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Abstract

From proteins to plant leaves, hydrophobicity is ubiquitous. Despite this, the underlying
physical mechanism relating hydrophobicity on the microscopic and macroscopic length scales
remains undetermined. In part, this is due to the wealth of disciplines involved, from solvation
to surface science, which provide unique views on hydrophobicity but whose relation to one
another has rarely been considered.

Studies of hydrophobicity on both microscopic and macroscopic length scales have re-
ported an enhancement of local density fluctuations. Within recent studies of a Lennard-
Jones fluid on macroscopic length scales, similar density fluctuations have been attributed
to the existence of a surface critical point called drying [1]. Within this thesis, it is postu-
lated that this drying critical point is also responsible for hydrophobic density fluctuations on
both microscopic and macroscopic length scales, and provides the relation of hydrophobicity
across length scales. As this drying critical point influences Lennard-Jones fluids, it is also
postulated that hydrophobicity is no more than a specific case of solvophobicity.

To explore these postulates, a mesoscopic thermodynamic analysis is performed to an-
ticipate how hydrophobic and solvophobic systems, subject to a drying critical point, on all
length scales should be expected to behave. These predictions are then tested for a Lennard-
Jones fluid numerically using classical density functional theory, and for a simple water model
using Grand Canonical Monte Carlo. Combined, these results provide clear evidence that
the mechanism underlying hydrophobicity and solvophobicity across microscopic and macro-
scopic length scales is a drying surface critical point.
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Chapter 1

Introduction

Hydrophobicity is ubiquitous. Many aquatic and semi-aquatic plants, such as the lotus, utilise

hydrophobicity in their self-cleaning mechanisms which reduce their chances of infection from

harmful pathogens present in the bodies of water in which they grow [2]. Butterflies have

been found to utilise hydrophobicity to ensure that rain droplets which fall on their wings roll

off away from their bodies [3]. Proteins have been found to utilise localised hydrophobicity to

evacuate surrounding water and enable ligand binding [4]. Detergents utilise the hydropho-

bicity driven self assembly of amphiphilic molecules into micelle structures to remove grease

from clothes [5]. The influence of hydrophobicity is felt in every aspect of our lives.

Despite this, our understanding of hydrophobicity is limited. To some extent, this is be-

cause of the way in which it has been studied. Hydrophobicity on the length scales of proteins

or micelles has often been studied from the view point of solvation [6, 7]. Great progress has

been made in understanding the free energy changes involved when solvating smooth spherical

solutes [6], including the influence of temperature [8] and solute-water attractions [9], though

most notably significant changes in behaviour have been observed when the size of the solute

is increased from that of a water molecule, to that much larger than a water molecule [6]. The

influence of solutes of varying shapes and sizes on the local structure of water has also been

considered in great detail [10–16], though conclusions have not always agreed. In contrast,

hydrophobicity of plants and insect wings has typically been studied from the view point of

surface science [17, 18], where the general focus has been on the structure of the surface, and

engineering of coatings with low surface energy [19]. Perhaps unsurprisingly, few studies have

sought to compare hydrophobicity on the length scales of proteins to hydrophobicity on the

length scales of plant leaves [10].

Attempting to compare the manifestations of hydrophobicity across all length scales is

difficult not only because of the different approaches taken to their study, but also because

of the different behaviours observed. How does the behaviour of water droplets relate to

solvation? One answer to this comes in the form of the local structure of water at the

surface of large hydrophobic solutes and at macroscopic surfaces. In such circumstances,

water molecules have been found to adopt preferential orientations [10, 11, 16, 20, 21], and to

retreat from the surface or solute, forming a region of depleted density or ‘gap’ [6, 9, 22–27].
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However, around even fairly large solutes, this region has been found to be small [10, 11],

and readily reduced by the presence of solute-water attractions [9, 28]. As such, relating

hydrophobicity across length scales using the local structure of water has proven difficult.

In addition to changes in the local structure of water, simulation studies of both solutes

and surfaces have shown that hydrophobicity is associated with localised enhanced density

fluctuations [23, 28, 29]. Importantly, these fluctuations have been found to be a more

sensitive measure of hydrophobicity [23, 28] than the local structure of water, and thus more

easily detectable. In fact, there is evidence that it is these density fluctuations which drive

various hydrophobic processes, for example the collapse of hydrophobic polymer chains [30]

or the evacuation of water near biomolecules [31].

An immediate question is then: what mechanism drives these density fluctuations? Draw-

ing inspiration from recent solvophobic studies of Lennard-Jones fluids, it is possible that this

mechanism is a surface critical point named drying. Evans et al. [1, 32] have demonstrated

that large density fluctuations near solvophobic planar substrates are induced by a drying

surface critical point, and furthermore that systems in the vicinity of this surface critical point

exhibit a wealth of critical phenomena, for example scaling behaviour and critical exponents.

Earlier studies by Stewart and Evans [33, 34] used similar methods to show that systems with

very large solutes also obeyed scaling behaviour, though their studies focused on measures

such as the adsorption, and did not consider density fluctuations. Considering such studies,

it is plausible that an underlying drying surface critical point influences solvophobicity, and

potentially relates solvophobicity on microscopic length scales to that on macroscopic length

scales.

There is reason to believe a drying surface critical point may also be responsible for the

large density fluctuations observed in macroscopic and microscopic studies of hydrophobicity

and therefore might relate hydrophobicity across length scales. This reason stems not only

from the similarities in solvophobic and hydrophobic behaviour reported in many studies [1,

23, 35, 36], but also from early evidence of a drying critical point in a study of macroscopic

hydrophobicity by Evans and Wilding [23]. The existence of a drying critical point in both

solvophobic and hydrophobic studies would also suggest that both interactions are governed

by the same underlying mechanism, and that hydrophobicity is simply a specific case of

solvophobicity, rather than a unique interaction.

Considering this, two postulates are made.

Postulate 1

The physical mechanism which underlies hydrophobicity is a surface critical point called dry-

ing, and it is this mechanism which relates hydrophobicity on the microscopic and macroscopic

length scales.

Postulate 2

Hydrophobicity is simply a specific case of solvophobicity, and the mechanism underlying both

is a drying critical point.
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It is the purpose of this thesis to explore these. This is done as follows. In chapter 2, the

thermodynamics, statistical mechanics and phase transitions theory which is necessary to

understand the postulates is presented. A particular emphasis within chapter 2 is placed on

understanding the similarities and differences between bulk and surface phase transitions,

as the latter are far less well understood than the former. Following this, our current un-

derstanding of hydrophobicity and its relation to solvophobicity and phase transitions is

reviewed in chapter 3. This provides the foundation of knowledge on which this thesis builds.

In chapter 4, the numerical and simulation methods used within this thesis are presented.

Notably, the present work makes use of two methods, which each provide valuable insight

into solvophobicity and hydrophobicity respectively. Chapter 5 then presents a mesoscopic

thermodynamic analysis of the expected behaviour of systems near to a drying critical point.

Such an analysis has been utilised extensively in studies of solvophobicity, for example [1,

32–34, 37, 38], and provides insight into how results should be displayed and interpreted. In

chapters 6 and 7, the two postulates are tested using results for solvophobic and hydrophobic

systems respectively. The behaviour of different measures of density fluctuations near to the

drying critical point is then compared in chapter 8, before final conclusions on the validity of

the postulates are drawn in chapter 9.
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Chapter 2

Thermodynamics and Statistical

Mechanics of Phase Transitions

The purpose of this thesis is to explore the relationship between hydrophobicity and a surface

phase transition termed drying. It is therefore important to understand what a surface phase

transition is and, in particular, how it differs in presentation and properties from a bulk phase

transition, the latter of which is fairly well understood. Achieving this understanding is only

possible by first setting out the necessary thermodynamics, statistical mechanics and phase

transitions theory. This chapter aims to do this, whilst also defining the measures which will

be used to probe the relationship between hydrophobicity and drying.

2.1 Thermodynamics

The first law of thermodynamics defines the Fundamental Thermodynamic Relation as

[39]

dU = TdS +
∑

i

FidLi +
∑

α

µαdNα (2.1.1)

which describes how the internal energy, U , of a system changes when heat is supplied or

when work is done. The supplied heat is measured by TdS, where T is the temperature of the

system and S the entropy, whilst the work done takes two forms. The first form represents

the mechanical work, which is measured by FidLi, where Fi is a generalised force and Li

the associated generalised length. The second form of work is the chemical work, which is

measured by µαdNα, where µα and Nα are the chemical potential and number of particles of

the α component of the system respectively. As the work presented here is concerned with

one-component fluids, the α subscripts can be neglected.

For an isotropic one-component bulk fluid, equation (2.1.1) becomes [39]

dU = TdS − pdV + µdN (2.1.2)

where p is the pressure of the fluid and V the volume it occupies. From this relation it is

possible to define various free energies via Legendre transforms, which allow an understanding

of how the energy of a system under adiabatic, isothermal, isobaric or isochoric conditions
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2.1. THERMODYNAMICS

changes when heat is supplied or work is done. Of relevance to solvation, defined as the

process in which a solute is dissolved into a fluid, is the Gibb’s free energy [39]

G(T, p,N) = U + pV − TS ≡ H − TS = µN (2.1.3)

where H = U+pV is defined as the enthalpy. The Gibbs’ free energy describes a system that

undergoes isothermal and isobaric processes, which are the conditions expected of solvation

experiments conducted at ambient conditions.

Whilst experimental studies of solvation may occur at constant pressure and temperature

conditions, simulation and theoretical studies of solvation typically use constant chemical,

temperature and volume conditions. The free energy of interest in such a system is the grand

potential, defined as [39]

Ω(µ, V, T ) = U − TS − µN ≡ F − µN = −pV (2.1.4)

where F = U − TS is the Helmholtz free energy. The grand potential is useful in the study

of phase transitions as the number of particles, N , is allowed to fluctuate.

Equations (2.1.3) and (2.1.4) represent the free energy of bulk or homogeneous fluids, for

which the density is the same everywhere. If the density of the fluid is not constant, then the

fluid is said to be inhomogeneous. An example of such a case is a free liquid-vapour interface,

which is made by bringing the vapour and liquid phases of a fluid, which is at liquid-vapour

coexistence, into contact such that an interface forms and the density of the fluid becomes

spatially varying. In this case, the Fundamental Thermodynamic Relation of equation (2.1.1)

becomes [40, 41]

dU = TdS − pdV + γdA+ µdN (2.1.5)

where γdA represents the mechanical work done when changing the surface area, A, of the

interface, which has surface tension γ. The grand potential then becomes [40]

Ω(µ, V, T ) = U − TS − µN ≡ −pV + γA (2.1.6)

From equation (2.1.4), −pV can be identified as the grand potential of the bulk fluid, Ωb =

−pV . The excess grand potential, Ωex, can then be identified as Ωex = Ω−Ωb, which allows

for the definition of the surface tension as [41]

γ =
Ωex

A
≡ Ω− Ωb

A
(2.1.7)

The concept of surface excess quantities can be extended by considering the difference in the

derivatives of equations (2.1.4) and (2.1.6). Denoting terms in the former by the subscript b

to recognise they are bulk terms, the difference between the derivatives can be written as

dΩ− dΩb = −(S − Sb)dT − (N −Nb)dµ+ γdA (2.1.8)

From this, the surface excess entropy can be identified as Sex = S − Sb, and the surface
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excess number of particles, known as the adsorption, as Γ = N − Nb. It should be noted

that this is not the typical definition of adsorption [42], however this definition proves useful

when considering surfaces of different geometries. The derivative of equation (2.1.8) can also

be written as dΩ − dΩb = d(Ω − Ωb) ≡ dΩex. Taking the derivative of equation (2.1.7) and

setting equal to equation (2.1.8) then leads to the relation [41, 42]

sexdT +
Γ

A
dµ+ dγ = 0 (2.1.9)

where sex is the surface excess entropy per unit surface area. This is Gibbs’ adsorption

equation [42], from which it can be recognised that [40]

Γ

A
= −

(
∂γ

∂µ

)

T

(2.1.10)

A free liquid-vapour interface is just one example of a system for which equation (2.1.5)

is true. Another example is a fluid in contact with an impenetrable planar substrate. In

this case, the fluid need not be at liquid-vapour coexistence however may still exhibit an

inhomogeneous density due to its interaction with the substrate. The grand potential per

unit volume of the bulk fluid, ωb, in such a system can be found to be [40]

ωb(µ, T ) ≡ lim
V→∞

(
Ω

V

)
≡ −pb(µ, T ) (2.1.11)

where pb(µ, T ) is the pressure of the bulk fluid. Using this, the excess grand potential per

unit area can be identified as [40]

ωex(µ, T ) = lim
V→∞
A→∞

(
Ω− ωbV

A

)
(2.1.12)

and thus the grand potential of an inhomogeneous fluid, which is not at liquid-vapour coex-

istence, as [40]

Ω = −pbV + ωexA (2.1.13)

By comparison to equation (2.1.6), ωex can be identified as a surface tension of a fluid which

is not at liquid-vapour coexistence. Following the same procedure as in the case of a free

liquid-vapour interface, it can then be found that equation (2.1.10) holds for fluids which are

not at liquid-vapour coexistence [40].

2.2 Statistical Mechanics

Thermodynamics provides an understanding of the relationships between different macro-

scopic properties of a system, many of which can be observed experimentally. An area of

physics closely related to thermodynamics is statistical mechanics, which provides a frame-

work in which macroscopic thermodynamic properties of a system can be described in terms

of averages of microscopic configurations of particles. Consider a system consisting of N indis-

tinguishable particles of mass m. At any given time, the state of the system can be described

by a total of 6N generalised coordinates: 3N spatial coordinates, rN = {r1, . . . , rN} and 3N
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momenta coordinates, pN = {p1, . . . ,pN}. These 6N coordinates define a phase point which

exists within a 6N -dimensional phase space [39, 42–44]. Assuming that the particles interact

with one another, the Hamiltonian of the system can be defined as

H = Φ(rN ) +K(pN ) + Vext(r
N ) (2.2.1)

where Φ(rN ) represents the potential energy due to inter-particle interactions, K(pN ) the

kinetic energy and Vext(r
N ) the external potential energy. The latter of these acts to break

the translational invariance of the fluid in which case the fluid is inhomogeneous. External

potentials may arise from, for example, the presence of a surface, interface or gravity. If the

external potential energy is Vext(r
N ) = 0, then the fluid will be uniform, in which case the

fluid is homogeneous. The kinetic energy takes the well known form [42]

K(pN ) =

N∑

i=1

|pi|2
2m

(2.2.2)

The coordinates of the phase point evolve with time according to Hamilton’s equations and

thus over time the phase point will move through the phase space, in a direction known as

its phase trajectory [42].

During the course of the phase trajectory, the variation of microscopic configurations of

the particles will lead to variations in thermodynamic properties of the system, such as the

pressure. However, if the system is in thermodynamic equilibrium, referred to simply as

equilibrium, these properties, referred to as observables, are expected to remain constant on

average. An estimate for an observable can therefore be obtained by sampling the observable

during the course of a phase trajectory and taking the average. This is a time average [42,

44].

However, because the phase trajectory is governed by Hamilton’s equations, it is com-

pletely deterministic. This means phase trajectories will not intersect and therefore that

phase points themselves provide a set of unique samples of an observable. An alternative

to a time average is therefore an average over a set of phase points which share the same

thermodynamic properties. This set is known as an ensemble and such an average is known

as an ensemble average [42, 44].

Under certain conditions, the time and ensemble average are equivalent, in which case

the system is said to be ergodic. Ergodicity is achieved if the system passes through every

available point on its phase trajectory an equal number of times, which has the further

implication that it must be possible to reach every accessible point of phase space within

a finite amount of time [42, 43]. Whilst it is not possible to prove that every system at

thermodynamic equilibrium is ergodic, it is the case that most are and hence the equivalence

of the time and ensemble averages is known as the ergodic hypothesis [44].

The distribution of an ensemble of phase points within the phase space is termed the

phase space probability density. At equilibrium, this is independent of time and is denoted

as fo(r
N ,pN ). The ensemble average can then be defined as the expectation value of the
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observable, O(rN ,pN ), within the ensemble [42, 44]

〈O〉 =

∫
drN

∫
dpNO(rN ,pN )fo(r

N ,pN ) (2.2.3)

where fo(r
N ,pN ), as a probability distribution, also has the property

∫
drN

∫
dpN fo(r

N ,pN ) = 1 (2.2.4)

Statistical mechanics enables the prediction of this phase space probability for a given en-

semble, by relating it to the available configurations of the N constituent particles. Each

possible configuration, with a given rN and pN , is called a microstate and the fundamental

postulate of statistical mechanics is that a system is equally likely to be found in any of these

microstates. Microstates with the same energy, E, and number of particles, N , fall within

the same macrostate, the probability distribution of which for a given ensemble is given by

fo(r
N ,pN ). If each microstate is equally likely, then the probability of the system being in

a given macrostate is directly related to the number of microstates which fall within that

macrostate. It should be noted that the exact number of configurations which belong to a

microstate depends on whether the particles are distinguishable. For distinguishable parti-

cles, each microstate corresponds to one configuration of particles. However, if the particles

are indistinguishable, then for each configuration there are N ! possible ways in which the

particles could be labelled [39, 43].

An example of a set of properties which define an ensemble is the number of particles, N ,

volume, V , and temperature, T . Systems which share these properties belong to the canonical

ensemble, which is alternatively referred to as the NV T ensemble. This ensemble has proven

useful in the formulation of many theories based on statistical mechanics, examples of which

are presented throughout this work. Within the canonical ensemble, the system is imagined

to exchange only heat with a bulk reservoir and the equilibrium probability distribution is

found to take the form [42]

fNV T (rN ,pN ) =
1

h3NN !

e−βH

QN
(2.2.5)

where β = (kBT )−1 with kB as Boltzmann’s constant, h is Planck’s constant and QN is the

canonical partition function defined as

QN =
1

h3NN !

∫
dpN

∫
drNe−βH (2.2.6)

The partition function acts to normalise the probability distribution and contains complete

knowledge of the system in question. The partition function also provides the connection

between the microscopic view taken by statistical mechanics and the macroscopic view of

thermodynamics through [42]

F = −kBT lnQN (2.2.7)

where F is the Helmholtz free energy as defined in section 2.1. This is the natural free energy
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for a canonical system, due to the constraints of constant NV T .

The Hamiltonian given in equation (2.2.1) indicates that the momenta and spatially

dependent energy contributions are separable. Substitution of the Hamiltonian into the

canonical partition function leads to the simplification [42]

QN =
1

h3NN !

∫
dpNe−βK(pN )

∫
drNe−β(Φ(rN )+Vext(rN ))

=
1

h3NN !

∫
dp1e

− β
2m

p2
1 . . .

∫
dpNe

− β
2m

p2
N

∫
drNe−β(Φ(rN )+Vext(rN ))

=
1

h3NN !

(√
2mπ

β

)3N ∫
drNe−β(Φ(rN )+Vext(rN ))

=
1

Λ3NN !

∫
drNe−β(Φ(rN )+Vext(rN )) ≡ ZN

Λ3NN !
(2.2.8)

where ZN is termed the configuration integral and Λ = (2πβh̄2/m)1/2 is the thermal de

Broglie wavelength. The thermal de Broglie wavelength provides a boundary for the appli-

cability of classical physics. If the mean separation between particles, a, is much greater

than Λ, then the system can be treated classically. All systems considered here meet this

requirement [42].

For the study of phase transitions, a more convenient ensemble is the Grand Canonical

(GC) ensemble, which is defined as having constant chemical potential, µ, volume, V , and

temperature, T , conditions. It is therefore also referred to as the µV T ensemble. Within this

ensemble, the system is able to exchange both heat and particles with a bulk reservoir. The

GC equilibrium probability density can be found to be [42]

fµV T (rN ,pN ;N) =
e−β(H−µN)

Ξ
(2.2.9)

where Ξ, the grand partition function, is defined as

Ξ = Trcle
−β(H−µN) (2.2.10)

and the classical trace, Trcl, is defined as [45]

Trcl =

∞∑

N=0

1

h3NN !

∫
dpN

∫
drN (2.2.11)

As before, the Hamiltonian can be separated into its momenta, spatially and now chemically

varying components. Doing so leads to the simplified form of [42]

Ξ =
∞∑

N=0

eβµN

Λ3NN !

∫
drNe−β(Φ(rN )+Vext(rN )) ≡

∞∑

N=0

eβµN

Λ3NN !
ZN (2.2.12)

The relevant thermodynamic potential for the GC ensemble is the grand potential. As in

the case of the canonical ensemble, it is the grand partition function which provides the
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connection to macroscopic thermodynamics through [39, 42]

Ω = −kBT ln Ξ (2.2.13)

Whilst in the canonical ensemble the ensemble average is found using equation (2.2.3), within

the GC ensemble, the ensemble average is defined using Trcl [46]

〈O〉 = TrclfµV TO (2.2.14)

where O is an observable, as before.

Within the GC ensemble, the probability of a system having N particles can be expressed

as [42]

P (N) =
1

h3NN !

∫
dpN

∫
drNfµV T (rN ,pN ;N) (2.2.15)

Using this, the canonical and GC ensembles probability densities can be related by [42]

1

h3NN !
fµV T (rN ,pN ;N) = P (N)fNV T (rN ,pN ) (2.2.16)

2.3 Microscopic Descriptions of Structure in Fluids

An example of an observable of interest in the study of fluids is the one-particle density

which, for inhomogeneous fluids, is spatially variant. It is obtained by taking the ensemble

average of the one-particle density operator, which is defined as [42]

ρ̂(1)(r) =
N∑

j=1

δ(r− rj) (2.3.1)

Substituting this into the definition of the ensemble average for the GC ensemble, given in

equation (2.2.14), gives [42]

〈ρ̂(1)(r)〉 =
1

Ξ

∞∑

j=1

eβµN

Λ3N (N − 1)!

