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Chapter

Simple Oscillating Systems
Ivo Čáp, Klára Čápová, Milan Smetana and Štefan Borik

1. Introduction

A wave is a disturbance (deviation from equilibrium) that propagates through
space. This disturbance can be caused by an impulse excitation (shock wave) or by a
time-varying excitation (e.g., the sound generated by vocal cords). The most
frequent cause of wave excitation is a source with periodical time dependence—
oscillations. The simplest one is harmonic oscillation. For example, we can express
any periodic function of time as a sum of the harmonic functions (Fourier series).
Thus, the excitation by the harmonic oscillations is a matter of specific interest. In
this chapter, attention is, therefore, paid to the description of the physical nature of
oscillations and their properties, see also Halliday [1].

Oscillations represent a very wide group of processes, which are generally
characterised by their regular state repeating caused by the internal dynamics of a
system. Such systems, whose internal couplings allow oscillations, are called
oscillating systems. From the energy point of view, the oscillations are conditioned by
the existence of two conservative forms of energy, which can reversibly exchange
due to the internal dynamics of the system. There is, for example, potential
energy—kinetic energy (oscillations of mass on a spring) or electric field energy of
capacitor—magnetic field energy of inductor (an oscillating LC circuit). A special
case represents the ‘oscillations’ in a rotating system, such as the movement of a
conical pendulum where energy exchanges between two perpendicular kinetic
components of 1

2mv2x and
1
2mv2y, or the precession of a rotating body where energy

exchanges between two perpendicular rotational components of kinetic energy
1
2 Jxω

2
x and

1
2 Jyω

2
y. Some of these cases will be described below as examples.

If the oscillating system is isolated from external influences, it oscillates
spontaneously after the initial energy supply (excitation). Thus, we are talking about
self-sustained oscillations. The oscillation amplitude remains almost constant if the
energy losses of the oscillations in the system are negligibly small. The oscillations of the
ideal lossless system are called undamped self-oscillations and represent only theoretical
idealisation. There exist lossmechanisms in each real system. They cause the irreversible
transformation of the conservative form of the system energy into another non-
conservative one, for example, friction, heat losses due to internal friction, energy losses
of the electrical system by radiation, etc. As the total energy of the conservative com-
ponents decreases, the amplitude of oscillations gradually decreases over time too.We
call them damped self-oscillations. Due to the damping, these self-oscillations disappear
after some time. Thus, they are a transient phenomenon in the system, for example, the
vibrations of the string of the musical instrument fade; a swinging of pendulum stops
after a certain time; oscillations of an LC circuit gradually disappear, etc.

The system may oscillate permanently without damping if there is a mechanism
capable to cover the energy losses from an energy storage device. Such systems are
different types of oscillators. Examples are pendulum clocks with weights or watches
with a spring. In modern watches, a precisely sharpened crystal represents the
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oscillating system. In this case, a small lithium cell covers the energy losses caused
by damping.

Specific phenomena arise when the system is exposed to periodic force. When
such a force acts, the system, after attenuating the transient event, enters a steady
state, characterised by oscillations with a constant amplitude and a period equal to the
excitation period. These oscillations are called forced oscillations of the system. The
magnitude of the response to periodic excitation depends on the period or frequency
of excitation. Significant is the resonance phenomenon that occurs when the excitation
frequency is equal to the frequency of the system’s undamped oscillations.

The following sections focus on the different types of oscillations in simple systems,
that is, in systems in which two conservative forms of energy occur in oscillations. This
textbook presents a summary of the knowledge with an emphasis on application. A
more detailed analysis of thementioned phenomena can be found in physics textbooks.

1.1 Undamped self-oscillations

As the basic model of the oscillating system, we use a particle bound to the
equilibrium position by the reversing conservative force of the springs (Figure 1).

At the top of the figure, the particle is in equilibrium, and the resulting force
acting on it is zero. If the particle shifts from the equilibrium position by the
displacement of x, there arises a force of F(x) which depends on the x displacement,
is reversible, and has the opposite direction as the displacement.

If the particle is displaced from the equilibrium position and released, it starts to
move back to the equilibrium position. Its velocity is a derivative of the displacement

v ¼ dx

dt
¼ _x a dot over x describes the time derivativeð Þ: (1)

Displacing particle from equilibrium by x, we perform a work of W, which
represents the potential energy of the particle

Ep xð Þ ¼ W ¼
ðx

0
F ξð Þdξ: (2)

A moving particle has a kinetic energy

Ek vð Þ ¼ 1

2
mv2: (3)

Figure 1.
Particle bound to the equilibrium by the restoring force.
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Reversible energy exchange occurs between the energy components of Ep and
Ek. It is a system with two degrees of freedom. If we consider no loss mechanisms,
the sum of the Ep + Ek energy components remains constant. The situation is in
Figure 2. It indicates the potential energy as a function of the displacement x (solid
line). We can see that in the equilibrium position (x = 0) the potential energy is
minimal, and thus, at a constant sum, Etot = Ep + Ek, the kinetic energy is maximal.
It means that the particle moves due to inertia until its kinetic energy drops to zero.
The particle thus moves periodically between the extreme positions of A and B,
which are given by the total energy Etot.

We can express a function of the potential energy Ep(x) near the minimum, that
is, equilibrium position, by the Taylor power series

Ep xð Þ ¼ 1

2!
kx2 þ 1

3!
lx3 þ 1

4!
nx4 þ⋯, (4)

where k ¼ d2Ep

dx2

�

�

�

x¼0
represents the stiffness of the system, l ¼ d3Ep

dx3

�

�

�

x¼0
expresses

asymmetry of the potential energy function regarding the equilibrium position.

Other coefficients such as n ¼ d4Ep

dx4

�

�

�

x¼0
and higher (odd and even derivatives) have

similar characteristics but they change function course in the larger distance of x
from the equilibrium position. The first power term of x is zero because it is the
local minimum of the Ep(x).

A negative potential energy gradient defines the force acting on a particle as
follows

F xð Þ ¼ � dEp xð Þ
dx

¼ �kx� 1

2!
lx2 � 1

3!
nx3 �⋯: (5)

We distinguish the linear and non-linear oscillating systems depending on the
number of force or energy terms that are considered in the motion. If the displace-
ment x approaches zero, the higher powers of xn decrease faster than the first one.

Figure 2.
Total potential and kinetic energy of a particle moving along the x-axis under conservative forces (law of
conservation of mechanical energy).
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Then, the higher terms of the function F(x) are negligibly small, and the system
appears to be linear. However, the terms with higher powers apply, and the system
behaves as non-linear if displacement x significantly increases.

1.1.1 Undamped self-oscillations of linear system

A system is linear if the restoring force is a linear function of the displacement of
x from the equilibrium position. According to Eqs. (4) or (5), it follows

F xð Þ≈ � kx, or Ep xð Þ≈ 1

2
kx2: (6)

Potential energy is a quadratic function of the displacement x and is called a
quadratic potential well. Its graph is a quadratic parabola. Figure 3 shows a replace-
ment of the real function Ep(x) by a quadratic function. This replacement fits well
only in the near vicinity of the minimum, that is, only for small variations of x
around the equilibrium. Oscillations within the range of the fitted region are some-
times called small oscillations.

Equation of motion of the particle ma = F, where a ¼ €x is an acceleration, has
form for the linear system as follows

€xþ ω2
0x ¼ 0,where ω0 ¼

ffiffiffiffi

k

m

r

: (7)

The solution of this equation is the function

x tð Þ ¼ xm sin ω0tþ αð Þ, (8)

where xm and α are integration constants and their values are determined from
initial conditions x(0) = x0 and v 0ð Þ ¼ _x 0ð Þ ¼ v0 at t = 0.

It is a harmonic motion where the xm is an amplitude of oscillations and α is a
phase constant (initial phase).

Oscillations with harmonic time dependence are called harmonic oscillations. It
follows from the previous description that harmonic oscillations occur when a
particle (body) moves in a quadratic potential well.

Figure 3.
Quadratic fitting (dashed) of the potential energy function.
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The quantity

ω0 ¼ 2π f 0 ¼ 2π

T0
(9)

represents the angular frequency, where f0 is frequency and T0 is the period
of the undamped self-oscillations of the system. According to Eq. (7), these
quantities depend on the stiffness k of the system, and the inertia given by the
mass m of the particle. As the stiffness increases, the frequency f0 increases as
well, and the period T0 decreases. With the mass increase, the frequency f0
decreases, and the period T0 increases. For example, as a body hung on the
spring oscillates with the period of order seconds, an atom in the crystal lattice
with the period of the order of 10�14 s.

