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Chapter

Neural Circuits and Some New 
Factors Involved in Hippocampal 
Memory
Ruiying Jing, Qiujie Cai, Wen Li and Xinhua Zhang

Abstract

Humans and other primates have memory, and the hippocampus plays a critical 
role in this process. The neural circuitry is one of the structural foundations for the 
hippocampus in exerting memory function. To understand the relationship between 
the hippocampus and memory, we need to understand neural circuits. Past research 
has identified several classical neural circuits involved in memory. Although there 
are challenges with the study of hippocampal neural circuits, research on this topic 
has continued, and some progress has been made. Here, we discuss recent advances 
in our understanding of hippocampal neural circuit mechanisms and some of the 
newly discovered factors that affect memory. Substantial progress has been made 
regarding hippocampal memory circuits and Alzheimer’s disease. However, it is 
unclear whether these novel findings regarding hippocampal memory circuits hold 
promise for human memory studies. Additional research on this topic is needed.

Keywords: hippocampal, memory, neural circuits, Alzheimer’s disease

1. Introduction

Since the description by Scoville and Milner of profound anterograde amnesia in 
a patient known as H.M. following bilateral temporal lobe resection [1], the hip-
pocampus and surrounding temporal lobe structures have been extensively studied 
for their role in memory. Subsequently, our understanding of the neurophysiologi-
cal bases of hippocampal function was greatly enhanced by two breakthroughs: 
Bliss and Lomo’s finding [2] of activity-dependent long-term potentiation (LTP) 
of synaptic transmission in the hippocampus, and the discovery of hippocampal 
place cells and neurons that encoded the spatial position of an animal reported 
by O’Keefe and Dostrovsky [3]. These discoveries stimulated researchers to study 
the types of memories related to the neural circuits of the hippocampus. Here, we 
discuss neural circuits and efferent or afferent fibers related to the hippocampus, 
including the entorhinal cortex to the hippocampus [4], hippocampus to the pre-
frontal cortex [5], and vDBChATs-dNGIs [6]. We also discuss LIS1, Fos, SynCAM1, 
BDNF, Smad3, Oxytocin, and DISC1, factors that influence memory insofar as 
they relate to the development of memory and memory consolidation. With recent 
technological advances, causal investigations of specific neural circuits relating to 
the hippocampus and Alzheimer’s disease (AD) have helped us to understand the 
pathogenesis of AD and improve the clinical treatment of AD patients.
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2. Cytoarchitecture and functional characteristics in the hippocampus

The hippocampus is an elongated structure with a longitudinal axis extending 
in a C-shaped fashion, which can be functionally divided into dorsal, intermediate, 
and ventral parts [7, 8]. Along the transverse axis, it can be further divided into the 
CA1, CA3, and dentate gyrus (DG). There is a canonical trisynaptic pathway within 
the hippocampus, involving information proceeding from the entorhinal cortex 
(EC) to the DG, then to the CA3, and finally to the output node CA1 [9].

The DG has three layers, including the molecular layer, granule cell layer, and 
polymorphic cell layer [10]. The molecular layer mainly comprises dendrites of 
the dentate granule cells and the fibers of the perforant path that originate in the 
entorhinal cortex. The granule cell layer is the principal cell layer, which is largely 
composed of densely packed granule cells. The granule cell layer encloses a cellular 
region and forms the third layer of the DG, which is called the polymorphic cell 
layer. The DG plays a key role in learning, memory, and adult neurogenesis [11]. 
This region generates new neurons that are integrated into brain circuits [12].

The CA3 area is the largest in the hippocampus and forms the major route of 
information flow [13]. One of the most prominent features of the CA3 is that there 
are extensive interconnections among the principal cells via the circulating col-
lateral fiber system [14]. The axon collateral branches of CA3 pyramidal cells form 
synapses with the apical dendrites of CA3 pyramidal cells in other regions and 
spread throughout most of the region to form an associative network [15].

The CA1 area, with its widespread projections, is a key output node of the 
hippocampal memory circuit, which transfers excitatory information out of the 
hippocampus proper via direct projections to deep layers of the EC or subiculum 
[16]. The CA1 is composed of densely packed large pyramidal neurons that play an 
important role in long-term memory and related spatial tasks and behavior [17]. 
Human CA1 pyramidal neurons exhibit distinctive morphological complexities, 
which have important computational implications [18]. Many additional functions 
have been proposed for the CA1, including novelty detection, input comparison, 
and enrichment of hippocampal output, possibly by redistributing information 
from the CA3 to a larger number of output neurons [19].

