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Introductory Chapter: Protein 
Kinases as Promising Targets for 
Drug Design against Cancer
Rohit Bhatia and Rajesh K. Singh

1. Introduction

Cancer is one of the most dreadful and highly prevailing life-threatening  
ailments of the modern age. Despite a great advancement in the health sector, still it 
is the leading cause of mortality around the globe [1, 2]. The continuous research is 
in progress for several years to design therapeutic agents against cancer with greater 
efficacy, specificity, and least toxicity. For the past two decades, the protein kinase 
family has been greatly focused by the researchers for drug development against 
cancer. There are about 538 protein kinase enzymes that are encoded by the human 
genome, which function mainly by transferring a γ-phosphate group from the ATP 
site toward amino acid residues such as serine, threonine, or tyrosine residues [3–5]. 
It is evident that several members of this protein kinase family have tendencies to 
initiate and develop human cancers [6, 7]. The recently developed small molecules 
as potential kinase inhibitors in the therapy of a variety of cancers have witnessed 
the significance of kinases as a target against cancers. Moreover, these are in second 
place as a target for drugs after the G-protein-coupled receptors [8]. Protein kinases 
are associated with the promotion of cell proliferation, migration, and survival and, 
when they are dysregulated/overexpressed, lead to oncogenesis [9, 10]. During the 
past decades, it has been observed that human malignancies are largely associated 
with modulation or dysfunction of protein and lipid kinases due to the deactivation 
of phosphatases resulting from chromosomal abnormalities or mutations [11, 12]. It 
is worth notable that the anti-inflammatory kinases such as EGFR, VEGFR, BCR-
ABL, ALK, KIT, HER2, and several others are involved in the development of solid 
cancers including chronic lymphoid leukemia, lymphoblastic leukemia, mantle cell 
lymphoma, myelogenous lymphoma, and several other types of cancers [13]. These 
kinases show a pro-tumor effect associated with loss of normal kinase functioning 
followed by mutations and associations with high-regulatory T cell pathogens [14]. 
These pathogens ultimately activate the anti-inflammatory kinases and initiate 
the development of solid cancers. The role of some kinases in the development of 
cancers has been depicted in Figure 1.

Kinase amplifications are able to play diagnostic, prognostic, therapeutic as well 
as biomarker roles in cancer [15]. The amplifications of EGFR have been well seen 
in a variety of cancers including non-small cell lung cancer, colorectal cancer, blad-
der cancer, pancreatic, and breast cancer, whereas ERBB2 amplifications are associ-
ated with esophageal, gastric, breast, and ovarian cancers [16–18]. Overexpression 
of EGFR, ERBB2, EPHA2, and AKT2 are the best examples of biomarkers for 
cancers [19, 20].
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2.  Progress in the development of protein kinase inhibitors against 
cancer

In the past two decades, there has been a remarkable progress made in the drug 
development process involving protein kinases as a target. The first FDA approved 
drug imatinib was launched in 2001 against chronic myeloid leukemia which 
inhibits Abelson (ABL) tyrosine kinase [21]. It was proved to be a blockbuster drug 
with polypharmacological effects. From 2001 to 2021, in a span of 20 years, there 
has been an extraordinary progress made with the discovery of more potent and 
specific small-molecule kinase inhibitors and about 70 new drugs have got approval 
in this time span [22]. These drugs have left a promising positive impact to improve 
the drug design strategies and therapy to treat the cancers and conditions associated 
with it. Table 1 comprises the details of kinase inhibitor drugs approved by the FDA 
from 2015 to 2021 [23–58].

The modern strategies adopted for the development of selective kinase inhibi-
tors include synthesis along with structure-based design approaches facilitated 
by molecular docking, crystallographic studies, and NMR spectroscopy [59]. It 
is surprising that alone USA has filed more than 10 thousand patent applications 
for kinase inhibitors since 2001. Beyond the discovery of small-molecule kinase 
inhibitors, kinase-targeted antibodies have also been postulated against differ-
ent cancers such as cetuximab (colorectal, head, and neck cancer), trastuzumab 
(breast cancer) [60]. Various small-molecule kinase inhibitors have different 
inhibitory modes and on the basis of these modes, these inhibitors have been 
divided into five categories (Figure 2). Type I inhibitors contain a heterocyclic 
moiety in their structure to occupy purine binding pocket and serves as a template 
for side chains to occupy the hydrophobic region. These inhibitors are basically 
ATP-binding site competitors and mimic the purine ring of ATP. These bind to 
the active conformational side and cause alteration of structural conformation 
[61]. Type II inhibitors target the inactive conformation and occupy the catalytic 
region of the unphosphorylated inactive conformation. These kinases explore the 
new binding patterns in the hydrophobic pocket associated with conformational 
changes of phenylalanine residue of the Asp-Phe-Gly (DFG) system [62]. Type III 
inhibitors are regarded as allosteric inhibitors and exhibit their action via binding 
to the outer catalytic ATP-binding site and alter kinase activity in an allosteric 

