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Abstract

Global trends are shifting towards environmental friendly materials and 
manufacturing methods. Therefore, natural fiber applications are gaining traction 
globally. Silk, a natural protein fiber is one of the textile fibers that have recently 
received more attention due to the new frontiers brought about by technological 
advancement that has expanded the use of silk fiber beyond the conventional textile 
industry. The simple and versatile nature of silk fibroin process-ability has made 
silk appealing in wide range of applications. Silk is biocompatible, biodegradable, 
easy to functionalize and has excellent mechanical properties, in addition to optical 
transparency. This review chapter explores the use of silk in biomedical applications 
and healthcare textiles. Future trends in silk applications are also highlighted.

Keywords: Silk, Silk fibroin, Bio-applications, Functional textiles

1. Introduction

Silk is a natural fibrous protein biopolymer, spun by arthropods like spiders, 
mites, fleas and silkworms [1]. The structure, composition and properties of silk 
differ depending on their specific function and source [2]. Silkworms are one of the 
silk spinning insects that has been researched in detail and finds wide applications 
in textiles [3]. Silk production, also known as sericulture, has a long history that is 
usually closely associated with China. Silk was discovered in 2640 B.C. by Hsi-Ling-
Chi, who also found out that silk fiber loosened and unwound in hot water; and 
twisted to make thread that was used to weave a very strong cloth. Hsi-Ling-Chi 
later developed a means of raising silkworms and a method of reeling the fibers to 
make garments [4, 5]. As silk became a very precious commodity, sericulture spread 
within china and to other countries. Demand for silk products created a trade route 
that is famously known as Silk Road [6].

Silk filaments from silkworms are classified into two types; mulberry and non-
mulberry (also called wild or vanya silk). Mulberry silk are generally produced by 
Bombyx mori which are insects belonging to the Bombycidae family. Bombyx mori 
feeds on mulberry plant leaves. Mulberry silk is further divided into bivoltine and mul-
tivoltine, depending on the number of silk cocoon crops harvested annually. Bivoltine 
is harvested twice a year while multivoltine is harvested throughout the year [7]. 
Non-mulberry silk on the other hand, is silk from Saturniidae family. Non-mulberry 
silk includes tasar silk, muga silk and eri silk. Tasar silk is secreted by Antheraea 
silkworms. They have hard and compact cocoons. Tasar silk can either be tropical tasar 
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or temperature tasar. Muga silk is produced by Anteraea assamensis silkworm; it has a 
unique natural golden color, with significant luster and durability. Eri silk is produced 
by Philosamia synthia ricini (also called Samia cynthia) silkworms, which usually feed 
on castor or papa plant leaves. Eri silk being in the wild silk category, has however been 
completely domesticated just like mulberry silkworms. Eri silk cocoons draw shorter 
silk fibers when compared to other silks which draw continuous filaments [8, 9].

Silk cocoons comprise over 95% proteins and about 5% impurities (mineral salts, 
waxes, ash). Raw silk consists of two proteins; sericin (gum) and fibroin (fibers). 
Sericin and fibroin are composed of amino acid chains. The types and composition 
of these amino acids are different for sericin and fibroin. Non-mulberry silk has 
lower sericin with higher levels of impurities compared to mulberry silk [10]. After 
degumming, sericin and other impurities are removed from the raw silk fibers. 
Therefore, degummed silk is composed of mainly fibroin protein [11, 12].

Several authors have reviewed, described and demonstrated the structure of silk 
fiber varieties, especially Bombyx mori in relation to several performance properties. 
These include: conformations of silk, heavy chains with possible chain folding and 
micelle assembly in water, primary structure, 12 repetitive and 11 amorphous regions, 
amino acid sequences of i, ii, and iii, hierarchal structure among others (Figure 1) [13].

Silk fibers are usually used for conventional textile applications after the 
removal of sericin and other impurities. Recently however, due to excellent 
mechanical and optical properties, as well as its biocompatibility, biodegradability 
and implant ability, silk has found increased applications in functional textiles [1, 
14, 15]. This has been made possible by the simple and versatile nature of the silk 
fibroin process ability into various forms such as sponges, gels, strands, blocks, 
foam, films, and more recently, nanofibers [16–21]. Applications of silk in biomedi-
cal materials, drug delivery and in optics and sensing are therefore discussed in 
this chapter. The chapter underscores the forms and properties of silk making them 
suitable in these applications.

2.  Common manufacturing processes for silk-based functional  
products

More recently, silk fibroin (SF) films with fineness ranging from hundreds 
nanometers to tens micrometres are obtained from regenerated solutions through 
liquid processing including: spin coating, inject printing, doctor blade, soft lithog-
raphy, contact printing or nano- imprinting, among others; that support industrial 
scale production. Doping, blending and functionalization of SF has also been a 
route to achieve substrates for advanced technological use in organic electronic 

Figure 1. 
Schematic presentation of the silk fibroin (SF) structure; d represents the diameter of a single silkworm thread 
[13]. Reproduced with permission.
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sensors based on field effect transistors, and with optically active dyes, particularly 
for biomedical applications [22–25]. Nano and micro-patterning, through spin coat-
ing and lasing, was used to obtain stilbene-doped silk film of significant mechanical 
performance and optical performance [24].