3. The hippocampus and memory

Memory is the ability to use the past to serve the present or future. Without it, we 
are destined to enter the eternal present. In the twentieth century, Richard Simon intro-
duced the term “engram” to describe the neural matrix used to store and recall memo-
ries [20]. Memory is actually a continuous process between nerve cells [21]. Essentially, 
a population of neurons is activated that undergoes persistent chemical and/or physical 
changes to become an engram; the neurons reactivate the engram by cues available at 
the time of the experience [22]. The criteria and experimental strategies in the study 
discussed by Morris and colleagues to evaluate synaptic plastic memory have become 
landmarks in evaluating the importance of the existence of engrams [23, 24].

The hippocampus is important for the storage and retrieval of declarative 
memories, including memories for perception, imagination, and recall of scenes and 
events [25, 26]. Studies have shown that spatial memory is closely related to the hip-
pocampus. This is because the “place cells” in the hippocampus make the hippocam-
pus necessary for spatial memory activities [27]. If the hippocampus is damaged, 
humans may not be able to remember where they have been and how to get to where 
they want to go. For example, AD is a progressive and neurodegenerative disorder 
of the cortex and hippocampus, characterized by progressive cognitive decline and 
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a prominent loss of hippocampal-dependent memory [28]. Degeneration of basal 
forebrain cholinergic neurons is a hallmark of AD. Its function depends on the nerve 
growth factor (NGF), which is transported retrogradely from the synthetic sites in 
the cortex and hippocampus [29]. Studies have found that patients with Parkinson’s 
disease (PD) also experience a variety of nonmotor symptoms, the most important 
being cognitive impairment that in many cases can lead to dementia [30]. There is 
also evidence that the CA1, CA2–3, CA4-DG, and the subiculum are involved in the 
poor neurocognitive scores of PD memory caused by impairment. Furthermore, 
because the CA3 is essential for recall, it is expected that atrophy of the CA3 subre-
gion will also affect the episodic memory recollection process in PD patients.

4.  Neural circuits and neurite connections involved in hippocampal 
learning and memory

4.1 The Papez circuit

In the 1930s, Papez et al. discovered that there was a major circuit in the lim-
bic system, called the Papez circuit, involving hippocampus→fornix→papillary 
body→papillary thalamic tract→prethalamic nucleus→cingulate gyrus→ 

hippocampus [31, 32] (Figure 1). The hippocampus is the central part of this circuit. 
This circuit acts as the neural basis for emotional expression. It has been shown that 
axons transmitting emotional impulses originate from the hippocampus and are 
projected to the thalamus through the papillary body, where physiological emotional 
effects such as changes in heartbeat, respiration, and body temperature are produced, 
and nerve fibers are projected to the cingulate gyrus and the frontal lobe of the cere-
bral cortex after cell replacement to produce a clear emotional experience. Finally, 
the signal returns to the hippocampus through the projection of the cortex, and then 
emotional memory will be generated. Later studies have shown that the Papez circuit 
is also an important brain structure closely related to learning and memory [33, 34]. 
Therefore, if this circuit is damaged, it will lead to the amnestic syndrome, and dif-
ferent lesions will produce different forms of memory impairment.

4.2 The trisynaptic circuit

The trisynaptic circuit transmits signals between the entorhinal area and the 
hippocampus structure (Figure 2). This circuit first starts in the cortex of the 

Figure 1. 
The Papez circuit.
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entorhinal area, where neuronal axons form a perforating circuit and end in the DG 
granular cell dendrites [35]. The axons of the DG granular cells then form mossy 
fibers projecting to the hippocampal CA3 area, where they form a second synaptic 
connection with the dendrites of pyramidal cells. The third synaptic connection 
occurs between the axons of pyramidal cells in the CA3 area and dendrites of pyra-
midal cells in the CA1 area, and then the CA1 pyramidal cells transmit the axons to 
the entorhinal area. The trisynaptic circuit is, therefore, closely related to and forms 
an important foundation for learning and memory.

