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Chapter

Prognostication in Post-Cardiac 
Arrest Patients
Dilok Piyayotai and Sombat Muengtaweepongsa

Abstract

After resuscitation from cardiac arrest, a combination of the complex 
 pathophysiologic process, known as post-cardiac arrest syndrome (PCAS), is 
attributed to multiple organ damage. Global ischemic cascade occurs in the brain 
due to generalized ischemia during cardiac arrest and the reperfusion process after 
the return of spontaneous circulation (ROSC), leading to hypoxic/ ischemic brain 
injury. Targeted temperature management (TTM) is a well-known neuroprotective 
therapy for ischemic/hypoxic brain injury. This global brain injury is a significant 
cause of death in PCAS. The implementation of TTM for PCAS leads to a reduction 
in mortality and better clinical outcomes among survivors. Prognostication is an 
essential part of post-resuscitation care. Before the TTM era, physicians relied on 
the algorithm for prognostication in comatose patients released by the American 
Academy of Neurology in 2006. However, TTM also announced more significant 
uncertainty during prognostication. During this TTM era, prognostication should 
not rely on just a solitary parameter. The trend of prognostication turns into a mul-
timodal strategy integrating physical examination with supplementary methods, 
consisting of electrophysiology such as somatosensory evoked potential (SSEP) 
and electroencephalography (EEG), blood biomarkers, particularly serum neuron-
specific enolase (NSE), and neuro-radiography including brain imaging with CT/
MRI, to enhance prognostic accuracy.

Keywords: prognosis, cardiac arrest, therapeutic hypothermia, neurological 
outcomes, hypoxic-ischemic encephalopathy, restore of spontaneous circulation, 
reperfusion

1. Introduction

Cardiac arrest is the leading cause of ischemic and hypoxic encephalopathy, as 
the brain is the organ that receives blood from the heart at 25% of all the blood that 
leaves the heart. Regardless of the underlying cause, patients with cardiac arrest 
often experience neurological complications, both short-term and long-term. 
Therefore, neurological monitoring is essential and essential in cardiac arrest 
patients for proper care and accurate prognosis [1].

The prognostication after cardiac arrest consists of (1) neurological examination, 
(2) neurophysiologic evaluation, (3) neuro-radiologic evaluation, (4) biochemical 
markers.

The algorithm for prognostication in post-cardiac arrest (PCAS) patients with 
restoring spontaneous circulation (ROSC) invented by the American Academy of 
Neurology in 2006 (as shown in Figure 1) has become a landmark guideline [2]. The 
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Figure 2. 
The algorithm for prognostication in post-cardiac arrest (PCAS) patients with restoring spontaneous 
circulation (ROSC) was invented by the American Heart Association in 2020.

Figure 1. 
The algorithm for prognostication in post-cardiac arrest (PCAS) patients with restoring spontaneous 
circulation (ROSC) was invented by the American Academy of Neurology in 2006.
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primary purpose of the algorithm is to determine the poor outcomes for withdrawal 
of life-sustaining treatment, although most of the PCAS patients fall into indeter-
minate outcomes. However, due to improved outcomes with targeted temperature 
management (TTM), clinical and surrogate makers in the algorithm need to be inter-
preted more carefully in patients treated with TTM [1, 3]. The recent resuscitation 
guidelines updated the algorithm using multimodal evaluation (as shown in Figure 2) 
to ensure better accuracy in determining the prognosis in post-cardiac arrest patients 
treated with TTM [4]. The predicting tool for prognostication in post-cardiac arrest 
patients is available [5]. In contrast, the prognostication in coma patients outside 
post-cardiac arrest is much less established [6]. In general, for patients who remain 
coma for more than four weeks, the chance to achieve a meaningful recovery is low.

2. Neurological examination

The neurological examination remains essential for prognostication in PCAS 
patients, which indicates the degree of hypoxic-ischemic brain injury. Therefore, 
physicians usually use the overall neurological signs to predict the outcomes after 
ROSC. The optimal time to predict the outcomes with neurological examination is 
three days after ROSC in PCAS patients not treated with TTM [2]. In contrast, the 
neurological examination should get delayed until five days after ROSC or three 
days after normothermia in PCAS patients treated with TTM [7].

