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Chapter

Vortex Dynamics in Complex
Fluids
Naoto Ohmura, Hayato Masuda and Steven Wang

Abstract

The present chapter provides an overview of vortex dynamics in complex fluids
by taking examples of Taylor vortex flow. As complex fluids, non-Newtonian fluid
is taken up. The effects of these complex fluids on the dynamic behavior of vortex
flow fields are discussed. When a non-Newtonian shear flow is used in Taylor
vortex flow, an anomalous flow instability is observed, which also affects heat and
mass transfer characteristics. Hence, the effect of shear-thinning on vortex dynam-
ics including heat transfer is mainly referred. This chapter also refers to the concept
of new vortex dynamics for chemical process intensification technologies that apply
these unique vortex dynamics in complex fluids in Conclusions.

Keywords: Taylor vortex flow, complex fluid, non-Newtonian fluid, heat transfer,
process intensification

1. Introduction

Historically, innovative processes have been created using organized vortices.
For example, in Japan, Kiyomasa Kato, a Sengoku daimyo (Japanese territorial lord
in the Sengoku period) in Kumamoto Prefecture, made a canal (called “hanaguri
canal”) with a partition (baffle) having a semicircular hole at the bottom as shown
in Figure 1. The flow velocity of the water flowing through the hole in the lower
part of the partition increases due to the effect of the contraction of the flow, and a
strong circulating vortex is formed in the water channel divided by the partition. By
intensifying the flow in the canal, water can be supplied to about 95 ha of land in
nine villages in the downstream without piling up volcanic ash or earth and sand,
and the harvest has increased about three times. Based on this idea by Kiyomasa
Kato, in order to solve the particle sedimentation problem in oscillatory baffled
reactors (OBR) which is one of the hopeful process intensification techniques, our
group [1] succeeded in preventing the particle sedimentation to the bottom of the
reactor and obtaining extremely monodispersed particles in a calcium carbonate
crystallization process by changing from a normal baffle with a hole in the center to
a snout-type baffle as shown in Figure 2.

In addition, the function of vortex flow is not only to intensify the previously
noticed transport phenomena such as mixing, heat transfer, and mass transfer, but
also to have a new function that has not been previously noticed, such as classifica-
tion and separation of particles. Ohmura et al. [2] found that particles with different
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sizes move on different streamlines within a Taylor cell and proposed that this could
be applied to a particle classification device. Kim et al. [3] applied this idea to a
continuous crystallizer and proposed a device for granulating particles of different
sizes while classifying them. Wang et al. [4] also proposed a novel solid–liquid
separation system that breaks the conventional stereotype of mixing equipment by
applying the particle clustering phenomenon in isolated mixing regions in stirring
tanks. In this way, vortices with a systematic structure have very attractive proper-
ties, such as solid accumulation, mixing and reaction enhancement, particle classi-
fication, and mass transport. If we can understand the characteristics of this
organized vortex structure and manipulate it freely, we may be able to develop
innovative chemical processes.

In many industrial processes, such as chemical, food, and mineral processes, the
fluids handled are not only simple homogeneous Newtonian fluids, but also often
complex fluids, such as non-Newtonian fluids, multi-phase fluids with highly dis-
persed phases, and viscoelastic fluids. Therefore, in order to apply the new “vortex
dynamics” currently being constructed to process intensification technologies and
implement it in society, it is necessary to develop the concept of new “vortex
dynamics” from simple fluids to complex fluids. According to the abovementioned
background, the present chapter provides an overview of vortex dynamics in com-
plex fluids by taking examples of Taylor vortex flow.

Figure 1.
Schematic of Hanaguri Canal.

Figure 2.
Comparison of performance of an oscillatory baffled crystallizer between using normal and Hanaguri-type
baffles.
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2. Vortex dynamics with non-Newtonian fluids

A non-Newtonian fluid property causes a multiple fluid motion. These motions
are quite interesting from fundamental and practical viewpoints. Especially, in
vortex flow systems, fluid elements experience curved streamlines. In polymeric
fluid systems, the polymer molecule chain does not line along curved stream lines,
and consequently, hoop stress in a normal direction occurs. As a result, coupling
normal stresses and curved streamlines causes elastic instabilities [5]. These insta-
bilities are observed in various flows, e.g., Poiseuille flow [6], microchannel flow
[7], and swirling flow [8]. Many polymeric fluids show not only viscoelastic behav-
ior but also shear-thinning behavior. The shear-thinning property causes the vis-
cosity distribution accompanied by the shear-rate distribution in the fluid system.
Coelho and Pinho [9] showed that the shear-thinning affects the flow transition of
vortex shedding in a cylinder flow. Ascanio et al. [10] reported that the mixing
process of shear-thinning fluids under a time-periodic flow field is different from
that of Newtonian fluid. Thus, vortex dynamics in non-Newtonian fluid systems is
far from complete.

