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Abstract: The biomonitoring of nanoparticles in patients’ broncho-alveolar lavages (BAL) could allow
getting insights into the role of inhaled biopersistent nanoparticles in the etiology/development of
some respiratory diseases. Our objective was to investigate the relationship between the biomonitor-
ing of nanoparticles in BAL, interstitial lung diseases and occupational exposure to these particles
released unintentionally. We analyzed data from a cohort of 100 patients suffering from lung diseases
(NanoPI clinical trial, ClinicalTrials.gov Identifier: NCT02549248) and observed that most of the
patients showed a high probability of exposure to airborne unintentionally released nanoparticles
(>50%), suggesting a potential role of inhaled nanoparticles in lung physiopathology. Depending on
the respiratory disease, the amount of patients likely exposed to unintentionally released nanoparti-
cles was variable (e.g., from 88% for idiopathic pulmonary fibrosis to 54% for sarcoidosis). These
findings are consistent with the previously performed mineralogical analyses of BAL samples that
suggested (i) a role of titanium nanoparticles in idiopathic pulmonary fibrosis and (ii) a contribution
of silica submicron particles to sarcoidosis. Further investigations are necessary to draw firm conclu-
sions but these first results strengthen the array of presumptions on the contribution of some inhaled
particles (from nano to submicron size) to some idiopathic lung diseases.

Keywords: biomonitoring; nanoparticles; lung diseases; mineralogical analysis of broncho-alveolar
lavages; occupational exposure

1. Introduction

Nanoparticles are ubiquitous in nature, naturally occurring as by-products of wild
fires, volcanic eruptions, and other natural processes, and are usually called ultra-fine
particles (UFP). Nanoparticles can also be a result of human activities unintentionally
produced and present in polluting emissions, such as welding fumes, cigarette smoke,
aircraft waste gas, or diesel exhaust, also called UFP. In addition to these sources, a number
of artificial nanoparticles, engineered nanomaterials (NM) which exhibit unique physi-
cal, chemical and/or biological characteristics associated with their nanostructure, have
been developed and produced in a controlled, engineered manner to exploit their novel
properties and functions. Due to the tremendous development of nanotechnologies during
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the last few decades and the subsequent potential exposure of humans to nanomaterials,
nanotoxicology is a rapidly evolving research field. According to Stone et al. in a review [1],
UFP and NM toxicology are not two distinct fields. Rather, they overlap extensively with
the potential to extrapolate from one to the other in many respects. Furthermore, for these
authors, ambient particulate matter research provided evidence of potential health impacts
for UFPs, and NM toxicology has largely provided essential evidence of the mechanistic
plausibility of these health effects. Finally, according to Stone et al., it seems safe to conclude
that UFPs and NMs share the same general biological mechanisms of adverse effects.

In their review, Manno et al. defined biomonitoring as “the repeated, controlled
measurement of chemical or biological markers in fluids, tissues, or other accessible samples
from subjects exposed or exposed in the past or to be exposed to chemical, physical or
biological risk factors in the workplace and/or the general environment” [2]. Consequently,
in a context of health risk assessment, biomonitoring can be a particularly useful approach.
Biomarkers used in human health studies typically fall within three categories: biomarkers
of exposure, effect, and susceptibility [3]. They can bring critical information on the
relationship between exposure to a harmful substance and biological/pathological effects.

Biomonitoring has been widely used in pulmonology, especially in the case of pneu-
moconiosis. One typical example is the assessment of asbestosis bodies in patient lung
tissues or in broncho-alveolar lavage (BAL) fluids which has allowed defining values
specific of diseases [4–6]. More recently, it has been suggested that the chemical com-
position of BAL from idiopathic pulmonary fibrosis patients had a specific profile that
can be distinguished from that of patients with other interstitial lung diseases or healthy
subjects [7]. The extension of this approach to the nanotoxicology field, although it has
to face some technical challenges [8,9], could be very interesting especially to get new
insights into the role of inhaled biopersistent nanoparticles in the etiology or development
of some respiratory diseases. Indeed, although the impact of air pollution, including the
contribution of nano-sized particles, on human health has been well documented [10],
fewer data are available on the effects of nanoparticles, either engineered or unintentionally
released, in the context of occupational exposure.

The biological monitoring of nanoparticles in human lung tissues or fluids could
fill a gap and represents a promising way to investigate potential causal links between
an exposure to inhaled nanoparticles and biological effects and even diseases [8,11–14]
(Figure 1).
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Figure 1. The mineralogical analysis of metal load extracted from pulmonary fluids could be used as an indicator of
exposure to nanoparticles and could contribute to the assessment of potential causal links between the presence of inhaled
biopersistent nanoparticles in the lungs and respiratory diseases.