∫
drN−1e−β(Φ(rN )+Vext(rN )) ≡ ρ(1)(r) (2.3.2)

This describes the average density as measured at r. Typically, the superscript is dropped and

ρ(1)(r) is written more simply as ρ(r). In the case of a homogeneous fluid, where Vext(r) = 0,

the spatial dependence vanishes and ρ(r) → ρb, where ρb is the density of the homogeneous

bulk fluid [42]. Descriptions of an inhomogeneous fluid are not limited to the one-particle

density. For example, the two-particle density can be defined using the operator [42]

ρ̂(2)(r, r′) =

N∑

j=1

N∑

k=1

δ(r− rj)δ(r
′ − rk) (2.3.3)

10



2.3. MICROSCOPIC DESCRIPTIONS OF STRUCTURE IN FLUIDS

Substitution of this, with fµV T , into equation (2.2.14) defines the two-particle density as [42]

〈ρ̂(2)(r, r′)〉 =
1

Ξ

∞∑

j=2

eβµN

Λ3N (N − 2)!

∫
drN−2e−β(Φ(rN )+Vext(rN )) ≡ ρ(2)(r, r′) (2.3.4)

These descriptions of the particle distribution in an inhomogeneous fluid can be extended

to three, four, five and more particles, and together form the n-particle densities, defined

generally as [42]

ρ(n)(rn) =
1

Ξ

∞∑

N=n

eβµN

Λ3N (N − n)!

∫
dr(N−n)e−β(Φ(rN )+Vext(rN )) (2.3.5)

The n-particle densities can be interpreted physically as the probability of finding particles

at given spatial locations within the fluid. For example, ρ(r)dr is the probability of finding

a particle at r. Integration over all r gives the average number of particles within the fluid

as [42] ∫
drρ(r) = 〈N〉 (2.3.6)

or more generally ∫
drnρ(n)(rn) =

〈
N !

(N − n)!

〉
(2.3.7)

Although these have been formulated in the GC ensemble, the canonical equivalent can be

found by considering equation (2.2.16). The canonical equivalent of the n-particle densities

is therefore [42]

ρ
(n)
NV T (rn) =

N !

(N − n)!

1

ZN

∫
dr(N−n)e−β(Φ(rN )+Vext(rN )) (2.3.8)

Irrespective of the ensemble, the n-particle density is related to the n-particle distribution

function as [42]

g(n)(rn) =
ρ(n)(r1, . . . , rn)∏n

j=1 ρ
(1)(rj)

(2.3.9)

This distribution function describes the deviation of the fluid structure from a random dis-

tribution [42]. Of particular importance is the pair distribution function

g(2)(r, r′) =
ρ(2)(r, r′)

ρ(r)ρ(r′)
(2.3.10)

In a homogeneous fluid, because of the translational invariance, this reduces to a function of

the distance between particles, g(2)(r, r′) ≡ g(2)(|r−r′|), which is more simply written as g(r).

This special case is termed the radial distribution function and has been used extensively in

studies of fluids due to it accessibility in experiment. Physically, the quantity 4πr2ρbg(r)

represents the average number of particles between r and r + dr from a reference particle.

The radial distribution function has the further property that, far from the reference particle

where particles become uncorrelated, g(r)→ 1 [42].
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The density, ρ(r), can also be used to provide a microscopic definition of the adsorp-

tion. Considering the latter interface system described in section 2.1, in which the chemical

potential was able to take any value, the adsorption, Γ, can be expressed as [40, 42]

Γ =

∫
dr(ρ(r)− ρb) (2.3.11)

where ρ(r) is as defined in equation (2.3.2), and ρb is the density of the bulk fluid.

2.4 Phase Transitions

Substances can exist in multiple phases, for example, as a vapour, liquid or solid, the

transitions between which are referred to as phase transitions. Such transitions are most

easily understood in terms of the Gibb’s free energy of the individual phases involved. At a

given (T, p), the preferred or stable phase of the substance is the one with the lowest Gibb’s

free energy per particle. If the phases have equal free energy, then either phase is stable and

a phase transition can occur. Considering the definition of the Gibb’s free energy in equation

(2.1.3), such a situation implies that the chemical potential of each phase is equal. A phase

transition can therefore occur only when the phases involved are in thermal, mechanical and

chemical equilibrium [39, 42, 47].

Depending on the behaviour of derivatives of the free energy, phase transitions can either

be classified as first-order or critical. If the first derivative of the free energy with respect to

temperature at the transition is discontinuous, then the transition is termed first-order. The

discontinuous derivative of the free energy arises due to a difference in the specific entropy

of the phases involved, where the specific entropy is defined as the entropy per particle.

A first-order transition in a fluid is therefore associated with the release or absorption of

heat, termed the latent heat. First-order transitions are typically accompanied by sudden

and dramatic changes in behaviour of the substance [47]. For example, at the liquid-vapour

phase transition of water at ambient conditions, the density of liquid water lowers by several

orders of magnitude to take the vapour density.

If the first derivative of the free energy is continuous, then a singularity must lie in a higher

order derivative, in which case the transition is said to be critical. In contrast to the sudden

change of behaviour of a substance at a first-order transition, at a critical phase transition

the phases coalesce and distinction between them is no longer possible [47]. Critical phase

transitions are accompanied by a wealth of interesting phenomena and are the transition of

interest within this work.

2.4.1 Critical Phase Transitions

A well studied example of a critical point is the liquid-vapour critical point of a bulk fluid.

This is marked by divergences in the isothermal compressibility, κT , defined as [42, 47]

κT = − 1

V

(
∂V

∂P

)

T

(2.4.1)
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and in the specific heat capacity, CV , defined as

CV =

(
∂U

∂T

)

V

(2.4.2)

On the approach to a critical point, observables such as κT and CV exhibit power law scaling

behaviour of single variables. For example, if Tc is the temperature of the critical point and

T of the fluid, then on the approach to Tc from below, κT ∼ (|T − Tc|/Tc)−γ ∼ |t|−γ , and

CV ∼ |t|−α, where t is known as the reduced temperature and α, γ are examples of critical

exponents [47]. Critical exponents exist for several other observables near to the critical

point, some of which will be introduced throughout this work.

In addition to critical exponents, it has been shown that, in the vicinity of a critical point,

the singular part of observables can be written as a scaling function of one variable [48]. Such

scaling functions are generalised homogeneous functions, which have the property

g(λau, λbv) = λg(u, v) (2.4.3)

where g(u, v) is a generalised homogeneous function of variables u, v, and λ is an arbitrary

function. An example of a property which can be written in such a form is the singular part

of the free energy of a fluid which, in the vicinity of the critical point, takes the form [39, 47]

ωsing(δµ, t) = λ−dωsing(λ
aδµ, λbt) (2.4.4)

where δµ = µ − µco is the difference between the chemical potential of the fluid, µ, and the

chemical potential at liquid-vapour coexistence, µco, and d is the dimension of the system.

As λ is arbitrary, it can be freely chosen such that λb = t−1 and hence

ωsing(δµ, t) = td/b ωsing(t
−a/bδµ, 1)

= td/b Σ

(
δµ

ta/b

)
(2.4.5)

where Σ is called the scaling function and δµ/ta/b the scaling variable. This form of the

free energy lends itself to further understanding of the critical exponents. For example,

differentiating equation (2.4.5) twice with respect to t, and noting that the derivative of a

generalised homogeneous function is also a generalised homogeneous function, allows for a

scaling function expression of CV . Comparing the exponents in this form of CV to α then

gives an expression for α in terms of the exponents a, b. Similarly, the exponent γ can be

written in terms of a, b by differentiating equation (2.4.5) twice with respect to µ. In fact, all

critical exponents can be written as variables of a, b, and hence all critical exponents can be

related to one another [39, 47].

These exponents are of particular importance to the study of critical phenomena as they

give rise to the concept of universality. Early experiments showed that many fluids exhibited

the same critical exponents, and furthermore that these were the same exponents as those

obtained from numerical three dimensional Ising model studies of magnets [47]. This universal
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dependence allows the critical behaviour all fluids and three dimensional Ising magnets to be

grouped into a universality class, which is called the 3-d Ising class [47]. This is remarkable,

considering the very different inter-particle interactions and thermodynamic conditions of the

critical point that each fluid exhibits, as well as the significant difference in appearance of

magnets and fluids. It has now been determined that the critical exponents, and therefore

universality class, to which a system belongs depends on very few features, examples of which

include the spatial dimension in which the system exists and the range of interaction between

particles [47].

Along with singularities in higher order derivatives of the free energy, a critical phase

transition is associated with the onset of long-ranged order, which can be interpreted as

all particles within a fluid becoming correlated. If the distance at which two particles are

correlated is defined as the correlation length, ξ, then, at a critical phase transition, ξ →
∞. As ξ represents the longest length scale of correlation, all particles with separations

smaller than ξ are also correlated, which means that fluctuations on all length scales become

important at a critical phase transition [47]. This importance can be observed physically in

fluids near to the liquid-vapour critical point, where ξ can be on the order of centimetres,

and hence density fluctuations occur on all visible wavelengths of light. Light incident on

the fluid is thus scattered strongly, which results in the fluid appearing a milky white colour.

This phenomenon is known as critical opalescence [47].

2.4.2 Mean Field Theory

Critical phenomena are vastly interesting, however their study has been hampered by

the long-ranged correlations present near the critical point. One theoretical approximation

to overcome this is Mean Field Theory (MFT). MFT ignores correlations and fluctuations

within a system, such that particles feel only the average interaction of all other particles.

MFT is therefore only quantitatively applicable when it is reasonable to consider fluctuations

unimportant. The importance of fluctuations can be determined by comparing the free energy

of a thermal fluctuation to the average free energy of the system [47]. Near to the critical

point, the average energy per unit volume of a thermal fluctuation can be written as [47]

ωfluc ∼
kBT

ξd
∼ |t|dν (2.4.6)

where d is the dimension of the system and it has been used that the behaviour of the

correlation length on the approach to the critical point can be described by the exponent, ν

as ξ ∼ |t|−ν . The average singular part of the free energy per unit volume of the system can

be found by integrating the specific heat capacity twice [47]

ωsing ∼ |t|2−α (2.4.7)

where α is the specific heat capacity critical exponent. For thermal fluctuations to be con-

sidered unimportant, ωfluc � ωsing and hence [47]

d >
2− α
ν

(2.4.8)
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The right hand side of this can be defined as the upper critical dimension, d∗, of the system

[47]. If the dimension of the system is greater than the upper critical dimension, d > d∗, then

fluctuations can be considered unimportant and MFT can be used to make both quantitative

and qualitative predictions of the critical behaviour of the system. In contrast, if d < d∗, then

MFT can provide only a qualitative understanding of the critical behaviour of the system

[47].

2.4.3 Mean Field Theory Approximation for Fluids

It is widely agreed that the short-ranged structure of a fluid is dominated by the packing

of particles, a result of their finite volume, whilst the role of attractions is largely to bind the

particles into a condensed phase [42]. Under such a description, fluids can be regarded as

consisting of purely repulsive particles which are subject to a purely attractive background

potential. This is the same description that was originally suggested by van der Waals [42]

and represents a MFT approximation for fluids.

Such a description can be realised using perturbation theory. Consider two particles lo-

cated at r and r′ respectively. The interaction between them, φλ(r, r′), can be written as the

sum of a purely repulsive reference potential, φo(r, r
′), and a weak purely attractive pertur-

bation potential, φatt(r, r
′). The strength of the perturbation is controlled by the parameter

λ. When λ = 0, there is no perturbation and hence φλ(r, r′) = φo(r, r
′). Conversely, when

λ = 1, φλ(r, r′) = φo(r, r
′)+φatt(r, r

′) and hence the full effect of the perturbation is felt. As-

suming λ varies smoothly between 0 and 1, the perturbative potential between the particles

can be written as [39, 42]

φλ(r, r′) = φo(r, r
′) + λφatt(r, r

′) 0 ≤ λ ≤ 1 (2.4.9)

and the potential energy felt between all particles as

Φλ =

N∑

j=1

N∑

k>j

φλ(rj , rk) (2.4.10)

Working within the canonical ensemble, and assuming the fluid is not subjected to an external

potential, equation (2.2.7) can be used to determine the derivative of the excess Helmholtz

free energy of the fluid [39, 42]

∂(βFex)

∂λ
= − 1

ZN

∂ZN
∂λ

=
β

2

∫
dr

∫
dr′
∫

drN−2 N !

(N − 2)!

e−βΦλ

ZN
φatt(r, r

′)

=
β

2

∫
dr

∫
dr′ρ

(2)
λ (r, r′)φatt(r, r

′) (2.4.11)

where ZN represents the configuration integral and the λ subscript represents that ρ
(2)
λ (r, r′)

is the two-particle density of the fluid subjected to the perturbed potential. Integrating this
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with respect to λ gives

βFex = βFo +
β

2

∫ 1

0
dλ

∫
dr

∫
dr′ρ

(2)
λ (r, r′)φatt(r, r

′) (2.4.12)

where the integration constant, βFo, can be recognised as the excess Helmholtz free energy

of a fluid subjected only to the reference potential, referred to here as the reference fluid.

The two-particle density can be expanded in powers of λ about λ = 0. To a first order

approximation, equation (2.4.12) then reduces to [39, 42]

βFex = βFo +
β

2

∫
dr

∫
dr′ρ(2)

o (r, r′)φatt(r, r
′) (2.4.13)

where the integration over λ has been performed and ρ
(2)
o (r, r′) is the two-particle density of

the reference fluid. Physically, this represents that the structure of the fluid is assumed to

be unaltered by perturbations [42].

2.4.4 Liquid-Vapour Phase Transitions

Using equation (2.3.10), ρ
(2)
o (r, r′) can be written as a function of the pair distribution

function. In a bulk fluid, the one-particle density has no spatial dependence and hence

ρ
(2)
o (r, r′) can be further simplified to ρ

(2)
o (r, r′)→ ρ2

bgo(r) where ρb is the homogeneous bulk

density [45]. Substituting this into equation (2.4.13) then gives [42]

βFex
N

=
βFo
N

+
βρb
2

∫
drφatt(r)go(r) (2.4.14)

where r represents the distance between particles andN the number of particles. MFT ignores

correlations, hence the pair distribution function is go(r) ≈ 1. This is a valid assumption if

the range of φatt(r) is much larger than the range of inter-particle separations over which go(r)

is expected to vary significantly from the bulk value [42]. An example of such a situation is if

the reference potential is taken to be the hard-sphere potential and the attraction to have the

form of a long-ranged inverse power law [42]. Using this simplification, the excess Helmholtz

free energy per particle, f̃ex = Fex/N , can be written as [42]

βf̃ex = βf̃o − βaρb where a = −1

2

∫
drφatt(r) (2.4.15)

where f̃o is the excess Helmholtz free energy per particle of the reference fluid. Differentiation

of this gives the equation of state

pex = −
(
∂Fex
∂V

)

T,N

= ρ2
b

(
∂f̃ex
∂ρb

)

T,N

= po − aρ2
b (2.4.16)

where po is the pressure of the reference fluid and is a function of ρb. If the reference potential

is taken to be that of hard-spheres, this recovers van der Waals original equation of state [42].
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ρ

p

Figure 2.1: Illustration of construction of the bulk liquid-vapour phase diagram for a van der
Waals fluid. The grey lines represent the pressure isotherms determined from the equation of state.
Nonphysical parts of the isotherms are removed using a Maxwell construction, shown in blue. The
final coexistence curve is shown in red. The critical point marks the inflection point of the critical
isotherm and is represented by the red point.

Similarly, an expression for the chemical potential can be found using

µex =

(
∂Fex
∂N

)

T,V

=


ρb

(
∂f̃ex
∂ρb

)

T,V

+ f̃ex


 = µo − 2aρb (2.4.17)

where µo is the chemical potential of the reference fluid.

Plotting the pressure isotherms for equation (2.4.16) for an appropriate reference and

attractive potential leads to figure 2.1 [39, 42, 47]. Three types of isotherm can be identified.

When T < Tc, the isotherms exhibit both a peak and a trough and, for a portion of the

isotherm, multiple densities exhibit the same pressure. The latter behaviour is indicative of

a first-order phase transition. When T > Tc, the isotherms are smoothly increasing functions

of the density, indicating a supercritical fluid. Finally, the isotherm which corresponds to

T = Tc, termed the critical isotherm, exhibits a single point of inflection [39, 42, 47].

For phase stability, κT > 0, which can be seen to be violated between the peaks and

troughs of isotherms below Tc [42]. This unstable portion is characteristic of MFT and can

be removed using a Maxwell construction, which graphically represents the phase coexistence

condition that the pressure and chemical potential be equal in each phase. This construction

involves locating the line between the two stable phases, for which the area above, in the

case of the peak, and below, in the case of the trough, are equal [39, 42, 47]. An example of

such a construction is shown by the solid blue line and blue hatched areas in figure 2.1. The

intersection points of the isotherm and Maxwell construction in the stable phases can then

be used to define the coexistence curve of first-order phase transitions, which is indicated by

the red solid line in figure 2.1.

In addition to removing the unstable portion of the isotherm, the Maxwell construction

also removes a stable portion, which occurs between the intersection of the Maxwell con-
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Figure 2.2: Examples of bulk phase diagrams relevant within this work. (a) Example of the density-
temperature phase diagram, with phases indicated. The horizontal grey dotted line represents the
critical temperature. The dark blue solid line represents the curve of first-order liquid-vapour phase
transitions, whilst the light blue dashed lines represent the spinodals. The critical point is given by
the dark blue point. (b) Example of the chemical potential - temperature phase diagram, with phases
labelled. The vertical grey dotted line represents the critical temperature, whilst the dark blue solid
line represents the first-order liquid-vapour transitions. The critical point is given by the dark blue
point.

struction with the isotherm and the peak and trough. It was suggested by van der Waals

that such regions represented metastable states [39]. These are states which do not represent

the minimum free energy phase, but can be accessed under certain conditions. Due to their

instability, any perturbation will nucleate the stable, lower free energy phase [39]. The peaks

and troughs of the van der Waal loops can therefore be used to define the spinodals, which

represent the boundary to which the metastable state can be accessed. However, it should

be noted that these are an artefact of MFT, and do not typically exist in real fluids.

The critical point can be identified by locating the stationary point on the critical isotherm

using the conditions [39, 42, 47]

(
∂p

∂ρb

)

T=Tc

= 0

(
∂2p

∂ρ2
b

)

T=Tc

= 0 (2.4.18)

The first condition ensures that κT diverges at the critical point, whilst the second ensures

the gradient of the isotherm at the critical point is horizontal [42].

Using the Maxwell construction and the conditions for the critical point, the phase dia-

gram of a MFT fluid can be obtained, the key features of which are given in figure 2.2. Phase

diagrams can be constructed for any combination of parameters however, for the purpose of

this work, the most pertinent are the ρ − T and T − µ phase diagrams. It should be noted

that, due to its simplicity, the MFT approximation for a fluid is only capable of describing the

liquid and vapour phases. Real fluids can typically exist in many additional phases, such as

solids, and hence phase diagrams for real fluids such as water are typically far more complex.
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2.4.5 Wetting and Drying Phase Transitions

Consider a droplet of water on a surface, as shown in figure 2.3. Depending on the

character of the surface, the droplet may be rounded or flat. This property can be quantified

by considering the contact angle the droplet makes with the surface, denoted as θ, and an

expression for θ can be derived by resolving the surface tension components of the three

interfaces [49]. Doing so leads to Young’s equation [41, 49, 50]

cos θ =
γsv − γsl
γlv

(2.4.19)

where γsv, γsl and γlv are the surfaces tensions of the surface-vapour, surface-liquid and

liquid-vapour interfaces respectively, and are as shown in figure 2.3. The contact angle a

droplet of water makes with a surface provides a definition for the affinity of the surface and

water. Surfaces which have low affinity with water make obtuse contact angles, such that

90◦ < θ < 180◦ and are termed hydrophobic. Similarly, surfaces which have high affinity

with water make acute contact angles, such that 0◦ < θ < 90◦, and are termed hydrophilic.

From the definition of the contact angle, two interesting cases relating to | cos θ| = 1

arise. In the first case, where cos θ = 1 and therefore θ = 0◦, the droplet of water completely

covers the surface and Young’s equation reduces to γsl = γsv− γlv. In the second case, where

cos θ = −1 and therefore θ = 180◦, the droplet of water forms a perfect sphere which is no

longer in contact with the surface. In this case, Young’s equation reduces to γsl = γsv + γlv.

The approach to these cases correspond to surface phase transitions, termed wetting and

drying respectively, and represent the formation of a macroscopic layer of liquid or vapour at

the surface [41, 49, 50].

The reasoning behind such a phase transition was first presented by Cahn [51], whose

argument was based on the scaling of these surface tensions on the approach to the critical

point of the bulk fluid. Cahn noted that, as Tc is approached from below, the liquid-vapour

surface tension vanishes as γlv ∼ (−t)µ, where t is the reduced temperature as defined in

section 2.4.1 and µ = (d− 1)ν is a critical exponent [50, 51]. For a fluid, d = 3 and ν ≈ 0.63

[47], therefore the critical exponent µ ≈ 1.26. In addition, Cahn argued that γsv − γsl should

also vanish, as the liquid and vapour cease to be distinguishable at the bulk critical point.

θ

γlv

γsvγsl

Hydrophobic

θ

Hydrophilic

Figure 2.3: Droplet of water on a surface. If the surface is hydrophobic, the contact angle the droplet
makes with the surface, θ, will be obtuse. If the surface is hydrophilic, θ will be acute. The contact
angle can be found by resolving the three surface tensions within the system, indicated by the arrows
and denoted as γ.
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The similarity of the liquid and vapour phases in a near-critical fluid can be quantified by

the order parameter (ρl−ρv), which is known to vanish as (ρl−ρv) ∼ (−t)β on the approach

to Tc, where β ≈ 0.33 for a bulk fluid [47]. Following Cahn’s argument, the contact angle

should therefore vanish as cos θ ∼ (−t)β−µ = t−0.93, which implies a divergence of cos θ on the

approach to Tc. However, the contact angle is constrained to values of | cos θ| ≤ 1 and hence

Cahn argued that there must exist a temperature, TW < Tc, corresponding to cos θ = 1,

for which the system undergoes a surface phase transition where the water fully wets the

surface and after which the contact angle remains equal to 0◦ [51]. Similarly, in the case that

cos θ = −1, a temperature TD < Tc must exist in which a vapour fully wets the surface.

