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Abstract: These days, with the emerging developments in wireless communication technologies,
such as 6G and 5G and the Internet of Things (IoT) sensors, the usage of E-Transport applications
has been increasing progressively. These applications are E-Bus, E-Taxi, self-autonomous car, E-
Train and E-Ambulance, and latency-sensitive workloads executed in the distributed cloud network.
Nonetheless, many delays present in cloudlet-based cloud networks, such as communication delay,
round-trip delay and migration during the workload in the cloudlet-based cloud network. However,
the distributed execution of workloads at different computing nodes during the assignment is a
challenging task. This paper proposes a novel Multi-layer Latency (e.g., communication delay, round-
trip delay and migration delay) Aware Workload Assignment Strategy (MLAWAS) to allocate the
workload of E-Transport applications into optimal computing nodes. MLAWAS consists of different
components, such as the Q-Learning aware assignment and the Iterative method, which distribute
workload in a dynamic environment where runtime changes of overloading and overheating remain
controlled. The migration of workload and VM migration are also part of MLAWAS. The goal is to
minimize the average response time of applications. Simulation results demonstrate that MLAWAS
earns the minimum average response time as compared with the two other existing strategies.

Keywords: MLAWAS; Q-Learning; response-time; simulation; assignment

1. Introduction

These days, cloud computing-based smart applications are growing progressively to
deal with different life activities. The applications are E-Healthcare, E-Banking, Augmented
Reality and E-Commerce [1]. Cloud computing offers the abandonment of being ubiquitous
and omnipresent in order to entertain the requests of applications. However, conventional
cloud computing, located multiple hops away from E-Transport, and the offloading of the
workload of applications, will suffer from long end-to-end latency. Cloudlet is an extension
of cloud computing that brings computing resources to the edge of the communication
network. Cloudlet is a latency-optimal paradigm and is easily connected with the network’s
base stations, controlled by the software-defined network. Offloading and workload
assignment are two fundamental techniques in distributed cloudlet-based cloud computing
networks where E-Transports send their workload for execution. Generally, it is called full
offloading from E-Transport devices to the cloudlet-based cloud network [2].
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There are many types of latency that exist in the cloudlet based cloud network; for
instance, the communication latency, round-trip latency, process latency, and migration
latency during offloading and workload assignment. These latency types greatly impact
applications’ performance during offloading and processes in the network. Therefore,
multi-layer latency workload assignment has become a difficult problem in cloudlet-based
cloud networks. Many efforts have been made to solve the latency optimal workload as-
signment in the cloudlet-based cloud network. For example, the authors of [1–3] suggested
greedy-based workload assignment in the cloudlet-based cloud network, where process
latency is taken into consideration. The authors of [4–7] suggested a dynamic programming-
based workload assignment solution in a distributed cloudlet network where the dynamic
changes of network contents are taken into consideration. The process latency and commu-
nication are considered for each workload before offloading and assignment to different
computing nodes. Refs. [8–11] suggested a heuristics-based solution to optimize workload
assignment and obtained a near-optimal solution for applications. The process delay and
the communication were considered the constraints, and the average response time of each
application was the objective function of the studies. The mobility aware offloading and
the workload assignment, including process delay and communication, were formulated
in the studies of [12–15]. These studies assumed that all communication networks and
processing nodes always remain stable and optimal. However, this is unrealistic because
communication networks and computing nodes within a dynamic environment, where
E-Transports change their location, cannot remain optimal. At the same time, round-trip
latency and migration latency during the migration of workload between nodes has been
widely ignored in the literature. The suggested methods—based on a greedy approach
to obtain optimal local search, and heuristics to obtain the global search for an optimal
solution—cannot work in a dynamic environment in which many parameters change due
to the mobility of E-Transports [16–19].

This paper formulates a multi-layer latency-aware workload assignment in the cloudlet-
based cloud network. The objective is to minimize the average response time of all E-
Transport applications. The average response time is determined by processing delay and
communication delay (e.g., round-trip delay and migration delay) during offloading and
workload assignment. The E-Transport mobility and the migration of workload are also
considered to avoid load balancing and the overhead situation in the network. This study
addresses the following research questions: (i) How do we design a resource-optimal,
cloudlet-based cloud network that will not incur overloading and resource-constraint
issues? (ii) How do we adopt dynamic arrival workloads based on the Poisson process in
the network without waiting for the delay? (iii) How do we search for a local cloudlet that
is optimal compared to other cloudlets for workload assignments? (iv) How do we adopt
dynamic changes and obtain global search-based optimal solutions during mobility and
the migration of workload in the network?

This study makes the following contributions to answer the questions stated above:

• Proposed System: Initially, this study proposes a mobile cloudlet-based cloud system
where E-Transports can easily offload their coarse-grained applications. The mobile
devices work as a thin client, where E-Transport IoT applications only offload their
workload via a client cloudlet module. The cloudlet host is a distributed server-based
network in which all servers are heterogeneous, and each workload is assigned a single
virtual machine as a guest to run. The cloud remote is the conventional cloud that is the
part of the system which supports the migrated workloads for further execution. The
mobile cloudlet based cloud (MCBC) is a distributed system in which the workload
can execute at different computing nodes during offloading and execution.

• To solve the workload assignment in a distributed MCBC network, this study proposes
the MLAWAS framework, which consists of different schemes which solve the problem
into different steps. The schemes are defined in their next specific points in detail.

• Initial Optimal Heuristic: This study proposes the improved Genetic Algorithm (IGA)
based on a natural selection mechanism that mimics biological evolution to solve
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constrained and unconstrained optimization problems. A workload population of
individual solutions is updated repeatedly by the algorithm. An optimal solution
reaches the best point in the workload population.

• Global Searching: For optimization, improved Genetic Algorithms are a global search
technique. They are bad at hill-climbing. However, the potential for probabilistic
hill-climbing is improved Simulated Annealing. Therefore, by adding a mutation
operator such as Simulated Annealing and an adaptive cooling schedule, the two
techniques are combined here to create an adaptive algorithm that has the merits of
both Genetic Algorithms and Simulated Annealing.

