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Chapter

Examining the Executioners, 
Influenza Associated Secondary 
Bacterial Pneumonia
Timothy R. Borgogna and Jovanka M. Voyich

Abstract

Influenza infections typically present mild to moderate morbidities in  
immunocompetent host and are often resolved within 14 days of infection onset. 
Death from influenza infection alone is uncommon; however, antecedent influ-
enza infection often leads to an increased susceptibility to secondary bacterial 
pneumonia. Bacterial pneumonia following viral infection exhibits mortality 
rates greater than 10-fold of those of influenza alone. Furthermore, bacterial 
pneumonia has been identified as the major contributor to mortality during each 
of the previous four influenza pandemics. Streptococcus pneumoniae, Staphylococcus 
aureus, Haemophilus influenzae, and Streptococcus pyogenes are the most prevalent 
participants in this pathology. Of note, these lung pathogens are frequently found 
as commensals of the upper respiratory tract. Herein we describe influenza-induced 
host-changes that lead to increased susceptibility to bacterial pneumonia, review 
virulence strategies employed by the most prevalent secondary bacterial pneumo-
nia species, and highlight recent findings of bacterial sensing and responding to the 
influenza infected environment.

Keywords: pneumonia, influenza, Streptococcus pneumoniae, Staphylococcus aureus, 
Haemophilus influenzae, Streptococcus pyogenes, co-infection, superinfection, 
secondary pneumonia

1. Introduction

It starts mild. Congestion, fever, body aches, and fatigue. Influenza is infecting 
the respiratory tract. Seven days and relief should be on the horizon, but the days 
pass and the symptoms worsen. Breathing becomes laborious and the insides burn 
with a fire. Crackling can be heard as the stethoscope is pressed against the chest. 
The sequence of events to follow is all too common. Soon the lungs will be too weak 
to fulfill their function. The infection will disseminate, shutting down the organs in 
its path. Multisystem organ failure ensues and secondary bacterial pneumonia adds 
another mark to its resumé.

Unlike many diseases that have plagued human past, influenza continues 
to remain a prominent threat and leading cause of worldwide morbidity and 
mortality. The etiology of influenza would be task for the 20th century, but 
descriptions of influenza-like diseases and pandemics begin as early as ca 
410 BCE [1, 2]. Accurate reports of disease are scarce through early middle-ages, 
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however, descriptions of an epidemic spreading through Britain in CE 664 have 
been attributed to influenza [3]. England, France, and Italy are thought to have 
experienced an influenza pandemic from 1173 to 1174. Contemporaries of this 
period reported “…an inflammatory plague spread… and all eyes swept following 
a cruel rhinorrhea” [3, 4]. A community in Florence, Italy in 1357 associated a 
seasonality to the abrupt onset of symptoms—fatigue, fever, and catarrh—with 
the changing weather of the winter months; collectively members of community 
termed the disease “influenza di freddo” or “influence from cold,” giving rise to 
the diagnostic term, “influenza” [3, 5].

Around 1500, descriptions of influenza become more consistent. Notably, it is 
now accepted that during his second journey to the new world in 1493, Christopher 
Columbus and his crew were suffering from influenza. Upon reaching the Antilles, 
influenza spread from the crew to the native population killing an estimated 90% 
of indigenous inhabitants [6, 7]. This was the first report of influenza spreading 
from Europe across the Atlantic Ocean, a trait that would soon become a hallmark 
of its infectivity. Reports of epidemics arising throughout Europe and spreading 
into the Americas were observed in 1658, 1679, 1708, and 1729 and would continue 
into the 1800s; however, it was the devastating impact of the influenza pandemic of 
1918 that would forever influence modern research and understanding on influenza 
associated pneumonia [3, 8].

The 1918 influenza pandemic has been referred to as “the greatest medical  
holocaust in history” [2]. Conservative estimates report the 1918 influenza 
strain led to 50 million global deaths while others suggest the death toll could 
have reached as many as 100 million [9]. At the time of the 1918 outbreak, the 
etiological agent of influenza had yet to be correctly identified. Despite this, 
contemporary physicians had observed that the increases in influenza mortalities 
were not due to influenza alone. In a letter to a colleague, Dr. Roy Grist states, 
“There is no doubt in my mind that there is a new mixed infection here, but what 
I do not know” [10]. Similarly, in reference to increases in influenza-associated 
deaths, Louis Cruveilheir made the infamous confession, “If grippe condemns, the 
secondary infections execute” [11].