Indeed, mineralogical analyses of BAL (i.e., biological monitoring of inhaled parti-
cles) allow quantifying the internal dose of inhaled biopersistent nanoparticles in a lung
sample, which differs from the external dose that can be measured by ambient monitoring
(i.e., atmospheric metrology). The assessment of the internal dose is a first step towards
the characterization of persistent nanoparticles in tissues and the understanding of this
potential source of adverse effects.

We adopted this approach to detect and quantify nanoparticles in various types of
clinical samples. We developed optimized protocols for each kind of biological matrix to
isolate the micro, sub-micro, and nano fractions of various types of inorganic particles and
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thus perform comprehensive mineralogical analyses. We were thus able to determine the
nanoparticle load in patients’ biological samples such as seminal and follicular fluids [15],
colon [16], amniotic fluids [17], or BAL [18–20]. We especially focused our attention on these
latter, as the biomonitoring of biopersitent nanoparticles in the lung could be particularly
relevant in the case of respiratory diseases. Indeed, the respiratory tract represents the
main route of entry for nanoparticles in the body and despite the lack of clear evidence it
has been suggested that inhaled engineered nanoparticles accumulated in the lungs could
be responsible, or at least could contribute, to idiopathic respiratory diseases.

We previously conducted a clinical trial on a cohort of 100 patients (NanoPI clinical
trial, ClinicalTrials.gov Identifier: NCT02549248). We separated micron-sized particles
(>1 µm) from submicron (100 nm–1 µm) and nano-sized particles (<100 nm) contained
in BAL from patients who suffered from interstitial lung diseases (ILD). We then deter-
mined the metal load in each of these size-fractions. We evidenced a concentration of
submicron silica particles higher in patients suffering from sarcoidosis than in patients
suffering from other ILD, suggesting a potential role of these inhaled particles in the eti-
ology and/or development of sarcoidosis [19]. Similarly, we observed a concentration of
titanium nanoparticles higher in patients suffering from idiopathic fibrosis than in patients
suffering from other ILD allowing to suspect a relationship between titanium nanoparticles
and idiopathic pulmonary fibrosis even though in this case we had a too limited number of
patients to reach a satisfactory statistical power to draw firm conclusions.

To complement mineralogical analyses of BAL and offer a comprehensive vision of
the events from exposure to airborne nanoparticles to the biological response induced
(Figure 1), we investigated associations between respiratory diseases and occupational
exposures. To that purpose, we estimated the exposure to inhaled unintentionally released
nanoparticles of the patients for each job held in their working life.

Thus, the objective of the present paper was to further investigate the relationship
between the biological monitoring of nanoparticles in human BAL, interstitial lung diseases,
and occupational exposure using a retrospective occupational exposure to unintentionally
released nanoparticles assessment. Getting a complete picture from exposure to disease
illustrates a comprehensive and useful approach in terms of human health risk assessment.

2. Materials and Methods
2.1. Patients

A prospective, monocentric and exploratory study called NanoPI (ClinicalTrials.gov
Identifier: NCT02549248) was carried out during two years at the University Hospital of
Saint-Etienne (Chest diseases and thoracic oncology Department). One-hundred patients
exhibiting a clinical image of diffuse ILD and in need of a bronchoscopy associated with
a BAL were included in this study after being fully informed and having given their
written consent. Our protocol was in accordance with ethical principles defined by the
World Medical Association declaration of Helsinki and subsequent amendments and was
approved by an ethics committee (Comité de Protection des Personnes, Sud-Est I) as well
as by the French agency regulating biomedical research (Agence Nationale de Sécurité du
Médicament et des produits de santé, ANSM).

The following criteria of inclusion were applied: (i) patients with an ILD determined
based on clinical signs and CT scan, requiring a flexible bronchoscopy associated with
a BAL; (ii) patients older than 18; (iii) patients who had given their voluntary, informed
and written consent; (iv) patients having a social insurance or beneficiary (mandatory
for any French clinical study). Patients were excluded in the following cases: (i) patients
who had not given their consent; (ii) when flexible bronchoscopy or BAL was not possible;
(iii) patients under legal protection or pregnant women; (iv) patients with contagious
disease (e.g., HIV infection, tuberculosis, viral hepatitis) for safety reasons.
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2.2. Broncho-Alveolar Lavages

BAL were performed by injecting 50 mL of a warmed saline solution in the selected
area of the patient lung. This solution was slowly aspirated, the collected sample constitut-
ing the bronchial wash (BW). Then, 2 to 4 additional 50 mL doses of warmed saline solution
were injected and aspirated successively, the collected sample representing the BAL strictly
speaking. After cytological analysis of the samples performed by the Histology-Cytology
Department of the University Hospital of Saint-Etienne, the remaining samples (5 mL of
BW and 20 mL of BAL) were added with an equivalent volume of sodium hypochlorite
and stored at 4 ◦C until the mineralogical analyses were performed.

