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Chapter

Online Estimation of Terminal
Airspace Sector Capacity from
ATC Workload
Majeed Mohamed

Abstract

Neural Partial Differentiation (NPD) approach is applied to estimate terminal
airspace sector capacity in real-time from the ATC (Air Traffic Controller)
dynamical neural model with permissible safe separation and affordable workload.
A neural model of a multi-input-single-output (MISO) ATC dynamical system is
primarily established and used to estimate parameters from the experimental data
using NPD. Since the relative standard deviations of these estimated parameters are
lesser, the predicted neural model response is well matched with the intervention of
ATC workload. Moreover, the proposed neural network-based approach works well
with the experimental data online as it does not require the initial values of model
parameters that are unknown in practice.

Keywords: ATC (Air Traffic Controller) workload, terminal airspace capacity,
estimation and dynamic modeling, neural partial differentiation, output error
method

1. Introduction

Accurate estimation of the air traffic capacity is a pillar of efficient air traffic
management, which provide efficient use of airspace resources and controlling
resources to meet the air traffic demand [1]. Suppose trajectories of all flights and
the capacity of all resources are known with certainty for some planning horizon. In
that case, there exist computationally feasible approaches to managing the traffic
that minimizes overall delay cost [2–6]. But the uncertainty makes traffic flow
management difficult. At any given time, the weather is the driving force in deter-
mining the number of flights in the airport or sector in the aspect of capacity. Air
traffic controllers (ATC) confirm airspace’s safe operation by ensuring all aircraft
under their authority maintain safe separation with the assistance of technology and
international rules and regulations [7]. The role of ATC is becoming more crucial as
air traffic growth increases. So traffic growth will introduce more aircraft opera-
tions in the busy ATC sectors with high air traffic density. The significant effect of
such an increase in air traffic has been the rise in flight delays in the region. As a
result, an economic impact of flight delays is included in the safe operation of
airspace. Individual aircraft delay is increased whenever air traffic demand nears
capacity. Therefore, unacceptable delays result from exceeding progressive hourly
traffic demands to the hourly capacity of the air traffic. The aircraft delays will not
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decrease even if the hourly demand is less than the hourly capacity for the demand
within a portion of the time interval that exceeds the capacity during that interval.

In the en-route environment, the airspace is segmented into air traffic control
ATC sectors, the geographical volume of airspace. By keeping safety as a priority in
operation, the capacity of an ATC sector can be defined as the maximum number of
aircraft that are controlled in a particular ATC sector in a specified period while still
permitting an acceptable level of controller workload. For more clarity, we need to
realize i) What is meant by the controller workload? ii) How is this controller
workload measured? iii) What is the acceptable level of controller workload? i.e. the
threshold value at capacity. Thus, the workload is a process or experience that
cannot be seen directly but must be understood from what can be seen or measured.
In the present scenario of air transport, air traffic is increasing rapidly and becomes
airspace congestion. Airspace capacity needs to be increased to address the airspace
congestion problem. Since the airspace sector capacity is determined mainly by
controller workload, a typical air transport schematic is given in Figure 1,
highlighting the controller workload problem [8, 9]. Controller workload is the
effort expended by the controller to manage air traffic events. It refers to the
physical and mental effort an individual exerts to perform a task. A measure of the
ATC Workload is required to evaluate the effects of new systems and the pro-
cedures on individual air traffic controllers.

Certain airspace capacity issues can be addressed by minimizing the controller
overload and clarifying the necessity of understanding and modeling the controller
workload. The critical factors affecting controller workload are sector, and air
traffic characteristics [8, 9] and those factors are given in Figure 2. The factors
affecting air traffic and sectors are listed in Table 1 [10]. Measurement of controller
workload can be achieved from the information on the i) communication between
the ATC officer and the pilot and ii) communication between the ATC officers of
adjacent sectors. The number of aircraft movements per hour, number of heading
changes, number of altitudes changes and number of speed changes are the infor-
mation on monitoring workload. Various methods are discussed in the literature for
measuring the workload of air traffic controllers [11, 12]. They are self-assessment
[13, 14] and direct observations of the controllers by other controllers or ATC system
experts. Moreover, the workload experienced by air traffic controllers is affected by
the complex integration of: 1) the air traffic and the sector in the airspace, 2) the
accuracy of equipment in the control room and in the aircraft, and 3) the controller’s

Figure 1.
Air transport schematic with controller workload.
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age, experience, decision-making strategies. Another possible approach to measuring
ATC workload is to form a functional relationship between the controller workload
and the associated model parameters. To achieve that relationship, we must vary
several possible airspace and traffic parameters systematically in simulation modeling
of airspace and controller workload [15].