Innovative attempts during breeding and feeding of silk worms, through incor-
poration of dopants in the diet, have yielded modified SF substrates of functional 
value; e.g. silk threads with electrical conductivity through incorporation of silver 
nanoparticles in mulberry diet, fluorescence introduced in silk fiber through colo-
rant compounds in mulberry feed, among others [26–29]. These approaches save on 
extra processes and time that would be required as after treatments, and enhance 
the durability of such functions. Optimization of silk-worm breeding is often 
required for control and reproducibility of functional substrates. For example, 
among others, the silkworm survival rates, temperature conditions and duration of 
the larval cycle are monitored.

Based on different varieties of B. mori, in 2019, a silk fibroin based technology 
was developed in order to optimize and support industrial bio-manufacturing [30]. 
The evaluation and standardization of extraction, purification, and characteriza-
tion methods were reported; yielding biocompatible SF substrates with high purity 
and outstanding chemo-physical performance. The result was a validated bio-
diagnostic microfluidic and photonic device (a lab-on-a-chip) (Figure 2).

Several conventional textile spinning and construction methods are used for pro-
duction of functional silk yarns, fabrics; including a variety of finishing technologies 
through which active functional ingredients may also be introduced. Therefore, such 
might be applied during fiber spinning (e.g. for sutures) and after fabric construction 
through a variety of wet and dry finishing processes [31]. Innovative approaches include 
micropatterning, 3D printing and more nanotechnology based systems (Figure 3).

Electrospinning is a common method used in the production of nanofibers and 
microfibers from SF solutions. The ensuing fibers possess a high specific surface, 
favoring the use of such scaffolds in tissue regeneration [34, 35]. The mechanism 
of electrospinning (Figure 4) is based on a high electric voltage applied to the fiber 
polymer solution. The polymer solution is ejected when the electric force overcomes 
the surface tension of the polymer solution, forming a polymer jet. Electrospinning 
can be of needle or needleless. The needle electrospinning utilizes a high-voltage 

Figure 2. 
Schematic picture of the biomanufacturing approach to obtain SF based technological substrates [30]. 
Reproduced with permission.
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power supply, and a syringe needle connected to a power supply and pointed 
towards a collector. Needle electrospinning options pose a demerit of very low 
productivity, thus, unsuitable for practical commercial value. Needleless electros-
pinning setups have been innovated recently. In these systems, polymer jets form 
simultaneously from the surface of polymer solution by self-assembly [36–41].

3. Silk in biomedical textiles

Biomedical textiles are composed of fibrous units produced from natural or 
synthetic materials. These textiles are used in either external or internal environ-
ment of living organisms [42]. Biomedical textiles are further used, medically, 
to improve the medical condition of a patient [43, 44]. Some biomedical textiles 
include implantable, non-implantable and extracorporeal devices as well as hygiene 
and health care products [45]. Non-implantable materials/devices include wound 
dressings materials like bandages and gauzes. While, implantable materials/devices 
include artificial arteries, heart valves, sutures, and vascular grafts among others. 
Extracorporeal devices mainly include artificial body organs. Hygiene and health 
care products include sanitary towels, tissue paper, wipes, hospital gowns and 
uniforms, hospital bed covers, surgical covers, masks and caps. Other biomedical 
textiles include polymer sensors and wearable medical implants [46, 47].

Figure 3. 
Structural design of SF-based biomaterials from single structures to multi-level structure [32, 33]. Reproduced 
with permission.

Figure 4. 
Schematic images of needle-less (A) and Needle (B) electrospinning processes [40]. Reproduced with 
permission.
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Textile materials used in biomedical applications must be non-allergic, non-
carcinogenic, non-toxic, biodegradable and biocompatible. Additionally, biomedical 
textile materials must be able to be stable to handling and use. For example, during 
sterilization and use, they should not change their physical or chemical properties 
(e.g. through oxidation or chemical reaction). Other important properties for these 
textiles include: high tensile strength, elasticity, high burst stream, low permeability 
and durability [42, 48, 49]. Different synthetic (e.g. polyester, nylon, acrylics, and 
polyethylene) and natural (e.g. silk and cotton) fibers are used in production of 
biomedical textiles. Silk fibers possess good toughness and ductility in terms of 
elongation at break, tensile modulus and tensile strength; suitable for biomedical 
applications[1, 50]. Additionally, regenerated silk solutions are gaining popularity in 
producing various biomaterials in form of gels, films, membranes and sponges [51].