Example 1. Oscillations in an electrical LC circuit.
Let us assume one loop electrical circuit consisting of an inductor L and a capac-

itor C. Electrical current i(t) flows through this circuit, and we can express the energy
of an electrical field of the capacitor and a magnetic field of the inductor as follows:

E ¼ 1

2

1

C
Q2 þ 1

2
L i2,

where the electrical charge Q of the capacitor relates to the current i of the

inductor i ¼ _Q . We can see the analogy between electrical and mechanical systems,
in case x ! Q , k ! 1/C and m ! L. If we do not consider the power losses, the
energy E is constant, and by differentiating it, we get the equation

1

C
Q

dQ

d t
þ L i

d i

d t
¼ 0:

Dividing the equation by i = dQ/dt, we get

d2Q

dt2
þ 1

LC
Q ¼ 0,

which has the same form as (7). Then, the solution is

Q tð Þ ¼ Qm sin ω0tþ αð Þ, where ω0 ¼
ffiffiffiffiffiffiffiffi

1

LC

r

:

The capacitor voltage is

uC tð Þ ¼ Q tð Þ
C

¼ Qm

C
sin ω0tþ αð Þ ¼ Um sin ω0tþ αð Þ

and the inductor current equals to

i tð Þ ¼ dQ tð Þ
dt

¼ ω0Qm cos ω0tþ αð Þ ¼ Im sin ω0tþ αþ π

2

� �

:

Thus, there are the harmonic undamped oscillations of the circuit quantities
with the angular frequency of ω0.

Example 2. Pendulum.
Consider a small body suspended on a long fibre (Figure 4). After the initial

excitation, the body oscillates around the equilibrium position, and thus performs a
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circular motion with a radius equal to the fibre length of the l. If we displace the
fibre by an angle φ from the equilibrium position, then the potential energy of the
body changes as

Ep φð Þ ¼ mgh ¼ mg l 1� cosφð Þ:

The Ep(φ) function is not quadratic, and therefore, we can use a decomposition
using the power series

Ep φð Þ ¼ mg l
φ2

2!
� φ4

4!
þ⋯

� �

:

We can neglect the series terms of the higher order for φ < < 1, and then the
potential energy is

Ep φð Þ ¼ 1

2
mg l φ2:

Additionally, the kinetic energy is

Ek vð Þ ¼ 1

2
m v2 ¼ 1

2
m l2 _φ2:

We can see the analogy to (7) again, if x ! φ, k ! mgl and m ! ml2.
Pendulum displacement is described by the function

ϕ tð Þ ¼ ϕm sin ω0tþ αð Þ, where ω0 ¼
ffiffiffi

g

l

r

:

Hence, the body oscillates with the period

T0 ¼ 2π

ffiffiffi

l

g

s

:

By measuring the oscillation period, it is possible to determine the length of the
pendulum if we do not have a measuring tool. Alternatively, with a pendulum of a
certain length, we can realise a periodic movement with the required period, such as
in the case of the pendulum clock.

Figure 4.
Pendulum.
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Example 3. Cone pendulum.
Consider the same case as in the previous example, but let the body move along

a circle in the horizontal plane (x, y). The pendulum copies a conical surface as it
moves. Thus, the deviation angle from the vertical axis is φ, as shown in Figure 5.
The radius of motion of the body is R = l sin φ. The kinetic energy of the body is

Ek ¼
1

2
mv2 ¼ 1

2
m v2x þ v2y

� �

,

where v is the velocity of the circular motion.
The force acts on the body and equals to Fd = �mω2r, where the angular velocity

is ω = v/r. The centrifugal force composes of gravitational force Fg = mg, while the
resultant force has the direction of the pendulum fibre that means tgφ = Fd/Fg. For
small displacement, when φ < < 1 rad, it follows that tgφ ≈ sinφ = r/l. From the Fd/

Fg = r/l, we obtain ω =
ffiffiffiffiffiffi

g=l
p

, which is similar to the previous example.
Potential energy connected with the centrifugal force is given as

Ep ¼
1

2
mω2r2 ¼ 1

2
mω2 x2 þ y2

� 	

:

And finally, the total energy can be expressed

Ek þ Ep ¼
1

2
mv2x þ

1

2
mω2x2

� �

þ 1

2
mv2y þ

1

2
mω2y2

� �

:

In this case, the motion can be considered as a superposition of two mutually
perpendicular oscillations in the x- and y-direction, which are phase-shifted by
π/2 rad. The total energy (Ek + Ep) is constant and is the sum of the total energy of
oscillations in the x- and y-direction.

Example 4. Precession of magnetic dipole in the magnetic field.

Another specific case of periodic movement is the precession (rotating axis of a
rotating body). We can observe it looking at a children’s toy, such as a spinning top.

Figure 5.
Cone pendulum.
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By spinning and laying it on the pad, the toy axis rotates, see the illustration. The
precession occurs due to the gravitational force.

Similarly, the magnetic dipole, here the proton, is affected by an external mag-
netic field. One of the proton parameters is the angular momentum L, which
describes its mechanical rotation. The rotation of the charged particle is associated
with the accompanying magnetic field. Thus, the proton behaves like an elemental
magnet (the magnetic dipole) with a magnetic moment m. The ratio of magnetic
moment to mechanical angular momentum is called the gyromagnetic ratio γ = m/L
(see Table 1). If the dipole is in an external magnetic field, then the moment of the
force acting on it is.

M ¼ m� B, where B is the magnetic induction.
The moment of force determines the dynamics of the dipole movement. The

basic equation of rotational motion (impulse theorem II) has the form

dL

dt
¼ M:

Combining both equations, we get dL ¼ m� B dt ¼ γ L� B d t.
The dL vector is perpendicular to the vector L, and therefore its magnitude does

not change but the direction only.
As shown in Figure 6, the end of the L vector moves along a circle with a radius

equal to L sinα. The angle dφ over the time dt determines the magnitude of change
of dL = L sinα dφ. The magnitude of the dL change according to the equation of
motion is dL = mB sinα dt. By comparing these two expressions, we get the angular
velocity of the endpoint of the L vector

ωL ¼ dϕ

dt
¼ γB:

Core s (spin) γ [�108 s�1�T�1]

1H (proton) 1/2 2.68

13C 1/2 0.67

19F 1/2 2.52

31P 1/2 1.08

Free electron 1/2 �1758

Table 1.
Properties of selected nuclei of atoms and electron.

Figure 6.
Precession movement of a magnetic dipole in a magnetic field.
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Thus, the dipole axis performs a circular (funnel) motion in the magnetic field,
called the Larmor’s precession. The frequency of fL = ωL/2π of this motion depends
on the type of particle represented by its gyromagnetic ratio γ and the induction B of
the magnetic field but does not depend on the angle α. As we show later, this
phenomenon is used in magnetic resonance imaging and magnetic resonance
spectroscopy. The nature of the phenomenon is like that of a conical pendulum.

Example 5. Ion oscillations in the crystal.
Crystals represent a simple or more complex regular arrangement of atoms of

solids. For example, aluminium consists of an arranged lattice of positive ions.
There are Al+ ions and electron gas. The ions are subjected to electric forces by the
surrounding particles. The equilibrium ion position is given by the zero resultant
force or by the minimum value of the potential energy. If the ion deviates from the
equilibrium position, it begins to oscillate around it.

As a simple model, consider three monovalent ions, of which two are fixed, and
the third can move between the other two. In equilibrium, the distance of the
central ion from the extreme ones is a (see Figure 7).

Let us move the central ion displacing it from the equilibrium. Then, the force
acting on the ion is

F ¼ F1 � F2 ¼ k
e2

aþ x
� k

e2

a� x
¼ �k

2ae2

a2 � x2
x,

where k ≈ 9.0 � 109 m�F�1 is Coulomb’s law constant and e ≈ 1.6� 10�19 C is the
elementary charge.

If the displacement is x < < a, then we can express the resultant force by the
linear approximation as

F≈ � 2 ke2

a
x ¼ � K x:

As shown, if a particle with a massm exerted by a reversing force proportional to
the displacement x, the particle oscillates around an equilibrium position with a
frequency

f ¼ 1

2π

ffiffiffiffi

K

m

r

¼ 1

2π

ffiffiffiffiffiffiffiffiffiffi

2ke2

ma

r

:

The oscillating of a charged particle is the source of the electromagnetic wave at
this frequency and the wavelength of this wave is

λ ¼ c

f
¼ 2π c

ffiffiffiffiffiffiffiffiffiffiffiffi

ma

2k e2

r

:

For example, if we use the typical values for aluminium: m ≈ 4.5 � 10�26 kg,
a ≈ 2.8 � 10�10 m, while c ≈ 3.0 � 108 m�s�1, we get λ ≈ 31 μm.

Figure 7.
Three monovalent ions.
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The result corresponds to the wavelength of infrared (thermal) radiation. Oscil-
lations of crystal lattice ions are the cause of the thermal radiation of the bodies.

There are many similar examples of oscillating systems, all of which have a similar
physical nature. It is always a periodic exchange of energy between the various
conservative forms of energy caused by the internal dynamics of the system.