The ideal approach to estimate airspace capacity is to build an accurate capacity
model from the direct observation of the controller’s workload using a system
identification procedure. The derived statistical model will represent the actual
capacity of sectors and airspace under alternative controller working processes [8].
To validate such a model, one needs to collect the data for a sufficient period and
over a range of different individual controllers. Many difficulties need to address
the collection of field data at each ATC sector. Observing controllers at work as
unobtrusively as possible is not an easy task. Moreover, more resources are also
required to transcribe the data from videotape, communications tapes, and flight
strips. As a result, vast resources and complex logistics are needed for this approach
precluded for this research. The construction of an operational environment using
real-time simulations is an alternative method with the technology to be tested and
pseudo-pilots. Such real-time simulation provides the human workload and traffic

Figure 2.
Controller workload factors.

Sr. No Factors affecting air traffic Factors affecting sectors

1 Total number of aircraft Sector size

2 Peak hourly count Sector shape

3 Traffic Mix Boundary location

4 Climbing / Descending aircraft Number of intersection points

5 Aircraft speeds Number of flight levels

6 Horizontal separation standards Number of facilities

7 Vertical separation standards Number of entry and exit points

8 Average flight duration in sector Airway Configuration

9 Total flight time in sector Proportion of unidirectional routes

10 Average flight direction Number of surrounding sectors

Table 1.
Factors affecting air traffic and sector.
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handling capacity, which are very costly exercises posing many problems in per-
sonnel training, infrastructure, and obtaining a high-fidelity simulation of the
operating environment [16]. These disadvantages rule out a real-time simulation for
this research.

In short, the en-route sector capacity is determined mainly by controller work-
load [9, 17]. A method has been derived to estimate sector capacity from the
controller’s workload and translate that into a capacity measure [17–19]. In bright
weather situations, the capacity of a sector is represented by the Monitor Alert
Parameter, which is roughly 5/3 times the average historical dwell time for flights in
that sector [20]. En-route capacity estimation from ATC workload becomes a more
difficult task when hazardous weather increases the intensity of all workload types
[21–23]. The main contributions of this chapter are

• Terminal airspace sector capacity is estimated from experimental data along
with the derivation of ATC dynamical model. Neural partial differentiation
(NPD) and output error method (OEM) are used for this purpose, and their
results are compared. An appropriate probability density function (pdf)
of’Time interval X’ is derived and analytically verified for the accurate
modeling of ATC dynamic system.

• Since the uncertainty in traffic flow and dependency of weather conditions
make the data to stochastic, the proposed neural network-based approach
works well with the experimental data in online as it can handle the noisy data
without knowing the noise covariance matrix and does not require the initial
values of the model parameters which are unknown in practice. As a result, a
three-dimensional capacity curve has been established using the estimates of
NPD to predict the air traffic capacity in real-time.

The chapter is organized as follows: Section 2 discusses mathematical model
postulates for the estimation of Terminal Airspace Capacity with analysis of flight
data. Moreover, dynamic modeling of ATC with estimation of model parameters
using neural partial differentiation (NPD) are described in the following subsec-
tions of section 2. The online estimation result of airspace capacity is presented in
Section 3, and finally, the conclusions are given in Section 4.