Around the same time Cahn made his thermodynamic argument, Ebner and Saam [52]

provided numerical evidence for a surface phase transition by considering a model of an

argon gas in contact with a solid CO2 surface. At low temperatures, a thin liquid film

of argon was found to form at the CO2 surface. Upon raising the temperature, this thin

adsorbed film suddenly transformed to a thick adsorbed film, in a surface phase transition

now referred to as prewetting. Their results proved controversial, with subsequent numerical

and simulation studies finding no evidence of such a transition [53, 54]. It was suggested

that these discrepancies were due to the parameters at which Ebner and Saam had found the

transition, as a later study using a similar method that found such a transition reported it

to be at a much higher temperature and far closer to liquid-vapour coexistence [55].

Subsequent studies on wetting were also subject to much debate, particularly in regards

to its nature. Cahn’s original thermodynamic argument suggested that wetting was a first-

order transition [51], evidence for which was provided in simulation studies of lattice gas

models [56, 57]. In contrast, a microscopic theory of wetting based on a MFT van der Waals

model of fluids by Sullivan [58] found that wetting was instead a critical phase transition.

Later studies showed both types of wetting phase transition were possible [59, 60], and that

the exact nature of the transition was strongly dependent on the comparative strengths of

the substrate-fluid (sf) and fluid-fluid (ff) interactions, as well as the range over which each

interaction extended [59–61]. These early studies focused almost exclusively on the case of

wetting, as drying was viewed as the wetting of a surface by a vapour and therefore any

arguments made for wetting were believed to be generally applicable to drying too [49, 58,

62]. Lattice gas studies took this idea further, as the particle-hole symmetry directly implied

that wetting and drying were equivalent provided that the bulk fluid was replaced by a liquid

in the latter and that the film formed was a vapour [61].

Whilst from a phenomenological perspective, wetting and drying are similar [49], it is

now appreciated that they are distinct and that their nature may differ for a given substrate

and fluid [1, 38]. As this work is concerned with hydrophobicity and therefore drying, the

phenomenology is presented from this perspective, however replacing the drying temperature,

TD, with the wetting temperature, TW , the bulk liquid with a bulk vapour, a vapour film

with a liquid film and an oversaturation with an undersaturation in any of the following

arguments will recover wetting, as presented in texts such as [41, 49, 50].

Consider a bulk liquid, of density ρl, in contact with an impenetrable substrate. If the
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z

ρ(z) ρl

ρv

`

Figure 2.4: Illustration of the behaviour of a fluid, shown in blue, in contact with an impenetrable
substrate, shown in grey. Near to drying, a film of vapour, of width `, forms at the surface. Here, ρl
represents the density of the fluid, at coexistence, in its liquid phase, whilst ρv represents the density
of the fluid, at coexistence, in its vapour phase.

liquid is at coexistence with its vapour phase, of density ρv, a film of vapour may form at

the surface of the substrate [41, 49, 50]. Such a system is shown in figure 2.4, where the

width of the vapour film is denoted by `. The adsorption of such a system can be found using

equation (2.3.11), and will be of magnitude Γ ≈ −∆ρ`Asv, where ∆ρ = (ρl − ρv) and Asv

is the surface area of the substrate-vapour interface. The adsorption can in fact be used to

define the width of the film as [49]

` ≡ −Γ

Asv∆ρ
(2.4.20)

If the system is at equilibrium, this also provides a definition for the equilibrium film width,

denoted as `eq.

Below TD, the vapour film is microscopic, and hence `eq is finite. However, as TD is

approached from below, the equilibrium width of the film grows and exactly at TD, drying

TD Tc
µco

µ

T

`eq

TTD

Critical
Drying

First-Order
Drying

Figure 2.5: Examples of the behaviour of the equilibrium film width, `eq, on the approach to the
drying surface phase transition. Left: Illustration of path within parameter space corresponding to
the approach to critical drying. Right: If the transition is critical, as TD is approached from below
at coexistence, `eq will grow to a macroscopic width continuously. If the transition is first-order, then
at TD, `eq will jump discontinuously to a macroscopic film width. Note, the diagram on the left is
purely illustrative, and does not reflect the true shape of the coexistence curve.
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occurs. The vapour film then becomes macroscopic, which corresponds to the equilibrium

film width becoming `eq =∞. This transition from a microscopic to macroscopic film width

can either be first-order or critical. If first-order drying occurs, then `eq becomes macroscopic

discontinuously. If the transition is instead critical, the growth of `eq is smooth and exactly

at TD, `eq diverges [41, 49, 50]. Each of these cases can be seen in figure 2.5.

If the fluid exhibits a small oversaturation, which corresponds to µ > µco, then even as TD

is approached, the vapour film will remain finite [50]. If the drying transition is first-order,

then it is possible for the fluid to undergo a different but related surface phase transition,

called predrying, in which the vapour film transitions from a thin to thick width. These

transitions are first-order, and their magnitude depletes as the oversaturation is increased.

The locus of predrying transitions allows for the definition for the predrying line on the phase

diagram. This terminates in a critical point, termed the predrying critical point, at which

the transition between the thin and thick film widths becomes a smooth, rounded point of

inflection [49, 50, 60].

In addition to first-order, critical and predrying, there exists one other way in which the

vapour film may become macroscopic, which is termed complete drying. Complete drying

specifically refers the divergence of the vapour film width as µco is approached from an

oversaturation, for temperatures TD ≤ T < Tc, and is always a continuous transition. The

definition of complete drying also allows for the definition of incomplete drying. This refers

to the microscopic nature of the film width, if µco is approached from an oversaturation,

however for T < TD [50].

Examples of predrying, incomplete and complete drying can be seen in figures 2.6 and

2.7. Path (a) in figure 2.6 indicates predrying, as T is increased. Path (b) and (c) in figure

2.7 indicate incomplete and complete drying respectively. Path (d) in figure 2.7 indicates

both predrying and complete drying, with a thin to thick film width transition occurring

first, followed by a divergence in the film width as µco is approached.

µ

µco
TTD Tc

(a)

T

`eq

TD

(a)

Figure 2.6: Illustration of the behaviour of `eq if predrying occurs. If the fluid has a small oversatu-
ration, it is possible that, at a temperature T > TD, it will undergo a phase transition from a thin to a
thick film width. This is known as predrying. The predrying line extends from TD at the coexistence
line, and terminates in a critical point. Note, the diagram on the left is purely illustrative, and does
not reflect the true shape of the coexistence curve.
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µco
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Figure 2.7: Illustration of the behaviour of `eq (right) along different isotherms (left), as µco is
approached from above. Below TD, indicated by (b), the vapour film grows, but remains microscopic.
Exactly at TD, indicated by (c), the equilibrium film width diverges continuously as µco is approached,
in a transition termed complete drying. Above TD, as indicated by (d), two transitions may occur.
As the isotherm crosses the predrying line, the vapour film width will transition discontinuously
from a thin to a thick width. Then, as µco is approached, the equilibrium film width will diverge
continuously. Note, the diagram on the left is purely illustrative, and does not reflect the true shape
of the coexistence curve.

As was appreciated early in the study of wetting and drying, the order of the drying

transition is determined by factors such as the relative strengths of the sf interaction, denoted

εsf , and ff interaction, denoted by ε, and the range of such interactions [59–61]. The latter can

be classified broadly as short-ranged (SR), which are typically exponential or finite ranged in

nature, or long-ranged (LR), which are typically inverse power law in nature. Only recently

have the orders of wetting and drying for various combinations of these been mapped out

fully [38]. Figure 2.8 presents the current understanding of the nature of each combination.

Notably, in many cases, drying is a critical surface phase transition, whilst wetting is first-

order. This is specifically true for the typical interactions found in simulation (SR ff LR sf)

and in experiment (LR ff LR sf). As predrying can only occur in systems which undergo

first-order drying, this has the consequence that predrying is not normally possible.

The order of the wetting and drying transitions can be determined from the behaviour

of cos θ on the approach to the transition, as εsf/ε is varied. Figure 2.9 shows this for

the case of SR ff LR sf interactions. cos θ = −1 is approached tangentially, indicating a

smooth divergence and therefore a critical drying transition. In contrast, cos θ = 1 is met

with a discontinuous slope, indicating a discontinuous change in film width and therefore a

first-order wetting transition [38].

Our current understanding of wetting and drying has mostly come about through MFT

theoretical [51, 52, 60, 61], numerical [38] and simulation [56, 57] studies, and to date there

is little experimental evidence confirming the orders and behaviours of these transitions. Of

the studies which exist, most have utilised hydrocarbons in contact with a liquid surface, and

have explored wetting transitions [63–67]. Despite the different type of surface, the physics

remains the same and such studies have reported evidence of first-order wetting [64, 65],

critical wetting [63, 65–67] and prewetting [66, 67].
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Figure 2.8: Surface phase diagrams for systems with different combinations of short-ranged (SR)
and long-ranged (LR) fluid-fluid (ff) and substrate-fluid (sf) interactions. In each case, the horizontal
dotted grey line represents the critical temperature. Drying transitions are indicated in dark orange,
whilst wetting transitions are indicated in light blue. Solid transition lines represent critical transitions,
whilst dashed transition lines represent first-order transitions. In the case of SR ff SR sf interactions,
the possible states of the system are labelled.

εsf/ε

co
s
θ

cos θ = −1

cos θ = 1

Figure 2.9: Examples of the variation of cos θ with εsf/ε for a system with SR ff LR sf interactions.
The critical drying transition is indicated by the tangential approach to cos θ = −1. In contrast, the
first-order wetting transition is indicated by the discontinuous slope on the approach to cos θ = 1.
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2.4. PHASE TRANSITIONS

2.4.6 Beyond Mean Field Theory

Whilst MFT has proven highly successful for understanding qualitatively the physics

underlying critical phenomena, it is limited in its quantitative predictions due to its failure to

account for fluctuations which become important when d < d∗. For a bulk fluid, d∗ = 4 > d,

and hence MFT has limited applicability in understanding critical phenomena in bulk fluids

[47].

If fluctuations are considered important, alternative methods of study must be applied.

One such method used within this work is molecular simulation. Simulations of fluids are able

to account for fluctuations, as they consider the individual microscopic interactions between

particles as opposed to a general underlying averaged potential. However, simulations also

struggle to provide accurate quantitative results for the study of phase transitions. Large

free energy barriers present between phases at a first-order phase transition can prevent

transitions between phases [68]. Near critical phase transitions, the diverging correlation

length becomes constrained by the size of the simulation box and properties such as κT

fail to diverge, instead exhibiting rounded peaks. These latter behaviours are called finite

size (FS) effects and further lead to phenomena such as the apparent simulation box size

dependence of the critical temperature [39, 68].

FS effects can also influence simulations of surface critical behaviour however, in contrast

to the bulk case, it is the component of the correlation length parallel to the surface, ξ||,

which drives these [69]. This diverges far faster than the perpendicular component, and has

been shown in studies of drying to lead to the formation of a ‘bubble’ which covers the entire

surface [1]. This may then detach from the surface and cause the system to fill with vapour,

essentially becoming dry, before the critical drying transition is reached. Such a phenomenon

has been termed premature drying [1]. Considering these behaviours, it is evident that great

care must be taken when interpreting results involving critical phase transitions obtained

from simulations.

A second alternative method which does not suffer from such effects is Renormalization

Group (RG) Theory. This method utilises the scale invariance of the critical point to iden-

tify, among other properties, the critical exponents of a system. A RG treatment involves

the repeated application of a renormalization transformation to the Hamiltonian, which suc-

cessively removes degrees of freedom of the system, whilst leaving the underlying partition

function unchanged. Only at the critical point where fluctuations are present on all length

scales will such a transformation have no effect, and hence it is possible to identify the critical

point and its properties, by finding such a case. In addition to its applications for finding the

critical point and critical exponents, RG theory also gives a theoretical basis for the scaling

function forms presented in section 2.4.2. RG theory has proven an invaluable tool for the

study of critical points where d < d∗ [47]. A particularly important example of an RG theory

for the bulk fluid is Hierarchical Reference Theory [70].
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CHAPTER 2. THERMODYNAMICS AND STATISTICAL MECHANICS OF PHASE
TRANSITIONS

2.5 Measures of Local Density Fluctuations

As discussed in section 2.4.1, a critical point is accompanied by large fluctuations which,

for a bulk fluid, can be quantified using κT . A surface critical point is also expected to

exhibit enhanced density fluctuations however, in contrast to the bulk fluid critical point,

these fluctuations are expected to be localised to the surface. As such, it is necessary to have

a well defined measure of these local density fluctuations.

One such measure, which is of particular use in the GC ensemble, is the local compress-

ibility as proposed by Evans and Stewart [37], which is defined as

χµ(r) =

(
∂ρ(r)

∂µ

)

T,V

(2.5.1)

Compared to κT , χµ(r) gives an indication of the spatial variation of density fluctuations.

It also maintains the nice property that, in the bulk limit, χµ,b → ρ2
bκT [1]. χµ(r) has been

utilised in several previous studies of wetting and drying [1, 23, 32], where it has been found

to be a highly sensitive measure of fluctuations induced by a critical drying transition.

Recently, it was shown that the local compressibility is in fact just one of three possible

measures of fluctuations which are present in GC systems [71]. The two other measures are

the local thermal susceptibility, χT (r), and the reduced density χ∗(r), which are defined as

χT (r) =

(
∂ρ(r)

∂T

)

µ,V

(2.5.2)

χ∗(r) = ρ(r)− TχT (r)− µχµ(r) (2.5.3)

Together, these three measures can be interpreted as describing the chemical (χµ(r)), entropic

(χT (r)) and energetic (χ∗(r)) fluctuations within a system [71]. In addition, these measures

can each be rewritten as a covariance, which can be convenient for simulation studies [1, 71].
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Chapter 3

Views of Hydrophobicity

Hydrophobicity plays a crucial role in a variety of biological, chemical and physical processes.

For example, protein folding is facilitated by the unfavourable interactions between water

molecules and hydrophobic areas on the surface of the protein [72, 73]. Aggregation of am-

phiphilic molecules into mesoscopic structures, an essential property for detergents, is enabled

by the molecule’s hydrophobic components [5]. Self-cleaning mechanisms of leaves, which ef-

ficiently remove harmful spores and bacteria from plants, rely on water forming rounded

droplets with low surface adhesion, which is possible only because of the hydrophobicity of

the surface [2, 74].

Despite the ubiquity of hydrophobicity, its exact definition and signatures are vague.

On the macroscopic scale, hydrophobicity is understood in terms of the behaviour of water

droplets [19, 75], whilst on microscopic length scales, in terms of solvation [5]. Simulation

studies have reported enhanced water density around some hydrophobic solutes and a reduced

density around others [22]. Hydrophobic solutes also appear to influence the orientation of

nearby water molecules, however exactly how seems to depend on the nature of the solute

[10, 15, 16]. Terminology to describe hydrophobicity also varies, with descriptions such

as force [72], effect [7, 9, 76], and hydration [31, 77] used interchangeably. Terms such as

hydrophobic interaction are also used, but are typically reserved for the context of aggregation

of hydrophobic solutes [5, 6].

Hydrophobicity clearly operates on a variety of length scales and varies in form between

them. However, the connection between the manifestations present on each of these length

scales has remained elusive. One commonality between hydrophobicity on all length scales

greater than 1 nm is the observation of enhanced density fluctuations, not present at equiva-

lent hydrophilic surfaces [23, 28, 29, 31, 73]. Similar density fluctuations reported at macro-

scopic hydrophobic surfaces have been speculated to arise due to a critical drying surface

phase transition [23], the nature of which was described in section 2.4.5. It is therefore perti-

nent to ask whether such a surface critical point could influence microscopic hydrophobicity

and perhaps whether the density fluctuations observed around microscopic hydrophobic so-

lutes are remnants of those observed around macroscopic hydrophobic surfaces, believed to

arise due to critical drying.
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CHAPTER 3. VIEWS OF HYDROPHOBICITY

Whilst the precise nature and underlying physics of hydrophobicity remains to be de-

termined, great progress has been made in identifying factors which influence the behaviour

of water molecules around hydrophobic substrates and solutes. Variation in thermodynamic

conditions [78, 79], surface chemistry and topology [19, 80], and solute size [6, 7, 77] have been

found to alter water’s hydrophobic response. Such factors have also been found to influence

the solvophobic response of a variety of fluids, including the Lennard-Jones [1, 8, 81, 82],

Jagla [35] and n-Octane [36] fluids. Furthermore, similar thermodynamic behaviour has been

observed in hydrophobic and solvophobic systems, for example, in the dependence of the free

energy of solvation on size of solute [35, 83]. Such correspondence between hydrophobicity

and solvophobicity casts doubt as to whether the former should be regarded as a unique

interaction, or whether it should be treated as simply a special case of solvophobicity.

The purpose of this chapter is to present an overview of the current understanding of

hydrophobicity, solvophobicity, and their potential relation to critical drying. This under-

standing takes a length scale dependent view and hence in section 3.1, hydrophobicity is

explored in terms of three regimes most evident in the literature. In section 3.2, the similari-

ties and differences between hydrophobicity and the more general solvophobicity are discussed

and compared, whilst in section 3.3 the possible relation between hydrophobicity on all length

scales and an underlying critical surface phase transition is examined. The understanding

presented here is not exhaustive and the interested reader is directed to the many reviews on

the subject, for example [5, 19, 73–76, 84–86].

3.1 Hydrophobicity: A Length-Scale Dependent View

Hydrophobic solutes and substrates solvate differently depending on their size [6, 7, 87].

Experimental and simulation studies of hydrophobic molecules of comparable size to water,

such as methane and xenon, have found these to typically invoke few observable changes to the

surrounding water [10, 12], whilst simulation studies of larger molecules, such as neopentane

and cyclopentadiene, have suggested these influence the orientation of water molecules local

to their surface [10, 11]. Experiments involving macroscopic surfaces of paraffin and glass

have found evidence of regions of depleted water density local to the surfaces [24, 88]. In

contrast, the tendency of water droplets to form rounded shapes on hydrophobic surfaces

such as rose petals or lotus leaves is well documented [2, 19, 74]. As hydrophobicity varies

in form depending on the length scale, an understanding of hydrophobicity also requires

a length scale dependent perspective. Considering the behaviour of water in each of the

cases listed, three regimes of hydrophobicity naturally arise: a small length scale solvation

regime, which describes hydration of solutes of order the size of a water molecule; a large

length scale solvation regime, which describes hydration of solutes substantially larger than

a water molecule, such as proteins and alkanes; and a macroscopic regime, which describes

hydrophobic behaviour of planar surfaces.

3.1.1 Small Length Scale Solvation Regime

Much of our current understanding of hydrophobicity in the small length scale solvation

regime is derived from the behaviour of bulk water. Bulk water has a distinct, slightly
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3.1. HYDROPHOBICITY: A LENGTH-SCALE DEPENDENT VIEW

disordered, tetrahedral structure, the formation of which is attributed to its hydrogen bonding

abilities [89]. These hydrogen bonds are incredibly energetically favourable, and water will

go to great lengths to preserve them. Therefore, when met with an apolar solute with which

they cannot form hydrogen bonds, it is argued that water molecules will reorient themselves

in such a way as to straddle the solute, as shown in figure 3.1(a) [7, 89]. This allows for water

to maintain its hydrogen bonds, and amounts to hydrophobic solutes in this regime being

incorporated into water’s bulk structure. The density of water proximal to the hydrophobic

solute would therefore be expected to be enhanced, as shown in figure 3.1(b). This expectation

has been confirmed by both theoretical models of hydrophobic solvation [6] and simulations

[22].

Incorporation of a hydrophobic solute into water’s tetrahedral structure reduces the vol-

ume available for water molecules to occupy, whilst the necessity to maintain hydrogen bonds

limits the water molecule’s available orientations. Combined, this leads to a large negative

hydration entropy [7, 35, 89]. Such a penalty was first rationalised by Frank and Evans [90] by

the suggestion that water’s structure in the first solvation shell became more ice-like around

a hydrophobic solute. This suggestion has gathered popularity since its inception and has

become known as the iceberg model. Whilst the iceberg model has generated great interest,

agreement on its accuracy is conflicted, particularly on the definition of ‘ice-like’ structure

[7, 12, 13, 15]. Studies which interpret this in terms of a change in the radial distribution

function of water show no evidence for enhanced ice-like structure [14], with some going so

far as to indicate a diminished structure [13]. If enhanced structure is instead interpreted

in terms of hydrogen bond strength, evidence has been found in favour of the iceberg model

[12]. Studies based on the angular distribution of water molecules have also found in favour

of an enhancement of structure, however have noted that this is not necessarily ice-like [15].

r

(a)

r

ρ(r)

ρb

(b)

Figure 3.1: (a) Illustration of the structure water is believed to adopt around hydrophobic solutes
of similar size to water molecules. A hydrophobic solute, represented by the large orange circle, is
solvated in water, shown in blue. The nearby water molecules orient themselves in order to straddle
the solute, and maintain their hydrogen bonds. Oxygen and hydrogen atoms are represented by the
red and white circles respectively. Covalent bonds are represented by the solid lines, whilst hydrogen
bonds by the dotted lines. (b) The corresponding oxygen-oxygen density profile which would be
expected for such a structure of water. ρb here represents the density of water in the bulk liquid.
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CHAPTER 3. VIEWS OF HYDROPHOBICITY

Alternative reasoning has suggested that it is instead the dynamics of water molecules about

these hydrophobic solutes which are ice-like [14], however again, evidence for this is conflicted

[14, 85, 91].

Although a precise understanding of the influence of small hydrophobic solutes on the

structure of water has remained elusive, it has become apparent that such knowledge is

unnecessary for understanding many of the thermodynamic properties of their solvation.