2.1 Glasgow coma scale (GCS)

The initial purpose of the Glasgow Coma Scale (GCS) was to measure the level 
of consciousness in traumatic brain injuries; however, it is also helpful for predicting 
outcomes in PCAS [8]. Serial improvement of GCS in PCAS patients is usually associ-
ated with good outcomes [9]. Therefore, predicting tools for outcomes in PCAS usually 
included the GCS [10]. The GCS motor scores less than three at three days after ROSC 
in PCAS patients not treated with TTM strongly predict poor outcomes (false positive 
rate 0–3%) [2]. On the other hand, in PCAS patients treated with TTM, the GCS motor 
scores less than three at three days after normothermia or five days after ROSC may not 
always predict poor outcomes (false positive rate 19%) [11, 12]. The GCS motor scores 
more than three before initiation of TTM strongly predict good outcomes [13].

2.2 Pupillary light reflex (PLR)

Intact pupillary light reflex (PLR) indicates proper midbrain function. The 
absence of PLR three days after ROSC in PCAS patients not treated with TTM 
strongly predicts poor outcomes (false positive rate 0–3%) [2]. On the other 
hand, in PCAS patients treated with TTM, the absence of PLR at three days after 
normothermia or five days after ROSC remains predictive for poor outcomes with 
a 2.1% false-positive rate [11, 14]. Thus, early absent PLR after ROSC before initia-
tion of TTM may not always predict poor outcomes [15]. Abnormal Neurological 
Pupil index and PLR quantitative measurements by pupillometry early after ROSC 
increase accuracy for the predictor of poor outcomes [16, 17].

2.3 Corneal reflex

The corneal reflex indicates the degree of intactness of the pathway from the 
ophthalmic branch of the fifth cranial nerve through the pons to the seventh cranial 
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nerve and facial muscles [18]. Gently touching the cornea with a thin wisp of sterile 
cotton will aggravate, leading to involuntary closure of the ipsilateral eye, as well 
as the closing of the other eye (consensual response). Therefore, the accuracy of 
the technique is crucial for declaring the corneal reflex present or absent [19]. The 
absence of bilateral corneal reflex three days after ROSC in PCAS patients not 
treated with TTM strongly predicts poor outcomes (false positive rate 0–3%) [2]. 
On the other hand, in PCAS patients treated with TTM, the absence of bilateral 
corneal reflex at three days after normothermia or five days after ROSC remains 
predictive for poor outcomes with a 2.2% false-positive rate [11].

2.4 Oculocephalic reflex (Doll’s eye movement)

The intact reaction of oculocephalic reflexes (Doll’s eye movement) consists of the 
deviation of both ocular globes towards the opposite direction of cephalic turning. A 
fully conscious patient does not have oculocephalic reflex due to voluntary suppression. 
Once an unconscious PCAS patient does not express these symptoms, a lesion must 
be located at either the afferent or efferent arm of the reflex loop. The afferent arm 
includes the labyrinthine complex, vestibular nerve (CN VIII), and neck propriocep-
tors. The efferent arm includes the oculomotor nerve (CN III), trochlear (CN IV), and 
abducens nerve (CN VI), and their responsible muscles. If the connective pathways 
between the afferent and efferent arms in the pons and medulla become interrupted in 
unconscious PCAS patients, the doll’s eyes reflex will also be absent. Physicians usually 
use the lack of oculocephalic reflex together with the absence of other brainstem 
reflexes to indicate poor outcomes for withdrawal of life support in PCAS patients [20].

2.5 Vestibulo-ocular reflex

Irrigating one tympanic membrane with cold water or saline introduces ipsilat-
eral deviation of both eyes with contralateral fast phase nystagmus lasting for one to 
two minutes. While switching to hot water produces the opposite reaction: con-
tralateral deviation, with ipsilateral fast phase nystagmus. Bilateral irrigating with 
cold water or saline gives rise to a downward deviation with upward nystagmus. In 
contrast, bilateral irrigating with hot water or saline, the opposite reaction occurs. 
Patients with inflammations and traumatic lesions within the outer and middle ear 
are contra-indicated to get the vestibulo-ocular reflex test. The absence of any or 
abnormal responses indicates brainstem dysfunction [21]. The absence of vestibulo-
ocular reflex at more than 24 h after ROSC in PCAS patients not treated with TTM 
usually predicts poor outcomes with a false positive rate of 14% [22].