2.3. Sample Pre-Treatment and Analysis

We previously developed and validated a size fractionation protocol allowing to
separate microparticles (>1 µm) from submicron particles (ranging from 100 nm to 1 µm)
and nanoparticles and ions (particles < 100 nm), described extensively in our previous
publications [18–20]. We applied this protocol to BAL and BW samples. Dynamic light
scattering (DLS) method (Nanozetasizer®, Malvern Instrument, Orsay, France) allowed
verifying the efficiency of the size fractionation. All fractions were also analyzed using
inductively coupled plasma atomic emission spectroscopy (ICP-AES, Jobin-Yvon JY138
Ultrace) to assess for each metal the quantity of matter expressed in parts-per-billion (ppb),
i.e., as ng/mL. The content of BAL and BW in aluminum (Al), beryllium (Be), cobalt (Co),
chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), silicon (Si), titanium (Ti), tungsten
(W), zinc (Zn), and zirconium (Zr) was thus determined. “Blank” samples were also in-
cluded to ensure samples were not contaminated with particles present in the environment,
the materials, and solutions used. These control samples consisted of saline solution aspi-
rated through the bronchoscope and that underwent exactly the same processes as clinical
samples did.

2.4. Comparison to Clinical Data

More than 200 different conditions are grouped under the term interstitial lung dis-
ease, classified together because of similar clinical, radiographic, physiologic, or pathologic
manifestations [21]. These diseases can be subdivided into those with a known origin
(e.g., systemic disease, iatrogenic causes by drug, radiation, extrinsic allergic, pneumoco-
niosis, post-infectious) and those without, the latter usually called idiopathic interstitial
pneumonias (mainly sarcoidosis, other granulomatous ILD and idiopathic pulmonary
fibrosis). Patients from our cohort were thus first classified in two groups depending
on the origin of the disease they suffer from, either with a known etiology or idiopathic.
Details on the cohort are reported in Table 1. We then focused on sarcoidosis and idiopathic
pulmonary fibrosis, two groups for which we suspected the contribution of Si submicron
particles and Ti nanoparticles, respectively [19].

2.5. Retrospective Occupational Exposure to Nanoparticles Assessment

Patients were asked about all occupations held and industrial sectors, for at least six
months since leaving school during their working life, up to the date of the diagnosis.
For each occupation, the employer’s sector was coded into the French classification of
activities (NAF, Nomenclature d’Activités Françaises, 1999) of the National Institute for
Statistics and Economics Studies (INSEE) [22], and the occupation was coded according to
the International Standard Classification of Occupations (ISCO, 1968) of the International
Labour Organisation, The International Labour Office [23].

Patients were also asked about working conditions such as exposure to chemicals,
dusts, fumes, and the level of preventive measures used in occupational settings e.g.,
ventilation, and use of personal protective equipment. The assessment of occupational
exposure to unintentionally released nanoparticles of each patient was independently
and anonymously performed by an experienced industrial hygienist, follow-up on the
review of occupational physicians, on the basis of these data. A probability of exposure
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to unintentionally produced nanoparticles from work-processes implemented in each
occupation held by the patients was determined. Classes of probability were defined in a
four scale: 0 when it was not found, 1 when it was possible (<10%), 2 when it was likely
(10–50%), and 3 when it was very likely (>50%). Then they considered the final probability
of exposure to unintentionally released nanoparticles as the highest probability of exposure
observed in the career.

Table 1. Description of the cohort.

Disease Number of Patients Median Age
(Min–Max)

Sex Ratio
(M:F)

Smokers
(Former Smokers)

With a known etiology 58 70.5 (22–87) 43:15 10.3% (46.6%)
Drug related ILD 15 71 (46–81) 14:1 6.7% (73.3%)

Infectious ILD 12 69.5 (42–85) 7:5 16.7% (33.3%)
Hypersensitivity

pneumonitis 7 75 (34–78) 6:1 0% (14.3%)

Auto-immune pneumonitis 5 72 (22–87) 2:3 0% (40%)
Lymphangitis

carcinomatosis/Neoplasia 4 75.5 (67–83) 2:2 0% (50%)

Desquamative interstitial
pneumonia 3 71 (48–81) 2:1 66.7% (0%)

Pneumoconiosis 2 50 (41–59) 2:0 50% (50%)
Pulmonary veno-occlusive

disease 2 73 (72–74) 2:0 0% (100%)

Antisynthetase syndrome 2 70.5 (70–71) 1:1 0% (50%)
Silicosis 1 55 1:0 0% (100%)