Instead, estimates for the free energy of solvation, ∆µ, the hydration entropy, ∆S, and their

temperature dependence can be obtained purely from statistical mechanics [5, 92, 93]. Within

statistical mechanics, the Widom insertion method expresses the change in excess chemical

potential, or free energy of solvation in this case, upon insertion of one solute particle as [42]

∆µ = −kBT ln < e−β∆E > (3.1.1)

where ∆E represents the inter-particle and external energy contributions of the solute to the

Hamiltonian, and the term within the logarithm can be recognised as the canonical probability

of insertion of the solute. If the hydrophobic solute can be treated as a hard-sphere, then

∆E = 0 if a randomly chosen volume, large enough to accommodate the solute, is void of

water molecules, and ∆E =∞ if the volume is partially occupied. The probability of insertion

is therefore related to the probability of finding a volume large enough to accommodate the

hydrophobic solute which is also void of water molecules. This implies equation (3.1.1) for a

hard-sphere solute can be rewritten as [5, 42, 92]

∆µ = −kBT lnP (N = 0) (3.1.2)

where P (N) is the probability of finding N water molecules in a volume the size of the

hydrophobic solute. Equation (3.1.2) therefore implies that the free energy of solvation for a

small hydrophobic solute should scale with the volume of the solute, which has indeed been

found to be the case in several theoretical and simulation studies [6, 8, 83].

For water, P (N) has been found to be Gaussian for small volumes [93]. This observation

has been used to rationalise the temperature dependence of hydrophobic solvation in the

small length scale solvation regime [92]. P (N) can be defined as [92]

P (N) =
1

(2πσ2)1/2
e−

(N−<N>)2

2σ2 (3.1.3)

where < N > is the mean number of water molecules in the volume, and σ the variance.

Substituting P (N = 0) into equation (3.1.2) then gives

∆µ ≈ kBTρ
2
bV

2

2σ2
+
kBT

2
ln 2πσ2 (3.1.4)

where ρb is the bulk water density and V the volume of the system. For water, σ has

been found to have a very weak temperature dependence [92]. Considering this, and that

as a logarithm, the second term is expected to vary far slower than the first, it can be

concluded that the temperature dependence of ∆µ is dominated by the term Tρ2
b [92]. At
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ambient temperature, T = 298 K, ρb ≈ 0.997 gcm−3 [94] and hence Tρ2
b ≈ 296 (gcm−3)2K.

However, at T = 400 K, where ρb ≈ 0.9375 gcm−3 [94], Tρ2
b ≈ 352 (gcm−3)2K. Thus,

the free energy of solvation is predicted to be larger at 400 K than at ambient temperature

and the hydrophobicity of a solute should therefore increase upon increasing temperature.

Such behaviour has been confirmed in both theoretical and simulation studies [8, 92]. These

studies have found that the free energy of solvation in fact peaks near 400 K for hydrophobic

solutes of order the size of a water molecule, before reducing. This latter observation can be

rationalised by the rapidly decreasing density of water at higher temperatures, as the bulk

liquid-vapour critical point is approached.

As well as providing a qualitative understanding of small length scale solvation behaviour,

the simple statistical mechanics arguments surveyed here have also been found to provide

good quantitative estimates for the hydration entropy of small hydrophobic solutes [5], which

is related to equation (3.1.4) via ∆µN = ∆G = ∆H − T∆S [5], where ∆G is the Gibb’s

free energy defined in equation (2.1.3) and all other terms take their meanings of section

2.1. This is remarkable considering that the hydrophobic solute has been treated purely as a

hard-sphere, with no attempt made to account for the effects of attraction between the solute

and water molecules. These arguments, and their great successes, justify that small length

scale solvation be understood in terms of the behaviour of bulk water.

3.1.2 Large Length Scale Solvation Regime

As the size of the hydrophobic solute grows, it becomes progressively more difficult for

water molecules to reorient themselves in such a way as to retain all of their hydrogen bonds.

If all hydrogen bonds cannot be retained, then the next most favourable orientation for the

water molecules to adopt is to point one hydrogen bond directly at the hydrophobic solute,

allowing the remaining three to be maintained with the bulk water [89]. An example of this

orientation is shown in figure 3.2(a). Water molecules at the surface of the hydrophobic solute

can be expected to feel a stronger attraction to the bulk water than to the solute itself, and

hence it can be argued that such molecules should retreat from the surface of the solute. In

this case, a region of depleted density is expected to form around the hydrophobic solute,

which is represented by the lighter blue region in figure 3.2(a) and colloquially referred to as

a vapour film. An example of the density profile expected for such a system is shown in figure

3.2(b). A reduction in the density of water at the surface of large hydrophobic solutes was

perhaps first suggested by Stillinger [87]. Since his seminal work, many other theoretical and

simulation studies have reported vapour films at the surfaces of large hydrophobic solutes

[6, 9, 22, 95], whilst the preferential orientation of water molecules described above has been

reported in both simulation and experimental studies of the solvation of hydrocarbons [10,

11, 16].

Water at ambient conditions is not at liquid-vapour coexistence, and instead exhibits

a small oversaturation [96]. As such, any vapour film which is formed is expected to be

metastable with respect to the bulk liquid and thus highly susceptible to small changes in the

local thermodynamic conditions [30]. For example, increasing the temperature of water from

ambient conditions towards the boiling point moves water closer to liquid-vapour coexistence.
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Figure 3.2: (a) Illustration of the orientation water molecules are expected to adopt around a
hydrophobic solute in the large length scale solvation regime. A large hydrophobic solute, shown in
orange, is solvated in water, shown in blue. Water molecules proximal to the surface of the solute
orient themselves such that one of their two hydrogen atoms (white circles) points directly towards the
surface of the solute. The more favourable attraction from the bulk water causes these molecules to
retreat from the surface of the solute, resulting in a vapour film, which is represented by the light blue
region. The oxygen atoms (red circles) sit in the first solvation shell at the edge of the vapour film.
The solid lines between atoms represent covalent bonds, whilst the dotted lines represent hydrogen
bonds. (b) Example of the oxygen-oxygen density profile which corresponds to such a system. ρb
represents the bulk liquid density of the water.

This should improve the stability of the vapour film, which in turn should allow it to grow

in width. In addition, as the bulk fluid nears coexistence, liquid packing effects are expected

to become less pronounced. Hence, as the temperature is increased, the peak in the first

and subsequent solvation shells should reduce. This has indeed been found to be the case in

simulation studies of purely repulsive solutes in water [22]. In contrast, increasing the pressure

above ambient conditions should act to move water away from liquid-vapour coexistence and

thus deplete the vapour film whilst increasing the peak of the first solvation shell. This

has been confirmed in simulation studies of both purely repulsive [22] and weakly attractive

[79] solutes. Introducing a weak solute-water attraction, which acts to compete with the

attraction of the bulk water, has also been found to deplete the width of the vapour film in

theoretical and simulation studies [9, 28]. Evidence of slight density depletion around realistic

hydrocarbon molecules has been reported in simulation studies [10, 11], though it should be

highlighted that this depletion is very limited, and does not extend far from the molecule.

Density depletion itself is difficult to observe due to the short distances over which it

is expected to occur. Its effects are therefore better observed in the behaviour of the free

energy of solvation. Any vapour film must be accompanied by both a solute-vapour interface

and a liquid-vapour like interface with the bulk fluid. If hydrophobicity in the large length

scale solvation regime is characterised by the formation of these interfaces, then the surface

terms in the free energy of solvation should become important. In this case, the appropriate

free energy is the grand potential, defined in equation (2.1.6) as Ω = −pV + γA, which can

be rearranged for the free energy of solvation as ∆µN = ∆G − γ∆A. If surface terms are

important, then ∆µ would be expected to scale with the surface area of the interface, A, as
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opposed to the volume of the solute as seen in the small length scale solvation regime. Several

theoretical and simulation studies have reported this to be the case [6, 8, 35, 83].

Whilst the interface between the vapour film and bulk liquid is suspected to be liquid-

vapour like, it should be noted that it differs substantially in form and behaviour from a free

liquid-vapour interface. For example, the liquid-vapour like interface induced by hydropho-

bicity is bound to the surface of the hydrophobic solute and hence small variations in its

position will result in variations in the free energy of the system. In contrast, a free liquid-

vapour interface incurs no free energy cost by translation. Furthermore, long wave-length

thermal (capillary wave) fluctuations present at free liquid-vapour interfaces are suppressed

for the curved liquid-vapour like interfaces bound to hydrophobic solutes [86]. Similarities

between the free and bound liquid-vapour interfaces do remain, notably in the presence of

single hydrogen bonds, known as dangling bonds, pointing towards the vapour region in both

[16, 20], however these are found in much greater numbers at a free interface.

Both the density behaviour of water molecules and the free energy of solvation in the

large length scale solvation regime are clearly related to the formation of interfaces however,

understanding how these relate to one another is difficult. For example, previous studies have

reported that ∆µ decreases upon increasing temperature [8], which would imply that the

hydrophobicity of a solute in the large length scale solvation regime decreases with increasing

temperature. It is difficult to conflate this reported behaviour with the reported increasing

width of the vapour film with increasing temperature [22], as the latter behaviour would

perhaps imply that the solute were more hydrophobic at higher temperatures. This is but

one example of a situation within the large length scale solvation regime where conclusions

drawn from the local density profile of water differ from those drawn from other measures,

and emphasizes the difficulty in defining hydrophobicity within this regime.

Considering this, it has been argued that the local density profile of water near a large hy-

drophobic solute is a poor indicator of hydrophobicity [29, 73]. Instead, it has been suggested

that fluctuations in the density of water molecules local to the surface of a hydrophobic solute

are a more distinct signature of hydrophobicity in the large length scale regime [28]. Whilst

there have been several attempts to quantify these fluctuations [29, 79, 95], perhaps the most

popular measure is the probability distribution of the occupation of a volume immediately

adjacent to the surface of the hydrophobic solute [28, 31, 97]. Whilst in bulk water this

follows a Gaussian distribution, next to a hydrophobic solute the probability of fewer water

molecules than the mean occupying the volume has been found to increase [28]. This large

probability of a low occupancy has become colloquially known as a ‘fat tail’ to the Gaus-

sian distribution and is demonstrated in figure 3.3(b). Increasing the attraction between the

hydrophobic solute and water molecules has been found to reduce this fat tail, moving it

closer towards a Gaussian distribution [28, 97]. Occupation probability distributions around

hydrophilic solutes therefore do not exhibit any notable difference from the bulk distribution,

and thus this probability distribution allows hydrophobic solutes to be identified easily [28].

The enhancement of lower occupation probability increases the variance of the distribution

and implies the existence of large density fluctuations local to hydrophobic solutes, which are
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Figure 3.3: (a) A hydrophobic solute, shown in orange, is submerged in water, shown in blue. A
volume immediately adjacent to the surface of the solute, enclosed by the dashed lines, represents the
volume over which water molecule occupancy probability distributions may be measured. (b) The
probability of finding N water molecules in a given enclosed volume. In a bulk fluid, this follows
a Gaussian distribution. Near to a hydrophobic solute, the probability of observing fewer water
molecules than the mean is enhanced, resulting in a ‘fat tail’ to the distribution.

not present in bulk water or proximal to hydrophilic solutes.

In addition to acting as a distinct signature of hydrophobicity, density fluctuations proxi-

mal to the surface of a hydrophobic solute are thought to play an important role in a variety

of chemical and biological processes. For example, ten Wolde and Chandler [30] have shown

that fluctuations near extended polymers can lead to their collapse to a coiled form. Their

simulations indicated that the process of this collapse involved multiple stages. First, a con-

figuration fluctuation drove hydrophobic segments in the extended chain to cluster together.

Thermal fluctuations were then able to nucleate a vapour bubble along the chain, which sub-

sequently facilitated the chain collapse. A later study by Athawale et al. [98] also indicated

that the folding of hydrophobic polymers was facilitated by density depletion at the surface of

the polymer and found evidence of enhanced local density fluctuations, which were quantified

by the variance of the occupation of the first solvation shell.

Within biological contexts, density fluctuations have been used to explain why some

biomolecules exhibit significant density depletion in their vicinity whilst others do not. Two

commonly compared biomolecules for this are the BphC enzyme [31, 99] and Melittin [31, 80,

100]. During the folding process of the two-domain BphC enzyme, two hydrophobic slab-like

domains approach one another. Water density between the domains has been reported to

reduce, but only by ten to fifteen percent of the bulk density [99]. In contrast, during the

collapse of the Melittin tetramer, water has been found to almost completely evacuate a nano-

sized channel formed [100]. Altering the topology or chemical heterogeneity in either system

was found to dramatically change the behaviour, either preventing density depletion or en-

couraging it [80, 99, 100]. This behaviour was rationalised by Patel et al. [31], who considered

the occupation probability distributions in volumes adjacent to each of these biomolecules,

as opposed to the density profile. Their results showed that both BphC and Melittin exhibit
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fat tail distributions like those in figure 3.3(b). In the case of Melittin, bringing two dimers

into close proximity greatly enhanced these fat tails, such that a small perturbation would be

sufficient to expel any water molecules between them. In contrast, whilst BphC also showed

fat tails, these were not as greatly enhanced when two domains were brought together, hence

small perturbations were unable to remove the water molecules. Mutating Melittin so as

to alter its topology significantly reduced the fat tails, which prevented expulsion of water

molecules, whilst removing electrostatic charges between BphC domains significantly en-

hanced them. The work of Patel et al. [31] therefore highlighted the importance of density

fluctuations in understanding hydrophobicity driven biological processes.

3.1.3 Macroscopic Regime

For the same reasons as in the large length scale solvation regime, regions of depleted

density are expected to form at a macroscopic hydrophobic surface though, rather than a

vapour film, these are typically referred to as a hydrophobic ‘gap’ [25, 101]. Hydrophobic

gaps have been confirmed in both experiment and simulation studies [22–24, 26, 27, 101,

102], however their extent is widely debated. Neutron reflectivity studies have reported

hydrophobic gaps of anywhere between 2 nm and 5 nm [103], whilst X-ray reflectivity studies

report gaps of between 1Å and 8Å [24, 25, 27, 101]. Results presented within these X-

ray reflectivity studies have generated considerable debate, as the exact width appeared to

depend heavily on the model used to fit the experimental data [26, 104], and such studies

were complicated by their accessible resolutions [27], as well as factors such as radiation

damage [26, 27, 104]. Simulation studies, which do not suffer from such problems, have

found in favour of gaps of order angstroms [22, 23, 102]. However, such studies typically

do not attempt to reproduce realistic surfaces, instead choosing to consider smooth surfaces

which usually interact with water via very simple potentials, like that of Lennard-Jones [23,

102]. As such, their relevance to experiment is arguable. There has also been debate over

whether the depleted density region even takes the form of a gap, or whether it instead takes

the form of ‘nanobubbles’ on the hydrophobic surface. Atomic Force Microscopy experiments

have found in favour of the latter [88, 103], whilst X-ray reflectivity studies the former [27,

101].

The presence of a hydrophobic gap implies the existence of a liquid-vapour like interface

and thus dangling bonds. Experimental studies have confirmed that dangling bonds are

present near to macroscopic hydrophobic surfaces [16, 20, 21], and that their number is similar

to that found at a free liquid-vapour interface [20]. Despite this, liquid-vapour interfaces near

macroscopic hydrophobic surfaces differ substantially from a free liquid-vapour interface. For

example, water molecules in contact with an impenetrable solid hydrophobic surface have

been found to adopt an orderly packing, likened to an ice-like structure [20], which is not

present at a free interface. Furthermore, spectra of water in contact with hydrophobic organic

liquid surfaces show evidence of weakened hydrogen bonding compared to the free interface

[21]. Simulation studies have also found evidence of dangling bonds near hydrophobic surfaces

[105], and noted a correspondence between the polarity of a surface, the preferential dangling

bond orientation of water molecules, and the contact angle a droplet makes on the surface.
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Much like the large length scale solvation regime, hydrophobicity in the macroscopic

regime is associated with large density fluctuations, which have been quantified using proba-

bility distributions similar to those in figure 3.3(b). Simulations of hydrophobic self-assembled

monolayer (SAM) surfaces found these distributions to exhibit fat tails, in agreement with

the distributions found around microscopic solutes [31, 73]. Furthermore, these distributions

near hydrophilic SAMs were found to be approximately Gaussian [31, 73] and similar to those

seen in bulk water. In the macroscopic regime, several additional measures of local density

fluctuations, which incorporate spatial resolution, have been proposed. Typically termed lo-

cal compressibilities, these measures have sought to understand the location of the largest

fluctuations relative to the surface, using derivatives of the microscopic density profile. The

local compressibility, as defined by Acharya et al. [29], was based on a derivative of the

spatially varying density profile with respect to the pressure over a sub-volume adjacent to

the surface. Near a hydrophobic surface, this local compressibility was found to exhibit a

large peak, several times its bulk value, followed by smaller oscillations [29]. In contrast,

hydrophilic surfaces were found to exhibit a local compressibility similar to the bulk value.

Acharya et al.’s [29] definition of the local compressibility highlighted the sensitivity of water

molecules local to a hydrophobic surface to pressure, however relies on a definition of pressure

which is ambiguous [37].

An alternative form of the local compressibility, based on a derivative of the spatially

varying density profile with respect to the chemical potential, was presented in section 2.4.1.

This measure was rigorously derived from underlying statistical mechanics principles, and

removes the limitation of considering a sub-volume, instead allowing for fluctuations over

the entire system to be investigated. Evans and Wilding [23] used this measure within

their simulation study of water confined between two planar substrates to quantify the local

density fluctuations of water near hydrophobic and hydrophilic surfaces. This definition of

the local compressibility was found to vary by orders of magnitude compared to its bulk value,

indicating that it provided a highly sensitive measure of hydrophobic density fluctuations.

Confined between hydrophilic surfaces, these fluctuations showed far less variation, with

oscillations which closely followed those observed in the density profile.

Whilst there exist many similarities between hydrophobicity in the macroscopic and large

length scale solvation regimes, these have to a large extent been eclipsed by research into

other aspects of macroscopic hydrophobicity, most notably, the influence of surface struc-

ture. Surface structure has been shown to play a crucial role in natural processes involving

hydrophobic surfaces [2, 3] and is of great interest in engineering applications of hydropho-

bicity. Although only smooth planar surfaces will be considered within the present work, a

discussion of macroscopic hydrophobicity would be incomplete without some description of

the effect of surface structure, hence is included here.

On a smooth, flat, planar surface, hydrophobicity is naturally defined by Young’s contact

angle, θ, as shown in in figure 2.3 and defined in equation (2.4.19). However, on an inclined

surface, θ alone is insufficient to adequately quantify hydrophobicity, as this measure gives no

indication of the adhesion of the droplet to the surface. Because of this, studies of macroscopic
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Figure 3.4: (a) A droplet on an incline features two contact angles: the advancing contact angle,
θA, and the receding contact angle, θR. The angle of incline for which the droplet slides down the
plane is the sliding angle, α. (b) Illustration of the two possible droplet states on a rough plane. In
the Wenzel state, the droplet penetrates the grooves of the surface. In the Cassie-Baxter state, the
droplet sits above the grooves, which are instead filled with vapour.

hydrophobicity typically make use of two additional measures. The first is the contact angle

hysteresis (CAH), which is the difference between the advancing, θA, and receding, θR, angles

of a droplet on an inclined plane [19, 74]. The second is the sliding angle (SA), also known

as the roll-off angle, which is the angle of incline of a plane, α, required before the droplet

begins to slide down it [19]. These measures are depicted in figure 3.4(a).

Surfaces which exhibit 150◦ < θ < 180◦ and a SA of α < 5◦ are usually given the special

title of superhydrophobic [19]. As the largest θ thought achievable on a smooth surface is

θ ≈ 120◦ [27], it is widely believed that a combination of surface chemistry and topology is

necessary for engineering superhydrophobic surfaces [19]. This belief is supported by naturally

occurring superhydrophobic surfaces, such as the lotus leaf, which achieves a contact angle of

θ ≈ 162◦ through use of nano sized fibres and micron sized grooves [2, 17, 19]. On structured

surfaces, water droplets can take one of two states: they can either fill the grooves in the

Wenzel state, or rest above them in the Cassie-Baxter state, as shown in figure 3.4(b) [19,

74, 75]. In the latter state, water droplets are in contact with both the surface and vapour,

which lowers surface adhesion [75]. As such, it is the Cassie-Baxter state which is associated

with superhydrophobicity.

Of its many potential applications, possibly one of the most interesting uses of superhy-

drophobicity is in self-cleaning surfaces [106, 107]. Naturally occurring self-cleaning surfaces

have been found to utilise hierarchical surface structures to maintain droplets in the Cassie-

Baxter state in addition to surface coatings to further lower the surface adhesion [2, 3, 107].

These properties allow droplets to form and move over the surface with ease. In doing so,

they ‘pick up’ particulates on the surface, which feel a stronger force with the droplet than

the surface itself due to the low surface adhesion [107]. The naturally low SA of these surfaces

means that the droplet can roll off easily, taking the particulates with it. Natural superhy-

drophobic surfaces have also shown it is possible to tune the direction of the movement of

droplets [3]. For example, the wings of butterflies control the amount of vapour trapped

within the structured surface, and therefore the adhesion of the droplet, using the tilt of the

wing. This property allows directional control over the movement of the droplet, and ensures
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Figure 3.5: Schematic of the variation of the free energy of solvation with radius, Rs, of hydrophobic
solute. For solutes approximately the same size as water, the free energy of solvation scales with the
volume of the solute. For larger solutes, this scaling is with the surface area. The cross-over between
these regimes indicates the cross-over length scale between small and large length scale solvation.

that it runs off the wing away from the butterfly’s body [3]. Self-cleaning surfaces have many

potential applications, such as self-cleaning glass for windshields, windows, and solar panels,

and anticorrosion surfaces [106].

3.1.4 Crossovers between Regimes

Three distinct regimes of hydrophobicity have been presented, however defining the exact

length scales which divide these regimes is difficult. The crossover between the small and

large length scale solvation regimes has traditionally been taken to be the length scale at

which density depletion is observed, and is possibly most easily determined by considering

the radius of solute for which the free energy of solvation transitions from scaling with volume

of solute to surface area, as shown in figure 3.5. For water, this is widely reported to be around

1 nm [5, 9, 11, 83]. Whilst 1 nm provides a useful gauge in water, it should be noted that

the exact crossover length scale depends on both the temperature [78] and pressure [77], as

well as the geometry of the solute [11]. Defining a crossover length scale between the large

length scale solvation and macroscopic regimes is more difficult, due to the similarities in

water’s structure and the differing perspectives under which the two regimes are understood.

As such, there is no generally agreed consensus on what this should be.