• Local Greedy Searching: The greedy-based search is proposed to deal with local
search and to find the optimal solution of any requested workload within available
cloudlets. However, it is working in the same environment. The main goal of this
method is to verify that all workloads assigned to computing nodes have optimal
average response time solutions compared to others. This searching repeats iteratively
until all workloads are assigned to all available component nodes.

• Q-Learning Aware Migration Technique: This study suggests a Q-Learning-based
VM migration method where the current optimal solution being treated as a state
is an improvement on the objective solution, and the workload to be migrated to
benefit E-Transport benefits mobility. The Q-Learning method always adopts any
dynamic changes of the environment and always chooses an optimal solution during
the migration of the workload to maintain the workload and the overhead situation
in the MCBC network.

The rest of the paper is planned as follows: Section 2 discusses the literature on the
latency optimal workload assignment distributed network. Section 3 contains a mathemati-
cal model of how to define all kinds of delays with their constraints. Section 4 clarifies how
we utilize the techniques chosen to lower the delays in conjunction with the mathematical
model. Section 5 presents the simulation system and the results of the discussion of differ-
ent schemes. Section 6 presents the summary of the study and the future direction of the
research.

2. Related Work

The latency optimal workload assignment problem in the mobile cloudlet based cloud
network (MCBC) has been widely studied in the literature. This problem is formulated
as a linear integer problem, a greedy problem and a combinatorial problem by different
researchers in the literature. Table 1 describes the existing problem formulation and the
proposed schemes for the workload assignment problem in the MCBC network.

Table 1. Comparison among existing works and the proposed work.

Existing Works [1–5] [6–12] [13–28] Proposed

Objective Task offloading Task offloading Task offloading Task offloading

Constraints Cost none none Hybrid latency

Network Delay X × × X

Process Delay × X X X

Migration Delay × × × X

Fine grained Offloading Thread level Code level Application partitioning VM overlay

Application scenario Social media 3D Gaming Social media Workloads

Algorithm Complexity Exponential Exponential No guarantee Assignment guarantee

Performance Near-optimal No guarantee Local optimum Global optimal

Method ILP Greedy NP-Hard Heuristics HMM Q-Learning
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Nouha et al. [1] formulated latency and flexible workload assignment distributed
cloudlet networks. The goal is to minimize the response time of applications, which is
determined by process delay. Binwei et al. [2] suggested a framework to deal with an
energy and latency aware workload assignment in distributed edge cloud computing.
The communication delay and error rates are taken as constraints, and the objective is
to minimize the communication of applications during offloading and to improve the
battery life of devices. Xiang et al. [3] formulated a single latency aware workload as-
signment in the cloudlet network, where the communication delay and the process delay
are taken as constraints and the average response time of the application is the objective
of the study. Qiang et al. [4] and Shanhe et al. [5] formulated latency aware workload
problems for computing-intensive real-time workloads and healthcare applications in
the distributed edge network. These studies tried to reduce the end-to-end latency of
applications via offloading and resource allocation methods. Jungmin et al. [6] and Amit
Samanta et al. [7] proposed latency optimal workload assignment greedy strategies to
optimize the objective function of applications. The objective function was to communi-
cate delay and process delay during workload allocation in the distributed edge cloud
network. Huy Trinh et al. [8,9] devised solutions based on dynamic programming based
iterative greedy solutions to solve an energy-efficient and low-latency optimal workload
in distributed edge cloudlet networks. These studies optimize the objective function of
the problem, that is, the energy and latency, and obtained near-optimal solutions in the
iterative process.

A.Rasheed et al., Lixing et al. and Dileep et al. [10–12] proposed dynamic programming-
based iterative and full approximation methods based on Lyapunov optimization heuristics
to solve the workload assignment problem in the distributed edge cloud network. The
concave and convex optimization-based solution suggested solving the travelling sales-
men’s problem for workload in the network. All studies considered the energy and latency
objectives during problem formulation and met the applications’ Quality of Service require-
ments. Li et al. [13–15] and Ying Wah et al. [16] suggested energy, latency and cost-aware
workload assignments in the distributed mobile edge/fog/cloudlet based cloud network.
These studies solved the workload assignment based on NP-Hard scheduling heuristics
and meta-heuristics. The goal was to minimize the makespan of applications. The consid-
ered problem is dynamic, and a Queue based solution is suggested to estimate the required
resources for offloaded workload in the system. The communication delay, process delay
and energy cost were taken as constraints of the study.

Aburukba et al. and Lakhan et al. [17] suggested mobility-aware workload assignment
solutions for the distributed network. The processing delay, communication delay and pro-
rogation delay are also considered during problem formulation and, based on these delays,
the studies proposed solutions. The studies [19] suggested dynamic environment workload
assignment aware strategies based on Genetic Algorithms and ant-colony meta-heuristics.
The solutions are fully approximated, and exponentially gained optimal objectives in
an exploration and exploitation environment. The studies [20–23] formulated dynamic
content and failure-aware workload assignment-based scheduling and resource allocation
techniques. Different heuristics, such as Hill Climbing, Earliest Deadline First, and Ear-
liest Finish Time methods, suggested minimizing the tardiness latency of applications.
Wang et al. and Lakhan et al. [24–27] introduced reinforcement learning-based resource
allocation techniques and workload assignment strategies in the dynamic environment,
where the network contents and load balancing situation of the computing nodes are
considered to be constraints. The application-level latencies, such as average response time,
were booted via a fully offloading technique in the Queue-based cloudlet cloud network.
Li et al. [28] proposed mobility and fault aware methods in a dynamic environment where
the latency and makespan of applications were considered as objective functions. The
communication delay and the process delay were the constraints, and each workload had
a deadline constraint.
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To the best of our knowledge, the multi-layer latency-aware workload assignment
in the cloudlet-based cloud network and the Q-learning migration workload have not
yet been studied for mobile cloudlet based cloud applications. This study considered the
QoS of applications and the multi-layer latency of the workload (e.g., round-trip delay,
process delay and migration delay) with the roaming situation of E-Transports. This study
suggested dynamic mixture solutions based on meta-heuristics and convex optimization
to obtain the optimal application solution in dynamic and adoptive cloudlet-based cloud
environments. In this way, the study optimizes the average response time of applications
and runs them under QoS requirements.