In the previous decades Richard Pfeiffer had isolated a rod-shaped bacterium 
from the nose of flu-infected patients that he believed to be the causative agent 
of influenza [12]. Pfieffer named the bacterium Bacillus influenzae which would 
later come to be known as H. influenzae [12]. Though Pfieffer’s work was widely 
accepted, the devastation accompanying the 1918 pandemic caused renewed 
vigor in influenza research that ultimately called into question the validity of 
Pfieffer’s claims. In 1921 Peter Olitsky and Fredericck Gates took nasal secretions 
from patients infected from the 1918 strain and passed them through a Berkefeld 
filter. The filtrate, presumably devoid of bacteria, was then exposed to rabbits 
wherein the rabbits subsequently demonstrated symptoms indicative of an influ-
enza infection [12, 13]. Olitsky and Gates’ studies were the first to suggest the 
causative agent of influenza was not of bacterial origin, but their work became 
heavily criticized as others struggled to repeat it. It wasn’t until 1929 that Richard 
Shope, following Olitsky and Gates’ filtration method, would use lung samples 
from an influenza infected pig to demonstrate that the filterable agent was the 
cause of the influenza, thus ending the debate on bacterial influenza [12, 14]. In 
the same journal issue that Shope published his findings regarding the causative 
agent of influenza, he published a separate article describing that swine infected 
with influenza displayed an increased susceptibility to bacterial infection [15]. 
While the significance of this finding would not be fully realized for nearly 
100 years, Shope had identified the leading cause of influenza associated mortali-
ties—secondary bacterial pneumonia.
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2. Influenza pandemics and secondary bacterial pneumonia

Influenza is a prominent global pathogen responsible for an estimated 1 billion 
infections annually [16–18]. Despite maintaining high infection rates, mortali-
ties due to influenza infection alone are infrequent. In most immunocompetent 
hosts, infections cause mild to moderate morbidities and are often resolved within 
14-days of symptom onset; however, infection with influenza markedly increases 
host susceptibility to secondary bacterial infection [11, 19–22]. Cases such as these 
often display mortality rates between 10 and 15-fold greater than those of influenza 
alone [23–26].

Modern studies examining the samples from the four most recent influenza 
pandemics (1918, 1957, 1968, and 2009) demonstrated up to 95% of fatal cases 
were associated with secondary bacterial infections [11, 22, 27]. The dominant 
causative agents of this pathology have been S. aureus (S. aureus), S. pneumoniae 
(S. pneumoniae), and to a lesser extent H. influenzae (H. influenzae) [11, 22, 28]. 
Each of the previous pandemics demonstrated a unique predisposition for second-
ary bacterial infection with specific species. For example, bacterial pneumonia 
associated with the 1918 H1N1 pandemic was dominated by S. pneumoniae; 
conversely the 1957, H2N2 pandemic was dominated by S. aureus [28]. Both  
S. pneumoniae and S. aureus were highly prominent in the 1968 H3N2 related 
bacterial infections, however, infections with S. pneumoniae were slightly more 
common. In the most recent 2009 H1N1 outbreak cases associated with S. pneu-
moniae and S. aureus were nearly equivalent [28].

Comparative genetic analysis of seasonal and pandemic influenza viruses 
has highlighted the importance of the PB1-F2 protein in increased inflammation 
and susceptibility to secondary bacterial pneumonia; however, the mechanisms 
defining the associations between different strains of influenza and specific 
bacterial pathogens remain incompletely defined [29–31]. Differences between 
bacterial agents following antecedent influenza infection were first described in 
the immediate wake of the 1957 pandemic. Two distinct pathologies of bacterial 
infection were observed. In the first, bacterial infection arose after viral clearance 
and were highly dominated by S. pneumoniae. In the second, bacterial infection 
occurred during the viral infection and were predominantly caused by S. aureus. 
Patients inflicted with superinfections by S. aureus represented the majority 
of severe and fatal cases [32]. Of note, this pattern of infection sequence and 
outcome is consistent with current observations. It is now generally recognized 
that S. pneumoniae is the most prevalent cause of secondary bacterial infection 
whereas S. aureus has emerged as the most common cause of severe and life-
threatening cases [22, 27, 33, 34].