1.1.2 Undamped self-oscillations of non-linear system

We find the system as non-linear if we cannot neglect its non-linearity. This
means that we consider other higher terms in the expression of force by the power
series [Eq. (5)]. Since the terms of the series generally gradually decrease with an
increasing exponent of power, we can now consider the first higher non-zeromember
only. If the Ep(x) function is odd (it means asymmetric potential well), we consider
the term with the l coefficient, that is., quadratic term in the force expression. If the
potential well is symmetrical, it is l = 0, the first non-linear term of the series is a cubic
one. Accordingly, we are solving single cases by using this simplification.

In the following section, we analyse the case of oscillations in an asymmetric
potential well, for which we express the force acting on a particle in the form

F xð Þ≈ � k x� 1

2!
l x2: (10)

Then the equation of motion is

ma ¼ �kx� 1

2
l x2: (11)

We can rewrite the equation to the form

€xþ ω2
0 1þ λxð Þx ¼ 0, (12)

where ω2
0 ¼ k

m.

The coefficient λ ¼ l
2k is the degree of asymmetry of the potential well.

Figure 8 shows an example of the asymmetric potential well and it illustrates the
fitting of the well by a quadratic function (dashed line). This function fits the well
only in the near vicinity of the equilibrium position. Cubic function correction is

Figure 8.
Asymmetric potential well with asymmetry of the type l < 0 or λ < 0.
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positive on the left side and negative on the right side, which means that the
asymmetry coefficient is l < 0.

Equation (12) represents a non-linear differential equation. When solving it, we
use the physical nature of the phenomenon, which means the particle motion is
periodic with an unknown angular frequency ω. We know, the periodic function
can be expressed in the form of a Fourier series. If we choose for the start time t = 0
the moment when the particle displacement crosses the extreme value, then we can
describe the course of the time dependence as an even function (symmetrical
around the beginning t = 0).

For an even function, the Fourier series contains only even (cosine) terms.

x tð Þ ¼ a0 þ
X

∞

n¼1

an cos nω t: (13)

The a0 value represents the mean value of the particle displacement, the an are
amplitudes of the individual harmonics with frequencies of nω.

The solution procedure is such that we substitute the function (13) into the differ-
ential equation and arrange the terms according to the angular frequency. If the expres-
sion on the left side is to be equal to the right side of the equation (i.e., zero), all terms
must be zero at corresponding frequencies—harmonicswith angular frequenciesω, 2ω,
etc. So, we get a set of equations for unknown parametersω, a0, and an for n = 1, 2, …

Assuming the weak non-linearity of the system, which is given by λ xm ≪ 1,
where xm is the maximal displacement from the equilibrium position, we get

ω ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 5

6
λa1ð Þ2

r

, a0 ≈ � 1

2
λa1ð Þa1, a2 ≈

1

6
λa1ð Þa1 etc:, (14)

where a1 is the amplitude of the first harmonic with the frequency ofω. Thus, non-
linearity influences the frequency of the self-oscillations. It causes the shift of themean
value of the position a0, and it causes the higher harmonics involved in oscillations.

Example of the derivation:
After substituting into the differential equation, we get the equation

�
X

∞

n¼1

ann
2ω2 cos nωtþ ω2

0a0 þ ω2
0

X

∞

n¼1

an cos nωt

þω2
0λ a0 þ

X

∞

n¼1

an cos nωt

 !

a0 þ
X

∞

k¼1

ak cos kωt

 !

¼ 0

and then

ω2
0a0 þ ω2

0λa
2
0 þ

X

∞

n¼1

ω2
0 � n2ω2

� 	

an cos nωtþ 2ω2
0λa0

X

∞

n¼1

an cos nωtþ

þω2
0λ
X

∞

n¼1

X

∞

k¼1

akan cos kωt cos nωt ¼ 0

and then

ω2
0a0 1þ λa0ð Þ þ

X

∞

n¼1

ω2
0 � n2ω2 þ 2ω2

0λa0
� 	

an cos nωtþ

þω2
0λ
X

∞

n¼1

X

∞

k¼1

1

2
akan cos kþ nð Þωtþ cos k� nð Þωt½ � ¼ 0
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Equality must be met separately for each harmonic component and for the
constant component.

For constant terms of the equation, we have

ω2
0 a0 1þ λ a0ð Þ þ 1

2
ω2
0 λ

X

∞

n¼1

a2n ¼ 0:

For terms with a fundamental angular frequency ω, we get the equation

ω2
0 � ω2 þ 2ω2

0 λa0
� 	

a1 þ ω2
0 λ

X

∞

n¼1

ananþ1 ¼ 0:

Then, the terms with the frequency of 2ω (second harmonic)

ω2
0 � 4ω2 þ 2ω2

0λa0
� 	

a2 þ
1

2
ω2
0λa

2
1 þ ω2

0λ
X

∞

n¼1

ananþ2 ¼ 0, etc:

From the second equation, we get after neglecting higher terms

ω2
0 � ω2 þ 2ω2

0 λa0 þ ω2
0 λ a2

� 	

a1 ¼ 0,

from where

ω2 ¼ ω2
0 1þ λ 2a0 þ a2ð Þ½ �≈ω2

0:

It yields from the first equation

a0 1þ λa0ð Þ þ 1

2
λa21 ¼ 0, and approximately a0 ≈ � 1

2
λa21:

From the third equation, we obtain

ω2
0 � 4ω2

� 	

a2 þ
1

2
ω2
0λa

2
1 ¼ 0 and a2 ≈

1

6
λa21:

By substituting a0 and a2 to relation forω2, we get a more precise result in the form

ω2 ¼ ω2
0 1þ λ 2a0 þ a2ð Þ½ � ¼ ω2

0 1� 5

6
λa1ð Þ2


 �

:

Example 6. Thermal expansion of substances.
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Atoms or molecules of solids or liquids are arranged in ordered structures.
Attractive electric forces ensure the consistency of the substance. Approaching or
moving the molecules or atoms together causes repulsive forces, which, along with
attractive forces, provide equilibrium distances. The potential energy of the particle
relative to the adjacent particle is shown in the figure. We can see that the potential
well is asymmetrical. The minimum potential energy corresponds to the equilib-
rium distance of the particles of the substance. If we supply the particles with
energy (e.g., in the form of heat), the amplitude of the oscillations of the particles
increases.

Moreover, due to the non-linearity of the binding potential, the mean
interatomic distance also increases. It means the macroscopic elongation of the
material. According to the Eq. (14), the displacement of the mean distance of a0 is
proportional to the square a1

2 of the amplitude of the fundamental harmonic. This
amplitude square is proportional to the energy of the oscillations and the tempera-
ture. Hence, the thermal expansion of the substances is

Δl

l0
¼ α T � T0ð Þ, resp:l ¼ l0 1þ α T � T0ð Þ½ �,

where α is the coefficient of the length thermal expansion.

1.2 Oscillations in the linear system with viscous damping

In real systems, oscillation damping occurs because of irreversible energy loss of
the system during the oscillation process. The loss mechanism describes the force
that depends on the movement state of the system. In mechanical systems, it is
mainly friction or resistance of the environment. In electrical circuits, there are
Joule losses when current is passing through a resistor or emitting EM waves to the
surrounding space. Figure 9 shows an example of a damped oscillation model.

Let us consider the loss mechanism that often occurs in oscillating systems,
which is a viscous resistance. A resistive force proportional to the velocity of move-
ment characterises it, or in other words, the viscous resistance depends on power

Figure 9.
Comparison of damped (a) and undamped oscillations (b).
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dissipation proportional to the square of the velocity (in electric circuits, it is the
square of the current). Thus,

Fo ¼ �rv (15)

where r is the coefficient of resistance. In the case of mechanical resistance, the
viscous resistance depends on the dimension and shape of the body. It depends on
the surrounding medium viscosity in which the body moves.

Power of the resistive force (power dissipation)

Ps ¼ Fov ¼ �rv2 (16)

is a quadratic function of the velocity. In the case of the electrical circuit, the
power dissipation is expressed as P = Ri2. If the electrical current is analogous to the
speed of motion, see Example 1, then this equation is analogous to Eq. (16) for
viscous losses.

Motion equation ma = F for the linear system with viscous damping has a form

ma ¼ �kx� rv, (17)

which can be rearranged to

€xþ 2b _xþ ω2
0x ¼ 0, (18)

where v ¼ _x and b = r/(2 m) is damping coefficient.
This equation is a linear differential equation with constant coefficients, and we

find the solution in a form of the exponential function eλt. We obtain the values of
the λ from the characteristic equation

λ2 þ 2bλþ ω2
0 ¼ 0, (19)

which solution is

λ1,2 ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � ω2
0

q

: (20)

The type of motion of this oscillatory system depends on the ratio of the b, and
ω0 values, which defines the quality factor

Q ¼ ω0

2b
: (21)

1.2.1 Underdamped oscillation system

Underdamping occurs in systems with a quality factor of Q > 1/2. Characteristic
equation solution corresponds to a complex number λ = �b � jω, where

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 � b2

q

. Then, the solution can be expressed as

x tð Þ ¼ Ae�b t cos ω tþ αð Þ, (22)

where A and α are integration constants and they depend on the initial condi-
tions of the movement, which are the initial particle displacement of x0 and initial
velocity of v0 in time t = 0
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x0 ¼ A cos α and v0 ¼ �bA cos α� ωA sin α, (23)

from where tan α ¼ � 1
ω

v0
x0
þ b

� �

and A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x20 þ v0
ω

� 	2
1þ bx0

v0

� �2
r

.