3. Problem Description

This study devises a novel system, the Multi-Layer Latency Aware Workload Assign-
ment of E-Transport IoT Applications in Mobile Sensors Cloudlet Cloud Networks, as
shown in Figure 1. The primary objective is to boost the performances of E-Transport appli-
cations in distributed sensors cloudlet cloud networks. The system consists of different
Internet of Things (IoT) E-Transport applications. At the same time, local mobile sensors
decide where to send the workload for further execution. The computing nodes are local
mobile sensors, cloudlets and cloud computing, which are geographically distributed and
are connected to the different communication technologies. The software-defined network
control plane is where communication nodes connect to each other to provide an efficient
routing path to transport applications. This study considered the multi-latency aware
workload assignment in the cloudlet-based cloud network. The considered workload is
coarse-grained, where the thin mobile clients offload their workloads to the cloudlet based
cloud for further processing. This study suggests using the Multi-Layer Latency Aware
Workload Assignment (MLAWAS) framework, which consists of different global searching
and local searching iterative methods and Q-Learning heuristics.

Resources

Modified SA

Mobility-Q-Learning

LATAS

VM Manager

k1

k2

k3

k4

Multi-Layer Latency Aware Workload Assignment of E-Transport IoT Applications in Sensors Cloudlet Cloud Network
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Autonomous Car i=2

E-Transport IoT Applicaitons
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MLAWAS Method Template
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Scalability

Local Sensors Cloudlet Cloud SDN

VM Migration

E-Ambulance i=5

E-Bus i=3

E-Train i=4 k5
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Mobility States 

Figure 1. IoT E-Transport System.
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3.1. Application Workload Characterization

In this work, all workloads are full offloading coarse-grained, consisting of different
types of tasks. The Poisson process follows the arrival of the workload to the MCBC.
The M/M/S-based queue in the system immediately allocates these workloads to the
available optimal cloudlets for further execution. All workloads have QoS requirements
(e.g., maximum latency tolerance).

3.2. Sensors Cloudlet Cloud Assignment Mechanism

This study formulates multi-latency aware workload assignment problems in cloudlet-
based cloud networks where the objective is to minimize the average response of the
workloads. This study proposed an offloading and execution system based on MLAWAS
in a cloudlet-based cloud network as shown in Figure 2. There are three main layers
in the system. The first layer is a mobile client where all applications are installed; the
cloudlet client for offloading is asked if the total average response is optimal for offloading.
The second layer is the cloudlet host, which consists of many homogenous servers. The
client host consists of different virtual machine (VM) host components, which wrapped
all coarse-grained applications into a single VM. The VM manager allocates the single
computing node to a workload as a guest VM for execution. The cloudlet meta-data and
service discovery are two components that aim to save application data and monitor the
remaining resources of the cloudlet host during execution. The third layer is the remote
cloud, which only executes the migrated workload of the application from the cloudlet host.
The remote cloud also has meta-data and a discovery service, which saves the completed
data and monitors cloud computing resources during the execution of the workload in
the cloud computing. MCBC is a distributed network in which mobile devices are treated
as thin clients, and cloudlet based clouds are thick computing nodes for processing the
requested workload to their QoS requirements.

Figure 2. Proposed Multi-Latency Aware Offloading System Based on MLAWAS Framework.
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3.3. System Model

This study considered the fine-grained workload of applications. The computing
environment is geographically distributed in the network as shown in Figure 3, and it is
similar to existing work [4]. There are three main aspects of the considered work: mobile
E-Transports, cloudlet, and cloud computing. All the cloudlets are placed flexibly and
are connected to the different base stations in the network. At the same time, all base
stations are managed by a Software Defined Network (SDN) to provide an efficient routing
path to the E-Transports during offloading in the network. The study also considered
cloud computing services that execute the migrated workload of applications from cloudlet
servers to avoid overloading. Each cloudlet is made up of heterogeneous servers where
they have different computing speeds and resources. Multi-latency-aware aspects are
considered in this study—communication latency (round-trip delay and migration) and
process delay.

Figure 3. SDN Based Mobile Sensors Cloudlet Cloud Network Scenario.

3.4. Multi-Latency Based Problem Formulation

We examine the MCBC as the amalgam of a set of base stations (BS) and a set of mobile
E-Transports under the coverage base station, where each base station is outfitted with
one cloudlet as shown in Figure 3. As we already explained, the cloudlet is an extended
small data center for computing and storage abilities. Every individual cloudlet has a
set of similar types of virtual machines. Mobile E-Transports can execute and offload the
task to the closest cloudlet, and uploading and downloading the data from the cloudlet
are identical. The arrival rate of the mobile E-Transport i application workload requests
follows a Poisson process, represented by λi, whereas i ∈ I. We describe ci as the number of
computation tasks generated by mobile E-Transport i, whereas di symbolizes the quantity
of data to be downloaded by mobile E-Transport i. Let εk be the range of the cloudlet k
for data processing and storage. The average service rate of the mobile device and the
cloudlet are defined as θi and µk. We mock-up each base station B and mobile E-Transport
i inside the coverage area of the base station (BS) as an M/M/1 queuing system. Normally,
MU sends data requests, and then either the cloudlet or the remote cloud provides the
results. This procedure engages the transmission between MU and the BS and the BS to the
remote cloudlet. In simple terms, we define the eUM transmission delay between MU and
BS, whereas eMC is the transmission delay between the base station and a remote cloud.