3.1 Silk in wound dressing

Studies have shown that silk fabricated through non-weaving and electrospin-
ning can be used in wound dressings, and as drug carriers [1, 46, 52, 53]. Xia et al. 
[54] reported that silk fibers functionalized with silver nanoparticles presented 
special antibacterial properties in a wound dressing material. A two-layered wound 
dressing developed from a wax-coated silk woven fabric, a sericin sponge and a 
bioactive layer of glutaraldehyde cross-linked silk fibroin gelatin was reported to 
reduce the size of the wound, collagen and epithelialization [55–57]. He et al. [58] 
asserts that fibroin hydrogel from Bombyx mori cocoons has good healing properties 
due to its biocompatibility nature, low biodegradability and immunogenic proper-
ties. On the other hand, Chouhan et al. [59] found that nanofibrous mats of silk, 
functionalized with Poly Vinyl Alcohol, (as a blend) mat supported diabetic wound 
healing. The mats were able to promote tissue re-modeling and also regulated 
extracellular matrix; thus the wound healing.

3.2 Silk garments for dermatology treatment

Atopic Dermatitis is a worldwide health concern, with a higher prevalence in 
developing countries, and occurring in among many age groups. Symptoms for 
Atopic Dermatitis include redness and itchiness of the skin. These symptoms can 
be severe leading to a chronically repeating flare characterized by serious eczema 
(distribution of skin lesions) [60]. Treatment and management of this condition 
requires skin stabilization, flare prevention, as well as the use of medication that can 
cure the symptoms [61]. Silk garments have been used as a textile-based therapy for 
Atopic Dermatitis owing to their hygienic properties including antibacterial proper-
ties. Additionally, silk filament fibers are strong and round in shape, and therefore 
fine and smooth. Wearers experience comfort to the skin as this structure prevents 
and scratching from friction and irritation to the skin [62]. Moreover, the fine and 
smooth fibers have no or very little abrasive effect on atopic skin. This enhances the 
recovery of the irritated skin unlike with rough fibers that irritate the skin. Due to 
a significant moisture regain, silk fibers are also able to maintain body humidity 
therefore reducing the sweat circulation and moisture loss that can make xerosis 
worse [63]. A study by Hung et al. [60] further the ability of silk garments to signifi-
cantly decrease the severity level of dermatitis symptoms. The study emphasized the 
merits with the smoothness of silk which is friendly to the irritated skin. The fiber 
enhances collagen synthesis and also reduces inflammation which cures eczematous 
lesion [63, 64]. Moreover, hygienic properties of silk act as a skin barrier, protecting 
the skin from bacteria, viruses and other contamination that reduces the inflamma-
tion [60, 65]. Of importance is the sensory experience of patients with silk garments 
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as highlighted by these studies; they contribute to the physical and emotional 
comfort of dermatitis patients which possibly aids the healing process. Therefore, 
silk garments can be used as a non-pharmacological therapy to impede the severity 
of Atopic Dermatitis and other related dermatology conditions.

3.3 Silk in hygiene and health care products

The good mechanical properties of silk, its softness and antibacterial properties 
partly account silk’s application in producing hygiene and health care products. 
Some applications of silk in hygiene and health care include: materials used in 
hospital wards and operating theatre as well as materials used in care and safety of 
hospital staff and patients. Silk materials used in operating theatre are in form of 
patient drapes, and surgical gear (as gowns, caps, masks and cover cloths) [46]. 
Silk, functionalized with titanium dioxide nanoparticles was used to produce a 
photocatalytic silk mask paper. The mask was found to exhibit special protective 
functions— degrading volatile organic compounds achieved by combining the 
unique properties of silk fibers and nano-TiO2 [66–69].

3.4 Silk-based tissue engineering

Tissue engineering applies principles of biological sciences and engineering to 
develop biological substitutes to replace, enhance and maintain damaged or defec-
tive tissues such as cartilage, bone, skin and even organs [70, 71]. The choice of the 
biomaterial and the methods used determines whether the resulting bio-substitute 
will be functional. Silk has good mechanical properties, has a slow degradation rate 
and a low inflammatory response which makes it fit for use in tissue engineering. 
However, Sericin can elicit immune response and must therefore be completely 
removed before being used [72]. The type of silk that is commonly used in tissue 
engineering is Bombyx mori silk. Other types of silk that are gaining popularity 
include silk fibers from; P. ricini, A. assama, A. pernyi and A. mylitta [71, 73]. 
Silk-based tissue engineering includes: Scaffolds in form of skin grafts/artificial 
skin, bone grafts, artificial pancreas, cardiac tissue, artificial liver, artificial 
Intervertebral Disc Intervertebral disc, among others [74].

3.4.1 Skin grafts/artificial skin

Skin, the largest body organ protects the body against infections from pathogens 
and microorganisms [75]. Due to certain illness, the skin may get damaged and may 
require some replacement in form of grafts. A good graft is supposed to cover and 
protect the intended place without causing any negative immune response. This 
promotes fast healing that reduces chances of scarring on the body [46].

In the recent past, different biomaterials like silk fibroin, cellulose alginate, colla-
gen, polycaprolactone (PCL), polylactic acid (PLA), silicone, dextranelastin and poly-
ethylene glycol(PEG) have been explored as possible cellular scaffolds for skin grafts 
and wound healing [73, 76, 77]. Among these biomaterials, silk has been used to mimic 
human skin as well as in wound healing. This is because silk has notable properties like 
low immune response, biodegradability, biocompatibility and is cost-effective [1].