See Figure 10 as example, where are underdamped oscillations for different
values of the attenuation coefficients b = 0.1 s�1 and b = 0.5 s�1, or for quality
factors Q = 5 and Q = 1, respectively, at ω0 = 1 rad∙s�1, and initial conditions x0 > 0
and v0 = 0 m∙s�1.

In the case of the underdamped system, the particle displacement overshoots the
zero value (see the negative values in the graphs).

The value of

τ ¼ 1

b
¼ 2Q

ω0
(24)

is damping time constant and it indicates the time when the e�bt function
decreases to the value of 1/e ≈ 0.37(=37%). This constant provides information
about the time when the oscillations disappear. Usually, we consider the disappear-
ance time of 3τ, when the maximal particle displacement reaches e�3

≈ 5% of its
initial value, or the time of 5τ, at which the displacement drops to e�5

< 1%.
The ratio

τ

T
¼ ω

2πb
¼ 1

π
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1

4Q2

s

(25)

represents the oscillation count during the time of τ. We can see that there are no
oscillations in the system if Q ≤ 1/2.

1.2.2 Critical damping

Critical damping occurs if b = ω0, and Eq. (19) has only one double solution. In
this case, the solution of the equation is

x tð Þ ¼ A1 þ A2 tð Þ e�b t, (26)

where initial conditions are x = x0 and v = v0 at t = 0 s to determine A1 and A2.
Figure 11 shows typical time courses for different initial conditions.

Figure 10.
Time course of subcritical damped oscillations for two values of the attenuation on the left is ω0 = 1.0 rad∙s�1,
b = 0.1 s�1, v0 = 0 m∙s�1, on the right ω0 = 1.0 rad∙s�1, b = 0.5 s�1, v0 = 0 m∙s�1.
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The importance of critical damping is that the system returns from the non-
equilibrium state to the equilibrium fast and without overshooting. Various systems
utilise critical damping, for example, shock absorbers for vehicles such as cars,
motorcycles, etc. Critical damping is also used in the impulse electrical circuits to
minimise distortion of the rising and falling edges of the impulse signal.

1.2.3 Overdamped oscillation system

Overdamping is given by b > ω0. If we denote a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � ω2
0

q

, then the solution

of the Eq. (18) has a form as

x tð Þ ¼ e�bt A1e
at þ A2e

�atð Þ, (27)

where A1 and A2 result from the initial conditions. The particle displacement
over the time consists of two exponential functions while one function has a short
relaxation time τ1 = 1/(b + a) and the second function has a time of τ2 = 1/(b � a).
Figure 12 shows examples of critical damped systems for different initial
conditions.

Dashed lines in the graphs indicate both exponential components with different
time constants. We can see that this is an aperiodic event with no overshoot through
the equilibrium position.

Viscous damping occurs especially in the case of small oscillations of a mass in
the liquid, when there is laminar flow, or in the case of capillary damping devices.
Linear damping is also typical for oscillations of atoms due to heat exchange, or for
damping of oscillations in electrical circuits. In the case of the mass movement in a

Figure 11.
Time course of critical damped oscillations for ω0 = b = 1 s�1 (on the left x0 = 1 mm, v0 = 0, on the right x0 = 0,
v0 = 1 mm∙s�1).

Figure 12.
Overdamped oscillation system for ω0 = 1.00 rad∙s�1, b = 1.10 s�1 (on the left x0 = 1 mm, v0 = 0 mm∙s�1, on
the right x0 = 0 mm, v0 = 1 mm∙s�1).
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gaseous medium, for example, the pendulum in the air, the aerodynamic drag force
F � v2 usually applies, which is characterised by a quadratic dependence on speed.
This means that it is no longer a linear system, and the solution leads to a non-linear
differential equation even at small oscillations.

Example 7. Pendulum in a liquid.
Consider a pendulum (Example 2), whereby the suspended ball moves in water

in a dish. For low velocities, the viscous resistance force for the ball-shaped body is
given by the Stokes relation

F ¼ �6πηrv,

where η is the dynamic viscosity of the liquid, r is the ball radius and v is the
velocity of the motion.

The attenuation coefficient follows from (18):

b ¼ 3πηr

m
¼ 9η

4ρr2
,

where ρ is the ball density.
For example, the water has η = 1.0 � 10�3 Pa�s (at 20°C), the density of steel is

7.8 � 103 kg�m�3 and the ball radius r = 5.0 mm. Then, we get b ≈ 1.2 � 10�2 s�1.
If the ball hangs on the thread of the length l = 1.0 m, then ω0 ≈ 3.1 s�1.
The Q-factor isQ ≈ 130. It is, therefore, subcritical damping and according to (25)

τ

T
¼ ω

2πb
¼ 1

π
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1

4Q2

s

≈41:

It means that the oscillations are damped to the ratio of 1/e ≈ 37% after 41
periods.

Example 8. Oscillation damping in electrical RLC circuit.
Consider a single loop of series-connected elements of an inductor L, a capacitor

C, and a resistor R. Assume that initially, the capacitor was charged to a U0 voltage,
and the current in the circuit was zero (RL connection to the charged C capacitor).

The energy of the conservative energy components is then

E ¼ 1

2

Q2

C
þ 1

2
Li2:

The time change of this energy is equal to the power of Joule’s losses

dE

dt
¼ Q

C
_Q þ Li_i ¼ �Ri2,

where _Q ¼ i. If we divide the equation by the current i, and knowing the _i ¼ €Q,
we get

Q

C
þ L €Q ¼ � R _Q, resp: €Q þ 2

R

2L
_Q þ 1

LC
Q ¼ 0,

where ω0 ¼ 1
ffiffiffiffiffiffi

LC
p and b ¼ R

2L.

For example, L = 50 mH, C = 20 μF, and R = 10 Ω, we obtain ω0 ≈ 1.0 � 103 s�1

and b ≈ 1.0 � 102 s�1.
Thus, there are subcritically damped oscillations.
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The charge time response is then

Q tð Þ ¼ Q0 e
�b t cos ω t,

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 � b2

q

≈ 0.99 � 103 s�1.

τ

T
¼ ω

2πb
¼ 1

π
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1

4Q2

s

≈ 1:6:

We can see that the angular frequency ω differs only slightly from the angular
frequency ω0 of the non-attenuated oscillations. However, the motion is signifi-
cantly attenuated. The relative decrease to 1/e ≈ 37% of the initial value occurs after
1.6 periods of oscillations.

1.3 Oscillation of damped system with harmonic excitation

If an external periodic excitation force acts on the oscillation system, the system
responds, after the transient process has disappeared, with a periodic answer. If the
excitation is harmonic and the system is linear, then the steady answer is also
harmonic with the same frequency. Any periodic stimulus of the linear system
represents a superposition of harmonic components in terms of the Fourier series.
Therefore, we will pay special attention to the response of the linear oscillation
system to the external harmonic excitation.

1.3.1 Spectral characteristics of linear system with harmonic excitation

The harmonic force acting on linear oscillation system with viscous damping is
given by the equation of motion

Fv ¼ Fm sinΩ t, (28)

where Fm is force amplitude and Ω is its angular frequency.
Then the equation of motion has a form

ma ¼ � kx� rvþ Fv, (29)

which we can rewrite to

€xþ 2b _xþ ω2
0 x ¼ fm sin Ω t, (30)

where fm = Fm/m is external force amplitude related to the mass of the system.
The solution of the homogeneous equation corresponds to some of the results of

the section 1.2 depending on the type of the system damping. A particular solution
respects the right side. The homogeneous solution is a transient that fades out over
time. The particular solution represents a process that lasts as long as the exciting
force acts. There are steady harmonic oscillations in the system. In the case of
harmonic excitation, the particular solution has a form

xp tð Þ ¼ xm sin Ω tþ βð Þ, (31)

where
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xm ¼ fm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 �Ω2

� 	2 þ 2bΩð Þ2
q , and β ¼ �arctg

2bΩ

ω2
0 �Ω2

� �

: (32)

The xm is the amplitude of oscillations and β is the phase shift of the response
compared to the phase of the excitation force (28). These results can be convinced
by directly substituting the solution (31) into the Eq. (30). The linear oscillation
system must respond to a harmonic response with the same angular frequency. As
can be seen from the previous relationships, the amplitude and phase shift of the
response depends on the Ω angular frequency of the excitation.