Electronics 2021, 10, 1719 8 of 25

3.5. Process Delay and Network Delay

Here, we are using binary variables to show the vector dimension of all delays such
as X = {xik : k ∈ K, i ∈ I} with xik = {0, 1} shows whether the mobile E-Transport accesses
the associated cloudlet or not, that is,

xik =

{
1, if xxk = 1
0, otherwise

(1)

In Equation (1), vector Y = {xik : k ∈ K, i ∈ I} shows whether the computational task
to offload is generated by the mobile E-Transport i to the cloudlet k or not, likewise,

yik =

{
1, if xxk = 1 offload to cloudlet k or cloud k
0, execute task locally at mobile device k

(2)

Equation (2) determines the offloading of the application workload either to the cloudlet or
the cloud.

3.6. Problem Formulation

We use the queuing model M/M/1-PS [19] to calculate the processing delay of any
computing node k as follows:

Ci
k =

yikciλi

µk −∑I
i=1 yikciλi

. (3)

Equation (3) determines the execution on the cloudlet, where yikciλi is the workload
computation task offloaded to cloudlet k, and 1

µk−∑I
i=1 yikciλi

is the average execution delay

of the mobile E-Transport task i at cloudlet server k with µk −∑I
i=1 yikciλi > 0. In the same

way, the computation delay on computing node k occurs in the following way:

CU
i =

(
1−∑k∈B

)
ciλi

θi −
(

1−∑k∈B

)
λi

. (4)

Equation (4) determines the computation delay at the mobile device, where
(

1−∑k∈B

)
ciλi

is the computation task amount that is locally executed at the mobile E-Transport device

and it must be
(

1−∑k∈B

)
ciλi > 0.

If the request for data access to the cloudlet server is k, then the transmission delay
between the mobile E-Transport and the cloudlet is as follows:

TK
i = ∑

k∈K
eUM(yikci + di). (5)

Equation (5) determines the communication delay between E-Transport and cloudlet.
yikci shows the volume of data at cloudlet k requested by the mobile E-Transports.

Additionally, the delay between the cloudlet and the remote cloud for the additional
process is expressed as follows:

TKC
i = ∑

k∈K
eMC(1− xik)di. (6)

Equation (6) calculates the communication delay between the cloudlet and the cloud
computing. (1− xik) =0 shows that the requested amount of content for the processing is
stored in the cloudlet k and the mobile E-Transport does not need to access the remote cloud.
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Finally, the total Service Delay of all mobile E-Transports is the amalgam of the
transmission delay and execution delay expression as follows:

τ = ∑
i∈I

K

∑
k=1

(
CK

i + CU
i + TUK

i + TKC
i

)
. (7)

Consequently, we know it is an optimization problem and can be formulated as
an optimization problem, which minimizes the τ with various constraints as shown in
Equation (7).

minimize τ. (8)

Equation (8) determines the objective function of the study.

s.t.
I

∑
i=1

dixik ≤ εk, ∀k ∈ K, ∀i ∈ I. (9)

Equation (9) shows that the requested workload of all applications must be less than the
capacity of any computing k.

µk −
I

∑
i=1

yikλi > 0, ∀k ∈ K, ∀i ∈ I. (10)

Equation (10) shows that all computing nodes easily handle overloading and overhead
situations before offloading and workload assignment in the network.

θi −
(

1−
K

∑
k=1

yik

)
λi > 0, ∀k ∈ K, ∀i ∈ I. (11)

All computing nodes, such as mobile computing, cloudlet node and cloud node, must
be stable in the network as defined in Equation (11).

xik = {0, 1}, ∀k ∈ K, ∀i ∈ I. (12)

Each computing node can execute one workload at a time as defined in Equation (12).

∑
k∈K

xik = 1, ∀i ∈ I. (13)

Each workload can be allocated to any single computing node as defined in Equation (13).

∑
i∈I

xik = 1, ∀k ∈ K. (14)

The respective Equations (14) and (15) determine the binary variable, which shows that
either the workload is assigned to any computing node during offloading and workload
assignment in the network.

yik = {0, 1}, ∀k ∈ K, ∀i ∈ I. (15)

All equations are numeric, which shows that the considered problem is a dynamic
integer problem.

4. Proposed MLAWAS Algorithm Framework

This study considered the multi-latency aware workload assignment in a cloudlet-
based cloud network. The considered workload is coarse-grained, where thin mobile clients
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offload their workloads to the cloudlet based cloud for further processing. This study
suggested the Multi-Layer Latency Aware Workload Assignment (MLAWAS) framework,
consisting of different global searching and local searching iterative methods, and Q-
Learning heuristics. We defined the entire process of workload assignment based on
MLAWAS components, as shown in Algorithm 1.

Algorithm 1: MLAWAS Algorithm
Input :

τ = ∑i∈I

(
CK

i + CU
i + TUK

i + TKC
i

)
;

cloudlet service rate µk;
Mobile device θi;

Output :Workload assignment of the mobile to optimal cloudlet
S = {xik | i ∈ I, k ∈ K};

1 begin
2 foreach (i to I) do
3 Call Modified Genetic Algorithm for Initial Workload Assignment;
4 i← k based on equation (7);
5 Improve the global search call Simulated Annealing Algorithm method;
6 τ ← τ∗;
7 Call LATAS method to improve the solution within local space;
8 Call VM migration method to move a workload from cloudlet to cloud;
9 Swapping Workload i← from node k1 to k2 ;

10 The migration will be done based on VM migration scheme;

11 End MLAWAS Framework

We defined the respective techniques of MLAWAS in the following subsections.

4.1. Improved Genetic Algorithm for Initial Workload Assignment

A mixture evolutionary optimizer algorithm was developed for the Service Delay. The
proposed improved GA (Genetic Algorithm) and SA (Simulated Annealing) are merged to
provide the optimal geo-distributed cloudlet network. The proposed algorithm is proficient
at defeating the untimely convergence of the Genetic Algorithm and helped the escape from
the optimal local solution. We have proposed the modified classical Genetic Algorithm to
resolve the optimization problem efficiently.