2. Estimation of terminal airspace sector capacity

2.1 Problem definition

The estimation of airspace sector capacity Cs kð Þ in (Eq.(1)) can be viewed as
dynamic modeling of ATC by estimating the parameter θ at which variables
x1, x2, x3 are satisfying the following inequality relation (Eq.(2)) with maximum
affordable value of ATC workload represented in terms of G :ð Þ;

Cs kð Þ ¼ x1 kð Þ þ x2 kð Þ þ x3 kð Þ (1)

f x1 kð Þ, x2 kð Þ, x3 kð Þ, θð Þ≤G h X kð Þð Þð Þ, k ¼ 1, 2, 3, … ,N (2)

where f x1, x2, x3, θð Þ represents the dynamical model of ATC, θ is the vector
of model parameters, x1 is total number of departing aircraft during an unit time, x2
is total number of arriving aircraft during an unit time, x3 is total number of
flyover aircraft during an unit time, G :ð Þ is number of control events (messages
between pilot and ATC) that occurred in unit time, h(X) is function associated
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with the workload of ATC, and X is interval time of the consecutive events
(messages) in sec.

2.2 Flight data analysis

The recorded flight data of the third sector of Kunming TMA at Kunming
airport, China is analyzed to estimate the terminal airspace sector capacity from the
ATC workload [24]. Terminal Maneuvering Area (TMA) is designated area of
controlled airspace surrounding a significant airport where there is a high volume of
traffic. This data is based on the workload of ATC during the entire day; it consists
of voice communication (messages) between ATC officers and pilots or adjacent
sectors. These messages are referred to control events exhibit intermittency, i.e.,
they occur in several time frames with “short interval and high frequency” or vice
versa based on the traffic congestion. For the definition of a function h(X) in
(Eq.(2), the field data of air traffic can be gathered from the ATC officers at the
Kunming airport using voice recording equipment of the air traffic control depart-
ment. The time interval of the 1000 consecutive events on 21st January 2014, is
recorded in the third sector of Kunming TMA, which is given in Figure 3 [24].

Data statistics aremadewithMATLAB and found the histogramof time intervalX to
derive the density distribution function P Xð Þ in Figure 4. This indicates that experi-
mental data showpower-lawdistributionwhose probability density function is givenby.

P Xð Þ ¼ CX�α (3)

Thedistribution characteristics of power-law function canbe verified by a theoretical
method; the parameterC and α are computed by the followingmaximum likelihood
estimation (MLE) approach. By taking the logarithm of (Eq.(3)), we have.

log P Xð Þð Þ ¼ log Cð Þ � α log Xð Þ (4)

The relationship represents a straight line with a gradient of �α in the double
logarithmic coordinates. The normalization equation is.

1 ¼

ð

∞

Xmin

P Xð ÞdX ¼ C

ð

∞

Xmin

X�αdX ) C ¼ α� 1ð ÞXα�1
min, α> 1 (5)

Figure 3.
Interval time of ATC.
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Where Xmin is the minimum possible value of X. The power law distribution is

P Xð Þ ¼
α� 1ð Þ

Xmin

X

Xmin

� ��α

(6)

For a given set Xi, probability of Xi is

Pr: X=αð Þ ¼
Y

N

i¼1

α� 1ð Þ

Xmin

Xi

Xmin

� ��α

(7)

For convenience, the logarithm of Maximum Likelihood Function L is given by

L ¼ lnPr: X=αð Þ ¼
X

n

i¼1

ln α� 1ð Þ � lnXmin � α ln
Xi

Xmin

� �

∂L

∂α
¼ 0 ) α ¼ 1þ n

X

n

i¼1

ln
Xi

Xmin

" #�1

¼ 2:25,C ¼ 122:36

(8)

Thus, probability density function of power law distribution becomes.

P Xð Þ ¼ 122:36X�2:25 (9)

We found that the experimental data agree with the distribution characteristic
of power-law function by theoretical computation of (Eq.(9)) as shown in Figure 5.

Figure 4.
Density distribution of Time Interval.
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The R2 value of the data fitting is observed to be 0.83. Now the left side of
expression G h Xð Þð Þ in (Eq.(2)) can be computed with the threshold criterion of 80
percent. Since the sector capacity is expressed in terms of a number of control
events that occurred within one hour of the estimation time, the reasonable con-
trolling workload time should be 2880 ¼ 3600 ∗ 80=100ð Þ seconds. Subsequently,
sector capacity is estimated by representing G h Xð Þð Þ is the number of control events
that occurred within one hour as follows.

G :ð Þ ¼
2880

E Xð Þ
(10)

where E Xð Þ is average interval time Xð Þ of the consecutive events in sec, and it is
given by

E Xð Þ ¼
C

α� 1

� � 1
α�1 α� 2

α� 1

� �

, α> 2 (11)

Next, to estimate the airspace sector capacity, we need to build the dynamical
model of ATC and estimate the model parameters.