A special case is the excitation response with an angular frequency which is
equal to the angular frequency Ωr = ω0 of the undamped system. This case is called
resonance. For the resonance state, we get values from relations (32)

xmr ¼
fm

2bω0
¼ x0Q, and βr ¼ � π

2
rad, (33)

where x0 = Fm/k is the displacement from the equilibrium while the constant
force Fm acts on the system (zero angular frequency Ω = 0). In the case of a system
with a high Q-factor of Q ≫ 1, the amplitude of the response in the resonance state
is significantly greater than the displacement of x0 caused by the constant force.
The response is phase-delayed by π/2 rad compared to excitation. Figure 13 shows
the frequency response characteristics for different Q-factor values.

We can see from these characteristics that if the resonant amplification of the
system oscillations is undesirable, it is necessary to choose critical or overcritical
damping. In this case, however, considerable energy losses occur in the system
because of the resistance force. On the other hand, there are systems with low
internal losses and characterised by a very high Q-factor (in hundreds to thou-
sands). In the case of high values of the quality factor (Q ≫ 1), the frequency
bandwidth of the resonant maximum can be determined at a level of 3db decrease
relative to the maximum value (i.e., decrease to approximately 0.707 xmr)

ΔΩ ¼ ω0

Q
: (34)

The resonant maximum increases proportionally with the Q-factor and narrows
inversely with it. Therefore, the systems with a very high Q-factor have high
selectivity, and we can use them, for example, for the spectral analysis of an
unknown signal or for controlling pendulum clocks, resonant crystal clocks, atomic

Figure 13.
Amplitude and phase shift response of the oscillating system versus a relative angular frequency for different
values of the quality factor.
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clocks, etc. An undesirable consequence of resonance in mechanical devices can be
the occurrence of vibrations, for example, when the engine rpm corresponds to the
resonant frequency of the mechanical system. These phenomena are not limited to
mechanical systems only. Similarly, resonance phenomena occur in electrical cir-
cuits or electromagnetic systems. An example, to be mentioned later, is magnetic
resonance used in medical diagnostics. In a very simplified view, the human
auditory organ is a complicated resonant system too that allows different sound
frequencies (pitch of tones) to be distinguished.

1.3.2 Non-linear oscillating system with harmonic excitation

The situation is more complex in the case of a non-linear oscillating system
exposed to external harmonic excitation. As an example, consider the non-linear
system with the asymmetric potential well described in Section 1.1.2, with harmonic
excitation and viscous damping. The equation of motion expressed in a standard
form, see Eqs. (12) and (30), has a form

€xþ 2b _xþ ω2
0 1þ λxð Þx ¼ fm sin Ω t: (35)

We are interested again in the steady-state response of the system described by
the particular solution of the differential equation. The response of a non-linear
system to harmonic excitation is no longer harmonic but remains periodic with
the same angular frequency. The periodic response function is expressed as a
superposition of harmonic components using the Fourier series

x tð Þ ¼ x0 þ
X

∞

n¼1

xmn sin nΩ tþ βnð Þ: (36)

After substituting this assumed solution into the differential equation, we obtain
the values of the individual quantities. In the case of weak non-linearity (λxm1 << 1),
the results have the form of

xm1 ¼
fm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 �Ω2 þ 2λω2

0B0

� 	2 þ 2bΩð Þ2
q ≈

fm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 �Ω2

� 	2 þ 2bΩð Þ2
q , (37)

x0 ¼ � 1

2
λx2m1 (38)

xm2 ≈ � λω2
0

2

x2m 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 � 4Ω2

� 	2 þ 4bΩð Þ2
q (39)

xm3 ≈
λω2

0

2

Bm1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 � 9Ω2

� 	2 þ 6bΩð Þ2
q xm2, etc: (40)

The fundamental harmonic having amplitude xm1 dominates. Its properties are
similar to those of the linear system. Also, the mid-position x0 is shifted due to the
system’s non-linearity. Furthermore, the resonance occurs at subharmonic frequen-
cies, an integer fraction of the fundamental harmonic frequency (Ωn = ω0/n). They
are expressed by response amplitudes xmn. The subharmonics components have an
origin caused by excitation having a specific subharmonic frequency Ωn. But the
response has the fundamental resonance frequency ω0 since there is the response of
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specific harmonic defined as nΩn = ω0. Figure 14 shows the frequency amplitude
characteristics of the first and second harmonics.

The subharmonic resonance is important to explain the perception of musical
chords by the non-linear system of the auditory organ. For example, if we hear two
tones with frequencies in the ratio 2:1 (octave), the tone with the angular frequency
ω01 produces a signal with the second harmonic of 2ω01. If this frequency is not
equal to the frequency of ω02, the auditory organ sensitively detects the difference
between ω02 and 2ω01 and evokes a feeling of non-tuned music interval.

1.3.3 Harmonic interaction in a non-linear oscillating system

In practice, we encounter cases, in which the oscillating system is simulta-
neously excited by several harmonic signals with different frequencies.

As a simple example, we will excite the system with two harmonic signals and
determine its response to this excitation.

The equation of the response has the form

m€xþ r _xþ k xþ l=2ð Þ x2 ¼ Fm1 sinΩ1 tþ Fm2 sinΩ2 t, (41)

where the Ω1 and Ω2 are angular frequencies of the harmonic components of the
excitation.

We can rewrite the equation to

€xþ 2 b _xþ ω0 ω0 þ λxð Þx ¼ fm1 sinΩ1 tþ fm2 sinΩ2 t, (42)

where fm1 = Fm1/m and fm2 = Fm2/m.
Since the excitation signal is periodic, the response must also be periodic.
Considering the weak non-linearity when λ≪ ω0xm, harmonic components with

excitation angular frequencies dominate in response. Therefore, the steady response
has the dominant components

x1 ¼ xm1 sin Ω1 tþ β1ð Þ þ xm2 sin Ω2 tþ β2ð Þ: (43)

If we substitute this function into a quadratic term in the Eq. (42), there are
elements with combinational frequencies Ω1 � Ω2 on the left side of the equation

x21 ¼
1

2
x2m 1 1� cos 2 Ω1 tþ 2β1ð Þ½ � þ 1

2
x2m2 1� cos 2 Ω2 tþ 2β2ð Þ½ �þ

þxm1 xm2 cos Ω1 �Ω2ð Þ tþ β1 � β2ð Þ � cos Ω1 þ Ω2ð Þ tþ β1 þ β2ð Þ½ � :

Figure 14.
Frequency amplitude characteristics of the first and second harmonic components for values of λ = 0.06 m�1,
Q = 50.
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Due to non-linearity, components with frequencies 2 Ω1, 2 Ω2, Ω1 + Ω2, and
Ω1 � Ω2 appear in the equation. Including these components together with the
original components in the overall system response, the non-linearity (quadratic
term) results in the second generation of components with twice the frequencies
and with all combinations, for example, 3Ω1, 3Ω2, 2 Ω1 � Ω2, Ω1 � 2 Ω2. The
solution is very complex, and therefore, we will focus on the approximate determi-
nation of combination components of the first generation.

In the time response of the system, we consider only the most significant com-
ponents

x tð Þ ¼ x0 þ xm1,0 sin Ω1tþ β1,0
� 	

þ xm0,1 sin Ω2tþ β0,1
� 	

þ

þxm2,0 sin 2Ω1tþ β2,0
� 	

þ xm0,2 sin 2Ω2tþ β0,2
� 	

þ

þxm1,1 sin Ω1 þΩ2ð Þtþ β1,1
� 	

þ xm1,�1 sin Ω1 �Ω2ð Þtþ β1,�1

� 	

,

where numbered indices correspond to frequency combinations, for example,
Qmk,l relates to the frequency of Ωk,l = kΩ1 + lΩ2.

If we substitute these components into the equation of motion and separate the
corresponding harmonic elements on the left and right sides, we get a response for
the amplitudes of the harmonic components

xm1,0 ¼ f ∗

m1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 � Ω2

1 þ 2λω0Q0

� 	2 þ 2 b Ω1ð Þ2
q

xm 0,1 ¼ f ∗

m2

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 � Ω2

2 þ 2λω0Q0

� 	2 þ 2 b Ω2ð Þ2
q ,

which corresponds to the frequency response of the linear system (resonant
characteristics with a maximum at the resonant frequency of ω0).

Considering the dominant components with angular frequencies Ω1 and Ω2, the
constant component is

x0 ≈ � 1

2
λ
x2m 1,0 þ x2m0,1

ω0 þ λQ0

≈ � λ

2ω0

� �

x2m 1,0 þ x2m 0,1

� 	

:

Components with double frequencies of 2 Ω1 and 2 Ω2 shall be determined as in
the case of simple harmonic excitation and with the same results.