3.2 Hydrophobicity vs Solvophobicity

From section 3.1 it is clear that water’s hydrogen bonding network plays a crucial role

in the solvation of hydrophobic solutes and the behaviour of water molecules at hydrophobic

surfaces. However, it is not clear that it is the actual hydrogen bonding, as opposed to any

other form of fluid-fluid interactions, that is important. For example, water molecules appear

to straddle small hydrophobic solutes in order to preserve their hydrogen bonds. Whilst

other fluids may have weaker van der Waals interactions between molecules, the general

argument that they too should wish to conserve these and therefore attempt to straddle the

solute can still be made. Similarly, if the solvophobic solute was too large to accommodate
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into the van der Waals interactions of the fluid, then it can be argued that fluid molecules

would retreat from the surface of the solute towards the more energetically favourable bulk

fluid. Furthermore, many fluids other than water form rounded droplets when dropped onto

a surface, suggesting a solvophobic response. Therefore, whilst hydrophobicity is abundant

and certainly plays many important roles in everyday life, it is not clear that it is a unique

interaction, rather than simply a specific case of solvophobicity.

Recent simulation evidence favours the latter conclusion. Dowdle et al. [35] compared

the free energy of solvation of three fluids and found that the behaviour in each case was very

similar. Each fluid showed a free energy of solvation which scaled with the volume of the

solvophobic solute for small solutes and then with the surface area for larger solutes. This

was particularly interesting given the very different fluids considered: a simple Lennard-Jones

fluid, in which particles interact with one another via a pairwise potential; a more complex

Jagla fluid, in which particles interact pairwise but on two characteristic length scales; and

water, modelled using an empirical fit to an approximate analytic equation of state. Another

study by Wu and Garde [36] found that a polymeric fluid, n-Octane, also showed a free

energy of solvation which scaled with volume for small solutes and surface area for larger

solutes. This study also noted that, much like water, the probability distributions of finding

volumes within n-Octane which could accommodate small solvophobic solutes were Gaussian

whilst for larger volumes, exhibited fat tails. Similar probability distributions have also been

observed in Lennard-Jones fluids by Huang and Chandler [81].

Dowdle et al. [35] also found that the temperature dependence of the free energy of

solvation in water and the Jagla fluid was qualitatively similar, exhibiting a peak upon

increasing the temperature for small solutes and a monotonic decrease for larger solutes.

Wu and Garde observed similar behaviour in the n-Octane fluid [36]. This behaviour was not

found in the simpler Lennard-Jones fluid [35]. In addition to the differences in temperature

dependence of the free energy of solvation between fluids, the length-scale at which the free

energy transitioned from scaling with volume to surface area also varied between fluids [35,

36].

The similarities between hydrophobicity and solvophobicity are not limited to free energy

considerations. Density depletion, reminiscent of that found in studies of water, at the surface

of larger solutes and planar surfaces has also been reported in simulation studies of the

Lennard-Jones [1, 81, 108] and n-Octane [36] fluids. Furthermore, local density fluctuations,

measured by the local compressibility given in equation (2.5.1), have been found to take the

same form in simulation studies of planar surfaces in contact with water [23] and a Lennard-

Jones fluid [1]. Overall, whilst hydrophobicity is certainly a special interaction, considering

all of these similarities, it is unclear whether it is a unique interaction.

3.3 Relation of Hydrophobicity and Solvophobicity to the Drying Surface

Phase Transition

The nomenclature surrounding hydrophobicity and solvophobicity is varied, and in some

circumstances, misleading. A prominent example of the latter case is the common usage of
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terms such as ‘dry’, ‘dewet’, ‘dewetting transition’, and ‘drying transition’. These terms are

typically used without definition and their meaning appears to vary between studies.

For example, in many studies the term ‘dewet’, or in some cases ‘dewetted’, appears to

refer to density depletion at the surface of hydrophobic solutes and macroscopic surfaces [11,

24, 31, 109], whilst the phrase ‘dewetting transition’, also sometimes shortened to ‘dewetting’,

refers to the formation of this depleted density [11, 31, 36, 109]. However, this is not the

only usage. In other studies, dewetting transitions seem to refer to the expulsion of water

between two hydrophobic objects in close proximity [86, 109, 110]. In one instance, the

expulsion of liquid from a slit geometry containing a Lennard-Jones fluid near liquid-vapour

coexistence is referred to as a dewetting transition [109], a process which, to other audiences,

may be described as capillary evaporation. Dewetting takes a further meaning in studies

of macroscopic hydrophobic substrates, with the term being used to describe the transition

from the Wenzel to Casse-Baxter states upon application of an external perturbation, for

example, mechanical vibration [17].

Furthermore, the terms dewet and dewetting transition are often used interchangeably

with the terms dry and drying transition [86]. The latter terms appear to be used colloquially,

as studies which invoke them, for example [6, 110], make no mention of the well defined surface

phase transitions outlined in section 2.4.5. Despite this, there are instances where authors

refer to the tendency of microscopic hydrophobic solutes, such as biomolecules, to expel

water between them as a phase transition [31]. Of course, use of the term ‘phase transition’

is incorrect here, as phase transitions are unable to occur in finite systems. However, the

notion that microscopic hydrophobicity may be related to an underlying phase transition

does have merit.

From figure 2.8, it can be seen that drying, in its true surface phase transition sense,

is critical in systems with SR ff LR sf and LR ff LR sf interactions - circumstances which

are pertinent to simulation and experimental studies respectively. Recent work by Evans et

al. [1, 32] considered the former system carefully, applying both theoretical and simulation

methods. Their systems consisted of a truncated Lennard-Jones fluid either at a planar

surface or confined to a slit, with the interaction between the fluid and the surfaces also

taking a Lennard-Jones form, however without truncation. In the case of the slit geometry,

its width was sufficiently wide that the fluid returned to the bulk liquid density in the centre

of the slit, and hence the surfaces could be considered non-interacting. Evans et al. [1, 32]

showed that near to critical drying, properties such as the equilibrium vapour film width,

`eq and the density fluctuations, as measured by the local compressibility in equation (2.5.1),

followed critical scaling relations. Earlier theoretical studies by Stewart and Evans [33, 34]

found that the adsorption, Γ, of LR fluids in contact with curved surfaces of very large Rs,

also followed a scaling relation. These studies suggest that solvophobicity at curved and

planar surfaces are influenced by a nearby drying surface critical point.

As outlined in section 3.2, there is little reason to believe hydrophobicity should be any

different from solvophobicity and hence if critical drying may influence solvophobicity, it is

equally plausible that it influence hydrophobicity. Furthermore, the extent to which this
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possible influence may extend into microscopic length scales can almost immediately be iden-

tified by considering the hydrophobic regimes discussed in section 3.1. Hydrophobicity in

the small length scale solvation regime was shown in section 3.1.1 to be well described by

the bulk properties of water. This regime of hydrophobicity therefore cannot be expected

to be related to surface phase behaviour. However, hydrophobicity in the large length scale

solvation regime appears to be dominated by interface considerations and hence this regime

could well be related to critical drying in the macroscopic regime. Moreover, evidence for

critical drying in the macroscopic regime for a water model was recently reported by Evans

and Wilding [23]. Critical drying may therefore provide a connection between hydrophobicity

and solvophobicity, across length-scales.
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Chapter 4

Methods

Hydrophobicity shows clear length scale dependent behaviour, which makes its study chal-

lenging. Computational techniques capable of studying the small and large length scale

solvation regimes, in addition to the macroscopic regime, are few and tend to be limited in

the complexity of the fluids which they are able to represent. In contrast, methods capable of

modelling complex fluids are generally computationally demanding and therefore limited in

the size of solute they can study. Despite being a simple molecule, water features numerous

anomalous behaviours [89] and as such falls under the remit of a complex fluid. This leads

to the predicament that methods to study hydrophobicity over vastly different length scales

cannot be used in conjunction with water models, whilst methods which can be used with

water models cannot be used to study hydrophobicity over such diverse length scales. For

this reason, this work utilises two methods.

The first of these methods is classical Density Functional Theory (cDFT), which provides

a rigorous statistical mechanical framework to find the equilibrium density profile of a fluid

subjected to an external potential via numerical minimisation of the free energy [42, 46, 111].

From the equilibrium density profile, thermodynamic properties such as the surface tension of

the fluid can be determined. Due to the simplicity of numerical minimisation, cDFT is highly

computationally efficient and can be used to study the behaviour of a fluid around solutes of

all sizes and at macroscopic planar surfaces, for a wide range of thermodynamic conditions.

However, cDFT requires approximations for the free energy functional, which have proven

challenging to develop. Within this work, it is therefore restricted to the exploration of

solvophobicity, as opposed to hydrophobicity.

The second method employed within this work is molecular simulation, which aims to

find macroscopic properties of a system by sampling microscopic configurations of particles

[44]. There are few limitations on the way in which these particles can interact and as

such molecular simulation is able to model complex fluids such as water. However, even for

simulations of simple bulk fluids, accurate results require several hundred to thousands of

particles, which can be computationally demanding, particularly as the complexity of the

interaction potentials increases. If solutes are studied, the simulation volume must be large

enough to accommodate not only the solute but also a reasonable number of particles to
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accurately represent the bulk fluid which, for large solutes, could be in the tens of thousands.

Because of this, the computational resource required grows rapidly with solute size and thus

molecular simulation studies are limited in the length scales they can realistically study.

Individually, these methods are limited in scope. However, when used in conjunction,

they allow for a thorough study of hydrophobicity and solvophobicity over a wide range of

length scales. In this chapter, each of these methods is introduced in turn.

4.1 Classical Density Functional Theory

Since its inception in the 1970s, cDFT has been used extensively in a wide range of

studies. Many of the original studies of the wetting surface phase transition employed cDFT

to understand its nature [52, 55, 59]. More recently, cDFT has been employed in studies

of solvophobicity at macroscopic surfaces [1, 32, 37, 112, 113], around solutes [33, 34], and

in confined geometries [82]. These studies have allowed identification and quantification

of the influence of thermodynamic and geometric properties on solvophobic responses and

have been largely enabled by developments in cDFT since the 1970s, the most notable of

which is perhaps Rosenfeld’s Fundamental Measure Theory (FMT) of hard-spheres [114].

This provided an accurate reference functional on which van der Waals treatments of simple

inhomogeneous fluids could be built. cDFT is therefore well established as a method for the

study of solvophobicity and surface phase transitions, which in part justifies its use within

this work.

4.1.1 Formalism

cDFT was originally borne out of its electronic counterpart, which describes the ground

state of an inhomogeneous electron fluid as a functional of the electron density. Whilst

the original form of electronic DFT was limited to zero temperature conditions, Mermin

[115] showed that it could in fact be extended to non-zero temperatures and introduced a

functional of the grand potential to do so. Building on Mermin’s formulation, electronic DFT

was extended to classical fluids in 1976 [45].

Mermin’s proposed functional for the grand potential took the form [46, 115, 116]

Ω[f ] = Trclf (H− µN + β−1 ln f) (4.1.1)

where H is the Hamiltonian, given for a fluid in equation (2.2.1), µ, N , Trcl, and β = (kBT )−1

take their meanings of previous chapters and f is the probability density distribution of

the fluid. At equilibrium, this would take a form like those seen in equations (2.2.5) and

(2.2.9) however f as given in equation (4.1.1) does not necessarily represent equilibrium

and is thus only restricted in that as a probability, it must obey Trcl f = 1. Considering

the equilibrium case, it can be found that the final term in equation (4.1.1) represents the

entropic contribution to the grand potential, −TS.

Equation (4.1.1) has many useful properties. For example, at equilibrium when f = fo,

Ω[fo] = Ω, where Ω is the grand potential of the fluid defined in equation (2.1.4). It can

further be proven that Ω is the minimum free energy, and hence that Ω[f ] > Ω[fo] when
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f 6= fo. The derivation of this is given in Appendix B of [42].

Considering the definition of the Hamiltonian of a fluid given in equation (2.2.1), it can

be seen that f = f [Vext]. Furthermore, through a proof such as the one in Appendix I of

[46], it can be found that Vext is a unique functional of the density profile ρ(r), and hence

Vext = Vext[ρ(r)]. Together, this implies f = f [ρ(r)], and that equation (4.1.1) can be written

as a density functional, as the name cDFT suggests.

From equation (2.1.4), it can be seen that Ω can also be written in terms of the Helmholtz

free energy. In density functional form this is [42, 45, 46, 116, 117]

Ω[ρ(r)] = F [ρ(r)]− µN = F [ρ(r)]−
∫

dr(µ− Vext(r))ρ(r) (4.1.2)

where F is the intrinsic Helmholtz free energy functional, which can be defined in a similar

manner as equation (4.1.1) as [46]

F [ρ(r)] = Trclf (Φ(rN ) +K(pN ) + β−1 ln f) (4.1.3)

where K(pN ) and Φ(rN ) are the kinetic and inter-particle potential energies, as defined in

section 2.2.

Equation (4.1.2) has the same properties as equation (4.1.1), which can be summarised

as

Ω[ρo(r)] = Ω Ω[ρ(r) 6= ρo(r)] > Ω (4.1.4)

where ρo(r) denotes the equilibrium density profile. Combined, these properties also imply a

variational principle of the form [42, 45, 46, 116, 117]

δΩ[ρ(r)]

δρ(r)

∣∣∣∣
ρ(r)=ρo(r)

= 0 (4.1.5)

Solving this variational principle forms the basis of cDFT.

The intrinsic Helmholtz free energy functional can further be separated into its ideal and

excess components. The ideal intrinsic Helmholtz free energy functional, Fid[ρ(r)], describes

the free energy of an ideal gas, and takes the well-known form [42]

Fid[ρ(r)] = β−1

∫
drρ(r)(ln Λ3ρ(r)− 1) (4.1.6)

The excess intrinsic Helmholtz free energy functional, Fex[ρ(r)], describes all inter-particle

interactions within the system and is known exactly in only the case of one-dimensional hard

rods. Because of this, Fex[ρ(r)] must normally be approximated. Finding approximations for

Fex[ρ(r)] for various fluids has been the focus of a vast amount of research and remains an

active area of study to this day [118–120].

Substitution of the density functional in equation (4.1.2) into the variational principle

of equation (4.1.5) gives an expression for the equilibrium density profile. This requires a
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functional derivative which, for a general functional A of function u(x), is defined as [42]

A[u(x) + δu(x)]−A[u(x)] =

∫
dx
δA[u(x)]

δu(x)
δu(x) (4.1.7)

Using this definition, the functional derivative of Ω[ρ(r)] can be found to be

δΩ[ρ(r)]

δρ(r)
= β−1 ln Λ3ρ(r)− µ+ Vext(r) +

δFex[ρ(r)]

δρ(r)

= β−1 ln Λ3ρ(r)− µid − µex + Vext(r) +
δFex[ρ(r)]

δρ(r)

= β−1 ln Λ3ρ(r)− β−1 ln Λ3ρb − µex + Vext(r) +
δFex[ρ(r)]

δρ(r)

= β−1 ln
ρ(r)

ρb
− µex + Vext(r) +

δFex[ρ(r)]

δρ(r)
(4.1.8)

where µ has been decomposed into its ideal, µid = kBT ln Λ3ρb, and excess, µex, components,

and where ρb represents the density of the fluid in the bulk. For the equilibrium density

profile, this derivative equals zero. Rearranging this equation therefore gives a formally exact

expression for the equilibrium density profile

ρo(r) = ρbe
(βµex−βVext(r)+c(1)(r)) (4.1.9)

where c(1)(r) is the one-body direct correlation function defined as [42, 45, 117]

c(1)(r) = −β δFex[ρ(r)]

δρ(r)
(4.1.10)

This correlation function describes the effects of particle interactions on the density profile

[42].

By nature of equations (4.1.9) and (4.1.10), cDFT requires an approximation for Fex[ρ(r)].

One well established approximation is Fundamental Measure Theory (FMT), which describes

Fex[ρ(r)] for hard-sphere mixtures [114]. FMT is particularly useful for the study of van der

Waals fluids, as it provides an accurate reference functional for any perturbative approach,

like that of section 2.4.3.

4.1.2 Fundamental Measure Theory

FMT is a weighted density approximation for the excess free energy functional of a hard-

sphere mixture, which was first proposed by Rosenfeld in 1989. The formalism of cDFT is

easily extended to mixtures, by summing over the density distribution of the ν components.

The grand potential functional for a mixture becomes [111]

Ω[{ρi(r)}] = F [{ρi(r)}] +

ν∑

i=1

∫
drρi(r)(V i

ext(r)− µi) (4.1.11)

where i represents the species. The description of FMT presented here largely follows that

of the review paper by Roth [111].
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The interaction potential for a hard-sphere fluid can be written as

φHSij (|ri − rj |) =




∞ |ri − rj | < Ri +Rj

0 otherwise
(4.1.12)

where |ri − rj | represents the distance between the centre of spheres i and j, which are of

radius Ri and Rj respectively. The Mayer-f function is defined as [111]

fij = e−βφij(|ri−rj |) − 1 (4.1.13)

Substitution of the hard-sphere interaction potential into the Mayer-f function then gives

fHSij (|ri − rj |) =




−1 |ri − rj | < Ri +Rj

0 otherwise
(4.1.14)

which can be identified as a negative Heaviside function, −Θ(|ri − rj | − (Ri + Rj)). The

Mayer-f function for a hard-sphere fluid therefore describes the excluded volume of the fluid

[42, 111, 114]. Rosenfeld described this excluded volume in terms of geometrical measures

of the individual spheres i and j. He found this to be possible using a deconvolution of the

Mayer-f function in terms of four scalar weight functions, ωα, and two vector weight functions,

~ωα. Rosenfeld found [114]

−fij(|ri − rj |) = ωi3 ⊗ ωj0 + ωi0 ⊗ ωj3 + ωi2 ⊗ ωj1 + ωi1 ⊗ ωj2 − ~ωi2 ⊗ ~ωj1 − ~ωj1 ⊗ ~ωj2 (4.1.15)

where the three-dimensional convolution is defined as

ωiα ⊗ ωjβ(r = ri − rj) =

∫
dr′ωiα(r′ − ri)ω

j
β(r′ − rj) (4.1.16)

and the weight functions are defined as

ωi3(r) = Θ(Ri − r)
ωi2(r) = δ(Ri − r)

~ωi2(r) =
r

r
δ(Ri − r)

ωi1(r) =
ωi2(r)

4πRi

ωi0(r) =
ωi2(r)

4πR2
i

~ωi1(r) =
~ωi2(r)

4πRi
(4.1.17)

Integration over each of these scalar weight functions gives a fundamental measure of a sphere,

for example, integration over ωi3(r) gives the volume Vi of the sphere i. Integrals over the

vector weight functions vanish. The recovery of these fundamental measures is what gives

FMT its name [111, 114].
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The weighted densities, nα(r), are defined using these weight functions, as

nα(r) =
ν∑

i=1

∫
dr′ρi(r

′)ωiα(r− r′) (4.1.18)

In the bulk limit, where the spatially varying density becomes homogeneous (ρi(r) → ρib),

the scalar weighted densities reduce to the Scaled Particle Theory (SPT) variables, n3 →∑ν
i=1 ρ

i
b4πR

3
i /3, n2 →

∑ν
i=1 ρ

i
b4πR

2
i , n1 →

∑ν
i=1 ρ

i
bRi, and n0 →

∑ν
i=1 ρ

i
b. The vector

weighted densities, n2 and n1, vanish [111].

The basic assumption of FMT is that the excess free energy can be written as

βFex[{ρi(r)}] =

∫
dr′Φex({nα(r′)}) (4.1.19)

where Φex, the reduced free energy density, is a function of the weighted densities. This form

of Fex[ρ(r)] recovers the first order term of the low density expansion of the free energy, which

can be written in terms of weighted densities as [111]

lim
{ρi→0}

βFex[{ρi}] =

∫
dr{n0(r)n3(r) + n1(r)n2(r)− n1(r) · n2(r)} (4.1.20)

Using dimensional analysis, Rosenfeld found the form of Φex to be

Φex = f1(n3)n0 + f2(n3)n1n2 + f3(n3)n1 · n2 + f4(n3)n3
2 + f5(n3)n2n2 · n2 (4.1.21)

where f1, . . . , f5 are unknown functions of n3. It should be noted that the deconvolution

of the Mayer-f function is not unique. Kierlik and Rosinberg [121] found an equivalent

deconvolution which used four distinct scalar weight functions and removed the need for

vector weight functions.

It can be found that f2(n3) = −f3(n3) and f5(n3) = −3f4(n3). The remaining functions,

f1, f2, and f4 can be derived by demanding that Φex obey an underlying thermodynamic

relation. For this, Rosenfeld chose the exact SPT equation [111]

lim
Ri→∞

βµiex
Vi
→ βp (4.1.22)

where p is the pressure of the system, and can be written as [111, 117, 122]

βp = n0 − Φex +
∑

α

∂Φex

∂nα
nα (4.1.23)

In the bulk limit, the variational principle of cDFT tends to the form

βµex =
∂βFex
∂ρi

=
∂Φex

∂n0
+Ri

∂Φex

∂n1
+ 4πR2

i

∂Φex

∂n2
+

4π

3
R3
i

∂Φex

∂n3
(4.1.24)
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In the limit of large Ri, the excess chemical potential can therefore also be expressed as

lim
Ri→∞

βµiex
Vi
→ ∂Φex

∂n3
(4.1.25)

Equating the right hand sides of equations (4.1.23) and (4.1.25) gives the SPT differential

equation, the solutions of which can be found to be

∂f1(n3)

∂n3
=

1

1− n3
⇒ f1(n3) = − ln(1− n3) + c1 (4.1.26)

∂f2(n3)

∂n3
=
f2(n3)

1− n3
⇒ f2(n3) =

c2

1− n3
(4.1.27)

∂f4(n3)

∂n3
=

2f4(n3)

1− n3
⇒ f4(n3) =

c3

(1− n3)2
(4.1.28)

where c1, c2, c3 are integration constants [111, 117].