Additionally, studies have proved that silk supports human keratinocytes and 
fibroblasts which are important in engineering artificial skin [46, 73, 78]. Studies 
by Chauhan et al. [59, 79] have reported successful use of electrospun silk fibroin 
from A. assama and P. ricini silk species in wound dressing. The studies also 
reported that a blend of electrospun silk fibron with polyvinyl alcohol promotes 
faster healing of wounds due to granulation during tissue formation. Other studies 
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have demonstrated the use of electrospun silk fibroin from A. assama keratinocytes 
being successfully used in engineering artificial skin.

The therapeutic performance of SERI Surgical Scaffold has been studied; includ-
ing open label clinical trials and case reports. A few studies have cited side effects 
such as poor scaffold integration (Figure 5), that have required surgical removal of 
the scaffold [80].

Comparing woven fabric, non-woven fabric and a film foam from silk fibroin in 
relation to cell culture responses by human oral keratinocytes, studies reported that 
water vapor-treated non-woven silk fibroin had better cell adhesion and dispersion 
of human fibroblasts and keratinocytes [46, 81]. This suggests that silk based bio-
materials for tissue engineering requires a careful selection of fabrication techniques 
and material to blend with. Electrospinning is one of the preferred techniques for 
making non-woven nano-scale fiber mats for engineering artificial skin [51]. More 
results from electrospinning silk for tissue engineering include: electrospun silk 
fibroin scaffolds, 3D nonwoven scaffolds made from crosslinking silk fibroin with 
formic acid, and water vapor-treated silk fibroin nanofiber matrices among others. 
[46, 81, 82]. Reported blends that have been used successfully with silk for produc-
ing artificial skin include alginate, chitin, intermolecular cross-linked recombinant 
human-like collagen and biomimetic nanostructured collagen [46, 83–85].

3.4.2 Bone grafts

Today, various biomaterials are available for developing scaffold-based bone 
tissue. One of such material is silk fibroin which has good biological and physic-
chemical properties— making it suitable for developing osteoinductive functional 

Figure 5. 
Examples of SERI Surgical Scaffold implant loss in humans. A) Silk fibroin surgical mesh prior to 
implantation. B) Intraoperative view showing a free lying scaffold in the breast pocket. C) Retrieved scaffold 
surrounded with seroma. D) Interaoperative view of surgically removed scaffold with interpenetrated 
granulation tissue/scar plate (at >5 months), and E) histology of retrieved sample showing granulation tissue 
with neutrophiles and giant cells at the material (1) interface (dotted line). Reproduced with permission [80]. 
Copyright 2018, Elsevier.
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Figure 6. 
Silk-based devices for fracture fixation. A) scanning electron microscopy image of a silk fibroin screw. Scale 
bar is 1 mm. B) Silk fibroin screw inserted into a rat femur at 4 weeks postsurgery. C, D) Cross-sec-tions of the 
silk fibroin screw inserted into a rat femur at 4 weeks post-surgery; sections stained with H&E and Masson’s 
trichrome, respectively. Adapted with permission [94] Copyright 2014, Macmillan Publishers.

bone grafts that resemble collagen [86, 87]. Silk fibroin from A. mylitta is reported 
to make porous scaffolds that mimic borne tissue [88]. Meinel et al. [89] induced 
osteogenic differentiation of human mesenchymal stromal cells in B. Mori silk 
fibroin to develop a bone graft. Other studies have explored blending B. Mori silk 
fibroin with hydroxyapatite to repair segmental bone defects [90, 91]. Findings 
by Reardon et al. [92] suggest that electrospun B. mori and A. assama silk fbroin 
blended with 70S bioactive glass repairs osteochondral tissue defects. Moreover, a 
study by Moses et al. [93] reports use of copper-doped bioactive glass silk composite 
matrices to repair large volume bone defects.

Fixation devices, including bone plates and bone screws have been manufac-
tured from B. mori fibroin by casting in hexafluoroisopropanol, and formed into 
desired shaped (Figure 6) [94]. Silk screws tested in rats were well tolerated, 
showed early resorption and new bone formed around the threads of the screw. 
Such devices are easily malleable with hydration, allowing shaping for unique 
anatomical locations during surgery.

3.4.3 Artificial ligament and tendon

Tissue engineering for ligament and tendons requires biomaterials that are 
biodegradable, have good mechanical properties, good structural integrity, 
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biocompatible and promote regeneration of new ligament and tendon tissues [46]. 
Silk is thus a suitable fiber that meets these requirements for performance and func-
tion [1, 93]. Weaving and braiding are reported as the most preferred techniques 
for making silk based ligament and tendon [95–97]. Other studies have reported 
crosslinking silk fibers with collagen matrix, coating poly(lacticco-glycolic acid) 
fibers with silk, blending silk fibers with fibroblast growth factor and transforming 
growth factor-β (TGF-β) in developing artificial ligament and tendon [46, 98–100].