2.3 ATC dynamic modeling and parameter estimation

2.3.1 Neural dynamic modeling of ATC

Based on the equality relation of (Eq.(1)), the dynamical model of ATC
represented by f x1, x2, x3, θð Þ can be modeled using Neural Networks [25]. Figure 6
shows the three-layered feed-forward neural network’s schematic structure, which
consists of two hidden layers with activation function and one output layer with

Figure 5.
Density distribution of Time Interval.
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summation function exempted from activation function. An approach of back-
propagation trains the neural network whose input and output vectors are defined

by x ¼ x1, x2, x3,�1½ � and D ¼ G respectively. Similarly, B∈ℜmþ1 and C∈ℜlþ1

represents the first and second hidden layer of neural network. Except for the
output layer, all the layers contain a bias term, and the output of the neural network
is given by.

G ¼ WTC (12)

where W is the set of weights between the second hidden layer and output layer
containing the bias terms.

W ¼ bw1 w11 ⋯ wl1½ �T (13)

Similarly we define

C ¼ q VTB
� �

B ¼ g UTx
� �

(

(14)

where q and g are the activation function vectors and are defined as �1 q x1ð Þ½ �T,
where q xð Þ is expressed as

q xð Þ ¼
1� e�λx

1þ e�λx
(15)

And the weight matrix are represented as

V½ � ¼

bv1 … bvm

v11 … v1l

… … …

vm1 … vml

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(16)

Figure 6.
Schematic of neural network.
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U½ � ¼

bu1 … bum

u11 … u1m

u21 … u2m

u31 … u3m

2

6

6

6

4

3

7

7

7

5

(17)

Input is defined by the vector x ¼ x0, x1, x2, x3½ �, where x0 defines bias input
to the neural network. The input and output are scaled for neural network using
the following equation.

Gi,norm ¼ Gi,normmin þ Gi,normmax � Gi,normminð Þ �
Gi � Gi,min

Gi,max � Gi,min

� �

(18)

where Gi,normmax and Gi,normmin denote the higher and lower limits of scaling range
of Gi respectively. They are set to 0.9 and � 0.9 respectively. Gi,max and Gi,min

denote the higher and lower values of Gi. Using the above notations, output of
neural network can be written as.

G ¼ WTq VTg UTx
� �� 	

(19)

2.3.2 Parameter estimation using neural partial differentiation method

The neural network is trained with input and output data to map the functional
relationship of (Eq.(1)) in the form of weights, and its activation function operates
the core of the neural partial differentiation method as parameter estimation
approach. The constant parameters of air traffic model can be directly computed
from the end of the training session of a neural network by the partial differentia-
tion of a function, and it is as follows.

The input and output of a function is mapped after the training session of the
neural network. Subsequently, the output variables can be differentiated with
respect to input variables. Differentiate (Eq.(12)) and (Eq.(14)), we will have the
form of.

∂G

∂C
¼ WT (20)

∂C

∂B
¼ q0 VT

� �

(21)

∂B

∂x
¼ g0 UT

� �

(22)

Multiplication of (Eq.(20)), (Eq.(21))), and (Eq.(22)) gives.

∂G

∂C
:
∂C

∂B
:
∂B

∂x
¼ WT :q0VT:g0UT

∂G

∂x
¼ WT :q0VT:g0UT

8

>

<

>

:

(23)

where q0 ¼ diag 0 q01 ⋯ q0l
� 	

and g0 ¼ diag 0 g01 ⋯ g0m
� 	

. If the input and output
of neural network are normalized, then

∂G

∂x
¼

∂G

∂Gnorm
�

∂Gnorm

∂xnorm
�

∂xnorm
∂x

(24)
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The normalized output of neural network can be de-normalized by (Eq.(18)).
Where,

∂xnorm
∂x

� �

¼

1 0 0 0

0
∂x1,norm
∂x1

0 0

0 0
∂x2,norm
∂x2

0

0 0 0
∂x3,norm
∂x3

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

(25)