The further conditions that Φex recover the deconvolution of the Mayer-f function and the

pair direct correlation function allows for the integration constants to be found to be [111,

117]

f1(n3) = n3 +
n2

3

2
O(n3

3)

f2(n3) = 1 + n3 +O(n2
3)

f4(n3) =
1

24π
+O(n3) (4.1.29)

Substitution of these into equation (4.1.21) then gives the Rosenfeld functional [111, 114,

117]

ΦRF = −n0 ln(1− n3) +
n1n2 − n1 · n2

1− n3
+
n3

2 − 3n2(n2 · n2)

24π(1− n3)2
(4.1.30)

The Rosenfeld functional is the original FMT functional, however subsequently many more

have been developed. Popular examples of this include the White-Bear [123] and White-Bear

Mark II [120] functionals, which utilise the more accurate Carnahan-Starling equation of

state as the underlying thermodynamic relation. Despite their successes in the study of hard-

sphere fluids, in their original forms, none of these are able to account for the hard-sphere

crystal due to a diverging free energy term in the one-dimensional limit. It was later shown

that an accurate description of the hard-sphere crystal required tensorial weighted densities

[111]. As the present work is concerned solely with fluids, an accurate description of the

freezing transition is not required. Due to its simpler form, the functional used throughout

this work is the Rosenfeld functional, given in equation (4.1.30).

FMT provides a means of approximating Fex[{ρi}], however it is its derivative that is

required to implement cDFT. As FMT makes use of weighted densities, it is more convenient

to express this derivative, which gives the one-body direct correlation function, as a functional

derivative of the weighted densities themselves. This is possible using the functional version

48



4.1. CLASSICAL DENSITY FUNCTIONAL THEORY

of the chain rule, defined as [42]

δA[u(x)]

δu(x)
=

∫
dx′

δA[u(x)]

δv(x′)

δv(x′)

δu(x)
(4.1.31)

where v(x′) is a function. Applying this to equation (4.1.19) gives an expression for the

one-body direct correlation function [111]

c
(1)
HS(r) = −

∑

α

∫
dr′

δΦex({nα})
δnα(r′)

δnα(r′)

δρ(r)
(4.1.32)

As Φex is a function of nα, as opposed to a functional, the first derivative can be simplified

to a normal derivative. These derivatives can be calculated analytically, and can be found in

appendix A for the Rosenfeld functional.

The present work is concerned only with one-component fluids, hence ν = 1. The pressure

of the one-component hard-sphere fluid, described using the Rosenfeld functional, is by design

equivalent to the Percus-Yevick compressibility equation of state, which can be written in

terms of the packing fraction, η = 4πR3ρb/3 , as [42]

pHS = kBTρb
1 + η + η2

(1− η)3
(4.1.33)

Using equation (4.1.24), the chemical potential of the one-component hard-sphere fluid de-

scribed by the Rosenfeld functional can be written as

µHS = µid + µex = kBT

[
ln(Λ3ρb) +

14η − 13η2 + 5η3

2(1− η)3
− ln(1− η)

]
(4.1.34)

4.1.3 Extension of cDFT to Lennard-Jones Fluids

cDFT can be extended from a hard-sphere fluid described by FMT to an attractive fluid

using a MFT approach similar to that of section 2.4.3. In addition to being a functional of

ρ(r), equation (4.1.2) is also a functional of the ff interaction potential, φ. Assuming that φ is

a pairwise additive interaction potential, such that φ ≡ φ(r, r′), then the functional derivative

of Ω[φ(r, r′)] can be found to have the property [42, 45]

δΩ[φ(r, r′)]

δφ(r, r′)
=
δFex[φ(r, r′)]

δφ(r, r′)
=

1

2
ρ(2)(r, r′) (4.1.35)

where ρ(2)(r, r′) is the two-particle density given in equation (2.3.4). If φ(r, r′) is taken to have

the linear perturbation form of equation (2.4.9), integration of equation (4.1.35) at constant

one-particle density leads to [42, 45]

Fex[ρ(r)] = Fo[ρ(r)] +
1

2

∫ λ

0
dλ

∫
dr

∫
dr′ρ

(2)
λ (r, r′)φatt(r, r

′) (4.1.36)

where Fo is the excess Helmholtz free energy functional of the purely repulsive reference

fluid and other terms take their definitions as in section 2.4.3. Under a MFT approach,

49



CHAPTER 4. METHODS

correlations are ignored which equates to assuming ρ
(2)
λ (r, r′) ≈ ρ(r)ρ(r′). If the reference

fluid is described using FMT, then Fex[ρ(r)] can be written as

Fex[ρ(r)] = FHSex [ρ(r)] +
1

2

∫
dr′
∫

drρ(r)ρ(r′)φatt(r, r
′) (4.1.37)

where FHSex [ρ(r)] is the excess Helmholtz free energy functional of the hard-sphere fluid given

in equation (4.1.19). This is often referred to as the standard MFT treatment of attraction

within cDFT. Taking the functional derivative of equation (4.1.37) then gives the one-body

direct correlation function for an attractive fluid

c(1)(r) = c
(1)
HS(r)− β

∫
dr′ρ(r′)φatt(r, r

′) (4.1.38)

where c
(1)
HS(r) is obtained using equation (4.1.32)

Utilising a MFT perturbation treatment for the fluid limits the types of fluids which cDFT

can be applied to. Notably, the attractive interactions within these fluids must be weak, such

that the structure of the fluid is predominantly determined by the packing of the reference

fluid [42]. It was recently concluded by Gußmann et al. [119] that it is this condition that

has hampered attempts to produce a successful treatment of the Jagla fluid within cDFT.

The Jagla fluid has been found to exhibit several properties similar to water and has the

advantage that it utilises a far simpler interaction potential compared to most water mod-

els. However, the long-ranged attractive perturbation of the Jagla potential was found to

be too strong to be accurately described by a simple perturbation theory, particularly one

which is truncated to lowest order terms like that considered here. Attempting to extend the

perturbation theory treatment to higher order terms requires knowledge or accurate approx-

imations for higher order particle distributions which is typically not realistically possible

[42]. Taking an alternative approach, Hughes et al. [118] have proposed a cDFT for water

using Statistical Associating Fluid Theory (SAFT). Whilst their functional shows promise,

particularly on describing the surface tension of water over a range of temperatures, when

compared to molecular simulations of a popular water model, their functional was found to

severely overestimate the density of the fluid at the surface of a solute and failed to correctly

predict the positions of the solvation shells.

Whilst research into novel cDFT functionals to describe a range of fluids is ongoing, it

can be concluded from examples such as these that the inhomogeneous fluids which can be

accurately represented in cDFT is currently very limited. One well established inhomogeneous

fluid for which cDFT functionals have been shown to be highly accurate is the Lennard-

Jones (LJ) fluid [42]. Several perturbation theories for inhomogeneous fluids based on this

have been introduced, with the two most notable being the Barker-Henderson and Weeks-

Chandler-Anderson (WCA) theories. The latter of these is particularly simple as it allows

for a first-order approximation to the perturbation expansion, as used in equation (4.1.37)

[119]. Under the WCA scheme, the attractive part of the LJ potential is taken to have the
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form [1, 45, 117]

φatt(|r− r′|) =





−ε |r− r′| < rmin

4ε

[(
σ
|r−r′|

)12
−
(

σ
|r−r′|

)6
]

rmin < |r− r′| < rc

0 |r− r′| > rc

(4.1.39)

where r and r′ represent the locations of two particles, rmin = 21/6σ represents the minimum

in the LJ potential, rc is the cut-off radius of interaction, σ the radius of the fluid particle,

and ε is the ff interaction strength.

In the bulk limit, equation (4.1.37) corresponds to the perturbation theory of section

2.4.3. Because of this, the liquid-vapour phase diagram for the LJ fluid within cDFT can be

determined using the ideas presented in section 2.4.4. The critical point can be determined

using the conditions presented in equation (2.4.18), whilst the coexisting densities of the liquid

and vapour phases for a given temperature can be determined by simultaneously solving for

equal chemical potential and pressure, using equations (2.4.17) and (2.4.16), where po = pHS

as given in equation (4.1.33), µo = µHS as given in equation (4.1.34), and the attractive

component is

a = −1

2

∫
drφatt(r = |r− r′|)

= −1

2

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ rc

0
dr r2φatt(r)

=
2πε

3

[
r3
min +

4σ12

3

(
1

r9
c

− 1

r9
min

)
− 4σ6

(
1

r3
c

− 1

r3
min

)]
= εcLJ (4.1.40)

4.1.4 Numerical Procedure

Equations (4.1.9), (4.1.32) and (4.1.38) provide the necessary components for finding the

equilibrium density profile of an inhomogeneous fluid within cDFT using numerical minimi-

sation. In order to perform this minimisation, it is first necessary to discretise the density

profile, ρ(r), into small regions of space of size dr over which the density is constant. dr is

typically taken to be in the range [0.002σ, 0.01σ] and, to ensure numerical stability, should be

chosen such that σ/dr is an integer. An initial estimate for the density profile must then be

made. If a density profile from a similar system is available, then this can be used. If not, the

initial density profile is typically taken to be zero within the solute or substrate, and equal

to the bulk density of the fluid, ρb, outside. The numerical procedure to find the equilibrium

density profile is then

1. Calculate the weighted densities using equations (4.1.18) and (4.1.17).

2. Calculate the one-body direct correlation function according to equation (4.1.38).

3. Propose a new density profile according to equation (4.1.9), where µex is found using

equations (2.4.17), (4.1.34), and (4.1.40) and the thermal de Broglie wavelength is set
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to Λ = σ. To improve numerical stability, this profile is then mixed with the current

density profile.

4. Repeat until the maximum difference between the current and proposed density profiles

is less than the tolerance, typically taken to be 10−12.

Equations (4.1.18) and (4.1.38) involve convolutions of the density profile with weight func-

tions, or the attractive potential. These are most easily performed using fast Fourier trans-

forms (FFT). For numerical stability, the proposed density profile is mixed with the current

profile, using one of two mixing schemes. The first is the Picard scheme, which uses a mixing

parameter, α, to mix the current, ρi(r), and proposed, ρp(r), density profiles, to find the new

density profile, ρi+1(r). This mixing is done according to [111, 117]

ρi+1(r) = (1− α)ρi(r) + αρp(r) (4.1.41)

The exact value of α that can be used depends on the system in question. For example,

the numerical stability of the procedure can be poor for systems very close to drying and

hence a smaller mixing parameter is needed. In contrast, further from drying, the numerical

procedure is more stable, and hence larger α can be used. In general, the mixing parameter

is taken to be in the range (0, 0.1].

An alternative mixing scheme is that of Ng, given in the appendix of [124]. Under this

procedure, the new density profile, ρi+1(r), is a mixture of several trial density profiles. This

procedure converges to the equilibrium density profile faster however is less stable. Because

of this, Picard and Ng moves are typically used in combination, to ensure that stability is

maintained whilst also facilitating fast convergence to the equilibrium density profile.

4.1.5 Implementation of cDFT in Different Geometries

The density profile of an inhomogeneous fluid takes the spatial symmetry of the external

potential [111]. Because only smooth surfaces and solutes are considered within the present

work, Vext in each case is a function of only one spatial variable. In the case of a macroscopic

substrate, the external potential is taken to act along the Cartesian z-axis, which means

Vext(r) ≡ Vext(z) and hence ρ(r) ≡ ρ(z). For a solute, Vext is taken to act along the radial axis

extending from the centre of the solute, hence Vext(r) ≡ Vext(r) and therefore ρ(r) ≡ ρ(r).

As the density profile in each case is homogeneous in two coordinates, equation (4.1.38)

can be evaluated analytically in two dimensions, which improves the speed at which cDFT

minimisations can be performed.

The numerical consistency of a cDFT minimisation can be tested using statistical me-

chanics sum rules. These sum rules provide links between different thermodynamic and

microscopic properties of a system. One such sum rule can be constructed using equation

(2.1.10), which relates the adsorption to the derivative of the surface tension. Within cDFT,

the adsorption and surface tension can be calculated separately, using equation (2.3.11) for

the former, and equations (4.1.2) and (2.1.13) for the latter. The agreement between ei-

ther side of equation (2.1.10) then gives an indication of the consistency of the calculation.
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zR 0

σs

ρ(0+) ρ(z)

Vext(z)

Figure 4.1: Illustration of the layout of a cDFT system consisting of a macroscopic planar substrate,
shown in grey, in contact with a fluid, the particles of which are shown in blue and have radius
R. The substrate is smooth, impenetrable, assumed to be made of particles of diameter σs and
homogeneous density ρs, and exists where z < −R. The substrate and fluid interact via a purely
attractive interaction outside of the substrate, which varies only along the z-axis. The density profile
of the fluid takes the symmetry of the external potential and also varies only along the z-axis. As
the density of the fluid is measured from the centre of the fluid particles, the first non-zero density or
contact density, denoted as ρ(0+), will occur a distance R from the surface. The effective position of
the surface is therefore at z = 0.

This sum rule is known as the Gibbs’ adsorption sum rule. In addition to this sum rule,

a second was used to confirm the consistency of the numerical calculations. This was the

contact theorem, which relates the pressure of the fluid to the density of the fluid at the

surface/solute.

4.1.5.1 Implementation of Planar Substrates

The configuration of a cDFT system for studying macroscopic surfaces within this work

can be seen in figure 4.1. The substrate, shown in grey, is assumed to be impenetrable and

made of particles of diameter σs and homogeneous density, ρs, which interact with the fluid

particles, shown in blue, via a LJ attraction. The density of the fluid is measured from the

centre of the fluid particles and the system arranged such that the first non-zero density to

the right of the wall, called the contact density, occurs at z = 0+, where the + represents the

approach from the right.

Within such a system, the weighted densities for the one-component hard-sphere fluid

described using FMT, as given in equation (4.1.18), can be simplified to [111]

nα(r) ≡ nα(z) =

∫
dz′ρ(z′)ωα(z − z′) (4.1.42)
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where the weight functions in equation (4.1.17) can be written as a function of z only as [111]

ω3(z) = π(R2 − z2)Θ(R− |z|)
ω2(z) = 2πRΘ(R− |z|)
~ω2(z) = 2πzΘ(R− |z|)k̂

ω1(z) =
ω2(z)

4πR

ω0(z) =
ω2(z)

4πR2

~ω1(z) =
~ω2(z)

4πR
(4.1.43)

and k̂ is the unit vector along the z-axis.

Calculating the hard-sphere part of c(1)(r) ≡ c(1)(z) requires the functional derivative of

the weighted densities with respect to the density profile. The functional derivative can be

found to be
δnα(z′)

δρ(z)
= ωα(z′ − z) (4.1.44)

As the scalar weight functions are even functions, ωα(z′− z) = ωα(z− z′). The vector weight

functions are odd functions and hence ~ωα(z′ − z) = −~ωα(z − z′) [111].

Reducing the attractive fluid interaction potential, given in equation (4.1.39), to a function

of only |z − z′| requires careful consideration of the piece-wise potential and the intersection

of the spherical symmetry of the potential and planar symmetry of the density profile. A

derivation for calculating the integrated potential can be found in appendix B.1, with the

result being

φatt(|z − z′|) =





πε
[
|z − z′|2 − r2

min + 4
5σ

12
(

1
r10min
− 1

r10c

)
−

2σ6
(

1
r4min
− 1

r4c

)]
|z − z′| < rmin

πε
[

4
5σ

12
(

1
|z−z′|10 − 1

r10c

)
− 2σ6

(
1

|z−z′|4 − 1
r4c

)]
rmin < |z − z′| < rc

0 |z − z′| > rc
(4.1.45)

This can then be substituted into equation (4.1.38) along with equation (4.1.32) to obtain

c(1)(z).

The homogeneity of the substrate allows for the total attractive interaction felt by a

particle at a given distance from the substrate, z, to be calculated by integrating over all

particles within the substrate. The attraction between the fluid and substrate is taken to

have the form of a LJ potential which has been shifted such that the minimum occurs at

the surface of the substrate, z = 0. The minimum of the potential is shifted for numerical

reasons, as a diverging potential on the approach to the surface can lead to poorly defined

behaviour within discretised systems. The derivation for the integration of this potential can
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be found in appendix B.2, with the final result taking the form

Vext(z) =





∞ z < 0

εsf

[
2
15

(
σs

z+zmin

)9
−
(

σs
z+zmin

)3
]

z > 0
(4.1.46)

where εsf = 2πρsεsσ
3
s/3 is a measure of the substrate-fluid attraction strength, εs is the well

depth of the sf LJ potential, and zmin = (2/5)1/6σs is the location of the minimum of the

interaction potential. For simplicity, σs was taken to be σs = σ throughout the present work.

This result can then be substituted along with c(1)(z) into equation (4.1.9) to predict the

equilibrium density during the numerical minimisation.

Within this geometry, the first test of numerical accuracy was the Gibbs’ adsorption sum

rule described previously, where the adsorption can be found using

Γ

A
=

∫ ∞

0
dz(ρ(z)− ρb) (4.1.47)

where A is the surface area of the planar substrate. The second test of numerical accuracy

is the contact theorem, which in this geometry takes the form [42, 125]

p = −
∫ ∞

−∞
dzρ(z)

dVext(z)

dz
(4.1.48)

The derivative of Vext(z) is performed in appendix B.3 and gives the contact sum rule within

cDFT for a planar substrate to be

p = β−1ρ(0+)− εsf
∫ ∞

0
dzρ(z)

[
3σ3

s

(z + zmin)4
− 6σ9

s

5(z + zmin)10

]
(4.1.49)

4.1.5.2 Implementation of Solutes

The layout of the cDFT system for studying a solute within this work is shown in figure

4.2. The solute, shown in grey, is assumed to be centred on the origin and to consist of

particles of diameter σs of homogeneous density ρs. The fluid is unable to penetrate the

solute and interacts with it via a purely attractive potential where r > Rs. As the density of

the fluid is measured from the centre of the fluid particles, the first non-zero density, called

the contact density, occurs at ρ(R+
s ), where the + represents the approach from the right.

The weighted densities for the one-component hard-sphere reference fluid described by

FMT within this geometry are given by [111]

nα(r) =

∫
dr′r′2ρ(r′)ωα(r − r′) (4.1.50)
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r

R

Rs

σs

ρ(R+
s )

0

ρ(r)

Vext(r)

Figure 4.2: Illustration of the layout of cDFT for a system consisting of a solute, shown in grey, in
contact with a fluid, shown in blue. The smooth and impenetrable solute is centred on the origin and
imagined to consist of smaller particles of diameter σs of homogeneous density, ρs. Fluid surrounds
the solute and is made up of particles, of radius R. The fluid and solute interact via a purely attractive
potential, shown by the dashed blue line, which varies only along the radial axis. The density profile
of the fluid, shown by the solid blue line, takes the symmetry of the external potential and hence also
varies only along the radial axis. As the density of the fluid is measured from the centre of the fluid
particles, the first non-zero density or contact density, ρ(R+

s ), will occur a distance R from the surface
of the solute. This allows for an effective radius of the solute to be defined as Rs.

where the weight functions are now defined as

ω3(r − r′) =
π

rr′
(R2 − |r − r′|2)Θ(R− |r − r′|)

ω2(r − r′) =
2πR

rr′
Θ(R− |r − r′|)

~ω2(r − r′) = ω3(r − r′) k̂

r
+

2π

rr′
(r − r′)Θ(R− |r − r′|)k̂

ω1(r − r′) =
ω2(r − r′)

4πR

ω0(r − r′) =
ω2(r − r′)

4πR2

~ω1(r − r′) =
~ω2(r − r′)

4πR
(4.1.51)

and k̂ is the unit vector along the radial axis. The difference between these and the equivalent

planar functions is the factor of (rr′)−1 within the scalar functions and the notably different

form of the vector weights. As the scalar and vector weight functions now take such different

forms, so do the functional derivatives of the weighted densities

δnα(r′)

δρ(r)
= ωα(r′ − r)

δ~n2(r′)

δρ(r)
=
ω3(r′ − r)

r′
+

2π

rr′
(r′ − r)Θ(R− |r′ − r|)k̂ (4.1.52)

As in the planar case, the scalar weight functions are even functions and hence ωα(r′− r′) =

ωα(r − r′). The first term in the vector weight function, as a scalar function, is also even.
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However, the second term is odd and therefore, when moving from r′ − r to r− r′, this term

in the function must be multiplied by −1.

Reducing φatt(|r− r′|) given in equation (4.1.39) to a function of only the radial distance

|r−r′| requires calculation of the intersection of a spherical interaction potential with spherical

shells of constant density. The derivation for the integrated potential is given in appendix

C.1, with the result being

φatt(|r − r′|) =





πε
rr′

[
(r − r′)2 − r2

min + 4
5σ

12
(

1
r10min
− 1

(r+r′)10

)
|r − r′| < rmin,

− 2σ6
(

1
r4min
− 1

(r+r′)4

)]
r + r′ < rc

πε
rr′

[
4
5σ

12
(

1
(r−r′)10 − 1

(r+r′)10

)
rmin < |r − r′| < rc,

− 2σ6
(

1
(r−r′)4 − 1

(r+r′)4

)]
r + r′ < rc

πε
rr′

[
(r − r′)2 − r2

min + 4
5σ

12
(

1
r10min
− 1

r10c

)

− 2σ6
(

1
r4min
− 1

r4c

)]
|r − r′| < rmin

πε
rr′

[
4
5σ

12
(

1
(r−r′)10 − 1

r10c

)
− 2σ6

(
1

(r−r′)4 − 1
r4c

)]
rmin < |r − r′| < rc

0 |r − r′| > rc
(4.1.53)

The latter three terms have a very similar form to that of the planar potential, with the addi-

tional factor of (rr′)−1, and represent the cases in which the spherically symmetric attraction

intersects the density shells. The first two cases occur only if 2Rs > rc, and represent the

situation where the entire density shell is encompassed by the interaction potential - see ap-

pendix C.1 for further details. Within the present work, these cases are only necessary when

considering LR ff potentials. This potential can then be substituted into equation (4.1.38)

along with equation (4.1.32) to calculate c(1)(r).