4.3 The entorhinal cortex (EC)

The EC is generally perceived as a major input and output structure of hip-
pocampal formation and contributes to cognitive processes and memory formation 
[36]. The EC is subdivided into two components, the lateral EC (LEC) and medial 
EC (MEC), according to the differential distribution of EC projections to the DG 
[37]. In 1893, Santiago Ramon y Cajal [38] described two classical pathways from 
the EC to the hippocampus (Figure 3). One is the long-range pathway: EC layer 
2 → DG → CA3 → CA1 area; the other is the short-range or direct pathway: EC layer 
3 → CA1 area. However, it is unclear how the hippocampal neurons form specific 
connection pathways to transmit different information, and how they participate 
in hippocampal learning functions. Recently, a study [4] found a direct lateral 
EC-dorsal CA1 (dCA1) circuit that was critically involved in olfactory associative 
learning. Studies have shown that excitatory pyramidal cells in the hippocampal 
CA1 region have highly variable molecular, morphological, and electrophysiological 

Figure 3. 
Pathways from the entorhinal cortex to the hippocampus.

Figure 2. 
The trisynaptic circuit.
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characteristics along the dorso-ventral [39, 40], proximal-distal [40–42], and 
radial (superficial-deep) axes [39, 40, 43–47]. Subdivisions of deep and superficial 
pyramidal cells in the CA1 have been recognized for many years, especially along 
the radial axis. Deep and superficial pyramidal cells are generated at different times 
and express different genes [39, 40, 43, 48]. In vivo recording studies have reported 
different spiking patterns between these two sublayers; deep cells are more likely to 
burst and exhibit more spatially tuned firing than superficial cells, and they spike 
differentially in the hippocampal theta rhythm and during sharp-wave ripple activi-
ties [46]. Further study revealed that inhibition of the excitatory synaptic transmis-
sion from the LEC to CA1 complex pyramidal cells, or the discharge activity of the 
CA1 complex pyramidal cells using optogenetic methods, significantly delayed the 
olfactory association during mice learning [49]. The optogenetic method mentioned 
above is injecting NpHR or Arch into some mice’s hemispheres and then using yellow 
illumination to identify the mice that include NpHR or Arch. Then researchers can 
make a comparison between special mice and normal mice. The study also implanted 
optetrodes into mices’ dCA1 to record the olfactory-related firing activities of neu-
rons in the CA1 region of the hippocampus, it was found that the firing of complex 
pyramidal cells established different preferences for odor cues during learning 
[49]. These experimental findings revealed that there was a specific neural pathway 
involved in brain-related learning in the classic circuit from the EC to hippocampus 
involving cells, synaptic connections, learning behaviors, and neural discharges.

4.4 The prefrontal cortex

The hippocampus and the prefrontal cortex are closely related to advanced 
cognitive functions of the brain such as learning and memory [50]. Previous studies 
showed that neural projections from the hippocampus to the prefrontal cortex had 
the characteristics of a single synapse, were unidirectional, and displayed ipsilat-
eral projections [51]. In brief, the hippocampus-prefrontal lobe projection mainly 
originates from the subiculum of the ventral hippocampus and the CA1 and ends 
in the medial, orbitofrontal, and lateral parts of the prefrontal lobe (Figure 4). 
The projection from the prefrontal lobe to the hippocampus is indirectly from the 
prefrontal lobe to the cingulate gyrus, parahippocampal gyrus, entorhinal cortex, 
then to the hippocampus [52], which transmits information from prefrontal lobes 
to important nuclei of the hippocampus [53, 54]. There are also reports that some 
nerve fibers in the prefrontal lobe project directly to the hippocampus, but the 
number was low [55, 56].

Figure 4. 
The pathway from the hippocampus to the prefrontal cortex.
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Humans are faced with different environments every day and need to make the 
right choices through learning and memory in order to find their goals. A recent 
study [5] found that when an animal runs a specific route and then stops to rest 
or sleep, place cells [3] are repeatedly released in the same (forward) or opposite 
(reverse) order as when it ran, and at a faster rate than animals’ running. This 
phenomenon is called memory replay, and this replay has a very important role in 
the prefrontal cortex circuit which helps the animal remember the path it has taken 
in the past and makes the right choice among multiple alternative paths.