Microscopic polyangiitis 1 71 0:1 0% (0%)
Granulomatosis with

polyangitis (Wegener’s
granulomatosis)

1 65 1:0 0% (0%)

Left heart failure 1 59 1:0 0% (100%)
Lipoid pneumonia 1 69 1:0 0% (100%)

Bronchiolitis obliterans 1 40 1:0 0% (0%)
Idiopathic 34 67.5 (25–81) 22:12 14.7% (23.5%)
Sarcoidosis 14 47 (25–80) 6:8 14.3% (7.1%)

Idiopathic nonspecific
interstitial pneumonia 11 76 (46–81) 8:3 9.1% (27.3%)

Idiopathic pulmonary
fibrosis 9 69 (61–81) 8:1 22.2% (36.4%)

Others 8 61 (46–83) 3:5 0% (28.6%)

3. Results
3.1. Relationship between Biomonitoring of Nanoparticles in Broncho-Alveolar Lavages and
Lung Diseases

We previously separated micro from submicron and nanoparticles contained in BAL
and BW samples from 100 patients suffering from ILD. We then assessed the metal load in
each of these fractions. Results are fully detailed in our previous publications [18,19].

As shown by Figure 2A, we evidenced a concentration of submicron silica particles
higher in patients suffering from sarcoidosis than in patients suffering from other ILD.
Similarly, we observed a concentration of titanium nanoparticles higher in patients suffering
from idiopathic fibrosis than in patients suffering from other ILD (Figure 2B).
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We further analyzed potential relationships between the particle load in BAL and
BW and the patients’ gender and their past or current smoking status by calculating the
Pearson correlation coefficient. No correlation was observed (data not shown).

3.2. Relationship between Lung Diseases and Occupational Exposure

To explore possible associations between interstitial lung diseases and occupational
exposure to airborne nanoparticles, we considered the highest probability of exposure to
unintentionally released nanoparticles observed in the career. Results are reported Table 2.
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Table 2. Description of the patients’ cohort in terms of lung disease, occupations and probability of exposure to uninten-
tionally released nanoparticles. The probability of exposure assessment resulted from the nanoparticle-release potential of
the considered work process (determined from the literature) which was adjusted for each occupation according to the
description of tasks and work-processes implemented as provided in the ISCO 1968 classification.

Patient
Number

Lung Disease
Group (E: Disease of

Known Etiology, I:
Idiopathic Disease)

Occupations
Probability of Exposure to Nanoparticles: 0 Not Found, 1:

Possible < 10%, 2: Likely 10–50%, 3: Very Likely > 50%

Final Exposure to
Nanoparticles

Probability: Highest
Probability of Exposure
to Nanoparticles in the

Career1 2 3 Occupation 1 Occupation 2 Occupation 3

1 Drug related ILD E Coachbuilder/painter Welder Printing machine
operator 3 3 1 3

2
Idiopathic
pulmonary

fibrosis
I Textile products

machine operator 1 1

3 Drug related ILD E Farmer Switching
operator

Switching
operator 3 1 1 3

4
Lymphangitis
carcinomato-

sis/Neoplasia
E Farmer 2 2

5 Other Mason Refractory
bricklayer

Ceramics
operator 3 3 3 3

6 Drug related ILD E Market gardener Farmer Farm hands 0 2 1 3
7 Other Seamstress Cook Childminder 1 3 1 3

8 Other Floor sander Truck
driver Pressman 3 3 1 3

9
Idiopathic
pulmonary

fibrosis
I Miner Miner Train driver 3 3 3 3

10 Drug related ILD E Miner Tile setter 3 3 3

11 Auto-immune
pneumonitis E Domestic help Domestic

help 1 1 1

12 Drug related ILD E Farmer 3 3

13 Hypersensitivity
pneumonitis E Bank employee 0 0

14 Infectious ILD E Accountant Medical
secretary 0 0 0

15 Other /

16 Infectious ILD E Printing machine
operator

Printing
machine
operator

1 1 1

17
Lymphangitis
carcinomato-

sis/Neoplasia
E Masseuse

Chocolate—
products
machine
operator

Waitress/manageress 0 0 1 1

18 Infectious ILD E Teacher Teacher 0 0 0

19
Idiopathic
pulmonary

fibrosis
I Mason 3 3

20 Drug related ILD E Truck driver Salesman Company director 3 0 0 3
21 Drug related ILD E Pipe fitter/welder 3 3

22
Desquamative

interstitial
pneumonia

E Coachbuilder/painter 3 3

23 Drug related ILD E Waitress Waitress
Candle

production
machine operator

0 2 0 2

24 Other Factory worker Factory
worker Market gardener 0 3 0 3

25
Pulmonary

veno-occlusive
disease

E Farmer 3 3

26
Idiopathic
pulmonary

fibrosis
I Printing machine

operator
Truck
driver Salesman 1 3 0 3

27

Idiopathic
nonspecific
interstitial

pneumonia

I Mason Joiner 3 3 3

28

Idiopathic
nonspecific
interstitial

pneumonia

I Secretary Secretary Domestic help 0 0 1 1

29 Drug related ILD E Mason Factory
worker 3 1 3

30 Sarcoidosis I Seamstress Childminder Seamstress 1 0 0 1
31 Drug related ILD E Baker Post officer Foundry worker 3 0 3 3
32 Pneumoconiosis E Dental prosthetist 3 3

33 Auto-immune
pneumonitis E Carer 0 0

34

Idiopathic
nonspecific
interstitial

pneumonia

I Baker 3 3

35 Bronchiolitis
obliterans E Boilermaker/welder Pipe fit-

ter/boilermaker/welder 3 3 3

36 Other Cleaner Saleswoman Waitress/manageress 0 0 1 1

37

Idiopathic
nonspecific
interstitial

pneumonia

I Domestic help Food
salesperson Cashier 1 2 0 2

38 Sarcoidosis I Farmer 3 3

39 Antisynthetase
syndrome E

40
Pulmonary

veno-occlusive
disease

E Farmer 3 3

41
Idiopathic
pulmonary

fibrosis
I Plant operator Plant

operator Cleaner 1 3 1 3

42

Granulomatosis
with polyangitis

(Wegener’s
granulomatosis)

E Joiner 3 3

43 Sarcoidosis I Seamstress Cleaner Childminder 1 1 0 1

44 Left heart failure E Boilermaker/welder Carpenter/metal
fitter

Carpenter/metal
fitter 3 3 3 3

45 Hypersensitivity
pneumonitis E Farmer 3 3
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Table 2. Cont.

Patient
Number

Lung Disease
Group (E: Disease of

Known Etiology, I:
Idiopathic Disease)

Occupations
Probability of Exposure to Nanoparticles: 0 Not Found, 1:

Possible < 10%, 2: Likely 10–50%, 3: Very Likely > 50%

Final Exposure to
Nanoparticles

Probability: Highest
Probability of Exposure
to Nanoparticles in the

Career1 2 3 Occupation 1 Occupation 2 Occupation 3
46 Infectious ILD E Joiner 3 3