The above-given problem is not easy and is non-linear for the reason that xik and yik
both have different directions. We implement our problem in a modified Genetic Algorithm
and a Simulated Annealing algorithm, compared with classical Simulated Annealing and
genetic heuristics. We compare individual components with classical heuristics and find
some improvement as follows:

1. In the Genetic Algorithm (GA) cross-process, we replicate the Simulated Annealing
(SA) operation for incoming new individuals that can avoid heuristics converging
to the optimum local value with some low fitness individuals passing onto the
next generation.

2. The fitness function calculated the incoming individual fitness value after the crossover
operation and the mutation operation, correspondingly. This way, our techniques
save the best individuals from being lost during the process of evolution.

It is worth remembering that the individuals are promising solutions to the given
problem that is to be optimized.

Fundamentally, as articulated in Algorithm 1, given the solution ns = {xikyik} where
k ∈ K and i ∈ I are the 2D-dimensional vectors that can be filled with either 1 or 0, where the
first D represents the value of xik and the second D represents the value of yik, respectively.
The intention of the feasible solution given in the proposed heuristics was to guarantee all
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constraints. Furthermore, the solution of s with the given fitness function is f (s) and the
probability that every individual would be inherited by the incoming next generation is
P(s) as follows:

p(s) =
f (s)

∑2D
s=1 f (s)

. (16)

Equation (16) shows the probability of the function value. There is another type of cumula-
tive probability as follows:

Q(s) =
s

∑
i=1

P(i). (17)

Equation (17) shows the commutative probability of the objective function during the initial
assignment of workloads.

In Algorithm 2, the original population updated by steps 8–12, Pop, selects the better
individual with respect to Q(k). Steps 15–21 show the crossover procedure from a solution;
it randomly selects a figure of bit positions and then replaces the two bits in the same posi-
tion as two individuals. Step 22 provides the update value of Pop1 to support Algorithm 3.
In Algorithm 3, we measure all the individuals that belong to two dissimilar Pop1 and Pop2
populations. There exists the probability that bad individuals will be inherited by the subse-
quent generation with a certain probabilistic expression such as exp(−( f (n′s)− f (ns))/T)).
Steps 16 and 30 provide the surety that the crossover procedure and the mutation solution
strictly satisfy all constraints in their given equations. Steps 24–26 describe the comparison
between Pop1 and Pop2 and record the lowest fitness values of both of them. Steps 28–35
express the procedure of the mutation, while step 32 initializes or generates the new op-
timal solution nic and turns over (0← 1 or 1← 0). Furthermore, Steps 38–40 randomly
recorded the lowest fitness values and compared them with the fitness values in steps 37
and 25, which is the optimal solution that we observed and found.

Algorithm 4 always returns the optimal solution through the global search space,
whenever a Genetic Algorithm returns a feasible solution locally; then Simulated Annealing
helps it to escape from the local optima.

4.2. E-Transport Applications Mobility and Migration Latency

The E-Transport i ∈ I roams in the geographically distributed cloudlets k ∈ K through
the cellular network from base station to base station along with the VM service that is in
progress, as shown in Figure 4. It needs to be migrated to the E-Transport, but this process is
stochastic and network behaviors periodically change; this leads to many challenges associ-
ated with propagation latency, such as congested nodes, high traffic and lower bandwidth.
Our goal is to migrate the running VM and transport application with lower propagation
delay without interruptions and disruptions to the VM service. Our method always finds the
optimal shortest path among all environment spaces. Here, we introduce the utility table of
each cloudlet, which saves the data of the current E-Transport and the data to be migrated
via the VM migration method, and we save another utility table of the cloudlet server as
shown in Figure 4. The E-Transport mobility scenario will be discussed in the following way.

E-Transport Applications Mobility Scenario

All E-Transport applications can move from one place to another place, for example,
during a business trip or roaming between different locations. The flexible cloudlet-based
cloud is geographically distributed in the network, and all computing nodes are connected
via base stations. If the application i = 1 migrates the transport from one node k = 1 to
another node k = 2 and the utility table that transfers the workload runs the information to
another cloudlet for further execution, the main advantage of the mobility and migration
of the workload is avoiding overloading and overhead. Figure 4 shows the scenario of
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E-Transports roaming between different base stations, and all cloudlet and cloud services
are ubiquitous and omnipresent.

Algorithm 2: Improved Genetic Annealing Algorithm
Input :

size R of the population;
Probability Po of the crossover;
the P1 is the probability of the mutation;
Number of iteration is N

Output : τmin
1 begin
2 initialization;
3 ns is the randomly generated of feasible solutions K ;
4 calculate the f (ns) according to step-8;
5 save all the ns and f (ns) in pop;
6 Tmin = min f (ns),ns ∈ pop;
7 for (k = 1 to K) do
8 for (i = 1 to R) do
9 step-15,16 calculate P(i) and Q(i);

10 if Q(i) >rand then
11 select i and save it in Pop1

12 //crossover with probability P0 in Pop1 ;
13 for (i = 1 to K) do
14 while (n′a and n′b all are feasible) do
15 randomly select two solutions na and nb from Pop1;
16 generate two new feasible solutions n′a and n′b by one point-crossover;

17 calculate (n′a) and f (n′b) and save them in Pop2;

18 update Pop1 based on Algorithm 2;
19 τ′min = min f (ns),ns ∈ Pop1;
20 if (τmin > τ′min) then
21 update τmin with τ′min;

22 The mutation with probability P1 in Pop1;
23 for (i = 1 to k) do
24 randomly select a solution nc from Pop1 while (nc) do
25 randomly select mutation position in nc;
26 generate a new feasible solution n′c;
27 update nc with n′c in Pop1;

28 calculate f (ns),ns ∈ Pop1;
29 τ′min = min f (ns),ns ∈ Pop1;
30 if (τmin > τ′min) then
31 update τmin swap τ′min ;

32 End Loop

33 return τmin;

We model the propagation latency as follows:

1. The set of network and agent state cloudlets k ∈ K.
2. The set of VM migration actions a ∈ A of the agent.
3. Pa(k, k′) = Pr(kt+1 = k′ | kt = k, at = a) describes the probability of state k to state k′

transition in action a.
4. Ra(k, k′) describes the instant reward following k to k′ transition in action a.
5. All kinds of rules that explain what the agent cloudlet Controller observes.