To understand hippocampus-prefrontal cooperative activities during memory 
replay and whether memory replay affects animal learning and decision-making, 
researchers trained rats to learn to find their way in a W-maze [57]. In this task, the 
rat needs to learn two different rules to get the reward, a simple task and a complex 
task—in the simple task, the animal only needs to remember the beginning and 
end positions, then they can successfully find and get the reward; in the complex 
task, the animal needs to remember the path it has just run and then select the path 
it has not passed yet among the two available paths to get a reward, this process 
requires working memory. In this task, most of the memory replay occurred when 
the animals stayed at the reward site, had just completed a path, or were about to 
choose the next path [58–61]. The study found that the hippocampus was involved 
in the processes of both reverse and forward replay. Further studies analyzed 
whether the content of the hippocampus forward and reverse memory replays 
changed with learning. They found that the content of forward and reverse replay 
is different in the different learning stages. In the early stage of learning, reverse 
replay preferred to the paths that the animal had actually passed before, and thus 
researchers could accurately predict the animal’s past choices from the content of 
the hippocampal reverse replay. In contrast, forward replay referred to the pathway 
that the animal will choose next, but this correspondence does not become apparent 
until later in learning. The dynamic processes of hippocampal reverse and forward 
replays in the learning process showed that reverse memory replay was very impor-
tant for animals to remember the past path for learning, and the forward replay was 
very important for action planning after zoological learning [62, 63]. Besides the 
W-maze, we can also use the Barnes maze [64] to get the same conclusion. In sum-
mary, this study first distinguished the different functions of hippocampal reverse 
and forward memory replays in spatial learning memory tasks. Reverse memory 
replay helps to weigh and remember the path to the goal in the past, while forward 
memory replay is important for planning actions in the future. Moreover, this 
study for the first time quantitatively described the replay of cooperative memory 
between the prefrontal cortex and the hippocampus and confirmed its association 
with animal behavioral choices, to suggest a possible mechanism for the prefrontal 
cortex to participate in spatial learning.

4.5 vDBChATs-dNGIs

Acetylcholine modifies neuronal excitability, alters presynaptic neurotransmit-
ter release, and coordinates the firing of groups of neurons [65–67]. Recently, 
researchers used optogenetics, single synaptic tracing, and electrophysiological 
recording techniques to show that cholinergic neurons in the vertical diagonal band 
of Broca (vDBChATs) and newly generated immature neurons (NGIs) in the dorsal 
hippocampus (dNGIs) of adult mice formed a single synaptic connection (vDB-
ChATs-dNGIs synaptic connection) (Figure 5); this synaptic transmission was 
essential for the survival of dNGIs, andthe vDBChATs directly innervate dNGIs. 
This circuit is mediated by muscarinic cholinergic receptor 1 (M1) on neonatal neu-
rons [68]. In this study, researchers injected a kind of virus that includes mCherry 
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into the vDB region of some mice. Three days later, in the dDG, mCherry was 
exclusively expressed in a group of granular cells that were predominately located in 
the inner one-third of the granule cell layer. Most of these mCherry+ cells expressed 
doublecortin (DCX, mCherry+DCX+). DCX has been widely established as a 
marker of immature neurons [69], so mCherry+DCX+ cells are one kind of newly 
generated NGIs in the dNGIs mentioned above. The study found that using opto-
genetic technology to enhance vDBChATs-dNGIs synaptic transmission improved 
spatial learning memory. Furthermore, in the AD transgenic mouse model, the 
use of optogenetic technology to enhance the synaptic transmission of the neural 
circuit saved the spatial memory loss of the model mice [70].

5. Factors affecting hippocampal learning and memory

5.1 LIS1

An interesting candidate molecule supporting synaptic integrity is LIS1, which 
is related to lissencephaly [71, 72]. LIS1 deficits in specific hippocampal neuron 
populations significantly changed the excitatory synaptic transmission in adult-born 
Lis1+/− DG projection neurons and dendritic spine density and excitatory synaptic 
aggregation on hippocampal CA1 projection neurons that lost Lis1 expression from 
postnatal 20 days [73, 74]. Moreover, the loss of LIS1 after childhood destroys the 
structure and cell composition of the hippocampus, the connection with other brain 
regions, and the dependence on the cognition of hippocampal circuits [75, 76].