47
Idiopathic
pulmonary

fibrosis
I Manufacturing

labourer
Manufacturing

labourer 3 3 3

48 Sarcoidosis I Salesman Accountant 0 0 0

49

Idiopathic
nonspecific
interstitial

pneumonia

I Butcher 1 1

50
Idiopathic
pulmonary

fibrosis
I Manufacturing

labourer Baker Mason 3 3 3 3

51 Pneumoconiosis E Joiner 3 3

52 Microscopic
polyangiitis E Saleswoman 0 0

53

Idiopathic
nonspecific
interstitial

pneumonia

I Machine-tool
operator

Manufacturing
labourer

Fiberglass plant
operator 3 1 1 3

54
Desquamative

interstitial
pneumonia

E Waitress Fruit picker
Cleaner in a

plastic products
factory

2 0 2 2

55 Sarcoidosis I Animator in
retirement home 0 0

56

Idiopathic
nonspecific
interstitial

pneumonia

I Foundry moulder 3 3

57
Idiopathic
pulmonary

fibrosis
I Hospital

caregiver 2 2

58 Sarcoidosis I Cleaner 2 2

59
Idiopathic
pulmonary

fibrosis
I

60 Other Speech therapist Speech
therapist Speech therapist 0 0 0 0

61 Infectious ILD E Gym teacher 0 0

62 Auto-immune
pneumonitis E Farmer

Textile
products
machine
operator

3 1 0 3

63 Drug related ILD E Optical assembler Butcher 0 0 0

64 Lipoid
pneumonia E Steel materials

handling

Machine-
tool

operator
Mason 3 3 3 3

65
Desquamative

interstitial
pneumonia

E Metal carpenter 3 3

66 Sarcoidosis I Secretary Policeman 0 0 0

67 Auto-immune
pneumonitis E Office worker Communications

manager Director 1 0 1 1

68 Infectious ILD E Plasterer/painter Handler 3 2 3

69 Hypersensitivity
pneumonitis E Cleaner Quality

manager
Windshield

manufacturer 2 0 3 3

70 Auto-immune
pneumonitis E Joiner 3 3

71 Other
72 Infectious ILD E Carer 0 0

73 Hypersensitivity
pneumonitis E Wood-products

machine operator Farmer 3 3 3

74 Drug related ILD E Metal polish 3 3
75 Drug related ILD E Baker Salesman Estate agent 3 1 1 3

76 Hypersensitivity
pneumonitis E Mason Train

driver 3 3 3

77 Sarcoidosis I Manufacturing
labourers

Construction
sites truck

driver

Manufacturing
labourers 3 3 3 3

78 Infectious ILD E Mason

Rubber
products

(tyre)
machine
operator

Textile products
machine operator 3 3 1 3

79 Drug related ILD E Metal industry
operator

Machine-
tool

operator
Boilermaker 3 3 3 3

80

Idiopathic
nonspecific
interstitial

pneumonia

I Manufacturing
labourers

Textile
products
machine
operator

3 1 3

81 Sarcoidosis I

82
Lymphangitis
carcinomato-

sis/Neoplasia
E Meter reader Storekeeper Executive 0 0 0 0

83

Idiopathic
nonspecific
interstitial

pneumonia

I Textile products
machine operator 1 1

84 Antisynthetase
syndrome E Baker

Machine-
tool

operator
Security officer 3 3 0 3

85 Infectious ILD E Farmer 3 3
86 Silicosis E Miner Mason 3 3 3
87 Sarcoidosis I Mason 3 3

88 Infectious ILD E Textile products
machine operator 3 3

89 Infectious ILD E
Chocolate—

products machine
operator

1 1

90 Hypersensitivity
pneumonitis E Plumber 3 3
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Table 2. Cont.

Patient
Number

Lung Disease
Group (E: Disease of

Known Etiology, I:
Idiopathic Disease)

Occupations
Probability of Exposure to Nanoparticles: 0 Not Found, 1:

Possible < 10%, 2: Likely 10–50%, 3: Very Likely > 50%

Final Exposure to
Nanoparticles

Probability: Highest
Probability of Exposure
to Nanoparticles in the

Career1 2 3 Occupation 1 Occupation 2 Occupation 3

91 Drug related ILD E Machine-tool
operator

Machine-
tool

operator

Metal coating
machine operator 3 3 3 3

92

Idiopathic
nonspecific
interstitial

pneumonia

I Boilermaker 3 3

93 Sarcoidosis I Electrician
Electrician

in food
industry

Electrician in
mining plant 1 1 3 3

94

Idiopathic
nonspecific
interstitial

pneumonia

I Farmer Machine
finishing Machine operator 3 3 2 3

95 Infectious ILD E Post officer 0 0

96
Lymphangitis
carcinomato-

sis/Neoplasia
E Machine-tool

operator Policeman 3 0 3

97 Sarcoidosis I Train controller Music
teacher 0 0 0

98 Hypersensitivity
pneumonitis E

Welder/machine-
tool

operator
3 3

99 Sarcoidosis I Electrician 3 3

100 Sarcoidosis I Mason Mover
Metal-heat-

treating plant
operator

3 1 3 3

Figure 3 reports the distribution of the patients, irrespective of the disease they suffer from,
depending on their final probability of exposure to unintentionally released nanoparticles.
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Figure 3. Distribution of the patients depending on their probability of exposure to unintentionally
released nanoparticles.

We first observed that few patients (16%) had a null probability of exposure to unin-
tentionally released nanoparticles during their occupational life. On the contrary, the vast
majority of the patients (65%) exhibited a high probability of exposure to unintentionally
released nanoparticles (>50%).

As shown by Figure 4A, we then reported the distribution of patients depending on
their probability of exposure to unintentionally released nanoparticles (we grouped the
0–10% probability of exposure to unintentionally released nanoparticles on one hand and
the 10–100% probability on the other hand) and the origin of their disease (either with a
known etiology or idiopathic).
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The probability of exposure to unintentionally released nanoparticles was higher than
10% for a large majority of patients, either suffering from a disease with a known etiology
or from an idiopathic disease (74% and 69% respectively).

We then focused our attention on sarcoidosis and idiopathic pulmonary fibrosis,
two idiopathic diseases for which our mineralogical analyses had suggested correlations
with the concentration of submicron silica particles and that of titanium nanoparticles,
respectively (Figure 4B).

Interestingly, we observed different profiles between the two types of diseases. Re-
garding sarcoidosis, patients were almost equally distributed between the group of low
probability of exposure to unintentionally released nanoparticles and that with a probabil-
ity of exposure higher than 10%. On the contrary, for idiopathic pulmonary fibrosis, the
probability of exposure to unintentionally released nanoparticles was higher than 10% for
almost 88% of the patients.