Figure 1. 
Impact of protein kinases in development of cancer.
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S. No. Drug Brand 

name

Year of 

approval

Inhibitory 

target

Indication References

1. Palbociclib Ibrance 2015 CDK4/6 

inhibitor

Advanced metastatic 

breast cancer

[23]

2. Lenvatinib Lenvima 2015 VEGFR1/2/3 

inhibitor

Progressive/

differentiated thyroid 

cancer

[24]

3. Cobimetinib Cotellic 2015 MEK inhibitor Melanoma [25]

4. Osimertinib Tagrisso 2015 EGFR 

inhibitor

Non-small cell lung 

carcinomas with 

specific mutations

[26]

5. Necitumumab Portrazza 2015 EGFR 

antibody

Advanced (metastatic) 

squamous non-small 

cell lung cancer

[27]

6. Alectinib Alecensa 2015 ALK inhibitor Non-small cell lung 

cancer

[28]

7. Olaratumab Lartruvo 2016 PDGFRA 

inhibitor

Soft tissue sarcoma [29]

8. Ribociclib Kisqali 2016 CDK4/6 

inhibitor

Advanced breast cancer [30]

9. Brigatinib Alunbrig 2017 ALK and 

EGFR 

inhibitor

Non-small cell lung 

cancer

[31]

10. Copanlisib Aliqopa 2017 PI3K inhibitor Relapsed follicular 

lymphoma

[32]

11. Abemaciclib Verzenio 2017 CDK4/6 

inhibitors

Advanced metastatic 

breast cancer

[33]

12. Acalabrutinib Calquence 2017 BTK inhibitor Mantle cell lymphoma [34]

13. Binimetinib Mektovi 2018 MEK inhibitor Unresectable or 

metastatic melanoma

[35]

14. Encorafenib Braftovi 2018 MEK inhibitor Unresectable or 

metastatic melanoma

[36]

15. Duvelisib Copiktra 2018 PI3K inhibitor Refractory chronic 

lymphocytic leukemia, 

small lymphocytic 

lymphoma, and 

follicular lymphoma

[37]

16. Dacomitinib Vizimpro 2018 EGFR 

inhibitor

Metastatic non-small 

cell lung cancer

[38]

17. Lorlatinib Lorbrena 2018 ALK and ROS1 

inhibitor

Metastatic non-small 

cell lung cancer

[39]

18. Gilteritinib Xospata 2018 AXL inhibitor Relapsed or refractory 

acute myeloid leukemia

[40]

19. Erdafitinib Balversa 2019 FGFR 

inhibitor

Locally advanced or 

metastatic bladder 

cancer

[41]

20. Alpelisib Piqray 2019 PI3K inhibitor Breast cancer [42]

21. Pexidartinib Turalio 2019 inhibitor of 

CSF1, KIT, and 

FLT3

Symptomatic 

tenosynovial giant cell 

tumor

[43]
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way. Type IV kinase inhibitors are regarded as substrate-directed inhibitors and 
undergo reversible binding outside the ATP pocket. These are non-competitive 
inhibitors and do not compete with ATP [63]. Type V inhibitors are covalent 
inhibitors and bind through an irreversible covalent bond to catalytic nucleophilic 
cysteine active site of the enzyme.

S. No. Drug Brand 

name

Year of 

approval

Inhibitory 

target

Indication References

22. Entrectinib Rozlytrek 2019 inhibitor of 

ALK, ROS1, 

TKI, and 

TRKA/B/C

Metastatic non-small 

cell lung cancer

[44]

23. Zanubrutinib Brukinsa 2019 BTK inhibitor Mantle cell lymphoma [45]

24. Avapritinib Ayvakit 2020 PDGFRA 

receptor kinase 

inhibitor

Metastatic 

gastrointestinal stromal 

tumors

[46]

25. Selumetinib Koselugo 2020 BRAF kinase 

inhibitor

Neurofibromatosis 

type I

[47]

26. Tucatinib Tukyssa 2020 EBBR2 

inhibitor

Metastatic HER2-

positive breast cancer

[48]

27. Pemigatinib Pemazyre 2020 FGFR2 

inhibitor

Advanced/metastatic 

or surgically 

unresectable 

cholangiocarcinoma

[49]

28. Capmatinib Tabrecta 2020 MET kinase 

inhibitor

Metastatic non-small 

cell lung cancer

[50]

29. Selpercatinib Retevmo 2020 RET receptor 

kinase

Non-small cell lung 

cancer, metastatic 

medullary thyroid 

cancer, or advanced 

or metastatic thyroid 

cancer

[51]

30. Ripretinib Qinlock 2020 PDGFRA 

and KIT 

receptor kinase 

inhibitor

Gist [52]

31. Pralsetinib Gavreto 2020 RET receptor 

kinase 

inhibitor

Thyroid cancer, non-

small cell lung cancer

[53]

32. Margetuximab Margenza 2020 HER2 inhibitor HER2-positive breast 

cancer

[54]

33. Trilaciclib Cosela 2021 CDK4/6 

inhibitor

Extensive-stage small 

cell lung cancer

[55]