5.2 Fos

Increasing evidence has shown that sparse neuron groups distributed in many 
areas of the brain constitute the neural matrix of various behaviors [22, 77]. One 
sign of these active neuron sets is the instantaneous expression of a group of genes 
called immediate early genes, one of which encodes the Fos transcription factor, 
composed of eight members with at least partial functional redundancy (Fos, Fosb, 
c-Fos, Fosl1, Fosl2, Jun, Junb, and Jund) [78–81]. A long-standing hypothesis is that 
once activated by a significant stimulation, the neurons expressing Fos will undergo 
modification, which is helpful to encode specific experience characteristics, so 

Figure 5. 
The vDBChATs-dNGIs circuit.
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that even if a subset of these neurons are subsequently reactivated, it is enough to 
trigger memories of the initial experience [82]. Compared with non-Fos-activated 
neurons, Fos-activated neurons in the hippocampal CA1 region have been shown to 
stably encode context information [77].

5.3 SynCAM 1

The expression of the synaptic cell adhesion molecule, SynCAM 1, in forebrain 
neurons, which is also known as a cell adhesion molecule 1 (Cadm1) and Necl-2, is 
a candidate protein used to evaluate the role of different regions of synaptic tissue 
proteins [83]. SynCAM 1 belongs to four homophilic and heterophilic membrane 
protein families of the immunoglobulin superfamily, which are expressed at the peak 
of synaptic formation and exist until adulthood. This marks the edge of excitatory 
postsynaptic sites, which is sufficient to induce functional excitatory presynaptic 
specialization [84]. Studies on knockout and overexpression of the hippocampal 
CA1 region in mice have shown that SynCAM 1 is necessary to promote excitatory 
synaptic input of excitatory neurons in vivo [85]. SynCAM 1 also accelerated synapse 
maturation, which improved the stability of newly formed synapses and in turn 
increased the likelihood of survival of adult-born neurons [86]. SynCAM 1, there-
fore, regulates the input of excitatory mossy fibers into the interneurons and major 
neurons in the hippocampal CA3 region to balance network excitability [87].

5.4 Brain-derived neurotrophic factor (BDNF)

BDNF is one of the most widely distributed and studied neurotrophic factors in 
mammalian brains. It has a direct impact on memory through various mechanisms. 
BDNF regulates many different cellular processes involved in the maintenance and 
development of normal brain function, by binding and activating the TrkB, which 
is a member of the larger family of Trk receptors [88]. For example, during embryo-
genesis, BDNF–TrkB signaling promotes the differentiation of cortical progenitor 
cells and then promotes differentiation of cortical progenitor cells into neurons 
(i.e., neurogenesis) [89]. The single nucleotide polymorphism of BDNF most 
likely affects memory through long-term potentiation (LTP), which is important 
for memory persistence [90]. In the human BDNF gene, a single nucleotide poly-
morphism leads to an amino acid substitution of valine (Val66Val) to methionine 
at amino acid residue 66 (Val66Met), which changes the secretion of the mature 
peptide. This alteration has been related to cognitive deficits among carriers [91]. 
The effects of BDNF on LTP are also mediated by the TrkB receptor. Especially in 
the hippocampus, this neurotrophin is thought to act on both pre and postsynaptic 
compartments, modulating synaptic efficacy, not only by changing the presynaptic 
transmitter release but also by increasing postsynaptic transmitter sensitivity to 
induce a long-lasting increase in synaptic plasticity [92, 93].

In the elderly with normal cognition, the presence of BDNF Val66Met is associ-
ated with greater hippocampal atrophy and faster cognitive decline [94]. BDNF 
polymorphism is associated with larger DG volumes within the anterior hippocampus 
(head) in Met-carriers compared to Val/Val homozygotes. The total hippocampal 
volume predicted the performance on visuospatial memory tasks in Met-carriers [95]. 
Although little is known about the process of memory consolidation, it is known that 
a hippocampal BDNF-positive autoregulatory feedback loop is necessary to mediate 
memory consolidation via the CCAAT-enhancer-binding protein β (C/EBPβ) [96].

BDNF also mediates the influence of many factors on memory. First, 
TLQP62, which is a neuropeptide derived from the neurotrophin-inducible VGF 
(nonacronymic) protein, is capable of inducing increased memory in the mouse 
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hippocampus by promoting neurogenesis and synaptic plasticity through BDNF 
and its receptor tyrosine receptor kinase B (TrkB) [97, 98]. When TLQP62 promotes 
BDNF expression, which in turn activates the BDNF/TrkB/CREB (cAMP response 
element-binding protein) pathway that upregulates VGF expression, there is a VGF-
BDNF regulatory loop that appears to regulate neurogenesis [99]. In addition, as is 
well known, exercise can promote the formation of memory, which is also insepa-
rable from BDNF levels. Lactate, a metabolite released during exercise by muscles, 
crosses the blood–brain barrier and accumulates in the hippocampus, where it 
promotes the formation of learning and memory by inducing BDNF expression 
through silent information regulator 1-dependent induction of the PGC1a/FNDC5 
pathway [100]. In addition, the increase of the microglia-dependent proBDNF/
BDNF ratio following persistent inflammatory pain leads to cell death of the CA1 
and DG neurons. Then, this subsequently causes a cognitive deficit in learning and 
spatial memory functions [29]. Furthermore, in postmenopausal women, the lower 
plasma BDNF levels are associated with significantly worse memory performance 
and changes in the function of the working memory circuit [101].