3.4.4 Cardiac tissue

The most difficult part in cardiac tissue engineering is to perfectly mimic the 
original extracellular matrix. Patra et al. [101] and Stoppel et al. [102] reported to 
have successfully used scaffolds made B. mori and A. mylitta silk fibroins to treat 
myocardial infarction. Moreover, Mehrotra et al. [103] developed a 3-D cardiac 
construct made from stacking cell-laden silk films; the constructs proved to be good 
for cardiac tissue regeneration [73].

3.4.5 Liver modules

Different bio-artificial liver and cell therapies to treat liver diseases are available 
today. Cirillo et al. [104] developed a film from a blend of silk fibroin and collagen. A 
study by She et al. [105] examined a film made from silk fibroin, chitosan and heparin 
scaffolds that showed hepatocyte regeneration. Another study [106] reports scaffolds 
made from a blend of polylactic acid (PLA) and silk fibroin had a higher differentia-
tion and proliferation as compared to scaffolds made from pure PLA alone. Likewise, 
a study by Janani et al. [107] reports that a functional liver can be fabricated from a 
blend of mulberry (B. mori) and non-mulberry (A. assama) silk fibroin.

3.4.6 Artificial pancreas

Different types of microspheres, hydrogels and nanoparticles have been devel-
oped to ensure a continuous release of insulin in diabetic patients [108]. In the 
recent past, islets have been encapsulated with biomaterials before they are trans-
planted to prevent immune response and to have a continuous insulin release [109]. 
A study by Davis et al. [110] reports encapsulating islets in silk hydrogel which 
improved the in vivo functions of the islets after transplanting. In another study, 
a bio-artificial pancreas was developed using silk alginate to encapsulate insulin 
secreting cells [73].

3.4.7 Artificial intervertebral disc

A perfect biomaterial for making artificial intervertebral disc must have high 
tensile strength, be biocompatible and be able to simulate the natural extracellular 
matrix [111]. A study by Park et al. [112] reports a biphasic hybrid scaffold that was 
developed from a blend of silk fibroin and hyaluronic acid to simulate the compo-
nents of an intervertebral disc (nucleus pulposus (NP)) and an annulus fibrosus 
(AF)). In a related study, Du et al. [113] fabricated a 3-D biphasic silk fibroin 
scaffold to mimic the AF phase and phase separation technique for the NP phase. 
Moreover, Bhunia et al. [114] developed a bio-artificial AF construct with direc-
tional freezing technique involving concentric rings of lamellar silk scaffolds. The 
study further reports the proliferation of primary porcine AF cells using a mulberry 
and a non-mulberry silk combination which helped in cellular maturation, align-
ment and extracellular matrix deposition.
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3.5 Silk in sutures

Sutures are an important material in surgical operations for primary wound 
closure. For this reason, various materials have been used in making sutures. These 
materials can be classified as either organic or synthetic according to their origin, 
or absorbable and non-absorbable according to their durability in the body [115]. 
Important properties for a good suture include: high tensile strength, elasticity, 
wound safety, knot safety and tissue reactivity [116, 117].

Silk, a natural non-absorbable suture material has been in use as a suture for sev-
eral decades. However, other degradable synthetic sutures have dominated the market 
in the recent past. Nonetheless, silk suture is still preferred in cardiovascular, ocular 
and neural surgery because of its superior properties like good knot strength, ease of 
processing, minimum propensity to tear through tissue and biocompatibility [117].

Various modifications have been done on silk to improve its weak characteristics 
such as adding poly vinyl alcohol into silk fibroin to improve the tensile strength, elon-
gation at break and the knot strength [118]. Bloch & Messores [119], reported coating 
silk filaments with fibroin and bounding them together to reduce the capillarity of silk 
sutures. Viju & Thilagavathi [120] coated silk-braided sutures with chitosan to improve 
the antimicrobial activity, tenacity and knot strength. Sudh et al. [121] developed a drug 
loaded antimicrobial silk suture for use in wound closure and wound healing meant to 
prevent surgical site infections. Choudhury et al. [122] developed a low-temperature O2 
plasma-treated (Antheraea assama) silk fibroin (AASF) yarn impregnated with amoxi-
cillin trihydrate. This was aimed at producing a controlled antibiotic-releasing suture 
(AASF/O2/AMOX) to prevent site bacterial infection and fasten wound healing. This 
shows the potential of silk in developing suture with special properties.

Type of Drug Delivery 

System/material

Associated active 

ingredient

Key results

Silk sponges Erythromycin Sustained drug release and prolonged 

antimicrobial activity against Staphilococcus 

Aureus

Silk films Horseradish peroxidase 

(HRP)

Enhanced stability

Glucose oxidase (GOx) Increased enzymatic activity

FITC-dextran Controlled drug release

Epirubicin Controlled drug release

Silk lyogels Hydrocortisone IgG Enhanced efficacy Enhanced stability and 

sustained release

Insertable Silk discs IgG and HIV inhibitor 

5P12-RANTES

Enhanced stability and modified release 

profile

Silk nanoparticles Curcumin Modified release profile and enhanced cellular 

uptake

Silk microspheres Horseradish peroxidase 

(HRP)