For the lowest combination frequencies, we get a relationship

xm1,�1 ≈ λω0
xm 1,0 xm 0,1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 � Ω1 �Ω2ð Þ2 þ 2λω0Q0

h i2
þ 2 b Ω1 � Ω2ð Þ½ �2

r :

From this relationship, we can see that the cause of combination frequencies is
non-linearity, which occurs in the result as λω0. Similarly, we can determine the
amplitudes of the response components with higher combinational frequencies. As
with resonance at subharmonic frequencies, resonance occurs when combinational
frequencies are

Ω1 �Ω2j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 þ 2λω0 Q0

q

≈ω0:
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In this case, the response amplitude with an angular frequency of ω0 is given by
equation

xm1,�1 ≈
ω0

2b

� � λ

ω0

� �

xm1,0xm0,1:

System resonances also occur at higher combinational frequencies. Non-linearity
and the resulting response components with combinational frequencies increase at
higher excitation. There are systems where the combinational frequencies are
undesirable. For example, the acoustic loudspeakers are load overrated, which
means that the effects of system non-linearity under operating loads are negligible.

As indicated in Section 1.3.2, resonances with combinational frequencies or reso-
nances at subharmonic frequencies are important, for example, in explaining the
perception of musical chords by the non-linear system of the human auditory organ.
For example, if we hear two tones with frequencies in the ratio of 2 (octave 2:1), the
tone with the angular frequency of ω01 produces a signal with the second harmonic of
2ω01. If this frequency is not equal to the frequency of ω02, the auditory organ sensi-
tively detects the difference of ω02 � 2ω01 and creates a sense of non-tuned music
interval. It is like other music intervals such as small third 6:5, big third 5:4, fourth 4:3,
fifth 3:2, small sixth 8:5, big sixth 5:3, small seventh 16:9, and big seventh 15:8. These
music intervals have the ratio of frequencies equal to the integer ratio. Due to the non-
linearity of the auditory organ, the music listener can distinguish a pure (harmonic) or
impure (disharmonic) chord and thus perceive the beauty of musical compositions.

1.3.4 Power losses and the nature of spectroscopy

The oscillations relate to the exchange of energy between conservative elements
of the system. The total energy of the system is equal to the sum of kinetic and
potential energy or their equivalents. In the case of forced harmonic oscillations of a
linear system with the fundamental frequency of ω0 and excitation frequency of Ω,
the total energy of the system at a steady state is

E ¼ 1

2
mv2 þ 1

2
kx2 ¼ 1

2
mv2m cos 2 Ω tþ βð Þ þ 1

2
kx2m sin 2 Ω tþ βð Þ ¼

¼ 1

4
m Ω2 þ ω2

0

� 	

x2m þ 1

4
m Ω2 � ω2

0

� 	

cos 2Ω tþ 2βð Þ:

The mean value of this energy is

Eh i ¼ 1

4
m Ω2 þ ω2

0

� 	

x2m ¼ 1

4
1þ Ω2

ω2
0

� �

kx2m: (44)

The second (alternating) component is directly proportional to the difference
Ω2 � ω0

2 and corresponds to the periodic energy exchange between the source and
the system with an angular frequency of 2 Ω.

If we consider the viscous losses in the system, the energy losses in one period of
T are as follows

WT ¼
ð

T

0

Pd t ¼
ð

T

0

Fvd t ¼
ð

T

0

Fm vm sin Ω t cos Ω tþ βð Þd t ¼

¼ T

2
Fm vm sin β ¼ π Fm xm sin β:
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In the state of resonance at frequency Ω = ω0, β = �π/2 rad and the alternating
component of energy E is zero.

Then, active power supplied to the system in the case of the steady state of
forced oscillations is

Ph i ¼ WT

T
¼ 1

2
Fm xm Ω sin β ¼ F2

m

2m

2bΩ2

ω2
0 �Ω2

� 	2 þ 2bΩð Þ2
(45)

Figure 15 shows the graph of the active power spectral function [see Eq. (45)]
for two Q-values. These figures show that an oscillating system with a high Q-factor
absorbs the energy of the source only in a narrow interval around the resonant
frequency and changes it most often into heat.

There are various bonds of atoms and molecules in biological tissues. These
bonds represent microscopic oscillating systems with characteristic resonant fre-
quencies. If these tissues are irradiated with monochromatic electromagnetic waves
with a frequency corresponding to a resonant frequency of coupling, then energy is
supplied to these coupled systems. This energy can stimulate tissues at low-power
applications, for example, phototherapy. At higher power, the absorbed energy
increases the temperature of the tissue structures, and thus, it can lead to their
destruction used, for example, in the treatment of cancer.

Example 9. Spectroscopy.
The above phenomenon explains the physical nature of spectroscopy. In systems

with a higher Q-factor, the resonance state relates either to dynamically increased
oscillations or to power absorption of the source.

The conservative forces bond the atoms of the matter and determine their
equilibrium position. The oscillations around the equilibrium position are at the
natural frequency and depend on the properties of the particle (mass) and the
features of the bond (stiffness). Thus, differently bound particles have different
oscillation frequencies. Each material has characteristic frequencies according to its
composition.

When an electromagnetic wave interacts with a material, it acts on its atoms. If
the EM wave frequency equals one of the resonant frequencies of the substance,
then it significantly absorbs and attenuates this wave. For example, if we observe
the white light of the Sun on the surface of the Earth using a spectrometer, we find
in the continuous visible light spectrum black lines that correspond to the absorp-
tion of light with the appropriate frequencies of gas molecules in the atmosphere. In
this way, we can measure the concentration of greenhouse gases in the atmosphere.

Figure 15.
Relative spectrum of the active power of oscillation system (on the right is Q = 10, on the left Q = 100).
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Another example is optical spectroscopy used in biochemistry, pathology, or the
investigation of blood plasma. As an example, let us pass the adjustable wavelength
light through the liquid cuvette to search for wavelengths at which the liquid has a
resonant absorption. Then, the found wavelengths or frequencies determine the
presence of the individual substances of the material and their concentration in the
solution.

Another example is magnetic resonance imaging, as discussed in the following
paragraph.

1.3.5 Magnetic resonance

1.3.5.1 Nature of magnetic resonance

We talk about resonance if the frequency of external excitation on the oscillating
system is the same as the frequency of its self-oscillations, and the mechanism of
action can supply the oscillating system with energy. In the linear system, it is the
frequency of its undamped oscillations. In the case of a magnetic dipole in a con-
stant magnetic field, it is the Larmor frequency of fL, see Example 4. Read also
Vlaardingerbroek [2], Webb [3], or Hashemi [4].

If we create a rotating magnetic field in space with a rotation frequency f close to
the frequency fL, we can expect a resonance phenomenon. The external excitation
magnetic field must be perpendicular to the precession axis (i.e., to the constant
magnetic field B0) to interact with a magnetic dipole that performs a precession
movement. We create a rotating magnetic field using two mutually perpendicular
pairs of coils, which are fed by currents with the same frequency and with a mutual
phase shift of π/2 rad.

Figure 16 illustrates the situation where perpendicular pairs of coils are on the
left. If z is the direction of the constant magnetic field B0 and hence the axis of the
dipole precession, the x and y directions are perpendicular to the z-axis. One pair of
coils creates the magnetic field of Bx in the x-axis direction, the other pair the field
of By in the y-axis direction. The coil currents and thus the magnetic field compo-
nents are phase-shifted by π/2 rad, and thus

Bx ¼ B1 sin ω tþ ψð Þ, and By ¼ B1 cos ω tþ ψð Þ:

Adding both components, we get the resulting B1 vector, which has a constant
value of B1 and rotates in the x-y plane with the ω angular frequency of the coil
current. The right part of the figure shows the direction of the dipole precession

Figure 16.
Magnetic dipole in rotating magnetic field.
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with the dipole moment of m and the direction of rotation of the rotating magnetic
field.

Vector components of the m dipole moment are

mz ¼ m cos α,mx ¼ m sin α sin ωLtþ ϕð Þ, and my ¼ m sin α cos ωLtþ ϕð Þ:

Magnetic dipole in the magnetic field B0 has potential energy

Ep ¼ � m � B0 ¼ �mB0 cos α: (46)

If an external alternating magnetic field acts on the dipole, only the angle α can
change at constant values of m and B0. The following equation expresses the change
of the potential energy dEp of the dipole

dEp ¼ mB0 sin α dα: (47)

Power of external magnetic field torque is

P ¼ M � ωL ¼ m� B1ð Þ � ωL ¼

¼ mB1 sin α sin ωLtþ ϕð Þ cos ω tþ ψð Þ � cos ωLtþ ϕð Þ sin ω tþ ψð Þ½ �ωL ¼

¼ mB1ωL sin α sin ωL � ωð Þ tþ ϕ� ψ½ �:
(48)

We can see that the power is time-varying for ωL 6¼ ω and the mean value of the
power is zero. If ωL = ω, the power has a time-invariant component, which reaches
the maximum at φ � ψ = π/2 rad. We describe this phenomenon as magnetic
resonance.