2.1 Dysregulation of innate immunity

The prevalent etiological agents of bacterial pneumonia following antecedent 
influenza infection (S. aureus, S. pneumoniae, and H. influenzae) are common, per-
sistent, and asymptomatic colonizers of upper respiratory tract [35–38]. Curiously, 
this is a trait shared by other microorganisms that are less frequent causes of 
secondary pneumonia such as S. pyogenes (S. pyogenes) [38, 39]. Studies examining 
the contributions of respiratory commensals on lower respiratory disease have 
revealed residents of the upper respiratory tract are frequently trafficked into the 
lungs via inhalation, microaspirations, and direct mucosal dispersion [40, 41]. 
Despite recurrent exposure to the lower respiratory environment, and apart from a 
preceding influenza infection, bacterial pneumonia in immune competent adults is 
uncommon [21, 22, 42]. This has prompted many studies aimed at understanding 
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influenza induced dysregulations in immune function that lead to increases in 
susceptibility to bacterial infection. To that end, considerable progress has been 
made identifying key changes within the host environment that prelude bacterial 
pneumonia [21, 43, 44].

In general, susceptibility to bacterial co-infection peaks 6–7 days post influenza 
infection and corresponds with increases in tissue damage and dysregulation of 
cytokine production [36, 45, 46]. In immunocompetent individuals, alveolar macro-
phages and neutrophils are the primary cell types responsible for controlling bacteria 
invading the lower respiratory tract (LRT). During influenza infection the bacteri-
cidal activity of these two cells is severely impaired [47–50]. Specifically, influenza 
infection can cause a ≥85% loss in alveolar macrophages numbers by day 7 of the 
infection [47, 51]. Aberrant interferon-gamma (IFN-γ) signaling in the macrophages 
that are present demonstrate impaired phagocytic activity [48]. Similarly, the 
incumbent infection elicits production of the regulatory cytokine IL-10 in the lung 
epithelia. IL-10 reduces phagocytic activity in neutrophils [36, 43, 52]. Pretreatment 
of mice with a neutralizing monoclonal antibody against IL-10 after viral infec-
tion, but prior to onset of bacterial infection, significantly increases mouse survival 
[34]. Other notable immunological changes implicated in increased susceptibility 
to secondary bacterial infection include disruptions in the TH17 pathway, type-I 
IFN production, and antimicrobial peptide production [53–59]. While these studies 
certainly contribute to identifying factors leading to the increased susceptibility to 
secondary bacterial pneumonia following influenza infection, they fail to address the 
direct impacts of the viral infection on the pathogenesis of these bacterial species.

2.2 Viral influence on bacterial virulence

Given the frequency of upper respiratory colonization with bacterial patho-
bionts and the opportunity for exposure into the lower respiratory environment, 
it is shocking that severe bacteria pneumonia is not more common. Moreover, 
it is often overlooked that these species contain a diverse repertoire of virulence 
factors that must be suppressed during colonization to avoid a host response. 
Recent models of infection have enabled investigators to begin to examine how 
influenza infections can promote transcriptional changes leading to a transition 
from asymptomatic commensal to life-threatening pathogen [26, 48, 60–63]. 
Identifying changes in bacterial virulence production has highlighted an important 
role of bacterial toxin production causing increased host tissue damage during these 
infections. Furthermore, these efforts have led to a more complete understanding 
of the mechanisms influencing susceptibility and severity of secondary bacterial 
pneumonia, as they not only consider the contributions of the viral infection on 
host immunity, but account for the contributions of the host and virus towards the 
pathogenesis of bacterial species.