Modified the release profile

Silk coated PCL 

microspheres

Vancomycin Modified the release profile

Silk coated liposomes Ibuprofen Enhanced adhesion to human corneal 

epithelial cells, tunable drug release

Emodin Selective targeting of keloid cells

Table 1. 
Silk-based drug delivery systems [100].
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3.6 Silk in drug delivery

Drug delivery through polymeric systems has gained popularity over the years 
[51]. These systems serve as reservoirs to active ingredient in drugs and improve the 
drug’s physicochemical properties [123]. Polymeric drug delivery systems are also 
good in specific targeting, intracellular transport and some are biocompatible which 
help in improving efficiency of the treatment and the life quality of the patients 
[123, 124]. A good drug delivery system should be able to stabilize the active ingre-
dient in drugs, be able to modulate the drug’s release mechanism, be biocompatible 
and biodegradable, as well as minimize any side effects of tissue specific targeting 
of highly toxic drugs [125–127].

Silk fibroin is used in drug delivery systems owing to its properties such as good 
mechanical properties, mild aqueous processing conditions, biocompatibility, bio-
degradability and its ability to enhance the stability of active ingredient in drugs; as 
proteins and small molecules [46, 128]. That notwithstanding, silk fibroin solutions 
can be processed using various techniques to produce different forms of delivery 
systems like scaffolds, films, hydrogels, nanoparticles, microspheres, and microcap-
sules among others [129]. Additionally, silk fibroin has carboxyl and amino groups 
which allow bio-functionalization with different biomolecules for targeted drug 
delivery [130]. Silk based drug delivery systems include hydrogels, micro particles, 
lyophilized sponges, films, nano-fibers and nano-particles.

Formulation Gene Cell line

Recombinant silk–elastin-like polymer 

hydrogels (SELPs)

Ad1–CMV2–LacZ3 Head and neck cancer in mice

pDNA4 

(pRL5-CMV-luc6)

NA

Ad–Luc–HSVtk7 Head and neck cancer in mice

3D porous scaffold Adenovirus Ad-BMP78 Human BMSCs

Bioengineered silk films pDNA (GFP9) Human HEK cells

Spermine modified SF pDNA and 

VEGF165–Ang-110

In vivo-rat

SF-Coated PEI/DNA Complexes pDNA (GFP) HEK 293 and HCT 116 cells

SF layer-by-layer assembled microcapsules pDNA-Cy511 NIH/3 T3 fibroblasts

Bioengineered silk–polylysine–ppTG1 

nanoparticles

pDNA Human HEK and MDA-MB-435 

cells

Magnetic-SF/polyethyleneimine core-shell 

nanoparticles

c-Myc12 antisense 

ODNs13y

MDA-MB-231 cells

1Adenovirus.
2Cytomegalovirus promoter gene.
3Beta galactosidase reporter gene.
4Plasmid DNA.
5Renilla luciferase.
6Luciferase reporter gene.
7Herpes simplex virus thymidine kinase gene.
8Bone morphogenic protein.
9Green fluorescent protein.
10Vascular endothelial growth factor and angiopoietin-1.
11Fluorescent probe.
12MYC Proto-Oncogene.
13Oligodeoxynucleotides [100].

Table 2. 
Silk –based gene delivery systems [100].
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Different researches have reported successful use of silk fibroin in delivery 
systems for different drugs and genes [131–133]. Tables 1 and 2 below presents 
some silk based drug and genes delivery systems.

4. Silk in protective clothing

Protective clothing are defined as textile structure designed to protect the 
human body from external threats such as fire, bullets, heat, cold, mechanical, 
biological, radiological, thermal and chemical hazards. Protective clothing are 
in different forms e.g. masks, gloves, vests, coats, aprons, hats, hoods or totally 
encapsulating chemical protective suits [134]. Some general characteristics of good 
protective clothing include: reliable barrier protection, durability, good fit, flexible, 
light weight, ease of care, maintenance and repair, ease of disposal and recycling.

Because of the interesting characteristics of silk, various research studies have 
examined its use in developing protective textiles. Some of these characteristics 
include hydrophobicity, antimicrobial and antiviral properties [135]. Recently, 
Parlin et al. [135] examined the potential of silk fabrics as a protective barrier for 
personal protective equipment and as a functional material for face coverings 
during the COVID-19 pandemic. Results of this study showed that the use of the 
commercially available 100% silk material can be used in producing protective cov-
erings that can prolong the lifespan of N95 respirators. The study also found 100% 
silk fabrics suitable for developing face coverings for the general public to prevent 
COVID-19 [135]. Additionally, the study suggests that because silk has unique 
properties such as antimicrobial, antiviral, breathability, and slight hydrophobicity; 
prevention of penetration of droplets and antibacterial activity can imply potential 
use in developing respirator inserts [136, 137]. Moreover, other studies had showed 
that silk could be used as an antimicrobial barrier mask, with better filtration when 
multiple layers are used [135]. Besides, silk neither irritates the skin nor increases 
local humidity around the covered face, and prevents accidental stimulation of face 
touching; making it good for prolonged wear [138].