4. Discussion

Besides the widely used in vivo and in vitro studies, mineralogical analyses of human
biological samples can bring interesting and useful information, especially to investigate
relationship between exposure to airborne nanoparticles and idiopathic lung diseases.
For these reasons, here we go one step further and couple biomonitoring to exposure
estimates based on expert judgments. Thus, we underwent a retrospective occupational
exposure to unintentionally emitted nanoparticles assessment. This was mainly based
on expert’s judgment through job title, workplace conditions and their knowledge of
occupations and similar documented situations, that may however lead to possible sources
of errors in the estimates. We thus observed that most of the patients, whatever the type of
disease they suffer from, showed a high probability of exposure to unintentionally released
nanoparticles (Figure 3). This observation could suggest a potential contribution of inhaled
nanoparticles to the development or exacerbation of lung diseases. This is particularly true
for idiopathic pulmonary fibrosis where 88% of the patients exhibited a high probability of
exposure to unintentionally released nanoparticles (Figure 4B). This finding is consistent
with our mineralogical analyses that suggested a role of titanium nanoparticles in this
disease. However, regarding sarcoidosis, only half (54%) of the patients were classified in
the group of high probability of exposure to unintentionally released nanoparticles. Once
again, this observation is in agreement with our mineralogical analyses that previously
highlighted a potential contribution of silica submicron particles, i.e., particles bigger than
nanoparticles, in this disease [19].

To the best of our knowledge, only two studies have established a clear relationship
between exposure to unintentionally released nanoparticles and long-term negative effects
in humans. Song et al. [24,25] found silica nanoparticles in clinical samples from seven
patients suffering from lung injuries after an occupational exposure. However, these



Toxics 2021, 9, 204 11 of 15

patients were also exposed to other toxic substances; consequently, no firm conclusion
could be reached. Another study [26] had reported that pulmonary injuries were more
severe in welders than in unexposed people suggesting that nanoparticles present in
welding fumes could be responsible, at least in part, for the pulmonary inflammation.
But this study was limited to the description of few clinical cases and did not have a
significant statistical power. It was also restricted to a target population and conclusions
can hardly be extrapolated.

In the literature, the investigation of inhaled nanoparticles’ presence in patients’
lungs is rare and when it exists it is limited to electron microscopy observations that
do not allow a complete physicochemical characterization of the nanoparticles and is
not suitable for large cohort analysis as it is a time-consuming and expensive technique.
Laser-induced breakdown spectroscopy (LIBS) could appear as a promising alternative
for the direct visualization of endogenous or exogenous elements within tissues but is still
under development and not routinely used for biomedical applications [27]. Nevertheless,
the biomonitoring of nanoparticles in biological samples appears as a promising approach
to get new insights into the understanding of the genesis or evolution of lung diseases due
to nanoparticle exposure.

In the present paper, we propose to couple biomonitoring to the assessment of uninten-
tionally released nanoparticles exposure to get a larger picture on the relationship between
exposure to airborne nanoparticles and interstitial lung diseases. Although this strategy
has several advantages as previously discussed, it has also some limitations we have to take
into account. First, results should be considered with caution as we have a small number
of patients, especially in the idiopathic pulmonary disease group (nine patients). Moreover,
no significant difference between the unintentionally released nanoparticle exposure as-
sessment of different distinguished interstitial lung diseases groups was observed (results
not shown). As we said above, further investigations are necessary to confirm the results
observed. We may also remind the reader that we performed our analyses in a cohort of
patients. It should be interesting to compare these data to those obtained with healthy
control subjects. However, for ethical reasons, it is impossible to perform broncho-alveolar
lavages in healthy persons due to the invasive nature of this exam. We should mention that
we focused our analyses on occupational exposure to unintentionally released nanoparti-
cles, to be complete, we should also consider other sources of exposure to nanoparticles,
for instance environmental exposure (taking into account patients’ living area, mode of
transport, of heating, leisure or use of hygiene and cosmetics products. . . ). However, these
data are much more complex to collect with accuracy. Finally, it should be kept in mind
that the presence of a given particle in a larger amount within biological samples is not
sufficient to prove a causal link with a disease, and toxicity assessment is necessary to
demonstrate a pathogenic effect as well as mechanistic studies to understand the underly-
ing mechanisms. One perspective we propose to strengthen our array of presumptions is
to couple the nanoparticle biomonitoring in lung clinical samples to the in vitro assessment
of their toxicity [14]. For instance, by incubating cells with nanoparticles extracted from
patients’ BAL and then analyzing the cell response in terms of induction of cell death,
pro-inflammatory response, oxidative stress, etc. The advantage of such strategy is that the
in vitro assays are performed using nanoparticles which nature and dose are representative
of real-life. From such approach benefits could be expected in the therapeutic and/or
prevention fields. Indeed, the knowledge of the toxicity potential of nanoparticles can lead
to preventive measures to limit the exposure to the harmful substances.