The homogeneity of the solute allows for the total solute-fluid attractive potential felt by

a fluid particle a distance r from the centre of the solute to be calculated by integrating over

all particles within the solute. As in the planar case, the attraction takes the form of a LJ

potential which has been shifted such that the minima occurs at the surface of the solute. A

derivation for the integration of the potential can be found in appendix C.2, with the final

potential taking the form

Vext(r) =





∞ r < Rs

εsf

[
2σ9
s

15

(
1

(r+−Rs)9 −
1

(r++Rs)9

)
+ 3σ9

s
20r+

(
1

(r++Rs)8
− 1

(r+−Rs)8

)

+σ3
s

(
1

(r++Rs)3
− 1

(r+−Rs)3

)
+ 3σ3

s
2r+

(
1

(r+−Rs)2 −
1

(r++Rs)2

)]
r > Rs

(4.1.54)

where εsf = 2πρsεsσ
3
s/3 as in the planar substrate case, and r+ = r + rmin. Unlike in the

case of a planar substrate, it is very difficult to evaluate the location of rmin analytically as it

depends on the radius of the solute, Rs. For this reason, it must be found numerically. As for

a planar surface, σs was taken to be σs = σ throughout this work. In the limit that Rs →∞,

the planar equivalent of this potential is recovered with the substitution z = r −Rs.

The adsorption for use in the Gibbs adsorption sum rule for a solute within cDFT can be
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calculated using
Γ

A
=

1

R2
s

∫ ∞

Rs

drr2(ρ(r)− ρb) (4.1.55)

where A is the surface area of the solute. The contact sum rule is derived using [117, 126]

(
∂Ω

∂Rs

)

T,µ

= 4π

∫
drr2ρ(r)

∂Vext(r)

∂Rs
(4.1.56)

The left hand side of this equation can be simplified by substituting equation (2.1.6) and

noting that γ = γ(Rs). The differential of Vext(r) is calculated in appendix C.3. The final

form of the contact sum rule for a solute is then

p+
2γ(Rs)

Rs
+
∂γ(Rs)

∂Rs
= kBTρ(R+

s )+

εsf
R2
s

∫ ∞

Rs

drρ(r)r2

[
6σ9

s

5

(
1

(r+ −Rs)10
+

1

(r+ +Rs)10
− 1

r+(r+ +Rs)9
− 1

r+(r+ −Rs)9

)

+3σ3
s

(
1

r+(r+ +Rs)3
+

1

r+(r+ −Rs)3
− 1

(r+ +Rs)4
− 1

(r+ −Rs)4

)]
(4.1.57)

4.1.6 Measures of Local Density Fluctuations within cDFT

Calculating χµ(r) and χT (r), given in equation (2.5.1) and (2.5.2), within cDFT requires

a simple numerical derivative of the density profile. For example, for χµ(r) this has the form

χµ(r) =
ρ(r;µ+ ∆µ)− ρ(r;µ)

∆µ
(4.1.58)

where ∆µ is some small addition to µ, taken to be ∆µ = 10−8 within the present work. If

instead the temperature is raised by ∆T = 10−8 at constant µ, then equation (4.1.58) gives

χT (r). As ρ(r) takes the symmetry of Vext(r), χµ(r) and χT (r) will also take this symmetry.

The value of χT (r) for the bulk fluid, χT,b can be found using the temperature form of

equation (4.1.58) by replacing ρ(r) with ρb. For χµ(r), the bulk value can be found using [1]

χµ,b = ρ2
bκT = ρb

(
∂ρb
∂p

)

T

= ρb

(
β−1 1 + 4η + 4η2

(1− η)4
+

2patt
ρb

)−1

(4.1.59)

where κT is the isothermal compressibility and patt = −aρ2
b is the component of pressure of

the fluid due to the attractive perturbation. Within this work, a was obtained using equation

(4.1.40).

4.2 Monte Carlo Molecular Simulations

Molecular simulation has been utilised extensively in the study of hydrophobicity. Con-

firmation of the non-Gaussian fat tails in the occupancy probability distributions discussed

in section 3.1.2 was achieved by Patel et al. [28] using molecular simulation, whilst the work

of Giovambattista et al. [105] utilised molecular simulation to show the relationship between
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the contact angle of a droplet, the polarity of the surface and the structure of local water

molecules. Furthermore, molecular simulation has often been used in the analysis of experi-

mental data, to enable the better understanding of the structure of water near a hydrophobic

object [12, 78]. When performing molecular simulation, one of two methods can be used. The

first of these is molecular dynamics, which is concerned with obtaining estimates of observ-

able properties through time averages of microstates. In contrast, Monte Carlo (MC) aims

to find estimates of observables through averages over ensembles of microstates. This work

utilises the latter method of molecular simulation in conjunction with the Grand Canonical

(GC) ensemble. This combination provides a highly efficient method of studying systems

with inhomogeneous fluids, particularly those with large differences in the spatially varying

density.

The primary aim of MC is to generate microstates over which an ensemble average can be

obtained. This is done by performing a random walk through the phase space in which the

microstates exist [42–44]. As was discussed in section 2.2, these microstates can be grouped

into macrostates of constant E and N , which occur according to probability density distribu-

tions like those in equations (2.2.5) and (2.2.9). Considering these, it can be determined that

the distribution of macrostates within systems which may be of interest is strongly peaked.

Performing a uniform random walk over the ensemble would therefore be highly inefficient,

as the low probability tails of the distribution would be sampled as often as the peak. To

avoid this and improve efficiency, MC schemes typically make use of biased sampling, known

as importance sampling, which acts to sample the peak of the distribution far more often

than the tails. Whilst there are many possibilities for the applied bias, the most simple

and commonly used is the equilibrium probability distribution of the statistical mechanics

ensemble in which the macrostates exist, for example, equations (2.2.5) and (2.2.9) [43, 44].

The random walk itself takes the form of a Markov chain, whose limiting distribution

is equal to the equilibrium probability distribution of the underlying ensemble. Each step

in the Markov chain is generated in a multi-stage process, which involves first proposing a

trial configuration of particles, known as a move, and then determining whether to accept or

reject the move according to some acceptance criteria. The random walk must also obey the

conditions of [42–44]

Ergodicity - It must be possible to reach every accessible state within a finite number

of moves from any other state.

Detailed Balance - Once thermodynamic equilibrium is reached, it must not be de-

stroyed. Therefore, at equilibrium, the average number of moves into a state must equal the

average number of moves out of the state.

Ergodicity can be ensured by using an acceptance criteria scheme which obeys it, for example,

the Metropolis scheme. This method in particular also ensures detailed balance by imposing

the stricter condition, known as microscopic reversibility, that the number of moves in and

out a microstate must be exactly equal [42, 43].
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4.2.1 Metropolis Acceptance Criteria

Consider an initial microstate, i and a final microstate f . Microscopic reversibility under

the Metropolis scheme requires that the number of moves from i → f exactly equal the

number of moves f → i. Let N (i) represent the probability of finding the system in i, N (f)

the probability of finding it in f , and π the transition matrix of probability of moving from

i→ f and f → i. Microscopic reversibility can then be expressed as [44]

N (i)π(i→ f) = N (f)π(f → i) (4.2.1)

The transition matrix can also be written as the product of the two stages of a Monte Carlo

move [44]

π(i→ f) = α(i→ f)Pacc(i→ f) (4.2.2)

where α(i→ f) is the probability of generating the microstate f starting from i and Pacc(i→
f) is the probability of accepting the move. Under the Metropolis scheme, α is chosen to

be symmetric, such that α(i → f) = α(f → i). This allows the condition of microscopic

reversibility to be simplified to [44]

N (f)

N (i)
=
Pacc(i→ f)

Pacc(f → i)
(4.2.3)

Whilst there are many forms of Pacc which would obey this, Metropolis chose [44]

Pacc(i→ f) =





N (f)
N (i) N (f) < N (i)

1 N (f) ≥ N (i)
(4.2.4)

Specifically, this choice ensures that the probability of acceptance will never exceed 1. Physi-

cally, this condition also means that, if N (f) is more probable than N (i), which would imply

it is a lower energy macrostate, then the MC move should always be accepted. Otherwise,

the decision of whether to accept or reject a move is taken by comparing Pacc(i → f) to a

uniform random number in the range [0, 1] [44].

The Metropolis acceptance criteria requires knowledge of only the relative probability of

two macrostates. This is important for the implementation of MC in statistical mechanics

ensembles, as calculating the absolute probability of each macrostate would require knowledge

of the partition function, which is generally not possible. Using the relative probability

conveniently overcomes this, as the factor of the partition function cancels [44].

4.2.2 Acceptance Probabilities within the Grand Canonical Ensemble

Pacc is dependent on the ensemble in which the microstates exist. In the present work,

this is the GC ensemble. Within this ensemble, the simulation volume, or box, of constant

volume V , is imagined to be in contact with a reservoir. The reservoir and simulation box are

in thermal and chemical equilibrium, such that they share the same (µ, T ). Throughout the

simulation, the simulation box and reservoir are able to exchange both particles and heat,

using one of the following moves [44]
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1. The reservoir could give a particle to the simulation box. This is called an insertion

move.

2. The simulation box could give a particle to the reservoir. This is called a deletion move.

3. The reservoir and simulation box could exchange energy. This is achieved by moving

a single particle in the simulation box and therefore altering the inter-particle and

external potential energies. This is known as a translation move.

The latter of these moves is not strictly necessary, as the deletion and later insertion of a

particle is effectively equivalent to having translated the particle [68]. Because of this, only

deletion and insertion moves are employed within the present work.

As discussed in section 4.2.1, there are multiple components to a MC move. For example,

components of a MC insertion move can be written as [44]

K(N → N + 1) = N (N)α(N → N + 1)Pacc(N → N + 1) (4.2.5)

where N is the current number of particles within the system. Using equation (2.2.9), N (N)

within the GC ensemble can be identified as

NGC(N) =
e−β(HN−µN)

Ξ
(4.2.6)

where HN is the Hamiltonian for, in this case, the fluid of N particles. Physically, α(N →
N + 1) represents the probability of picking a specific location to insert a particle. Assuming

every location is equally likely to be chosen, this can be identified as

α(N → N + 1) =
Λ3

V
(4.2.7)

where Λ is the thermal de Broglie wavelength, and Λ3 is an estimate of the volume which a

single particle occupies. Substituting these into equation (4.2.5) then leads to

K(N → N + 1) =
e−β(HN−µN)

Ξ

Λ3

V
Pacc(N → N + 1) (4.2.8)

Under microscopic reversibility, this must equal the reverse move, which, using similar rea-

soning, can be written as

K(N + 1→ N) =
e−β(HN+1−µ(N+1))

Ξ

1

N + 1
Pacc(N + 1→ N) (4.2.9)

where α(N + 1→ N) = 1/(N + 1) is the probability of picking a single particle at random to

delete, and assumes each particle is equally likely to be chosen. Equating equations (4.2.8)

and (4.2.9) and rearranging then leads to the ratio of acceptance probabilities

Pacc(N → N + 1)

Pacc(N + 1→ N)
=

V

Λ3(N + 1)
e−β(∆E−µ) (4.2.10)

where ∆E = HN+1 −HN . Within a MC simulation, this specifically is the difference in the
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inter-particle and external potential energies of the configurations with N and N+1 particles.

Using similar reasoning, the ratio of acceptance probabilities for a deletion move, Pacc(N →
N−1)/Pacc(N−1→ N), can also be obtained. Invoking the Metropolis result given in equa-

tion (4.2.4) then leads to the acceptance probabilities of moves within GCMC [44]

Pacc(N → N + 1) = min

[
1,

V

Λ3(N + 1)
e−β(∆E−µ)

]

Pacc(N − 1→ N) = min

[
1,

Λ3N

V
e−β(∆E+µ)

]
(4.2.11)

As is standard in GCMC, Λ was taken to be the diameter of a particle throughout the present

work.

4.2.3 Implementation

The general procedure to implement a MC move within the GC ensemble is as follows

[44]

1. Choose at random whether to attempt to insert or delete a particle.

2. Calculate the energy that the inserted/deleted particle contributes to the system. This

energy will include that of interactions with other particles as well as any external

potential applied.

3. Calculate the probability of accepting the move according to equation (4.2.11).

4. Accept/reject the move by comparing the acceptance probability to a uniform random

number and update the system to reflect the decision taken.

This process is repeated typically millions of times, during which samples of the system are

taken for use in the calculation of properties, such as the average density. Due to the large

number of times in which the system will undergo this process, moves within MC tend to be

grouped into sweeps, where the definition of a sweep can vary between studies.

Within a MC move, it is the process of calculating the energy which a chosen particle

contributes or would contribute to the system which is computationally demanding, and

constitutes the majority of the simulation time. As such many schemes exist to reduce this

computation, and therefore to increase the speed at which simulations can be performed. One

such method, which is particularly useful for SR pairwise potentials like those considered

within this work, is that of cell lists [44]. Consider a particle to be inserted within the

system, which interacts with other particles using such a potential. In order to determine the

energy that this single particle contributes, it is in theory necessary to consider every particle

within the system. However, the particles within the system interact over a finite range,

denoted as rc, which means that many particles will not interact with that to be inserted,

and hence searching the entire system is wasteful. Instead, it would be better to only search

for particles a distance rc from the particle to be inserted. One way to ensure that only this

nearby distance is searched is to segment the simulation box into cubes of side length rc,
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called cells. Particles will only interact with those within their cell, or within a neighbouring

cell, hence instead of searching the entire system for particles which interact with that to be

inserted, it is sufficient to search only particles in neighbouring cells. This greatly reduces the

computational cost of computing the energy contribution of a particle to the system. Within

this work, the use of cells allows for the definition of a sweep as a move attempt per number

of cells within the simulation box.

If the particle interaction potential is finite ranged, but now consists of an additional

three-body component, then searching only neighbouring cells for interacting particles is

insufficient. This is best understood by considering figure 4.3. Consider particle i, which

interacts via a three-body interaction with a particle k through an intermediate particle j.

Particle k is not within a neighbouring cell of i, and hence if only neighbouring cells were

searched for interacting particles, this interaction would go undetected. The consequence

of this is that, for potentials with three-body components, it is necessary to search both

neighbouring, and next-neighbouring cells.

Another important factor to consider in molecular simulation is the finite nature of the

simulation box. Specifically, what to do to at the edges of the box. If the sides and edges

of the box are considered impenetrable then particles in cells which exist at the edge of

the box will have fewer nearest neighbours than particles near the centre of the box. The

sides of the box then act as an external potential, from which particles may retreat. This

prevents the simulation results from accurately representing, for example, a bulk fluid. One

method to overcome this, if a bulk fluid representation is desirable, is to implement periodic

boundary conditions. These assume that, at the edge of the box, an exact replica of the

box exists, and thus each particle, irrespective of its location, will have the same number of

nearest neighbours [44]. If cell lists are used, implementing periodic boundary conditions is

further simplified, as it is only necessary for there to be a replica of one cell at the edge of

the box, rather than the entire box. Practically, periodic boundary conditions then amounts

to searching the cells on the opposing side of the simulation box, from the one in which the

particle of interest exists, to find interacting particles [44].

Finally, when starting a MC simulation, it is necessary to consider the initial configuration

of particles. There are several ways to approach this, for example, the simulation box could

be empty to begin with, and then allowed to fill with particles, or a configuration obtained

from a similar simulation could be used. Within this work, the bulk fluid of interest is a

liquid, which is very near liquid-vapour coexistence. In this case, it is necessary that the

initial configuration of particles be that of a liquid. One way to ensure this is to run a

short simulation in a fairly dense liquid, far from liquid-vapour coexistence. However, as

this initial liquid configuration is generated at a different set of parameters, which are far

from liquid-vapour coexistence, it will not be initially in equilibrium at the thermodynamic

parameters, µV T , to be considered within the simulation. It is therefore necessary to perform

a number of sweeps before measuring observables, to allow the system to reach equilibrium,

in a process aptly known as equilibration. After equilibration, samples for the evaluation of

the observable can be taken. Although each MC move generates a new configuration, which
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i j

k

rc

Figure 4.3: Example of a simulation box which has been divided into cubic cells of side length, rc,
where rc is the maximum distance over which a pair of particles interact. If the interaction potential
is purely pairwise, then every particle which interacts with particle i will fall within a neighbouring
cell of i, which are indicated by the red dashed line. If instead the interaction potential is three-body,
then i may interact with a particle k which falls outside these neighbouring cells via an intermediate
particle j. Particles which interact with i in this case will fall within the solid red box.

constitutes a valid sample, configurations near one another will be fairly similar and highly

correlated. Hence it is best to allow several sweeps to occur before sampling the observable.

4.2.4 Multicanonical and Transition Matrix Methods

Under certain circumstances, accepting and rejecting moves according to the GC ac-

ceptance probabilities given in equation (4.2.11) is inadequate to fully explore the available

macrostates. For example, consider a fluid at liquid-vapour coexistence far below the critical

point. Figure 4.4(a) shows an illustration of the free energy per particle, E/N , for such a

fluid. Two troughs of equal depth, which represent the equilibrium free energies of the liquid

and vapour phases, are separated by a large free energy barrier, shown by the red arrow.

Due to the favourable free energy, the probability of the system being in the liquid or vapour

phases will be high. Similarly, due to the unfavourable free energy the probability of being

in an intermediate phase, which is a mixture of the liquid and vapour phases, is low. This

is shown in figure 4.4(b) by the solid line. This low probability prevents the simulation from

moving between the liquid and vapour phases, thus hampering the sampling. Under such

conditions, it is necessary to bias the underlying acceptance probabilities, such that it be-

comes more favourable to be in the mixed-phase macrostate. One method in which to do

this is to use the multicanonical ensemble [44, 68].

Under the multicanonical ensemble, a bias is applied to the probability, N , of finding the

system in macrostate m, such that the biased probability, Ñ (m), becomes [44, 68]

Ñ (m) =
N (m)eηm

Ξ̃
(4.2.12)
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Figure 4.4: (a) Illustration of the variation of the free energy per particle with number of particles
for a fluid at liquid-vapour coexistence. Two troughs of equal depth represent the liquid and vapour
phases. A large free energy barrier, indicated by the red arrow, exists between the phases. (b) Solid
Line - corresponding probability distribution of the number of particles within the system. The large
free energy barrier results in a low probability of the fluid being in a mixed phase. Dotted line -
example probability distribution achieved by the multicanonical ensemble for the same system.

where Ξ̃ is the grand partition function required to normalise Ñ (m), and ηm is the applied

bias, which can be freely chosen. For circumstances such as studying liquid-vapour coexis-

tence, the aim of applying a bias is to sample the mixed-phase region frequently, so as to

allow the system to move between phases. A simple way to achieve this is to apply a bias

which makes it equally likely for the system to be in any available macrostate, such that

Ñ (m) is a constant, as shown by the dotted line in figure 4.4(b). An example of a bias which

accomplishes this is [68]

ηm = − lnN (m) +D (4.2.13)

where D = ln Ξ̃ Ñ (m) is a constant whose only role is to shift the bias linearly, and can

therefore be omitted.

Equation (4.2.13) shows that it is possible to implement the multicanonical ensemble

under the caveat that the probability distribution, N (m), of macrostates is known apriori.

However, this is often exactly the distribution that a simulation aims to find and therefore it

is not known apriori. To overcome this, it is necessary to instead estimate N (m) which can be

done during the course of a simulation using the transition matrix method [127–129]. Under

this scheme, N (m) is approximated by monitoring the transitions between macrostates with

different numbers of particles, N .

The transition matrix method consists of several stages. First, for every MC move at-

tempt, the unbiased probability of accepting the move, Pacc(N → N ′), is calculated. The

cumulative results of these are stored in the collection matrix, C, according to [127–129]

C(N → N ′) = C(N → N ′) + Pacc(N → N ′)

C(N → N) = C(N → N) + (1− Pacc(N → N ′)) (4.2.14)
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The transition matrix, π, is then formed using

π(N → N ′) =
C(N → N ′)∑
N ′ C(N → N ′)

(4.2.15)

Microscopic reversibility demands that N (N)π(N → N ′) = N (N ′)π(N ′ → N) and thus the

relative probabilities of finding the system in a state with N + 1 particles compared to N

particles can be written as

N (N + 1) =
π(N → N + 1)

π(N + 1→ N)
N (N) (4.2.16)

Equation (4.2.13) relates the multicanonical bias to N (N) if m = N . This equation can

therefore be written in terms of the multicanonical bias as

η(N + 1) = − lnN (N + 1)

= − ln

[
π(N → N + 1)

π(N + 1→ N)
N (N)

]

= η(N)− ln

[
π(N → N + 1)

π(N + 1→ N)

]
(4.2.17)

The transition matrix method therefore provides an iterative method to determine the nec-

essary bias within the multicanonical ensemble such that all macrostates are equally likely

to occur, provided that η(N = 0) is known. However, as the bias η(N + 1) is determined

relative to the bias η(N), η(N = 0) can in fact be chosen freely. For simplicity, within this

work, this is chosen to be η(N = 0) = 1.

The multicanonical acceptance probabilities are then determined by substituting Ñ (N)

for N (N) during the derivation of the GC acceptance probabilities in section 4.2.2, which

leads to

Pacc(N → N + 1) = min

[
1,

V

Λ3(N + 1)
e−β(∆E−µ)+(η(N+1)−η(N))

]

Pacc(N − 1→ N) = min

[
1,

Λ3N

V
e−β(∆E+µ)+(η(N−1)−η(N))

]
(4.2.18)

As the underlying probability distribution for a multicanonical ensemble simulation is by

definition biased, any results collected must then have the bias removed. This is done by

inverting equation (4.2.12).

4.2.5 Histogram Reweighting

As discussed in section 4.2.3, MC is computationally expensive, in part due to the sheer

number of samples of an observable required to accurately predict its behaviour. This limits

the number of simulations which can realistically be performed, and therefore the thermo-

dynamic parameters which can be explored. Fortunately there exists a scheme in which the

behaviour of an observable at one set of parameters can be used to predict the behaviour

of the same observable at a different set of parameters. This scheme is known as histogram
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reweighting [130, 131].