Another study by Zulan et al. [139] reports use of silk/graphene composite to 
make flame retardant protective clothing that can be used by fire fighters. Loh et al. 
[140] reports woven silk fabrics can be used for ballistic protection for aerospace, 
sports, military, marine and automotives. Mongkholrattanasit et al. [141] studied 
the ultraviolet (UV) protection properties of silk fabric dyed with eucalyptus 
leaf extract. Pad-dry and pad-batch techniques together with a metal mordant 
(AlK(SO4)2, CuSO4, and FeSO4) were used to apply a natural dye extracted from 
eucalyptus leaves on silk fabric. Results of his study showed that the UV protection 
factor of the silk fabric increased with an increase in the dye concentration and a 
darker shade gave the best UV-protective silk fabrics. Moreover, a study by Zhou et 
al. [142] also reports silk fabrics treated with red radish extracts provides good UV 
protection and that such fabrics can be used in making umbrellas, shade structures, 
awnings, and baby carrier covers among others.

5. Silk in optics and sensing

Synthetic biomaterials have been widely used in optics and sensing applications. 
For ophthalmic applications, which include lens replacement, retina reconstruction, 
vitreous replacement and ocular surface reconstruction, various materials such 
as poly-methylmethacrylate (PMMA), silicone, acrylics, poly-tetrafluoroethylene 
among others have been extensively used due to the biological inert nature of these 
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materials [143, 144]. With technological advances, regenerative medicine strate-
gies have shifted to relying on the ability of the biomaterial scaffolds in supporting 
human cell adhesion, growth and maintenance of the right cells that encourage 
tissue replacement as well as integration with adjacent tissues [145]. Since most 
synthetic biomaterials lacked the aforementioned abilities, emerging technologies 
attempted the modification of synthetic biomaterial surfaces [146]. However, a 
major limitation of surface modified synthetic materials was that such materials are 
not transparent, especially for applications in tissue grafts which need to be opti-
cally clear and they are not biodegradable [143]. Materials derived from nature have 
therefore become popular because they support cell attachment and proliferation. 
These materials include cross-linked collagen-chitosan hydrogels [147], keratin 
[148], cross-linked collagen gels [149], silk fibroin [150] etc.

Apart from ophthalmic applications, there has been an increased desire for 
real-time diagnostics, sensing and deep tissue light delivery, which has led to 
development of photonic medical devices from materials which are implantable and 
biocompatible. These devices can therefore be used within the body for therapeutics 
and long term health monitoring, where they are integrated into the living tissue in 
the human body [151]. Non-biodegradable inorganic materials such as silicon, gold 
and compound semiconductors have been traditionally used in photonic devices. 
However, their biocompatibility have been found to be dependent on the device 
size, the presence of coatings and mechanical properties [152]. Hydrogel materials 
from poly-vinylalcohol (PVA) and poly-ethylglycol (PEG), which are biocompat-
ible have also been used in tissue engineering applications because of their ability to 
retain water and mimic the human body extracellular matrix [153]. However, they 
have not found extensive application in sensing because of their poor adhesion to 
substrates and poor mechanical properties [154]. Selection of the right material for 
implantable photonic devices requires consideration of biocompatibility properties 
as well as the structural stability, mechanical flexibility and optical clarity [151]; 
requirements that silk fibroin meet. Silk fibroin is thus gaining traction in optical 
interfaces and sensor applications in implantable biomedical fields owing to its 
good mechanical and optical transparency, coupled with its biodegradability and 
biocompatibility [14]. Silk in film form has a free standing structure with thickness 
ranging from 20 to 100 μm. The films are very transparent across the visible region 
of the spectrum and are mechanically robust with smooth surfaces. The films 
can also be patterned during fabrication to form traverse features that are tens of 
nanometers, making them attractive in optical device applications [155].

Substratum for corneal limbal epithelial cells has been developed from silk 
fibroin membranes, by casting dialyzed solutions of silk fibroin protein. The 
transparent silk membrane was found to support growth of human limbal epithelial 
(HLE) cell growth, which did not change even when the silk membranes were cast 
in the presence of fetal bovine serum (FBS) [156]. Such properties are favourable in 
the development of tissue engineered membranes for restoration of damaged ocular 
surfaces. Porous silk films have also been fabricated and shown to have potential 
in use as a carrier of cultivated epithelial sheets during regeneration of corneal 
epithelium [157].

Diffractive optical elements were fabricated by molding silk fibroin solution 
on poly-dimethylsiloxane (PDMS) moulds with ruled and holographic diffrac-
tion grating, producing nano-patterned silk optical elements of thickness ranging 
from 30 to 50 μm and a refractive index of n = 1.55. These nano-patterned silk 
gratings had a diffraction efficiency of 34%, at a wavelength of 633 nm in the first 
order, which compares to that of transmissive glass gratings. This led to successful 
formation of silk micro-lens arrays and silk lenses, which couple light into biologi-
cal substrates [158]. Such silk gratings can also be functionalized, to maintain the 
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biologically active optical elements. Therefore this could allow the use of these 
silk devices in delivering light to biological matrices and concentrate photons with 
doped substrates for biological function probes. In another study, silk diffraction 
gratings with desired patterns were fabricated through photo-induced polymeriza-
tion of silk conjugates and a photo-initiator, producing good diffraction inten-
sity [159].