2.6 Myoclonus status epilepticus (MSE)

Myoclonic movement disorders occurred after hypoxic-ischemic brain injury 
in PCAS patients entitles post-hypoxic myoclonus. The post-hypoxic myoclonus is 
divided into the malignant, the so-called Myoclonus Status Epilepticus (MSE), and 
the benign, the so-called Lance Adam Syndrome (LAS), subtypes. MSE indicates 
more severe hypoxic-ischemic brain damage than LAS. Clinical features of the post-
anoxic myoclonus alone are difficult to discriminate between MSE and LAS. The 
electrophysiologic studies help enhance the accuracy of the post-anoxic myoclonus 
diagnosis [23]. The early presence of MSE within 24 h after ROSC in PCAS patients 
not treated with TTM predicts poor outcomes (false positive rate 0–8.8%) [2]. 
However, an increasing number of studies report good outcomes in PCAS patients 
with initial MSE treated with TTM [24, 25]. Therefore, the early presence of post-
anoxic myoclonus should not discourage the use of TTM in PCAS patients [25].
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3. Neurophysiologic studies

3.1 Somatosensory evoked potentials (SSEPs)

Somatosensory evoked potentials (SSEPs) consist of electronic waves that result 
from the stimulation of neural structures along the somatosensory tracks. The 
stimulation sites typically performed for prognostic SSEPs studies are the median 
nerve at the wrist. The measurement sites are the N20 wave at the contralateral 
parietal cortex, as shown in Figure 3 [26]. The artifacts and low amplitude of the 
N20 wave are the limitations of SSEP interpretation [27]. The absence of N20 wave 
within three days after ROSC in PCAS patients not treated with TTM strongly pre-
dicts poor outcomes (false positive rate 0–3.7%) [2]. An increasing number of cases 
reported initial absence but the later presence of N20 wave and good outcomes in 
PCAS patients treated with TTM [28, 29]. Series of SSEPs with the absence of N20 
wave until six days after ROSC provide better accuracy for poor outcomes in PCAS 
patients treated with TTM [30]. Visual Evoked Potentials may be as valuable as 
SSEPs for outcomes predictor in PCAS patients [31].

3.2 Electroencephalogram (EEG)

EEG has been used together with other prognostic tools for the outcomes predic-
tor in PCAS patients for more than five decades. EEG patterns, which can be found 
in PCAS patients, include iso-electric, low voltage (less than 20 milli-volts), burst 
suppression, epileptiform, continuous activity with frequency less than eight Hertz, 
and continuous activity with frequency less than eight frequency more than or 
equal to eight Hertz [32]. The first three patterns are considered malignant EEG and 
predict poor outcomes in PCAS patients [33]. However, malignant EEG alone may 
not accurately predict poor outcomes (false positive rate 0.9 to 11) (2). Reactivity 

Figure 3. 
The somatosensory evoked potential (SSEP).
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is a significant change in background EEG activity following external stimuli [34]. 
EEG reactivity following clapping or sternal rubbing indicates good outcomes in 
PCAS patients [35].

4. Neuroimaging studies

4.1 Computer tomography (CT-brain)

CT-brain is convenient to obtain early in PCAS patients, and the results are not 
disturbed by any treatment during resuscitation. CT-brain is beneficial to help 
determine some neurological causes of cardiac arrests, such as an intracranial 
hemorrhage. However, CT-brain is not sensitive enough to detect the early phase 
of hypoxic-ischemic brain injury. The apparent abnormalities such as diffuse 
cerebral edema with effacement of the basal cisterns and sulci, loss of cortical 
gray-white differentiation, bilateral hypodensities involving the deep gray nuclei or 
the arterial border zones (as shown in Figure 4), take a few days or weeks to show 
up in CT-brain [36]. The measurement of gray-white matter ratio (GWR) by the 
Hounsfield units is helpful to detect the unvisualized early cerebral edema from 
hypoxic-ischemic brain injury in CT-brain. Many previous studies have shown that 
if the GWR is low in the CT-brain, it indicates an initial sign of severe hypoxic-
ischemic brain injury and a PCAS patient’s likelihood of death [37]. The area of the 
brain used for GWR calculation is varied among studies [38]. In general, the average 
GWR of less than 1.14 is highly predictive for poor outcomes with 100% specificity 
and 100% positive predictive value [39].