Then the work over the time dt is

δW ¼ P d t ¼ m B1 ωL sin α d t: (49)

Comparing (47) and (49), we obtain for dEp = δW

dα

d t
¼ B1

B0
ωL ¼ γB1: (50)

As a result, the α angle of the ‘precession funnel’ varies uniformly in the mag-
netic resonance state with an angular velocity of dα/dt, which depends on the
amplitude of the induction of B1 of the alternating magnetic field. These angle α
changes are the periodic event, and therefore the magnetization of a substance
changes periodically too. The magnetization inverts its value in the time

τ180 ¼ π

γB1
, (51)

or it is perpendicular to the initial direction in the time

τ90 ¼ π

2γB1
, and similar: (52)

It is typical for a forced oscillation of particles, and a forced precession of
magnetic dipoles, that all particles oscillate synchronously with the same phase
compared to the excitation signal.
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1.3.5.2 FID signal origin

The paramagnetic material contains many magnetic dipoles randomly arranged
due to particle thermal motion. Therefore, the resulting magnetic field of these
dipoles is zero. If we insert the paramagnetic material into the B0 constant magnetic
field, then the material magnetic dipoles partially arrange in the direction of the B0

vector. This behaviour better describes the magnetization vector (M0 = κμ0B0),
where the κ is the magnetic susceptibility of the substance. After switching on the B1

transverse alternating rotating magnetic field with an angular frequency ω = ωL, a
resonance occurs, which causes a coherent precession of the oriented magnetic
dipoles. Let us apply the field B1 during the τ90 time. Then the M0 constant magne-
tization vector, parallel to the B0 vector, changes to the M vector, which has the
same magnitude but rotates perpendicularly to the B0 with the angular frequency ω.
The sample of a substance looks like a rotating magnet with a magnetic moment
(m* = M0V), where V is the sample volume. If we place a detection coil
perpendicularly to the axis of rotation, then the voltage induces in it is

uFID � dm ∗

d t
� ωLM0 sin ωL t: (53)

Voltage induces in the coil only in the case of synchronous dipole precession,
which results in rotating magnetization, and this can only happen if magnetic
resonance conditions are met. For a given B0 and ω, the resonance occurs only for
certain dipoles in the substance, which satisfy the condition ω = ωL = γB0. Thus, by
measuring the induced signal, the presence of magnetic dipoles with a
corresponding gyromagnetic moment γ can be detected, and their concentration
determined.

If we switch off the B1 excitation field, the periodic event begins to damp due to
the interaction of the dipoles with the surrounding particles of the substance. The
detected signal is, therefore, attenuated (Figure 17). This damped signal calls the
FID signal (free induction decay). In biomedicine, the magnetic resonance uses
protons (with the γ = 2.68 � 108 s�1�T�1), which exist mainly as nuclei of hydrogen
atoms and thus in water molecules.

The organic compounds, such as biological tissues, contain hydrogen atoms too. In
specific cases, the magnetic resonance uses nuclei of other biogenic elements such as
isotopes of carbon 13C, fluorine 19F, phosphorus 31P, and so on (see Table 1, p. 8).

Figure 17.
FID signal after magnetic dipoles excitation.

27

Simple Oscillating Systems
DOI: http://dx.doi.org/10.5772/intechopen.101649



1.3.5.3 Relaxation

Perpendicular magnetization is an imbalance caused by the external source of
the alternating magnetic field B1. If the excitation force stops to act on the system,
the aligned movement of the dipole array decays. From the viewpoint of the FID
signal, the decay of the in-phase periodic precession movement at first occurs due
to the inhomogeneity of the magnetic field B0, and due to the influence of sur-
rounding dipoles, so-called spin-spin interaction. After switching-off the exciting
magnetic field, the precision movement of the dipoles remains for a short time in a
plane perpendicular to the B0 direction, but due to a small change in the local
magnetic field, the precession of the single dipoles is out-phased, which results in an
exponential decrease of the transverse magnetization, and thus an FID signal. This
decrease characterises the time constant T2. Its value is in the order of tenths of a
second. The second slower mechanism of decay associates with the thermal relaxa-
tion of the imbalanced orientation of the magnetic dipoles and directs to the ther-
modynamic equilibrium of the dipoles, that is, to the equilibrium orientation of
magnetization in the direction of the B0 vector. This process is approximately 10
times slower, and its time constant is denoted T1.

Different substances, and thus tissues, have different values of relaxation times
of T1 and T2. In medical applications, protons (nuclei of hydrogen) are mostly used
as magnetic dipoles since the body contains many of the hydrogen atoms (especially
as part of water molecules).

For illustration, see Table 2, which contains values of relaxation times T1 and T2

for water and some tissues, as well as the relative concentration of hydrogen atoms
in tissues compared to the concentration in pure water.

Chemical analyses also use nuclei of other paramagnetic atoms as magnetic
dipoles. Thus, we can investigate the content of specific atoms or substances in the
samples by measuring the FID signal and the relaxation times.

1.3.5.4 Magnetic resonance imaging (MRI)

One of the applications of the magnetic resonance phenomenon is the tomo-
graphic imaging of the morphological structure of the organism. The method lies in
the use of the detection of hydrogen atom nuclei, which are mainly contained in
water and thus in soft tissues. Consequently, we can obtain a two-dimensional
image of tissue structures by identifying different types of tissue (see Figure 18).

Using a relatively complicated device we call a tomography; it is possible to assign
a specific T1 and T2 value or relative proton density PD to each point of the thin

Tissue T1 [ms] T2 [ms] Relative concentration (1H)

Water 4000 2000 1.00

Cerebrospinal fluid 2500 280 0.98

Edema 900 130 0.86

Grey matter 760 77 0.74

White matter 510 67 0.62

Muscle 900 50 0.50

Fat 250 60 1.00

Table 2.
Relaxation times and relative concentration of protons in water and selected tissues.
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transverse layer of the examined object (body) and thus to distinguish individual
tissues. Different values of these quantities are assigned a certain level of grey
colour when displayed on the device monitor (see Figure 18). In this way, we can
obtain different images such as T1-image, T2-image, and PD image. Each of them
has a different contrast concerning tissue differentiation and, thus, different
advantages in medical diagnostics.

1.3.5.5 Magnetic resonance spectroscopy

The second application of magnetic resonance is magnetic resonance spectroscopy
(MRS). By variation frequency ω, it is possible to select the type of atomic nucleus
with the Larmor frequency of ωL. Then, we identify the nucleus by the magnetic
resonance FID signal at the frequency of ω = ωL. Themagnetic field B0 at the location
of a given nucleus, and thus the Larmor frequency of ωL, is slightly influenced by
the magnetic field of the surrounding particles, such as electrons and other nuclei.
The resonance frequency ωL of the atom nucleus is thus slightly influenced by the
chemical bonds where the magnetic dipoles (e.g., nuclei of hydrogen atoms) occur.
By examining the spectrum of resonances, it is possible to identify individual
hydrogen bonds in the sample under investigation, for example, O-H, C-H, C-H2,
C-H3, N-H2. Furthermore, we can identify the relevant organic substances (protein,
enzyme, and metabolite) according to the measured resonance spectrum.

Figure 19 illustrates the organosilane spectrogram used in the manufacturing
process of synthetic rubber. The horizontal axis is the offset of the resonant fre-
quency in parts per million (ppm = 10�6) relative to the reference frequency. The
reference substance could be tetramethylsilane (TMS) or another proper substance.
For example, hydrogen in the = CH2 divalent group has a resonance frequency
shifted by 1.3 ppm (A), in the -CH3 monovalent group, up to 4.0 ppm (B). Each
substance has a characteristic spectrogram according to which we can identify it,
even at a very low concentration.

Magnetic resonance spectroscopy thus enables very sensitive biochemical diag-
nostics of different tissues or fluids and uses various biochemical markers to early
diagnose a variety of diseases, such as epilepsy, Alzheimer’s disease, Parkinson’s

Figure 18.
MRI of the cervical spine, part of the vascular system, thorax.

29

Simple Oscillating Systems
DOI: http://dx.doi.org/10.5772/intechopen.101649



disease, various cancers. Thus, magnetic resonance spectroscopy is a powerful
diagnostic tool in medicine.

In specific cases, instead of hydrogen, the magnetic resonance spectroscopy uses
the nuclei of other biogenic elements with an uncompensated magnetic moment
such as 13C, 19F, 31P. The MRS apparatus is quite demanding, and therefore, a
special investigation of the content of other nuclei is used only rarely. Thus, the
MRS uses preferably only 1H (hydrogen-protons) for the determination of metabo-
lite content, which in addition to MRI does not require additional devices and MRI
and MRS images can be combined (see Figure 20). On the right side, it is an MRI

Figure 19.
Magnetic resonance spectrogram of organosilane.

Figure 20.
Combination of MRS and MRI.
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image with defined the specific location of analysis, on the left side is an MRS
spectrogram of the substance at that location. From the spectral peaks typical for
certain substances (here Cr-chromatin, Cho-choline, NAA-N-acetyl aspartate) and
their size, it is possible to diagnose possible health disorders.