Silk micro-prism arrays (MPAs) were prepared by micro-molding technique, 
resulting into a silk reflector film of 100 μm in thickness. The MPAs provided con-
trast and optical signal enhancement by retro-reflecting scattered photons through 
layers of tissue when used in vivo on BALB/c mice. The silk MPAs had no adverse 
biological effects, degraded slowly and were integrated into the native tissue. 
Functionalization of silk MPA with doxorubicin (a chemotherapeutic drug), was 
further reported to allow controlled delivery, storage and imaging of therapeutics, 
besides improving noninvasive tissue imaging [160].

Optical waveguides, which have the ability to transport and manipulate light in a 
controlled manner [161], have also been fabricated from silk. Silk fibroin ink, used 
in direct ink writing technique, has enabled creation of silk optical waveguides. 
These have been found to easily guide light of wavelength 633 nm. These wave-
guides were reported to exhibit comparable optical loss measurements to those of 
thin silk films, an indication that they can be applied in fabrication of functional-
ized, biocompatible and biodegradable biophotonic elements [155].

Silk fibroin hydrogels have also found use in surface plasmon resonances (SPR) 
sensors, fabricated by utilizing the principle of metal–insulator–metal (MIM) 
absorber. Inclusion of a thin insulator layer of 20 nm silk fibroin hydrogel between two 
200 nm gold films enables the MIM structure produced to become highly sensitive to 
changes in thickness and refractive index of the insulating layer. Thus, the hydrogel 
properties of the silk spacer, which can accommodate water molecules by up to 60% 
in volume, increases sensitivity to analytes. Sensitivity is dependent on the refractive 
index and swelling ratio of the silk hydrogel. The silk polymer chains can also act as 
fluidic channels that facilitate flow of analytes in water, through a nano-sized layer, 
making silk plasmonic structures suitable for glucose sensor applications [162].

A wearable strain sensor was fabricated by carbonizing pristine silk georgette 
through high temperature treatment, followed by encapsulation in poly-dimethylsilox-
ane (PDMS), an elastic polymer. This has shown promising potential for applications 
in monitoring a wide range of motion based human activities [163]. Silk based wear-
able sensors utilizes the principle of transformation of silk fibroin through thermal 
treatment, into an electrically-conductive graphite nano-carbon [164]. Transparent 
and flexible silk nanofiber-derived carbon membranes have also been fabricated 
for multifunctional electronic skin with human physiological signal monitoring 
capabilities [165, 166]. Silk based self-powered pressure sensor films for use in wear-
able devices have also been fabricated through synthesis of silk and poly-vinylidene 
fluoride-co-trifluoroethylene [167]. In order to provide a strong interface between a 
biological surface and a sensor for epidermal electronics, calcium modified silk fibroin 
has been fabricated and shown to have strong adhesive properties with good stretch-
ability, conductivity and reusability. Therefore calcium modified silk fibroin shows the 
potential to be applied as an adhesive for epidermal biomedical sensors [168].

Another promising application of silk is in the coating of otherwise non bio-
compatible optical fibers for bio-sensing inside the human body. Silica exposed core 
fiber are reported to have been coated with a thin layer of silk and thereafter, doped 
with fluorophore 5,6-carboxynapthofluorescein (CNF). The doped-silk layer was 
found to produce fluorescent signals that are coupled into the core of Silica exposed 
core fiber, allows for remote measurement of pH along the fiber length, when used 
in mice [169].
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6. Conclusion

Silk fiber from different varieties has largely been used beyond the traditional 
textile scope. The widest and earlier use has been noted in biomedical use, espe-
cially as sutures, and protective wear due to the enviable properties highlighted for 
each function. The traditional classification of silk was tagged to luxury. Beyond 
this, research has been expounded on the functionality of silk. The various forms, 
including regeneration into nanofibers, nanofilms and nanomembranes provide 
surfaces for novel functionalization when processed with specific agents. Collagen 
has been reported the most as a functional material added to silk for, especially 
biomedical applications. Optics and sensing, present a unique and promising future 
for functional silk— especially in e-textiles and bio-sensing. However, it is also 
important to underscore that at different stages of regeneration, the silk structure 
seems to get altered; especially the loss of considerable strength resulting from 
altered crystallinity and re-orientation of β-sheets of silk fibroin. Owing to the low 
proportion of silk production on the market compared to cotton, and synthetic 
fibers, it is important to explore the annual global demand of silk in regard to future 
needs for silk in functional textiles. It is also important to explore statistics, on silk 
processed through novel methods like electrospinning, with respect to commercial 
viability. For instance, it is often required to strictly control biomaterial properties 
during processing, owing to the complexity of biomaterial molecules. Of important 
focus is the standardization of process/manufacturing parameters and equipment 
in the attempt to commercialize silk functional products. However, with increas-
ing demand for more environmentally sustainable materials and products, more 
bio-based sectors and economies will emerge; hence, an increased uptake of natural 
biomaterials such as silk, in higher technology application needs.
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