can be captured by the condition α > 1. From Fig. 12, we
observe that at low L, for low temperatures, α goes to 1. for
higher temperatures, as expected almost no ballistic regime
is observed with α < 1. As we increase L, in the intermedi-
ate regime, a gradual departure from α = 1 is observed. For
T = 4 K and T = 6 K, this departure leads to a regime with
α > 1, while for T = 8 K and 10 K this deviation leads to
sublinear or α < 1 scaling. At high L values gradually all
phonons become diffusive and α goes to zero.

There are several striking features to point out from Fig. 12.
First, prominent contribution of drifting phonons at 4 K leads
to an enhanced superlinear scaling with α > 1, representing
the signature of phonon Poiseuille flow [20] and therefore
prominent phonon hydrodynamics, which assists in featuring
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FIG. 12. Variation of the scaling exponent α as a function of L
for different temperatures. The black dashed line denotes the α = 1
line.

the Knudsen minimum seen in Fig. 10. Here we mention
that even for T = 4 K, the exponent α gradually starts from
1, reaches a maximum value around L = 0.8 μm, and goes
sublinear with α < 1 thereafter before going to zero at very
high L values. Therefore, sublinear scaling is universal in
the intermediate regime. For T = 4 K, however, the sublin-
ear scaling precedes a superlinear behavior displaying strong
hydrodynamic feature. Second, a minute superlinear scaling,
observed in Fig. 11(b) inset for T = 6 K, can be realized in a
better way by observing the small L window for which α > 1
for T = 6 K. At T = 8 K and 10 K, though sublinear scaling
is observed in the intermediate regime, it decays to zero in
different rates. After L = 10 μm, the decay rate seems faster
than that of the cases below L = 10 μm.

We understand that although average scattering rate and
Knudsen number variation with temperature indicates phonon
hydrodynamics to present in GeTe for several temperature
and characteristic size window, low-κL material GeTe needs
several factors to manifest a strong hydrodynamic response
by phonons. In this context, superlinear scaling of κL on L
plays a crucial role in the transition from complete ballistic
to complete diffusive propagation regimes. To understand and
investigate the reason behind superlinear and sublinear scaling
at the intermediate quasiballistic regime of phonon transport,
we calculate the ratio γ as a function of L for three tempera-
tures: T = 4 K, 6 K, and 10 K. We define γ as

γ =
〈
τ−1

N

〉
〈
τ−1

R

〉 + 〈
τ−1

B

〉 , (31)

where 〈τ−1
N 〉, 〈τ−1

R 〉, and 〈τ−1
B 〉 are average scattering rates

for normal, resistive, and boundary scattering, respectively.
Figure 13(a) shows that γ increases gradually and reaches a
plateau as we increase L. In the ballistic phonon conduction
regime, we observe γ (T = 4 K) < γ (T = 6 K) < γ (T =
10 K). This is due to the effect of strong boundary scattering
at low temperature and low L. However, in the regime of
complete diffusive propagation of phonons a reverse trend
is observed: γ (T = 4 K) > γ (T = 6 K) > γ (T = 10 K)
as in this regime, γ is independent of size. We define these
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FIG. 13. (a) L dependence of γ for three representative temperatures: T = 4 K, 6 K, and 10 K. The saturation values of γ (γdiff) in the
plateau regimes attained at higher L values for different temperatures are denoted via blue dashed lines. The red dotted line represents γ = 1
and the differences between γ = 1 and γdiff are shown via black double-headed arrows. (b) The variation of ∂log(γ )/∂log(L) as a function of
L for three representative temperatures: T = 4 K, 6 K, and 10 K.

saturation values as γdiff. Again, the crucial crossover is
observed in the intermediate L regime. We also mark the
difference between γ = 1 and γdiff in Fig. 13(a) via double-
headed arrows. This difference characterizes the relative
strength of normal scattering compared to the dissipative
resistive scattering and therefore indicates the strength for
persisting coherent phonon flow.

However, we tend to understand the reason behind the
nonlinear behavior of κL at the intermediate L regime. For
this purpose, we present the variation of the exponent of γ by
calculating ∂log(γ )/∂log(L) as a function of L in Fig. 13(b).
We observe that the exponent for T = 4 K is higher and for
both T = 4 K and 6 K, it stays around 1 (γ being linearly
increasing with L) in the intermediate regime. However, for
T = 10 K, ∂log(γ )/∂log(L) drops up to several orders (at
L = 10 μm, it drops around 10 times) compared to the T =
4 K and T = 6 K cases. Therefore, the higher the exponent
∂log(γ )/∂log(L) in the intermediate regime and closer to 1,
the higher the chances of the collective phonon flow due
to strong normal scattering. This eventually can lead to the
strong appearance of phonon hydrodynamics with superlin-
ear L dependence of κL and prominent Knudsen minimum
apart from other signatures born out of the assessment of
Knudsen number and average scattering rate as a function of
temperature.