34. Infigratinib Truseltiq 2021 FGFR2 

inhibitor

Cholangiocarcinomas 

with FGFR2 fusion 

proteins

[56]

35. Tepotinib Tepmetco 2021 Met Kinase Met mutation-positive 

non-small cell lung 

carcinoma

[57]

36. Tivozanib Fotvida 2021 VEGFR2 

inhibitor

Renal cell carcinoma [58]

Table 1. 
FDA-approved kinase inhibitors against various cancers during 2015–2021.
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From a clinical point of view, it has been observed that kinase target anticancer 
therapies have more success rate than the other cancer therapies. But it is also 
evident in the past few years EGFR/VEGF-targeting molecules have given unsat-
isfactory results [64, 65]. Instead, success stories have been seen with molecules 
targeting kinase B, phosphatidylinositol kinase delta and gamma, kinase I, tyrosine 
kinase, nerve growth receptors Wee 1-like kinases in Phase 1 clinical trials. The 
latest explored targets Aurora kinases have led to the development of two inhibi-
tors palbociclib and ribociclib which have passed phase III clinical trials [66]. The 
modern developments on kinases are following the precision therapy that has been 
based upon the genomic data. The detailed genetic studies on tumors and drivers 
involved in the generation of tumors have resulted in tremendous advantages for 
patients who need effective therapy.

3. Investigations on kinase inhibitory potentials of natural products

The continuous research is in progress for several years to design synthetic and 
natural chemotherapeutic agents against cancer with selective cytotoxic efficacy 
and minimum toxicity [67–70]. The contribution of molecules from natural sources 
in kinase-mediated anticancer research cannot be ignored. The kinase modulating 
properties of natural molecules has brought a new paradigm in the screening of 
kinase inhibitors. Toward this direction, small molecules like polyphenols have 
revealed tremendous potentials to bind with kinases like tyrosine kinase fol-
lowed by alteration of phosphorylation leading to modulation of multi-signaling 
mechanisms. The explored natural compounds in this direction are curcumins, 
resveratrol, quercetin, cyrysitin, myricetin, luteolin, apigenin, anthocyanin, 

Figure 2. 
Inhibitory patterns of different kinase inhibitors.
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genistein, epigallocatechin gallate, fisetin, astaxanthin, and tetrahydrocurcumins 
and many more. Polyphenols such as resveratrol [71], quercetin [72], curcumin [73] 
and tea extracts [74] have revealed promising EGFR inhibition [75]. Curcumin and 
chrysin have receptor RON blocker activity in tumor cells [76, 77]. Natural products 
have also shown Abl, JAK-2, c-Met, c-SRC, and serine kinase inhibitory potentials 
[78–80]. Resveratrol also has modulatory effects on the expression of Akt in breast, 
uterine, skin, and prostate cancers [81, 82]. It binds to the ATP site competitively as 
well as reversibly. Myricetin has reported inhibition of cell proliferation by bind-
ing to Akt. Beyond these significant activities, several reports in the literature are 
available evidencing the inhibitory and modulatory effects of natural products on 
mTOR, CDK, Aurora kinases, B-raf kinases, PI3K [83–85], etc. Many natural mol-
ecules bind directly to the oncogenic kinases and alter the cell signaling involved 
in tumor progression by modifying the phosphorylation process. Several other 
classes of natural compounds are under investigation for their kinase-modulating 
activities.

4. Conclusions and future perspectives

The therapeutic implication of protein kinases against a variety of cancers is well 
known from past decades. Also, it is well established that deregulation, mutations, 
and overexpression of these kinases are important triggers for the development 
of cancers. Several kinase inhibitors are already reported who prevent cancer by 
modulating the protein kinases by following different mechanisms and several 
inhibitors are under investigation. Despite tremendous advancements in kinase 
drug development, still, a large number of kinases are unexplored. It is also worth 
notable that most of the available kinase inhibitors work through binding to ATP 
sites. A great challenge in clinical implication of kinase inhibitors is the develop-
ment of drug resistance of cancer stem cells. It develops due to the loss of activity 
of some important kinases. Therefore, strategies to overcome this resistance are the 
requirement of the hour. In the therapeutics of cancer, the kinase inhibitors have 
been proven to be well tolerated as compared to the traditional therapies.

Abbreviations

ABL Abelson murine leukemia viral oncogene
Abl Abelson murine leukemia
Akt protein kinase B
ALK anaplastic lymphoma kinase
BRAF proto-oncogene
BTK Bruton agammaglobulinemia tyrosine kinase
CDK cyclin-dependent kinase
c-Met c-MET proto-oncogene
c-SRC proto-oncogene tyrosine-protein kinase
CTK cytoplasmic tyrosine kinase
EGFR epidermal growth factor receptor
ERBB2 V-Erb-B2 avian erythroblastic leukemia viral oncogene homolog
FGFRs fibroblast growth factor receptors
HER-2 human epidermal growth factorreceptor-2
JAK2 Janus kinase 2
MAPK mitogen-activated protein kinases
MEK MEK kinase gene
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