CT-brain without contrast in PCAS patients with profound brain swelling from 
severe hypoxic-ischemic insults may mimic subarachnoid hemorrhage [40], as 
shown in Figure 5. Pseudo-subarachnoid hemorrhage was postulated to define this 
phenomenon [41]. The transposition of edematous brain tissue into the subarach-
noid space, transposition of cerebrospinal fluid, and distension of superficial pial 
veins should be the mechanisms of this appearance CT-brain [42]. Hyperdensity 
area suspected blood at Sylvian fissure is usually less than 35 Hounsfield unit in 
pseudo-subarachnoid hemorrhage, but more than 50 Hounsfield unit in actual 
subarachnoid hemorrhage [43–45].

Figure 4. 
CT-Brain in a patient with severe hypoxic/ischemic brain injury: diffuse cerebral edema with effacement of the 
gyri and sulci (A), loss of cortical gray-white differentiation, bilateral hypodensities involving the deep gray 
nuclei (B).
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4.2 Magnetic resonance imaging (MRI-brain)

MRI-brain is more sensitive than CT-brain for detection of early hypoxic-ischemic 
brain injury. However, MRI-brain is not as convenient as CT-brain to obtain early in 
PCAS patients [46]. Diffusion-Weighted Imaging (DWI) sequences of MRI-brain 
are the most sensitive for cytotoxic injury from hypoxic-ischemic brain insults 
[47]. Restricted water molecules within ischemic brain tissue cause DWI restric-
tion leading to hypersignal intensity appearance (Figure 6) [48]. DWI restriction 
threshold of 650 x 10−6 mm2/s in more than 9 percent of brain volume determines 
poor outcomes [49]. Diffusion Tensor Imaging (DTI) plays a significant role in white 
matter tractography with a similar principle of intercellular water diffusion in DWI 
[50]. Fractional anisotropy, a DTI parameter, is a quantitative measurement for white 
matter abnormality [51]. Quantitative whole-brain white matter fractional anisot-
ropy measured by DTI between days seven and 28 after cardiac arrest can predict 
long-term neurological outcomes [52, 53]. The fluid-attenuated inversion recovery 
(FLAIR) sequences of MRI-brain can also detect cytotoxic injury from hypoxic-isch-
emic brain insults [54]. The appearance of hypoxic-ischemic brain injury detected by 
FLAIR adds up the specificity to DWI in predicting unfavorable outcomes [55].

Figure 5. 
Pseudo-subarachnoid hemorrhage (A, arrows) in CT-brain without contrast from PCAS patients with 
profound brain swelling (B) from severe hypoxic-ischemic insults.

Figure 6. 
Imaging of a PCAS patient on five days after ROSC: CT-brain (A) showed no hypodensity lesion, DWI  
(B) showed hyperintensity in deep nuclei corresponded with hypointensity in Apparent Diffusion Coefficient 
sequences (C).
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5. Biochemical makers

Several previous studies have shown that many chemicals are secreted from 
the brain into the bloodstream and cerebrospinal fluid (CSF) following hypoxic-
ischemic brain insults, including neuron-specific enolase (NSE), S100B protein, 
Tau, neurofilament light chain, and glial fibrillary acidic protein.