To investigate the effect of non-Newtonian property on vortex dynamics in
more detail, many researchers have been utilizing Taylor–Couette flow, which is
one of the most canonical flow systems in fluid mechanics, with non-Newtonian
fluids [11–14]. Taylor–Couette flow is the flow between coaxial cylinders with the
inner one rotating. This flow shows a cascade transition from laminar Couette flow
to fully turbulent wavy vortex flow with the increase in circumferential Reynolds
number (Re). When the value of Re exceeds the critical Re (Recr), Taylor vortex flow
firstly appears. As mentioned above, many researchers have been studied the Tay-
lor–Couette flow with non-Newtonian fluids. For example, Muller et al. [11] and
Larson et al. [12] revealed that the elastic instability occurs in Taylor–Couette flow
and organized flow modes based on Deborah number (De), which the ratio of a
characteristic relaxation time of the fluid to a characteristic residence time in the
flow geometry [5]. Figure 3 shows laminar Taylor–Couette flow with Newtonian
(40 wt% glycerol aqueous solution) and viscoelastic fluid (0.75 wt% sodium
polyacrylate aqueous solution).

The flow pattern was visualized by adding a small amount of Kalliroscope
AQ-1000 flakes. As shown in Figure 3, the cellular structure of Taylor vortices
seems to be complicated in the viscoelastic fluid even at the relatively low Re. The
detailed mechanism is found in their papers [11–14]. Other interesting point is an

Figure 3.
Flow visualization: (a) Newtonian fluid at Re = 212 and (b) viscoelastic fluid at Reeff = 218.
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enlarged vortex structure by shear-thinning property. Escudier et al. [15] found that
the cellular vortex is axially stretched and the vortex eye (the location of zero axial
velocity in the vortex interior) is radially shifted toward the center body.

However, the first Taylor–Couette instability has not been fully understood yet
in non-Newtonian fluid systems. One of the reasons is the discrepancy between Recr
reported by several researchers for non-Newtonian fluids. Alibenyahia et al. [16]
reviewed the discrepancy; Jastrebski et al. [17] reported Recr decreased with the
shear-thinning property, on the other hand, Caton et al. [18] found the opposite
tendency. Actually, this discrepancy is explained by the difference in how to define
the effective Reynolds number, Reeff, in their papers. In non-Newtonian fluids, how
to define Re is quite complicated because the viscosity locally varies as shown in
Figure 4 [19]. Practically, Reeff based on the effective viscosity in the system should
be discussed. Several researchers have been trying to define more rational Reeff in
various flow systems, e.g., rising bubble flow in shear-thickening fluid [20],
Rayleigh–Bénard convection with shear-thinning fluids [21], and non-Newtonian
fluid flow past a circular cylinder [22].

We previously proposed a new definition of Reeff based on the effective viscosity
(ηeff), which is obtained by numerical simulation. ηeff is calculated by averaging the
locally distributed viscosity using a weight of dissipation function as follows [23]:

ηeff ¼
X

N

i¼1

_γ2i ηi∆V i=
X

N

i¼1

_γ2i∆V i, (1)

where N is the total mesh number, ηi [Pa�s] is the local viscosity, _γi [1/s] is the
local shear rate, and ΔVi [m

3] is the local volume for each cell. It should be noted
that ηeff is obtained using numerical simulation. The computational domain is
shown in Figure 5. The governing equations are as follows:

∇ � u ¼ 0, (2)

∂u

∂t
þ u � ∇ð Þu ¼ �

∇p

ρ
þ

1

ρ
∇ � 2ηDð Þ þ g, (3)

Figure 4.
Viscosity distribution in the annular space obtained by numerical simulation [15]. The fluid was assumed to be
a shear-thinning fluid.

Figure 5.
Computational domain [22]. Ri and Ro are the radii of inner and outer cylinders, respectively.
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where u [m/s] is the velocity, p [Pa] is the pressure, ρ [kg/m3] is the density, η
[Pa�s] is the viscosity depending on the shear rate, D (= (∇u + ∇uT) / 2) [1/s] is the
rate of deformation tensor, g [m/s2] is the gravitational acceleration. The rheologi-
cal property is characterized by Carreau model as follows [24]:

η ¼ η0 1þ β � _γð Þ2
h i n�1ð Þ=2

, (4)

where η0 [Pa�s] is the zero shear-rate viscosity, _γ [1/s] is the shear rate, β [s] is
the characteristic time, and n [�] is the power index, which indicates the slope of
decreasing viscosity with shear rate. In the case of n < 1, the fluid shows the shear-
thinning behavior. The detailed information of numerical procedure is written in
our paper [23].