The equation (Eq.(25)) can be computed from (Eq.(18)). The terms associated
of (Eq.(20)) to (Eq.(25)) be intermediate terms of neural networks while getting it
trained. Therefore, there is no extra computation required to compute the parame-
ters, and they are directly given as:

∂G

∂x


 �

¼
∂G

∂x0

∂G

∂x1

∂G

∂x2

∂G

∂x3

� �

(26)

The standard deviation of estimated parameters in (Eq.(26)) is computed by

STD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PP
p¼1

PM
m¼1

PL
l¼1C

0
lp
vlmwklG

0
kp

 �

B0
mp
umi � μ

h i2

P

v

u

u

t

(27)

where,

μ ¼

PP
p¼1

PM
m¼1

PL
l¼1C

0
lp
vlmwklG

0
kp

 �

B0
mp
umi

P
(28)

where, STD and μ are standard deviation and average of data points, respectively.
The relative standard deviation of estimates is given by

RSTD ¼
STD
μ

� 100% (29)

3. Online estimation results and discussion

As a part of ATC dynamic modeling, online estimation of the model parameters
from flight data is carried out using Neural partial differentiation (NPD) method
[26], and estimates are compared with that obtained by Maximum likelihood esti-
mation (Output Error Method). The model structure of the dynamical ATC is given
by [27].

y ¼ x1β1 þ x2β2 þ x3β3 þ e (30)

where y is the number of control events that occurred in unit time, which
represents an ATC workload, x1 is the total number of arriving aircraft during a unit
time, x2 is the total number of departing aircraft during a unit time, x3 is the total
number of flyover aircraft during a unit time. ATC model parameters β1, β2, β3 in
(Eq.(30)) are coefficient terms which are needed to be estimated for a given set of y
and x1, x2, x3 values, and e is a random error term represents model uncertainty. A
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neural model of ATC has been established by training of the input–output flight
data. An approach of Neural Partial Differentiation (NPD) can be applied to extract
the model parameters β1, β2, β3 . From the neural model of ATC, and their
corresponding standard and relative standard deviations can compute using
(Eq.(27)) and (Eq.(29)). Figure 7 shows responses of the input signals x1, x2, x3ð Þ to
the neural network and the output signal of workload y, represent the number of
control events in a unit time. The dotted red color line indicates the output of
trained neural network as estimated output, which reasonably matches with mea-
sured data of workload. Figure 8 shows the estimated model parameter using the
NPD method concerning the different data points. The variation of these parame-
ters for the number of iterations is shown in Figure 9. As the number of iterations
increases, the parameters attain a stable value of its estimates.

Unlike the OEM approach, initial values of model parameters are not needed in
the application of NPD method, but it requires apriori structure of the model. The
initial values of parameters are chosen as β1 0ð Þ ¼ 0:0001, β2 0ð Þ ¼ 0:0001, β3 0ð Þ ¼
0:0001 for the application of output error method (OEM) in comparison. The
responses of measured data of workload concerning control events and its estimated
responses using OEM are given in Figure 10. and found that they are in close
agreement with others. The results of the estimated parameters are tabulated in
Table 2. The relative standard deviation of estimated parameters is computed in
percentage and separately given in parenthesis. These values denote the confidence
level of the corresponding estimate. It can be observed from Table 2 that Neural
Partial Differentiation (NPD) approach estimated parameters with less relative
standard deviation compared to the output error method (OEM). As a result,
estimated parameters of ATC dynamic model using NPD are more accurate in
comparison with the Maximum likelihood (OEM) estimates.

The estimated ATC model is verified by the model validation as it is the last
process in the model building procedure. For this, the complementary data set of
input and output (other than the data used for the training of neural network) are
used to predict the neural model of ATC. Figure 11 shows how the measured
response of workload compared with a predicted neural model of ATC and the
estimated model by OEM. The validation of the model showed that match between
the complement data response and predicted neural model response is good

Figure 7.
Responses of measured data and neural dynamical model of ATC.
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agreement compared to the response of OEM estimated model. Such compared
result reconfirms that parameter estimates by NPD are closer to the actual values.
Finally, this ensures that the dynamic model of ATC has been accurately identified.
Subsequently, we can use (Eq.(10)) and correctly estimated ATC model to predict
the capacity of a sector by reducing the inequality relation (Eq.(2)) into.