All rules are stochastic because the behaviour of distributed cloudlet networks ran-
domly changes node to node. It depends upon the cases. Sometimes agents know to
observe the current environment cloudlet k ∈ K state; sometimes it is fully observed and
sometimes partially observed. All sets of action a ∈ A are stopped if it reaches zero.
Furthermore, it is not reducible. Because of the stochastic nature of networks, learning
agents in cloudlet environments follow discrete time t, under action at; they contain a set of
reward values from a set of actions at ∈ A. The E-Transport moving from cloudlet state to
cloudlet state can be expressed as kt + 1 and reward factor rt + 1 belongs to the transition
process and is expressed as (kt, at, kt + 1).



Electronics 2021, 10, 1719 13 of 25

Algorithm 3: Improved Simulated Annealing
Input :

f (ns), ns ∈ Pop1;
f (n′s), ns ;
initial temperature T;
rate A of annealing;
Number of I iterations;

Output : Pop1
1 begin
2 while (T > 0) do
3 for i to I do
4 if f (n′s) < f (ns) then
5 update ns with n′s;
6 if exp(−( f (n′s)− f (ns))/T)) >rand then
7 update ns with n′s;

8 T=T ∗ A;

9 return Pop1

Algorithm 4: LATAS Algorithm
Input :

τ = ∑i∈I

(
CK

i + CU
i + TUK

i + TKC
i

)
;

cloudlet service rate µk ;
Mobile device θi ;

Output : Workload Assignment of the mobile to Optimal cloudlet S = {xik | i ∈ I, k ∈ K};
1 begin
2 Initialize S = 0;
3 The request of all transport application workloads applications generated in descending order ;
4 i∗ = 1;
5 while (i∗ ≤| I |) do
6 Find the underutilized optimal cloudlet with lower delay for transport application i∗, based

on equation ;
7 Set x∗ik∗ = 1;
8 i∗ = i∗ + 1;

9 return S

In our problem, the data model of the cloudlet environment is known. Still, we are
looking for the optimal solution, so this is the planning problem and it must be converted
into a machine learning specified problem.

The learning cloudlet agent requires an optimal searching mechanism to randomly
select an action without degrading the QoS, for example, the latency and bandwidth. We
solve our problem of the principle of optimality with respect to two factors which are
as follows:

The action in the current cloudlet agent is replicated as a plan called policy π.
The cloudlet policy:

π : K× A→ [0, 1]

π : (a | k) = P(at = a | kt = k).
(18)

In Equation (18), the policy π always provides the possibility in cloudlet k state while
taking action a.

The cloudlet value function:
Value function Vπ(k) is expressed as the preliminary predictable return with cloudlet

state k and policy π; the cloudlet value function approximates how high the quality is in
the given cloudlet state.

Vπ(k) = E[R] = E
[ ∞

∑
t=0

γtrt | k0 = k
]

. (19)
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Equation (19) measures the value function, whereas the randomly generated variable R shows

the return and is expressed as the sum of the value of discount rewards; in R =

[
∑∞

t=0 γtrt

]
,

value tt shows a reward at step t and γ ∈ [0, 1] expresses the discount rate.

Figure 4. E-Transport Mobility in the Network.

Algorithm 5 determines workload migration from one computing node to another
computing node based on the Q-Learning model. States show that a new optimal objective
function must be the best as compared to the current solution.

Figure 5 shows that the trained model in Q-Learning performs well, and improves
and chooses the optimal computing node when the workload migrates between computing
nodes.
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Algorithm 5: E-Transport Mobility and Migration latency.
Input :

Cloudlet States K = {k1, k2, . . . nk};
a set of Actions A = {a1, a2, . . . an} A : K ⇒ A;
Reward Function R : K× A→ R;
Probability transition function T : S× A→ S;
Learning rate α ∈ [0, 1];
Discount factor γ ∈ [0, 1];
Procedure Q-Learning (S, A, R, T, α, γ);

Output :Max Q;
1 begin
2 initialize Q := S× A→ R;
3 while (Q isn’t converged) do
4 Migrate VM from state k ∈ K;
5 while (k isn’t terminal) do
6 Calculate π regard to Q and exploration strategy π((k) argMaxa Q(k,a));
7 a← π(k);
8 r ← R(k, a) Received the reward ;
9 k′ ← T(k, a) Received the new cloudlet state ;

10 Q(k′, a)← (1− α) Q(k, a) + α(r + α.Maxa Q(k′, a′));

11 return Q

Figure 5. Training Model of Proposed Q-Learning.

5. Experimental Design

The performance evaluation shows the effectiveness of the proposed algorithm frame-
works when they run a healthcare workload in the cloudlet-based cloud network. This
paper implemented the proposed framework in the simulation form. The related parame-
ters of the simulation are described in Table 2. The coarse-grained healthcare workload
consists of different types of tasks such as text, video and images. This study implemented
different baseline approaches and proposed schemes as defined in the following.

• Conventional Method: This method is implemented widely in different studies [1–8]
to solve the offloading and scheduling problem for the coarse-grained E-Bus workload.
The goal was to minimize execution costs and the communication of the workload
during offloading and assignment in the cloud network. The method consisted of
four main components: profiling of workload, workload assignment, migration, and
ordering of tasks. The centralized cloud-based network implemented in these studies
solves the delayed optimal workload of applications.
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• Lean Algorithm: The Latency Effective Aware Algorithm is a framework which allocates
workload to different available cloudlets. The framework consists of the assignment
part and the migration part of the applications. This framework has been implemented
in different studies to solve the healthcare workload of applications [9–15].

• MLAWAS Framework: This proposed method is composes of different components,
such as assignment, migration, local and global search, and is considered the dynamic
environment in this study.