Commensals of the anterior nares commonly grow in biofilm communities 
[64, 65]. Recent studies have demonstrated infection with influenza promotes 
biofilm dispersal and dissemination of S. aureus and S. pneumoniae into the 
LRT [60, 62]. Interestingly, in biofilm communities where both S. aureus and 
S. pneumoniae are present influenza induced dissemination was almost entirely 
restricted to S. pneumoniae [61]. This suggests interactions with influenza 
result in immediate transcriptional changes that trigger S. pneumoniae biofilm 
dispersal while simultaneously suppressing S. aureus biofilm dispersal [61]. 
In addition, influenza can directly interact with surface of Gram-positive 
and Gram-negative organisms [66]. Virus bound to the surface of S. aureus, 
S. pneumoniae, and H. influenzae has been demonstrated to enhance bacterial 
adherence to epithelial cells [66].
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One of the primary environmental factors that effects S. pneumoniae virulence is 
nutrition availability [57]. Carbohydrates are a necessary carbon source for pneumo-
coccal growth [67]. Destruction of the epithelia tissue due to viral replication leads to 
increased mucus accumulation and decreased mucociliary clearance [21]. The accu-
mulation of carbohydrate-rich mucus in the LRT promotes S. pneumoniae growth and 
production of epithelial adherence proteins [57, 62]. Intrinsic S. pneumoniae neur-
aminidase activity in combination with influenza neuraminidase activity during viral 
exit, desialylate the surface of host cells providing an additional carbohydrate source 
in the form of sialic acid [68, 69]. Continuous viral replication induces reactive oxygen 
species (ROS) generation from host cells. The presence of viral-induced ROS leads to an 
upregulation of the S. pneumoniae cytotoxin pneumolysin and causes enhanced necrop-
tosis of the lung epithelium [70]. Taken together, these observations demonstrate a 
synergistic effect of S. pneumoniae growth and virulence with influenza infection.

There is substantial overlap regarding the broad effects of influenza infection on 
S. pneumoniae and S. aureus. Both organisms demonstrated enhanced dissemina-
tion into the lungs and upregulation of virulence genes during influenza infection 
[26, 61, 62, 70]. Evidence suggests that immediately upon being trafficked into 
the LRT, S. aureus forms microaggregates in the crypts of the alveolar wall [71]. 
These microaggregates secrete alpha-hemolysin (Hla), a toxin described to effect 
human alveolar macrophages and promote lung damage [72–74]. Gene regula-
tion of hla is predominantly controlled by the two-component regulatory system 
SaeR/S and protein expression through the global gene regulator Agr [75, 76]. 
Agr regulates expression through quorum sensing and may be playing a role in 
Hla during microaggregate growth [75]. In a murine model of secondary S. aureus 
pneumonia, influenza infected mice demonstrated immediate upregulation of the 
S. aureus genes saeR and saeS and saeR/S-regulated toxins over mock infected mice 
[26]. Furthermore, mice challenged with a saeR/S isogenic gene deletion mutant 
strain of S. aureus displayed 100% survival compared to only 30% survival in 
mice challenged with wild-type S. aureus [26]. These data clearly demonstrate that 
the contributions of the bacterial pathogen towards S. aureus secondary bacterial 
pneumonia morbidity and mortality are, at minimum, of equal importance to the 
effects of influenza infection on host immune defenses.

3. Conclusion

A disease that has paralleled human progress throughout history is now just 
beginning to be understood. It is now apparent that the contributions to the 
increased susceptibility, morbidity, and mortality associated with secondary bacte-
rial pneumonia following influenza infection span multiple disciplines (Figure 1). 
Undoubtedly, the effects of an influenza infection on the host immune system play 
a substantial role in increasing susceptibility to bacterial infection. Tissue damage, 
dysregulation of cytokine signaling, and suppression of phagocyte activity create 
an environmental niche primed for bacterial exploitation. However, more recent 
data have demonstrated changes in innate immune function alone are incomplete 
towards defining how bacteria transition from commensals to pathogens. This has 
prompted studies examining the ability of bacteria to sense and respond to the 
changes induced during and after influenza infection. Findings have demonstrated 
viral infection directly impacts bacterial pathogenesis by increasing bacterial 
dissemination, binding to epithelia, and upregulating virulence production. Taken 
together, these data indicate that a more thorough understanding necessitates addi-
tional studies to interrogate the contribution of host, viral, and bacterial interac-
tions towards secondary bacterial pneumonia following influenza infection.
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Figure 1. 
Influenza infection enhances secondary bacterial pneumonia. (A) Increased dissemination into the LRT,  
(B) dysregulation of cytokine production and mucus accumulation, and (C) toxin production and tissue 
damage and reduced phagocytic function.
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