V. SUMMARY AND CONCLUSIONS

We employ KCM in conjunction with first-principles
density functional calculations to investigate the effect
of characteristic size (L) on collective phonon transport
in low-thermal conductivity material GeTe. We observe
phonon hydrodynamics in crystalline GeTe and identify the
competitive effects of both temperature and L on the collective

phonon transport. As a first step, we distinguish heat trans-
port regimes correspond to ballistic and completely diffusive
phonon transport. These regimes have been identified as a
function of both temperature and L. In the ballistic regime, the
frequency dependence of phonon propagation is understood.
Temperature is found to dominate over L in deciding the ex-
citation of acoustic and optical phonons. Even for very small
L values, correspond to ballistic transport regime, we observe
a small contribution coming from optical modes of GeTe if
temperature is raised to 30 K. However, at low temperature
(T = 10 K), only acoustic modes excite to enable ballistic
propagation. The variation of mean free paths as a function of
frequencies also represents this dependence. At low tempera-
tures, increasing L gradually weakens ballistic conduction. On
the other hand, for the same L value, increasing temperature
also gradually weakens the ballistic conduction.

After looking at ballistic and diffusive phonon conduction
regimes, we turn our attention toward the intriguing interme-
diate L regime where both ballistic and diffusive phonons are
present. The average scattering rates seem to follow the Guyer
and Krumhansl hierarchy at low temperatures, indicating the
presence of phonon hydrodynamics at certain temperatures
and L window. KCM method allows us to distinguish the
variation of collective contribution as functions of both tem-
perature and L. Therefore, the phonon hydrodynamic regimes
in terms of both temperature and L have been realized us-
ing nonlocal length and Knudsen number (Kn) evaluation
which draws a parallel between fluid hydrodynamics and the
collective flow of phonons. The hydrodynamic regimes iden-
tified using scattering rates are found to satisfy the condition
0.1 < Kn < 10, which is the condition for hydrodynamic
flow in terms of Kn. Further, exploiting the variation of lattice
thermal conductivity as a function of L, a heat wave propa-
gation length has been extracted for different temperatures.

073605-12



EFFECT OF CHARACTERISTIC SIZE ON THE … PHYSICAL REVIEW MATERIALS 5, 073605 (2021)

Comparing this characteristic length scale with phonon prop-
agation lengths reveals that the heat wave propagation length
is well captured by phonon propagation with only resistive
damping. The Knudsen number can also be associated with
this length scale, which shows almost similar behavior as
that of the Kn obtained using a nonlocal length. For both of
these definitions of Kn, the variation of normalized thermal
conductivity (κ∗

L = κL/L) with 1/Kn shows a Knudsen min-
imumlike feature only at very low temperature (T = 4 K).
Though Kn can capture the hydrodynamic regimes well in
terms of both temperature and L, some of the prominent
features of phonon hydrodynamics, like Knudsen minimum,
can be weakly present or may be absent in low-thermal con-
ductivity materials. We have found that the intermediate L
regime and the scaling of thermal conductivity with L in this
regime works as a marker to determine the existence of the
Knudsen minimumlike prominent hydrodynamic feature. A
superlinear scaling in this intermediate L regime seems to
assist a Knudsen minimum and therefore prominent phonon
hydrodynamics. On the other hand, sublinear scaling does
not lead to a Knudsen-like minimum, featuring weak phonon
hydrodynamics at those temperatures. A ratio of average nor-
mal and resistive scattering rates have been found to control

the strength and prominent visibility of the collective phonon
transport in GeTe.

In summary, this paper reveals crucial details about how
and when the prominent signatures of phonon hydrodynamics
can be observed in low-thermal conductivity materials. In
this context, it demonstrates and systematically analyzes the
consequences of the competitive effects between temperature
and characteristic size on phonon hydrodynamics in GeTe.
The outcome of this study can lead to a better understand-
ing of the generic behavior and consequences of the phonon
hydrodynamics and its controlling parameters in any other
low thermal-conductivity materials. The accurate description
of phonon hydrodynamics in low-κ materials can also lead
to better theoretical predictions of experimentally observed
thermal conductivity at low temperatures for these materials.
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