5.1 Neuron-specific enolase (NSE)

NSE is an isoenzyme of the glycolytic pathway found in neurons. Hypoxic–isch-
emic brain injuries anaerobically upregulate glycolysis, producing and releasing NSE 
from damaged neurons into the bloodstream [56]. Blood NSE levels were correlated 
with the severity of hypoxic–ischemic brain injury [57]. Serum NSE is the most use-
ful biochemical marker for cardiac arrest prognostication [2, 4]. In PCAS patients 
not treated with TTM, serum NSE more than 33 μg/L between 24 and 72 h after 
ROSC predicts poor outcome (false positive rate 0–3%) [2]. The predictive value for 
poor outcome (false positive rate 0%) becomes more specific when using the cutoff 
level at more than 80 μg/L [57]. The cutoff level of serum NSE for poor outcome pre-
diction became inconclusive, ranging from 33 to 120 μg/L in PCAS patients treated 
with TTM [4]. Serial serum NSE at 24, 48, and 72 h after ROSC was proposed to 
improve outcome prediction accuracy in PCAS patients treated with TTM [58, 59].

5.2 Other biochemical markers

Other biochemical markers rather than NSE have limited data to use for prog-
nostication in PCAS patients. S100B, a glial-derived protein, more than 0.2 μg/L 
in serum within 72 h after ROSC may predict poor outcomes [60]. Serial serum 
S100B at 24, 48, and 72 h after ROSC did not add any predictive accuracy to serial 
serum NSE [61]. The accuracy of serial serum Tau, a neuron-derived protein, at 24, 
48, and 72 h after ROSC is comparable with serial serum NSE for predicting poor 
outcomes [62]. However, the role of serum Tau fragments, Tau-A and Tau-C, in 
cardiac arrest prognostication remains uncertain [63]. Serial plasma neurofilament 
light chain at 24, 48, and 72 h after ROSC with the respective cutoff value of 127, 
263, and 344 pg/ml is predictive for poor outcomes [64]. The specificity of serial 
plasma neurofilament light chain for poor outcome prediction is comparable with 
other standard methods used in the guidelines [65]. Glial fibrillary acidic protein, 
another glial-derived protein, is released into the bloodstream only in the presence 
of pathologic conditions and is more specific to acute brain damage than NSE or 
S100B [66]. Elevated serum glial fibrillary acidic protein more than 0.8 μg/L at 48 h 
after ROSC predicts poor outcomes [67].

6. Other tools

6.1 Intracerebral monitoring

Intracranial pressure (ICP) monitoring is rarely applied in PCAS patients. The 
reliable ICP monitoring techniques, including intraventricular catheter and intra-
cerebral transducer, are solely invasive. Non-invasive techniques using transcranial 
Doppler, optic nerve sheet diameter ultrasound, and jugular venous pulse pressure 
are available but have low accuracy [68]. The benefit of ICP monitoring in treat-
ment or prognostication in PCAS patients is uncertain [69]. Persistent elevated ICP 
above 20 mmHg is usually associated with poor outcomes in PCAS patients [70].
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6.2 Autonomic nervous system assessment

Sinus bradycardia during TTM treatment reflects intact autonomic response 
and predicts good outcomes in PCAS patients [71, 72]. The difference in heart rate 
during the hypothermic maintenance and normothermic phase of TTM also reflects 
the intact autonomic response to temperature change and predicts good outcomes 
[73]. Heart rate variability (HRV) is a conventional method for autonomic function 
assessment [74]. HRV is feasible to apply in PCAS patients [75]. However, the role 
of HRV in cardiac arrest prognostication remains uncertain.

6.3 Miscellaneous

The role of aging in PCAS prognostication remains controversial [76]. Advanced 
age should not be the indication for withdrawal of care in PCAS patients. Also, the 
role of the pulse index contour cardiac output monitoring system in PCAS prognos-
tication and treatment remains controversial [77].

7. Conclusions

It is essential to determine PCAS patients with poor outcomes for the decision 
of care withdrawal. There are several methods of prognostication after the car-
diac arrest that should be combined to assist in proper prediction. A multimodal 
approach using Neurological examination, Neurophysiologic evaluation, Neuro-
radiologic evaluation, and Biochemical markers is recommended to provide the 
most accuracy for poor outcome prediction. Most of the data used in prognostica-
tion studies derive from the out-of-hospital cardiac arrest subgroup. However, the 
data can be applied to other subgroups of cardiac arrest. Even though a multimodal 
approach has been used, the prognosis of most PCAS patients still falls into indeter-
minate outcomes.
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