Figure 6 shows the critical value of Reeff for various shear-thinning fluids as a
function of gap ratio Ri / Ro. The theoretical Recr for Newtonian fluids derived by
Taylor [25] was denoted by the dashed line in Figure 6. It is found that the critical
Reeff for shear-thinning fluids was in agreement with the theoretical value at Ri /
Ro > 0.7. Thus, Reeff defined based on ηeff by Eq. (1) is rational as a practical basis.
The effect of shear-thinning property on the vortex structure is also interesting
from the viewpoint of fluid dynamics. Figure 7 shows the number of pairs of Taylor

Figure 6.
Recr for various shear thinning [18].

Figure 7.
Variation in the number of pairs of Taylor vortices [23].
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cells, N, as a function of Reeff at the aspect ratio Γ = 20 [26]. In all fluid systems, N
tended to increase with Reeff. This tendency agrees with reports by other researchers
[27]. Furthermore, the shear-thinning property seems to make Taylor cells large
because N decreases with the shear-thinning property at the same degree of Reeff.
This tendency was remarkable in the case of n = 0.3. This means that the shear-
thinning property axially enlarges Taylor cells. Although the detailed mechanism of
enlarging Taylor cells is under consideration, it will be clarified by numerical simu-
lation of development process of Taylor vortices.

We also introduce heat transfer characteristics of Taylor–Couette flow
with shear-thinning fluids. In addition to Eqs. (2) and (3), energy equation was
solved:

∂

∂t
ρCp

� �

þ ∇ � ρCpTu
� �

¼ ∇ � κ∇Tð Þ, (5)

where Cp [J/kg�K] is the specific heat capacity,T [K] is the temperature, and
κ [J/m�s�K] is the thermal conductivity. Figure 8 shows the axial variation in the
local Nusselt number, NuL, at the surface of the outer cylinder at Reeff = 158 [26].
The NuL at the surface of the outer cylinder was calculated as follows:

NuL ¼
2hd

κ
, (6)

where h is a local heat transfer coefficient. As clearly shown in Figure 6, NuL
decreases with the increase in the shear-thinning property. This decrease is
explained by increasing the thickness of velocity boundary layer for shear-thinning
fluid systems (Figure 9). Generally speaking, it is said that the shear-thinning
property improves heat transfer performance at same Re [28, 29]. This is because
the viscosity reduction by the shear-thinning property is not adequately reflected in
Re used in papers. In other words, the actual flow condition is underestimated in the
case of shear-thinning fluids. Thus, the heat transfer performance is not accurately
compared between Newtonian and shear-thinning fluids unless Reeff is used for
representation of flow condition.

Figure 8.
Axial variation in the local Nusselt number (NuL) along the surface of the outer cylinder at Reeff = 158 [23].
λeff is the wavelength of Taylor cells.
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3. Conclusions

In this section, we mainly refer the effect of shear-thinning on vortex dynamics
including heat transfer. However, the viscoelastic property further complicates
vortex dynamics as shown in Figure 3. In the future, vortex dynamics and transport
phenomena in viscoelastic fluid systems should be investigated in more detail. In
this case, it is considered to be important to construct a mathematical model by
multi-scale analysis focusing on the interaction among scales of microstructure
(molecular structure of polymers, micelles, particles, etc.), mesostructure
(entanglement of polymer, particle aggregation, etc.), and macrostructure (vortex
flow) of complicated fluid. For example, when a polymer solution flows in a micro
channel having a sharp contraction part, an unsteady vortex called viscoelastic
turbulence is generated in a corner part of the contraction part at higher
Weissenberg number [30]. When the scale of the microchannel becomes small, the
scale of the flow can be compared with the scale of the polymer. Since the influence
of the elasticity derived from the deformation of the polymer itself on the flow
becomes large, there is a possibility that the dynamic characteristics of the vortex
generated in the contraction part can be controlled by the channel shape. In order to
construct a methodology of controlling the viscoelastic vortex, a multi-scale simu-
lation combined with molecular dynamics and computational fluid dynamics may
be important.

As this viscoelastic vortex example shows, the field in which the vortex occurs
affects the characteristics of the vortex. In the case of a Taylor vortex flow system,
for example, the structure and dynamic characteristics of the vortices largely
depend on the surface properties. It has been reported that heat transfer is enhanced
by processing regular unevenness in the circumferential direction on the outer
cylinder surface [31]. In the case of conical Taylor vortex flow, our previous work
[32] successfully reproduced the phenomenon that the vortices move upward
spontaneously under specific conditions by numerical analysis, and it was found
that mass transfer was enhanced in polymer fluid system. In this way, it is possible
to control the characteristics of the vortex flow by a structurally organized (having
low entropy or fractal) nonuniform field rather than simply a random (high-
entropy) nonuniform field. Therefore, in order to systematize a new vortex
dynamics for freely manipulating vortices, it is necessary to quantitatively express
the heterogeneity by introducing the concept of entropy and fractal and to clarify
the relationship between the structure of the field and the characteristics of
vortices.

Figure 9.
Dependence of the dimensionless thickness of the velocity boundary layer [23].
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