Table 2. System and Vehicular Mobility Simulation Parameters.

Simulation Parameters Values

Windows OS Linux Amazon GenyMotion
Centos 7 Runtime X86-64-bit AMI

Languages JAVA, XML, Python
Android Phone Google Nexus 4, 7, and S

Experiment Repetition 160 times
Simulation Duration 12 h

Simulation Monitoring Every 1 h
Evaluation Method ANOVA Single and Multi-Factor

Amazon On Demand Service EC2 t3
K Number of cloudlets

Detail Resource Specification Shown in Table 4
Mobility Waypoint Model

Vehicular Model VANET++

5.1. Simulation Parameters

First scenario (static): We examined the performance of the proposed MLAWAS algo-
rithm in static traffic conditions, where vehicles do not move in this simulation scenario. The
static traffic scenario allows us to demonstrate the proposed algorithm’s fundamental char-
acteristics. The maximum density and standard deviation (SD) were set to 55 cars in a 100 m
radius and 1000 m, respectively, on a straight double lane road (5 km). In the second sce-
nario, vehicle mobility was taken into account, and the algorithm E-Transport Mobility and
Migration latency was used to handle both application mobility and workload migration.

The simulation was performed on local machines, where baseline classes were taken
from edgecloudsim and VANET++ [14] vehicular environment integrated into edge-
cloudsim [13]. The goal was to exploit the the available abstract of edgecloudsim and
VANET++ for the applications’ cloudlet implementation and vehicular environment. For
all the cloudlets K, in the simulation environment, we implemented E-Transport classes of
edgecloudsim and tested on the genymotion [15] environment with the first scenario. In
the second scenario, we named the VANET++ classes and implemented waypoint mobility
classes to analyze the mobility and migration of the workload in the system. The simula-
tion parameter in Table 2 shows that the system implemented in JAVA and XML allows
communication among different nodes such as cloudlet, cloud and applications interfaces.
All the applications, as shown in Table 3, are E-Transport types in various domains such
as E-Bus, E-Ambulance, and E-Taxi. These applications covered the healthcare aspects
and e-passengers applications, which were integrated into the simulation environment at
the config of edgecloudsim during simulation. This study implemented coarse-grained
workloads with different types of tasks as defined in Table 3.

Table 3. E-Transport Workload.

Workload Wi (MB) W ′
i (MB) Image Tasks Video Tasks Text Tasks I

E-Bus-i1 825 5.2 100 100 300 500
E-Train-i2 631 6.3 150 200 350 700
E-Taxi-i3 645 7.4 100 200 500 800

E-Ambulance-i4 755 8.7 200 200 600 1000
E-Mobile-Healthcare-i5 555 3.7 400 100 600 200
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The cloudlet based cloud network was deployed to run the workload tasks in this
study. The cloudlet based cloud network configuration is defined in Table 4.

Table 4. Mobile Cloudlet Based Cloud Network.

Resources
Cloudlet Public Cloud

k1 k2 k3 k4

ζk Small 2 V CPU Medium 4 V CPU Large 8 V CPU Extra Large 24 V CPU

CORE 1 1 2 4

εk 500 GB 1000 GB 1500 GB 3000 GB

Run− Time X86 X86 X86 X86

Table 4 defines the resource specification of the computing nodes with their character-
istics and features.

5.2. System Implementation and Mobility Aware Dataset

This study designed transport applications on the specific interface, for example, the
GenyMotion emulator of the android phone, which is then the directly connected base
station. These base stations are geographically distributed and connected with distributed
cloudlets and are controlled by the SDN controller. The study implemented a real-time
dataset https://everywarelab.di.unimi.it/lbs-datasim (accessed on 18 May 2021), which is
implemented in this work [29] on mobility for E-Transport movements in the network.

The study implemented real-time E-Transport mobility dataset-based simulation li-
braries, as defined in Table 5, in which the distance between the two base stations was about
1 KM. Thirty base-stations were considered with three cloudlet networks. Furthermore,
100,000 E-Transport users were considered during the simulation in this study. Figure 6
shows the map of the road of Milan where this dataset was implemented in practice, and
we used this open-source data for the mobility features of the study.

Table 5. Mobility Dataset.

Road Network Simulation-
Area

Map-
Resolution

Number of
Base-Stations

Number of
Cloudlets

Milan road network 17× 17 50 3 4

5.3. Data Performance Method

The study tested four benchmark mobile cloud applications; their specifications are
presented in Table 3. We tested applications that generate data (i.e., config file obtained
data via profiling technologies and task scheduling heuristics) from different applications
via analysis of variance (ANOVA). At the same time, ANOVA is an efficient parametric
technique for examining the algorithm-generated data of mobile cloud applications from
experiments. We exploited t-tests and dependent and independent random variables using
the one way ANOVA method in order to assess the proposed method’s efficiency.

https://everywarelab.di.unimi.it/lbs-datasim
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Figure 6. Road network of Milan during Mobility.

5.4. Result Discussion

This section presents the evaluation performances of different methods to solve the
workload assignment problem of applications. The results are compared via different
methods and the performances of the workloads are compared with reference to their
constraints during execution. The component performances are presented in their different
subsections.

5.4.1. Communication Delay

Initially, the study considered the full offloading technique to migrate the workload
from E-Transport devices to a cloudlet-based cloud network for execution. Due to the
implementation of cloudlet and cloud in different networks, there is a communication
delay during the offloading of the workload to the computing nodes. MLAWAS allows
the workload when there is a shorter communication delay in the cloudlet or the cloud
for execution. LEAN and conventional methods also focused on the communication
delay during offloading; however, they did not focus on the delay between the wireless
network and computing nodes, such as the cloudlet and cloud network—in this way, the
communication increases in the different time intervals. Figure 7 shows that MLAWAS
gained a shorter communication delay during the offloading of the workload as compared
to the LEAN and the conventional method.
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Figure 7. Communication Delay of Workload During Offloading.