1.3.5.6 Magnetic resonance therapy

Magnetic resonance therapy (MRT) is a treatment method that uses targeted
stimulation of specific structures by providing them with energy through magnetic
resonance. During a resonant RF excitation pulse of the τ180 length, the alternating
magnetic field supplies the dipole with energy [see Eq. (49)]. This energy is trans-
ferred only to the nucleus of the atoms that are in resonance with an alternating
magnetic field. We can supply the energy of the electromagnetic field to specific
parts of the structure that contain the resonant nucleus of the atoms. Thus, we can
stimulate intracellular processes such as cell nucleus growth.

The method of magnetic resonance therapy is successfully used in the treatment
of osteoarthritis and osteoporosis as we supply the energy to help cartilage and bone
regeneration, as well as recovery for spinal pain following surgery (see Figure 21).

1.4 Oscillators

We are using various sources of periodic signals or motions, which are com-
monly called oscillators. Oscillators, mechanical or electrical, are systems with
high Q-factor value and low losses having a frequency f0 determined by the
system parameters. However, each system always has, albeit small, losses that
cause the oscillation to disappear at a time proportional to the quality factor [see
Eq. (24)]. If the system is to oscillate continuously, we must balance its losses.
This compensation consists of supplying energy equal to the losses in each period
of oscillation, that is, the compensation process must be synchronous with the
system’s oscillations. We can achieve this by periodic power supply directly
controlled by system oscillations, which means a positive feedback method. The
classic example shows a child on a swing. If a child sits on a swing and the parent
pushes it, it will swing for a while, but it will soon hang in a steady position.
Children almost intuitively understand to keep the swing in motion. They must

Figure 21.
MRT—Hip joints on the left, post-hip treatment on the right.
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compensate for the loss of energy by properly digging their legs in one extreme
position and kicking in the other, utilising the energy of their muscle activity to
increase the potential energy twice within one oscillation slightly. The child per-
forms this activity intuitively. Thus, the child’s biological energy compensates for
the energy losses of the swing.

Oscillators have a precisely defined frequency by their parameters. Therefore,
we can use them as a reference time signal source. Thus, they represent the essential
part of the clock (mechanical with pendulum, mechanical with the rotating fly-
wheel on spiral spring, electrical with LC circuit, electrically controlled with crystal,
atomically controlled with quantum transitions in caesium atoms). The electronic
clock is a part of every computer and controls the operation of such components as
the processor, data storage, and data exchange with peripherals.

1.4.1 Mechanical oscillator

A commonly known mechanical oscillator is a pendulum clock. Figure 22
shows a pendulum (dashed line) and a zoomed positive feedback step mechanism.
The step wheel with inclined teeth is driven through the gearing by a force F
generated by a weight or a spring. In the picture, the pendulum moves to the
right and the right inclined tooth ‘b’ pushes into the stop of the escapement and
supports the right-hand rotation. After reaching the extreme position, the tooth
is released to the right, and the wheel rotates so that the left step-stop rests on the
left oblique tooth, which pushes into the stop of the escapement and supports the
pendulum moving to the left. Thus, the inclined teeth of the wheel supply energy to
the pendulum via a step mechanism. The wheel drive depends on the potential
energy source of the weight or spring. The system is set up to maintain a stable
pendulum operation.

There are many mechanical oscillators of analogous construction, for example, a
flywheel on a spring in a mechanical wristwatch, a torsional pendulum of a decora-
tive stand clock. The pendulum clock accuracy depends on the temperature regard-
ing the thermal expansion of the mechanical parts. A special temperature-stabilised

Figure 22.
Pendulum.
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pendulum clock can achieve running stability of up to δT/T0 ≈ 10�6 (1-second
deviation in 12 days).

1.4.2 LC oscillator

The electric oscillators commonly use the LC circuit with the frequency of
natural oscillations of f 0 ¼ 1

2π
ffiffiffiffiffi

LC
p . Due to the electrical resistance of the circuit,

energy losses occur, which leads to oscillation damping. To cover energy losses and
maintain the oscillations of the system, we must supply the LC circuit using a
positive feedback method in connection with an amplifier. There are many LC
circuit oscillators; Figure 23 shows some examples.

These oscillators use a transistor amplifier connected with a common emitter that
changes the signal phase by 180°. We must connect the output voltage of the oscilla-
tor to the input with the same phase, respectively, with offset by 2� 180° = 360°. The
input part is an LC oscillating circuit with a split capacitor: (a) Colpitts circuit, or a
split inductor and (b) Hartley circuit. As shown in the figures, there is an opposite
phase on split elements regarding the amplifier input and output. The (c) case shows
the Meissner circuit, where phase reversal is achieved by inductive coupling with
oppositely oriented windings. Figure (d) shows an example of an RC oscillator that
does not use an LC circuit.

We achieve positive feedback by a three-stage RC phase shifter. The elements
have a total phase shift of 3 � 60° = 180° at the desired oscillation frequency. Since
the phase shifter is frequency-dependent, positive feedback occurs at only one
frequency.

1.4.3 Crystal controlled oscillators

The applications demanding higher frequency stability consider the circuits
mentioned above as unsatisfactory due to the used circuit elements. For example,

Figure 23.
Different types of electrical oscillators.
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the inductors are highly temperature-dependent, or parasitic elements influence
both the oscillator and amplifier circuits, and then voltage fluctuations, are applied.
To suppress these parasitic effects, we are using piezoelectric crystals in the oscil-
lating circuits instead of the inductors.

A piezoelectric crystal is an electromechanical oscillating system with a high Q-
factor. This crystal is described by using the equivalent circuit diagram, as shown in
Figure 24(b). The inductance of the crystal depends on the mass of the crystal. The
capacity corresponds to its rigidity and the resistance to the internal power losses.
The capacity C0 is the electrode capacity of C0 ≫ C. For the crystal as a reactance
electrical circuit, the imaginary part of the complex impedance is important, and we
can express it as follows:

X ¼ ωL
1� 1

ω2 LC

� 	

1þ C
C0

� ω2LC0

� �

� R2C0

1þ C0

C � ω2LC0

� 	2 þ ωRC0ð Þ2
: (54)

If we set the reactance equal to zero (X = 0), we can estimate the
resonant frequency of the crystal. The reactance graph below (Figure 25) shows
two resonant frequencies for the given values of the crystal (L = 100 μH,
C = 100 pF, R = 1.0 Ω, C0 = 10 nF). There is the fs parallel and the fp series

Figure 24.
Crystal controlled oscillator.

Figure 25.
Graph of the reactance X versus frequency f ot the crystal.

34

Electromagnetic and Acoustic Waves in Bioengineering Applications



resonances. The equivalent circuit with a high Q-factor has the resonant frequen-
cies as follows:

f s ¼
1

2π
ffiffiffiffiffiffiffi

LC
p , and f p ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LCC0= Cþ C0ð Þ
p :

In our case, fs ≈ 1.5916 MHz and fp ≈ 1.5994 MHz. As shown in the reactance
graph, we can see a narrow interval between the fs and fp when X > 0. This means
that the crystal has an inductive character. The crystal is connected in the oscillating
circuit as an inductor with a parallel split capacitor with C1 and C2 capacitances.
Thus,

Figure 24(a) shows Pierce’s circuit. The split capacitor is parallel connected
to the C0, and therefore, the interval between resonant frequencies gets
narrower. Thus, the oscillator can oscillate in the very narrow frequency range,
which ensures high stability of the oscillator frequency. We realise positive feed-
back by connecting non-inverting output through the R2 resistor to the C2 capacitor.
On the other hand, we can tune the oscillator in the range of several Hz. If we
need to tune the frequency in the broader range, we must change the crystal. The
crystal-controlled oscillator has high stability in order of 10�9, which means the
time deviation of 1 s for 30 years. Achieving this stability, we use the thermostat
to stabilise the temperature of the crystal. Due to the high-stability requirement,
the computer clock uses only crystal-controlled oscillators as the clock pulse
generator.

1.4.4 Multivibrators

In some cases, we require a harmonic signal for biomedical applications. There
are diathermy, electrotherapy, sonography, or magnetic resonance. In other appli-
cations, we need to generate periodic, but non-harmonic voltages or currents. There
are pacemakers or artificial lung ventilation. In these cases, we are using rectangular
or sawtooth waveforms or short repetitive pacing pulses. The primary element of
non-harmonic signal generators are multivibrators serving as sources of periodic
rectangular pulses. Many mechanical and thermal devices switch between two
states at regular intervals. There are electrical systems, which are the most impor-
tant for biomedical applications. These systems serve as periodic and non-harmonic
voltage sources. As an example, Figure 26 shows the circuit of an astable flip-flop
multivibrator.

Figure 26.
Astable flip-flop circuit.
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In the principle, the T1 transistor alternately switches between its ON/OFF
states. If the T1 is open, the T2 is closed and vice versa. This process repeats
periodically. The toggling period is given by time constants defined as R2C1 and
R3C2. The output voltage is then rectangular. Connecting output to the
differentiator circuit, we obtain short pulses, which can be used for the pacemakers.
Using the integrator, we get a sawtooth waveform, which can be used for the
generation of the linearly rising gradient field at magnetic resonance imaging.
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