We determined a probability of exposure to unintentionally produced nanoparticles
present in polluting emissions during each occupation held by the patients. We did not
determine intensity and frequency of nanoparticle exposure. We also observed that the
probability of exposure alone was not useful to discriminate some exposure differences
between different distinguished interstitial lung diseases groups. Furthermore, our results
did not determine the extent of occupational or daily life exposure and recent or lifetime
exposure to unintentionally released nanoparticles. However, given the current state of
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knowledge on occupational exposure levels, which is patchy and based on heterogeneous
methods, we have chosen to limit the assessment to probability [28]. The nanoparticle
assessment used in this study was possible thanks to the knowledge acquired in the frame-
work of the development of the job-exposure matrix MatPUF [29]. Such a job-exposure
matrix might be useful to improve the quality and the accuracy of nanoparticle exposure
assessment during a full occupational career, providing for each job chronological exposure
data and main chemical families of released nanoparticles. MatPUF job-exposure matrix
has already been used in epidemiological studies and has made it possible to highlight
a relationship between occupational exposure to unintentionally released nanoparticles
and small for gestational age and, cancers, such as lung cancer and brain nervous system
tumors [30,31].

Job-exposure matrices have already been used to investigate associations between
occupational exposure and idiopathic pulmonary fibrosis, however conflicting results were
reported. Indeed, while Abramson et al. showed that occupational exposures to specific
organic, mineral, or metal dusts were not associated with idiopathic pulmonary fibrosis [32],
on the contrary Andersson et al. reported that occupational exposure to inorganic dusts,
excluding silica and asbestos, was associated with increased risk of idiopathic pulmonary
fibrosis [33]. Regarding sarcoidosis, both Graff et al. and Jonsson et al. concluded that
occupational exposure to silica dust led to an increased risk of sarcoidosis [34,35]. These
studies confirmed that lung diseases such as idiopathic pulmonary fibrosis or sarcoidosis
could be caused by the inhalation of mineral particles [36–38]. Thus, such job-exposure
matrix are interesting and useful tools for the assessment of occupational UFP exposure
that can both contribute to the improvement of epidemiological knowledge of health risks
and to the implementation of prevention in the workplace.

Nanoparticles possess nanostructure-dependent properties (e.g., chemical, physical,
biological), which make them desirable for commercial or industrial applications. Workers
are increasingly exposed to nanoparticles in occupational settings. However, these same
properties may potentially lead to atypical toxicity and health risks are yet unknown.
For these reasons, there is an unceasing scientific interest to the human toxicokinetics
and toxicodynamics of nanoparticles and concerns about the potential risks of exposure
to humans have been raised. Although toxic effects have not been really demonstrated
in humans, there is accumulating evidence from experimental studies that exposure to
some nanoparticles may be harmful [39]. However, it is mostly based on in vitro tests
and animal experiments. Key questions, regarding the duration and level of exposure in
humans, the toxic behavior of nanoparticles in humans, the physiological and chemical
interaction with human body, the harmlessness of these interactions, and acute or chronic
effects adverse effects need to be resolved [40]. As potential occupational exposure to
unintentionally released nanoparticles becomes more prevalent, it is important that the
principles of risk assessment and risk management be considered for workers. The risk
assessment/risk management framework comprises three essential components: research,
risk assessment, and risk management [40]. This exploratory study had the objective
to characterize exposure to unintentionally released nanoparticles, using association of
two approaches, biomonitoring and occupational exposure to unintentionally released
nanoparticles assessment, in patients with ILD, to study possible links between with these
health outcomes and exposure to unintentionally released nanoparticles and, thus, to
contribute to the knowledge to risk factors of occupational and environmental lung ILD.
Moreover, these approaches might be used to contribute to nanoparticles risk assessment.
In fact, quantification of unintentionally released nanoparticles exposure remains the major
challenge for prevention.

5. Conclusions

Large epidemiological studies are too personnel, require financial resources,
and are time-consuming. By combining mineralogical analyses of human BAL samples and
estimation of occupational nanoparticle exposure, the relationship between occupational
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exposure to airborne nanoparticles, nanoparticle lung burden, and implications on the
etiology of lung diseases can be investigated. These complementary approaches appear as
a promising strategy to get a comprehensive picture and could bring informative data for
human health risk assessment and management.

Following this approach, it is evidenced that most of the patients from our cohort,
whatever the type of disease they suffer from, showed a high probability of exposure to
unintentionally released nanoparticles. This observation was consistent with the nanopar-
ticle lung burden previously assessed, suggesting a potential role of inhaled nanoparticles
to the development or exacerbation of lung diseases, although further experiments are
necessary to draw firm conclusions.
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