2:652x1 kð Þ þ 1:339x2 kð Þ þ 1:744x3 kð Þ≤
2880

E Xð Þ
, k ¼ 1, 2, 3, … ,N (31)

Based on the analysis of Kunming TMA data with computation of average time
interval E Xð Þ ¼ 47:21 with ¼ 2:25, an upper bound of ATC workload of
2880=47:21 ¼ð Þ61 can be computed for applying to the inequality relation (Eq.
(31)). Figure 12 shows the numerical simulation result of that relationship as a
capacity curve to predict the air traffic capacity. Based on the number of flyover
aircraft x3, either possible cases of the number of arriving aircraft x1 or the number
of departing aircraft x2 can be adjusted according to within the capacity curve. As a

Figure 8.
Variation in estimated parameters with respect to data points using NPD.

Figure 9.
Variation in estimated parameters w.r.t. number of iterations using NPD.
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result, air traffic capacity can be directly predicted from three-dimensional
Figure 12. For a wide range of operation varies from less to more traffic congestion
scenario with multi-dimensional tasks, postulated linear model might not be

Figure 10.
Responses of measured and estimated workload using OEM.

Parameters NPD OEM

β1 2.652 (2.52 1) 2.8939 (2.90)

β2 1.339 (2.405) 1.4634 (5.87)

β3 1.744 (1.659) 1.5799 (7.16)

1The values in parenthesis denote relative standard deviation values in percentage.

Table 2.
Analysis of estimated parameters.

Figure 11.
Validation of estimated dynamic model of ATC.
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sufficient to obtain a valid model of ATC. In such a case, research work on a
nonlinear model of ATC can be considered as future work.

4. Conclusions

ATC dynamical model-based airspace sector capacity has been estimated. The
Neural Partial Differentiation (NPD) and Output Error Method (OEM) are used as
parameter estimation methods for this purpose. Neural Partial Differentiation
(NPD) approach is applied to recorded data of the third sector of Kunming TMA to
estimate the ATC dynamic model parameters. For this purpose, a primarily neural
model of multi-input- single-output (MISO) ATC system is established. NPD
method is employed to extract the model parameters from the experimental data,
and the estimated parameters are compared with estimates obtained from the
Output Error Method. We found that estimated parameters by NPD are much
closer to the actual values compared to the estimates by OEM. This is because of 1)
estimated parameters by NPD are having less relative standard deviation and 2)
model validation results show that predicted neural model response is well matched
with the response for the compliment dataset of ATC workload. Since the initial
values of parameters are not available in a practical situation as well as OEM
requires these initial parameters, the neural network approach works well with the
experimental data. Finally, terminal airspace sector capacity curve has been devel-
oped to predict the air traffic capacity with permissible separation and affordable
workload.

Acknowledgements

The author is grateful to thank Dr. Su Rong, faculty at NTU, Singapore, for
carrying out this research work at Air Traffic Management Research Institute in
Singapore.

Figure 12.
Capacity curve.

14

Air Traffic Management and Control



Nomenclature

x1 Total number of departing aircraft during an unit time
x2 Total number of arriving aircraft during an unit time
x3 Total number of flyover aircraft during an unit time
θ ¼ β1, β2, β3 ATC model parameters
G :ð Þ Number of control events
e Random error due to model uncertainty
STD Standard deviation of data points
μ Average of data points
RSTD Relative standard deviation of estimates

Abbreviations

NPD Neural Partial Differentiation
ATC Air Traffic Controller
MISO Multi Input Single Output
OEM Output Eroor Method
TMA Terminal Maneuvering Area
MLE Maximum Likelihood Estimates

Appendix A: Output error method

In the output error method (OEM), the unknown parameters are obtained by
minimization the sum of weighted square differences between the measured out-
puts and model outputs. The estimation problem is non-linear because of unknown
parameter appears in the aircraft equations of motion and they are integrated to
compute the states. Outputs are computed from states, control input and parame-
ters using the measurement equation. Iterative nonlinear optimization techniques
are required to solve this nonlinear estimation problem [28–30].

The mathematical model aircraft is assumed to be describe following general
linear dynamics system representation.