The round-trip time (RTT) is shown in seconds during offloading and execution in the
cloudlet-based cloud network. The E-Transport determines the round-trip from the wireless
to the cloudlet or cloud computing nodes. Figure 8 shows that MLAWAS gained a smaller
round-trip delay during the offloading and execution of the workload in the network.

Figure 8. Round-Trip Time (RTT) of Workload During Offloading.

There is a migration delay between E-Transport and cloudlet, and cloudlet and cloud
computing during the offloading and execution processes of the workload. This controls
the load balancing situation. When the cloudlet becomes overloaded, it will migrate some
workload to the cloud for further execution. However, LEAN and conventional methods
did not consider the migration delay in their studies. Figure 9 shows that MLAWAS gained
a shorter migration delay as compared to existing baseline methods during the migration
of the workload from cloudlet to cloud for further processing.
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Figure 9. Migration Delay of Workload from Cloudlet to Cloud.

There is a migration delay between E-Transport and cloudlet, and between cloudlet
and cloud computing during the offloading and execution processes of the workload. In
these two ways, we migrate the workload in the study. Figure 9 shows the performance of
workload migration from cloudlet to cloud. However, the study also considered the virtual
machine migration between cloudlet and cloud. Figure 10 shows that MLAWAS gained a
shorter migration delay as compared to existing baseline methods during the migration of
workload from cloudlet to cloud for further processing.

Figure 10. VM Migration Delay.

5.4.2. Processing Delay

The cloudlet delay means the computing delay of the workload at different computing
nodes during execution. The cloudlet based cloud offers different computing nodes to run
the workload of the applications. For instance, a cloudlet is a small data center consisting
of different servers to run the application in proximity to E-Transports. It is a latency
optimal data center where the application has small end-to-end latency. Due to the limited
resource capability of the cloudlet servers, they can further migrate the workload to cloud
computing for further execution. In this way, the load balancing situation and the overhead
situation will be overcome during the processing of the workload. Figures 11 and 12 show
that MLAWAS outperformed existing LEAN and conventional baseline approaches in
terms of the execution of workload when considering load balancing and the overhead
situation of nodes. However, existing approaches only focus on computing delay based on
their computing speed rather than their overloading and overhead situation. Therefore,
they had a longer delay as compared to MLAWAS during the execution of the workload.
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Figure 11. Processing Delay of Workload.

Figure 12. Processing Delay of Workload.

5.4.3. Average Response Time

The average response time of applications during offloading and execution is the
study’s objective and that of existing studies. The average response time (ms) combines
communication time and execution time during the offloading and execution of the work-
load in the cloudlet-based cloud network. Communication delay takes different forms such
as round-trip delay, migration delay, and offloading in the network.

Figure 13 shows the performances of the average response time of the workload in
the cloudlet-based cloud network. This performance indicates that MLAWAS outperforms
existing LEAN and conventional baseline approaches in terms of the average response
time of applications. The main reason is that MLAWAS adopts dynamic changes in the
network whereas MLAWAS exploits the Q-Learning approach compared to the greedy
method, which is implemented by the existing method. The limitation of greedy and
heuristic methods is that they can verify the optimal performance of applications at the end
or initial stages of the workload assignment. However, Q-Learning in MLAWAS calculates
the performance of the application at each step during offloading and execution. That is
why MLAWAS performs better than the greedy methods, which are implemented in the
existing method during offloading and scheduling.
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Figure 13. Average Response Time of Workload Without Round-Trip and Migration Delay.

Figure 14 shows the optimal performance of the average response time of applica-
tions. The main reason is that MLAWAS adopts dynamic changes in the network whereas
MLAWAS exploits the iterative approach compared to the greedy method, which is im-
plemented by the existing method. The limitation of greedy and heuristic methods is
that they can verify the optimal performance of applications at the end or initial stages
of the workload assignment. However, the iterative approach in MLAWAS calculates
the application’s performance at each step during offloading and execution. That is why
MLAWAS performs better than the greedy methods, which are implemented in the existing
method during offloading and scheduling.

Figure 14. Average Response Time of Workload Without Migration Delay.

Figure 15 shows the optimal performance of the average response time of applications.
The main reason is that MLAWAS adopts dynamic changes in the network where MLAWAS
exploits the iterative approach as compared to the greedy method, which is implemented
by the existing method. The limitation of greedy and heuristic methods is that they can
verify the optimal performance of applications at the end or initial stages of the assignment
of the workload. However, the iterative approach in MLAWAS calculates the performance
of the application at each step during offloading and execution. That is why MLAWAS
performs better as compared to the greedy methods, which are implemented in the existing
method during offloading and scheduling.



Electronics 2021, 10, 1719 23 of 25

Figure 15. Average Response Time of Workload with Round-Trip and Migration Delay.

6. Conclusions and Future Work

Mobile cloudlet based cloud computing is an emerging hybrid computing architecture
in which the workload of applications is executed at different nodes to gain lower end-
to-end latency. Nonetheless, many delays are present in cloudlet-based cloud networks,
such as communication delay, round-trip delay, and migration delay during cloudlet-based
cloud network workload. The distributed execution of workloads at different computing
nodes during an assignment is a challenging task. This paper proposes a novel Multi-
layer Latency (e.g., communication delay, round-trip delay, and migration delay) Aware
Workload Assignment Strategy (MLAWAS) to allocate the application’s workload into
optimal cloudlets and clouds. MLAWAS consists of different components, such as the
Q-Learning aware assignment and Iterative methods, which distribute workload in a
dynamic environment where runtime changes of overloading and overheating remain
controlled. The migration of workload and VM migration are also part of MLAWAS. The
goal is to minimize the average response time of the applications. Simulation results
demonstrate that MLAWAS earns the minimum average response time as compared with
two other existing strategies. In the future, we will extend our work from the security
perspective, where blockchain-enabled technology and mobility of the Internet of Things
(IoT) will be considered more in the current network. The work will introduce a new
framework based on the serverless model—instead of a virtual machine based on container
technology—which is lightweight and cost-optimal.
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