5.5 Smad3

Smad3 is an intracellular molecule involved in the transforming growth factor-β 
signaling cascade, which is strongly expressed by granulosa cells of the DG of adult 
mice [102]. Smad3 deficiency promotes dopaminergic neurodegeneration and 
α-synuclein aggregation in substantia nigra striatum [103]. Endogenous Smad3 
signaling plays important role in neurogenesis and LTP induction of adult DG, 
which are two forms of hippocampal plasticity related to learning and memory, and 
which decrease with age and neurological diseases [102].

5.6 Oxytocin

Oxytocin is a brain plasticity regulator of neuronal growth factors, cytoskeleton 
proteins, and behavioral changes, and is important for short-term hippocampal-
dependent memory [104] and regulates neuronal excitability, network oscillatory 
activity, synaptic plasticity, and society memory [105]. In the SH3 domain and 
ankyrin repeat-containing, the protein 3 (SHANK3) deficient model related to 
autism, abnormal neuronal morphology and altered synaptic protein levels are 
recovered by oxytocin [106]. Early changes of the oxytocin signal may interfere 
with the maturation of neurons and could have both short-term and long-term 
pathological consequences [107]. At the molecular level, neurodevelopmental dis-
orders include numerous changes in cytoskeleton rearrangement and neurogenesis, 
leading to various synaptic diseases [108].

5.7 Disrupted-in-schizophrenia 1 (DISC1)

DISC1 is a strong candidate susceptibility gene for a series of neuropsychiatric 
diseases [109, 110]. Reports of both DISC1 point mutations (L100P and Q31L) 
heterozygotes and DISC1 transgenic mice [111, 112] found that the combination of 
adolescent isolation (from 5 to 8 weeks) and DISC1 L100P mutation damaged the 
social memory of adults. In addition, adolescent isolation aggravates adult neu-
rogenesis defects in the hippocampus of L100P mice, but has no similar effect on 
WT mice, and leads to long-term continuous changes in synaptic transmission and 
plasticity of the hippocampal network of DISC1 L100P mice [113, 114]. There is also 
a possible sex-dependent effect of DICS1. In the test of significant gene–environ-
ment interactions in the amphetamine-induced anxiety in male animals and the 
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amphetamine-induced locomotion in female animals, we surprisingly found that 
gene–environment interactions improved social memory in not only male but also 
female animals, but JIA alone disrupted spatial memory and recognition memory 
only in male animals [115].

6. Expectations

The hippocampus, as an important part of the limbic system involved in learn-
ing and memory, has been extensively studied for many years. With increased 
aging in China, the incidence of AD, a progressive degenerative brain disease, is 
increasing every year. The main clinical symptoms are memory loss and cognitive 
impairment. Entropic cortex to the hippocampus, hippocampus to the prefrontal 
cortex, and vDBChATs-dNGIs with the hippocampus as the central link may play 
important role in spatial memory and declarative memory. Moreover, the damage 
of any link in the cycle leads to the loss of recent memory. By studying the hippo-
campal memory circuit and various influencing factors, we hope to improve spatial 
memory and declarative memory by intervening in every link of the hippocampal 
memory circuit. At the same time, we can provide new ideas and methods for the 
treatment of memory impairment-related diseases such as AD, which are helpful 
to the recovery and improvement of memory function in the damaged hippocam-
pus. Considering the influence of BDNF and other factors on the memory circuit 
and the effects of various diseases related to memory impairment, we should also 
extensively study some influencing factors as intervention targets for Huntington’s 
disease, depression, schizophrenia, bipolar disorder, and other diseases. These stud-
ies can provide prevention strategies and treatment methods for memory decline 
caused by force majeure factors such as sex and age. Furthermore, studies on its 
influencing factors will open other research avenues.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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