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ, x t0ð Þ ¼ x0

y tð Þ ¼ Cx tð Þ þDu tð Þ

z tkð Þ ¼ y tkð Þ þ v tkð Þ, k ¼ 1, 2, 3, …N

(32)

where x is the (nx þ 1) state variables, u the (nu þ 1) control input vector, y the
(nz þ 1) system output vector, and measurement vector z is sampled at N discrete
points. The Matrices A,B,C and D contain the unknown system parameters and are
given by

Θ ¼ ½ Aij, i ¼ 1 to nx; j ¼ 1 to nx
� �T

Bij, i ¼ 1 to nx; j ¼ 1 to nx
� �T

Cij, i ¼ 1 to ny; j ¼ 1, nx
� �T

Dij, i ¼ 1 to ny; j ¼ 1 to nu
� �

�T
(33)

In oder to estimates the likelihood function to estimates the parameter of
dynamic system represented in (Eq.(32)), the following assumption:

• The exogenous input sequence u tkð Þ, k ¼ 1, 2, 3…N½ � is independent of the
system output.
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• The measurement errors v tkð Þ ¼ z tkð Þ � y tkð Þ½ � at different discrete points are
statically independent, the assume to be distributed with zero means and
covariance matrix R, that is, E v tkð Þ ¼ 0,E v tkð ÞvT tlð Þ

� 	

¼ Rδkl
�

• The system is corrupted by measurement noise only.

• Control input u tkð Þ are sufficiently and adequately (i.e. in magnitude and
frequency) varied to excite directly or indirectly the various modes of the
dynamics system being analyzed.

The maximum likelihood output error estimates of unknown parameters are
obtained by minimizing the negative logarithm of the likelihood function. Figure 13
shows a block schematic of the output error method (OEM). The cost function of
this method is considered in (Eq.(34)).

J Θð Þ ¼
1

2

X

N

k¼1

z tkð Þ � y tkð Þ½ �TR�1 z tkð Þ � y tkð Þ½ � þ
N

2
ln ∣R∣ (34)

Where is covariances matrix of the residuals and estimates can obtain from the
(Eq.(35)). When started from suitably specified initial valus, the estimates are
iteratively updated using Gauss-Newton method.

R ¼
1

N

X

N

k¼1

z tkð Þ � y tkð Þ½ �T z tkð Þ � y tkð Þ½ � (35)

The algorithmic steps of OEM are given below.

Figure 13.
Block schematic of the output error method.
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Give the initial value of the Θ, i.e. Θ0 . It may also consist of initial value of states
x0 if not known and biases in measurements Δz if required.

Step 1: Set iteration = 1.
Step 2: Compute the response and cost function J:

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ

y tð Þ ¼ Cx tð Þ þDu tð Þ

R ¼
1

N

X

N

k¼1

z tkð Þ � y tkð Þ½ �T z tkð Þ � y tkð Þ½ �

J ¼
1

2

X

N

k¼1

z tkð Þ � y tkð Þ½ �TR�1 z tkð Þ � y tkð Þ½ � þ
N

2
ln ∣R∣

(36)

Step 3: Perturb the parameter j, i.e., Θ j to Θi þ ΔΘi, so that system matrices
becomes ApBpCpDp.

Step 4: Compute the perturbation responses and update on Θ.

_xp tð Þ ¼ Apxp tð Þ þ Bpu tð Þ

yp tð Þ ¼ Cpxp tð Þ þDpu tð Þ

∂y tð Þ

∂Θj
¼

yp tð Þ � y tð Þ
h i

ΔΘj

ΔΘJ Θð Þ ¼
X

N

k¼1

∂y tkð Þ

∂Θj

� �T

R�1 z tkð Þ � y tkð Þ½ �

Δ
2
Θ
J Θð Þ ¼

X

N

k¼1

∂y tkð Þ

∂Θj

� �T

R�1 ∂y tkð Þ

∂Θj

� �

Θ ¼ Θþ Δ
2
Θ
J Θð Þ

� 	�1
ΔΘJ Θð Þ½ �

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(37)

Step 5: Increment the iteration count and jump back to step 2 to continue until
the cost function reduces to zero approximately. Thus estimated parameter Θ is the
updated at which cost function is minimized.
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