The premise of histogram reweighting is that the histogram of an observable can be

written as

hβ(E) ∝ n(E)e−βE (4.2.19)

where n(E) is the density of microstates with energy E and e−βE is the macrostate probability

of the system having energy E at temperature T . A histogram at another temperature, T ′,

with β′ = (kBT
′)−1, would have the form

hβ′(E) ∝ n(E)e−β
′E ∼ hβe−(β′−β)E (4.2.20)

where the density of microstates has been substituted for. The probability of the system with

temperature T ′ having energy E is then

Pβ′(E) =
hβ′(E)∑
E hβ′(E)

=
hβe

−(β′−β)E

∑
E hβ(E)e−(β′−β)E

(4.2.21)

This provides the probability distribution of a system at T ′. Data collected for an observ-

able, O, at T can therefore be used to predict the expectation value of O at the different

temperature T ′ using

〈O〉β′ =
∑

E

OβPβ′(E) (4.2.22)

In the GC ensemble, data for an observable can be reweighted in both E and µ. When

reweighting from µ to µ′, the probability takes the form

Pµ′(N) =
hµ(N)eβ(µ′−µ)N

∑
N hµ(N)eβ(µ′−µ)N

(4.2.23)

When simultaneously reweighting in (µ, T ), the probability takes the form

Pµ′,β′(N,E) =
hµ,β(N,E)e−(β′−β)E+β(µ′−µ)N

∑
N,E hµ,β(N,E)e−(β′−β)E+β(µ′−µ)N

(4.2.24)

4.2.6 Models of Water

Considering its numerous thermodynamic anomalies and tetrahedral structure, it is no

surprise that water is exceedingly difficult to model. To date, there is no water model which

is able to accurately reproduce the behaviour of water in all three phases, despite the over

one hundred water models currently in existence [132]. These models can largely be grouped

by the method in which they represent water, for example, as a flexible or rigid, polarisable or

non-polarisable molecule. Each model is also parameterised such that it reproduces a select

few experimental characteristics of water, for example, the density at ambient conditions or

the vaporisation enthalpy [133, 134]. Because no model can reproduce all the characteristics,

it is necessary to choose a model which best reproduces the characteristics of water which

are most important to that specific study.
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From section 3.1, it is sensible to conclude that two important properties for a water

model to reproduce for the study of hydrophobicity are the structure, and surface tension of

water. The former is justified due to the apparent connections between the tetrahedrality

of water and its abilities to solvate small and large solutes, whilst the latter is justified due

to the clear importance of the formation of a liquid-vapour like interface in the large length

scale solvation and macroscopic hydrophobicity regimes.

These properties are reproduced to a good degree of accuracy in several of the rigid non-

polarisable models of water, for example, SPC/E, TIP4P and TIP4P/2005. These models

represent water as a rigid molecule, with Lennard-Jones interactions between oxygen atoms

and electronic interactions between charge sites, the position of which vary between models.

For SPC/E, a positive charge is centered on each hydrogen atom, and the negative charge is

centered on the oxygen atom. For TIP4P and TIP4P/2005, the positive charge sites again

fall on the hydrogen atoms however the negative charge site occurs on the perpendicular

bisector between the hydrogen and oxygen atoms. These models are then parameterised to

reproduce various characteristics of water, for example, SPC/E and TIP4P are parameterised

to reproduce the experimental density of water at ambient conditions, whilst TIP4P/2005

is parameterised to reproduce the pressure isobar densities [133, 134]. By design, all three

models therefore reproduce the structure of water well at ambient conditions and their cal-

culated liquid-vapour surface tensions are also the closest to the experimental value of water

of all the rigid non-polarisable water models [133, 134]. Of these three models, SPC/E is the

most computationally tractable due to the reduced number of interaction sites, and has been

used extensively in studies of hydrophobicity [22, 23, 28, 29, 31, 77, 79, 83, 97, 102, 135–137].

Although more tractable, SPC/E is still a fairly computationally demanding model due

to its use of long-ranged electrostatic interactions to reproduce the tetrahedral structure of

water. A recent model, proposed by Molinero and Moore [132], has shown that it is possible to

reproduce this structure without the need for such computationally expensive electrostatics.

This model, named monatomic water (mW), coarse-grains the water molecule into a single

particle and reproduces the tetrahedral structure of water using a three-body potential which

penalises non-tetrahedral angles. The SR nature of mW makes it highly computationally

efficient and simulations involving mW have been shown to be over one hundred times faster

than similar simulations utilising SPC/E [132]. mW at ambient conditions has also been

shown to exhibit a liquid-vapour surface tension closer to that of experimental values than

SPC/E [132, 138]. Being a fairly new model, mW has been used in only a few studies of

hydrophobicity to date [138–140], however shows great promise as an efficient and realistic

model for hydrophobic behaviour. For these reasons, it is used within the present work.

4.2.7 Monatomic Water

mW is based on a reparameterisation of the Stillinger-Weber potential, which was used

originally to model elements such as silicon and germanium that exhibit similar tetrahedral

structures to that of water. Molinero and Moore chose to parameterise mW to reproduce

the melting temperature, vaporisation enthalpy, and density of water at ambient conditions.

68



4.2. MONTE CARLO MOLECULAR SIMULATIONS

Based on this parameterisation, the form of the interaction potential is [132]

φmw(ri, rj , rk, θijk) =
∑

i

∑

j>i

φmw,2(ri, rj) +
∑

i

∑

j 6=i

∑

k>j

φmw,3(ri, rj , rk, θijk) (4.2.25)

where the two-body, φmw,2 and three-body, φmw,3, potentials are

φmw,2(ri, rj) = Aεmw

[
B
(σmw

r

)4
− 1

]
exp

(
σmw

|ri − rj | − aσmw

)
(4.2.26)

φmw,3(ri, rj , rk, θijk) =

λεmw [cos θijk − cos θ0]2 exp

(
γσmw

|ri − rj | − aσmw

)
exp

(
γσmw

|ri − rk| − aσmw

)
(4.2.27)

and A = 7.049556277, B = 0.6022245584, γ = 1.2 are constants which determine the form

and scale of the potential, λ = 23.15 is the tetrahedrality parameter, θ0 = 109.47◦ is the

angle favoured between waters, a = 1.8 is the cut-off radius, σmw = 2.3925Å is the diameter

of a mW particle, and εmw = 6.189kcal mol−1 is the mW-mW interaction strength.

4.2.8 Liquid-Vapour Phase Diagram

In contrast to cDFT, the treatment of fluids within MC is not van der Waals like and

as such the coexistence curve cannot be calculated according to section 2.4.4. Instead, the

liquid-vapour coexistence curve must be calculated from simulations themselves. Within the

GC ensemble, the most robust way in which to do this is to follow the methods presented by

Wilding in [68]. These methods utilise the multicanonical ensemble and histogram reweighting

to accurately gather coexistence values of (µ, T, ρl, ρv), where ρl and ρv are the liquid and

vapour densities respectively. This approach requires only a few simulations to trace the entire

liquid-vapour bulk coexistence curve and is therefore highly efficient. Alternative methods to

calculate the liquid-vapour coexistence curve include use of the Gibbs’ ensemble and Gibbs-

Duhem integration [44]. The latter of these allows for the curve to be traced from only one

simulation. However this method is not robust, as it provides no method of estimating the

uncertainty in any state point and is also prone to numerical errors.

4.2.8.1 Critical Point

The liquid-vapour critical point within GCMC can be found by comparing the distribution

of the scaling variable,M, to the equivalent distribution of the three dimensional Ising model.

Universality arguments mean that these should be equal at the critical point. Whilst M
within the Ising model represents the magnetisation, within a fluid, M takes the form [68,

141]

M = ρ− su (4.2.28)

where ρ is the density, u is the reduced energy density, and s is a system specific mixing

parameter.

The process of finding the critical point then consists of running a simulation at a set of
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parameters, (µ, T ) which are believed to be close to those of the critical point, and regularly

sampling ρ and u. Once sufficient statistics have been gathered, these values can be used to

generate the scaling variable distribution of equation (4.2.28) which can then be compared to

the three dimensional Ising distribution. The latter of these has been found to a high degree

of accuracy in several studies, for example [142]. The distribution of M can then be tuned

using histogram reweighting to find the parameters (µc, Tc, s) for which the distribution of

M best matches the three dimensional Ising distribution [68].

However, as was discussed in section 2.4.6, any simulation performed near the critical

point will be subject to FS effects due to the divergence of the correlation length, ξ. This

means that parameters such as Tc and µc are in fact functions of the size of the system which,

assuming the simulation box is cubic, is quantified by the length of the simulation box, L.

In order to find the infinite volume critical parameters, it is necessary that these FS effects

be accounted for. This can be achieved by finding the critical parameters in simulations

of several box sizes and plotting these against the predicted scaling relations, which can be

found in the work of Wilding [68]. Performing a linear fit to the relation and extrapolating

to the infinite volume limit, then gives an estimate of the true critical parameters.

4.2.8.2 Liquid-Vapour Coexistence

Close to liquid-vapour coexistence, the probability distribution of the density samples

collected during a GCMC simulation will feature two peaks representing the vapour and

liquid phases. If the phases within the distribution are separated by the mean density,

then exactly at coexistence the area under each peak should be equal [68]. Physically, this

represents that either phase is equally likely to occur, and therefore the system must be at

liquid-vapour coexistence.

Using this knowledge, the liquid-vapour coexistence curve can be found using the multi-

canonical ensemble and histogram reweighting through the following procedure

1. First, a simulation is performed at a set of parameters (µ, T ) believed to be near co-

existence and samples of the density collected. To overcome the free energy barrier

between phases, the multicanonical ensemble can be used.

2. These samples are then placed into a histogram to find the probability distribution of

the density of the system.

3. The density histogram is then reweighted in µ until the equal peak area criteria is met.

This then gives the coexistence µ for a given T .

4. The density histogram can then be reweighted in temperature and step 3 performed

again to find another coexistence state point.

5. Step 4 can be repeated until the reweighted density distributions become too noisy to

give accurate results.

The accuracy of the state points obtained through histogram reweighting can be confirmed

by running a simulation at the predicted state point. An efficient method to do this is to
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trace the coexistence curve from the critical point. Starting at near critical parameters, the

procedure can be performed down to a temperature T ′, below which noise prevents any further

reweighting. The next simulation is performed at T ′ using the coexistence µ′ predicted by

histogram reweighting. The accuracy of the histogram reweighting is confirmed by directly

comparing the predicted density histogram to that obtained through the simulation and

the procedure repeated until the entire coexistence curve has been traced. This procedure

therefore provides a method to trace the entire coexistence curve and confirm its accuracy,

with only a few simulations.

4.2.9 Introduction of Solutes

Molecular simulation studies of hydrophobicity take one of two approaches when modelling

a solute. If the aim of the study is to understand water’s response to a specific hydrophobic

solute, then careful consideration of the interaction potential, Vext, between the solute and

the water molecules is necessary. Studies which may fall into this category include those

interested in understanding biological processes, for example [29, 31]. If instead the aim of

the study is to understand hydrophobicity more generally, then such care over interaction

potentials is unnecessary. Studies which fall into this category include those interested in

general features of hydrophobic density fluctuations, for example [23, 28]. As the present

work is concerned with understanding the relationships between hydrophobicity and a possible

underlying surface critical point, it falls into the latter category. Because of this, the Vext

chosen is of little importance. The present work therefore makes use of the simplest choice

of Vext, which is a LJ potential like that used within cDFT. This choice is in part motivated

by the direct comparison it then allows between MC and cDFT results and in part justified

by its use in previous studies, for example [1, 79].

The simulation box set-up during studies of hydrophobic solvation consisted of a single,

smooth, spherical solute, which was placed in the centre of the cubic box of side length L

with periodic boundary conditions. The radius of the solute, Rs, was measured in units of

σmw. In order to ensure that there were sufficient mW particles to represent a bulk fluid,

the length of the box was chosen to satisfy L ≥ 2(Rs + 3aσmw), where aσmw was the cut-

off radius of interaction of mW fluid particles. Short simulations in larger boxes were also

performed initially, however presented no different results to those in the smaller box size.

This confirmed that the condition that L ≥ 2(Rs+3aσmw) was large enough to accommodate

the solute and to accurately represent the bulk fluid.

As in the case of cDFT, the solute was modelled as impenetrable and imagined to be

made up of smaller particles of diameter σs of homogeneous density ρs, which individually

interacted with the fluid particles via a LJ potential. Under the same reasoning as within

cDFT, the interaction potential was reduced to a variable of only the radial distance from

the centre of the solute and therefore took the form of equation (4.1.54). To allow for a

direct comparison between cDFT and MC results, the potential was shifted such that the

minimum occurred at the surface of the solute. However, as stated in section 4.1.5.2, it is

exceedingly difficult to determine this minimum analytically. To overcome this, the minimum

was approximated as that expected for the equivalent planar potential, and therefore took
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the form rmin = (2/5)1/6σs. For simplicity, throughout the present work σs was chosen to be

σs = σmw.

4.2.10 Measures

Several examples of observables which may be sampled during the course of a MC sim-

ulation have been mentioned so far, for example the density and energy of the system. In

addition to these, there are many other measures which may be of interest specifically in the

case of hydrophobicity. These measures fall into two main categories: bulk measures which

refer to those sampled in bulk systems and spatially varying measures which provide detailed

information about the local response of mW particles to a hydrophobic solute or surface.

4.2.10.1 Bulk Measures

The main bulk measure of interest within this work is the density, ρb. The process of

finding this has been discussed previously and involves collecting samples of the density

throughout the simulation and using these to form a histogram. Under the central limit

theorem [43], provided that sufficient samples have been collected, this histogram should have

a Gaussian form. If the system is near coexistence, such that the density histogram features

two peaks, each of these should individually take a Gaussian form. The most probable density

of the system, and therefore the true density of the system, can be found by fitting a Gaussian

to the histogram,. The peak of the Gaussian fit, which will be the mean, is the density of

the system.

4.2.10.2 Spatially Varying Measures

Examples of spatially varying measures of interest in the study of hydrophobicity are the

spatially varying density profiles, as measured from the centre of the solute. The measurement

of these within MC is achieved by sampling the positions of all particles regularly throughout

the simulation. The distances between each particle and the centre of the solute are then

calculated, and placed into a histogram. This histogram provides the density profile ρ(r). For

a bulk simulation, a similar method can be used to measure the radial distribution function,

g(r). However, in this case, the origin of the distribution for the measurement can be centred

on any particle within the system. As such, g(r) can be calculated for each particle during

each sampling.

The local compressibility, as presented in equation (2.5.1), can be calculated during the

course of a simulation, by using histogram reweighting to reweight the density profile, ρ(r), to

a slightly larger chemical potential. At the end of the simulation, this can be compared to the

density profile at the simulation chemical potential, and a numerical derivative performed.

The difference in chemical potential for the reweighting process should be small to ensure

an accurate numerical derivative is achieved. Within this work, the chemical potential was

reweighted by a difference βdµ = 10−6. To confirm this gave an accurate result, tests were

also performed at larger and smaller dµ.
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4.2.11 Estimation of Uncertainties

All of the MC measures presented here take the form of histograms with approximately

Gaussian distributions. The uncertainty in each measure can therefore be found by calculating

the standard error according to [43]

error =
s√
(N)

(4.2.29)

where s is the standard deviation and N is the number of independent samples. This latter

is important, as it is highly likely that not every sample collected will be independent and

thus N not equal to the total number of samples [43].

Samples are considered independent when they are decorrelated. This decorrelation hap-

pens naturally over the course of a simulation, hence one method to estimate the number

of independent samples is to divide the total number of samples by the number of sam-

ples it takes for two samples to naturally decorrelate. The number of samples it takes for

decorrelation to occur is known as the correlation time, τc, and can be calculated using the

autocorrelation of samples [44]. However, calculating this can be computationally intensive,

as it requires performing operations over every sample. Alternative methods, such as block

averages [43], have been introduced to overcome this.

Alternatively, the number of independent samples can be estimated by considering the

physics of the system. For example, consider a simulation of a fluid at liquid-vapour coexis-

tence. Throughout the simulation, the system will pass through both the liquid and vapour

phases multiple times. Whilst τc in the former phase may be very long, in the latter it will

be very short and hence the system can be considered to decorrelate almost immediately if

it passes through the vapour phase. An estimate of the number of independent samples can

then be made by dividing the total number of samples by the number of times the system

passed through the vapour phase.

If instead the fluid exhibits a small oversaturation, it will not pass through the vapour.

As the fluid is a liquid in bulk, τc will be very long and therefore samples of properties of the

system, such as spatially varying profiles, will change little over large periods of the simulation.

The computational time required to secure adequate decorrelated samples may therefore

be infeasibly long. In this case, one method in which to ensure independent samples is to

perform multiple simulations in parallel. As MC operates on random sampling, these systems

will evolve differently throughout the course of the simulations and hence each individual

simulation constitutes an independent sample. For spatially varying measures, such as the

density and local compressibility profiles, which are themselves histograms, equation (4.2.29)

can then be calculated for each bin within the profile, by finding s for each bin and dividing

by the square root of the number of parallel simulations.
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Effective Interface Potential

Analysis for Critical Drying

As was discussed in section 3.3, evidence of enhanced fluctuations local to the surfaces of

both macroscopic planar substrates and microscopic solutes indicates the potential relation

between critical drying, and hydrophobicity and solvophobicity. However, as was presented

in section 2.4.1, diverging fluctuations are but one feature of a critical point. If critical

drying truly influences hydrophobicity and solvophobicity, other characteristic behaviours of

criticality, such as the existence of critical exponents and scaling function forms of observables,

should also be present. For an interfacial system, these behaviours are related to non-analytic

features of the surface free energy. An analysis of the surface free energy of a solvophobic

system near to a potential drying critical point should therefore allow for the prediction of

critical behaviour, such as the critical exponents and forms of scaling functions.

A surface free energy, also termed effective interface potential, approach was applied in

early studies of wetting of van der Waals fluids at macroscopic planar substrates [143, 144].

These studies used such an approach to predict the critical exponents for various properties

on the approach to both critical and complete wetting [41, 50]. Later studies of drying

showed that it was also possible to construct an effective interface potential for a large curved

substrate, or effectively a large solute [33, 34]. In these studies, which focused specifically on

LR LJ fluids, the predicted critical exponents were compared to numerical results from cDFT,

and excellent agreement was found. More recently, an effective interface potential approach

has been used to predict the way in which local density fluctuations in a SR LJ fluid at a

macroscopic planar substrate, as measured by χµ defined in equation (2.5.1), diverge on the

approach to critical drying [1, 32]. When compared to both cDFT and MC results, again,

excellent agreement was found.

In addition to confirming critical behaviours, the effective interface potential approach

provides a method of interpreting results obtained from simulation and cDFT, by relating

different measures of proximity to the drying critical point to the expected behaviour of

observables such as `eq and χµ. Whilst previous studies have demonstrated its usefulness

and applicability, each was focused on the influence of a particular measure of proximity to
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ρl

ρv

`

z0

ρ(z)

(a)

ρ(r)

ρv

ρl
`

Rs

r0

(b)

Figure 5.1: Illustration of systems which are considered within this chapter. (a) A macroscopic
planar substrate is in contact with a fluid, which is in its liquid phase in the bulk. A film of vapour
of width ` separates the substrate from the bulk liquid. (b) A large solute, or curved substrate, of
radius Rs is in contact with a fluid which is in its liquid phase in bulk. A film of vapour, of width `,
separates the surface of the substrate from the bulk liquid. In both (a) and (b), ρl and ρv represent
the densities of the liquid and vapour phases of the fluid at coexistence.

critical drying, such as the substrate/solute-fluid attraction [1] or the curvature of the solute

[33, 34]. Within this work, all measures of proximity to critical drying are investigated, and

hence the analysis presented within this chapter builds on these previous studies to provide

a more comprehensive understanding, particularly of the interplay between measures. To

do this, two systems are considered. The first is shown in figure 5.1(a) and consists of a

macroscopic planar substrate in contact with a fluid, which is in its liquid phase in the bulk.

The second is shown in figure 5.1(b), and consists of a large solute surrounded by a fluid,

which is also in its liquid phase in bulk. Whilst critical drying was shown to occur in three

of the four surface phase diagrams for a planar substrate in figure 2.8, this work is limited to

systems with SR ff LR sf and LR ff LR sf interactions, as these are the relevant combinations

for most simulation and experimental studies respectively. Finally, throughout this chapter,

the behaviour of observables along two specific paths in parameter space will be considered

frequently. These paths are shown in figure 5.2(a), along with the expected behaviour of `eq

for each in figures 5.2(b) and 5.2(c) respectively. For convenience, within this chapter, path

(a) will be referred to as the approach to critical drying, whilst path (b) as the approach

to complete drying. It should be noted that these paths and terms are used simply for

convenience and represent only one of the possible paths to critical/complete drying. In

particular, whilst complete drying is used here to refer to the path at T = TD, in much of

the literature, complete drying refers to any path for which TD < T < Tc.

5.1 Effective Interface Potential for Drying

The construction of an effective interface potential for wetting or drying can be approached

in several ways. Authors such as Dietrich [50] and Schick [41] have presented these clearly,

and the reader is directed to either of these for detailed derivations. Irrespective of method,

the excess grand potential, which is the natural free energy to consider, for a planar substrate
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Figure 5.2: (a) Illustration of phase paths considered within this chapter. The approach to the
drying critical point along path (a) is referred to as the approach to critical drying, whilst the approach
along path (b) as complete drying. These terms are used for convenience only, as there are many such
approaches to critical and complete drying. Note, this diagram is purely illustrative, and does not
reflect the true shape of the coexistence curve. (b) Behaviour of equilibrium film width, `eq, on the
approach to critical drying along path (a). (c) Behaviour of `eq on the approach to complete drying
along path (b).

in contact with a liquid at coexistence with its vapour phase can be found to be [41, 50]

Ωex = γsvA+ γlvA+ ω(`)A (5.1.1)

where γ represents the surface tension, A the surface area, and the subscripts sv and lv

substrate-vapour and liquid-vapour respectively. The final term, ω(`), is the binding poten-

tial, which describes the free energy required to bind the liquid-vapour interface to the surface

of the substrate at a distance `. Dividing through by A simplifies equation (5.1.1) to

Ωex

A
≡ γsl = γsv + γlv + ω(`) (5.1.2)

where γsl is the substrate-liquid surface tension. Comparing this to Young’s equation given

in equation (2.4.19) shows that in the limit of drying, ω(`→∞)→ 0.

Equation (5.1.1) assumes the fluid is at liquid-vapour coexistence, in which case there

is no free energy difference between the liquid and vapour phases. If instead the fluid has

a small oversaturation, then the vapour phase will be metastable with respect to the liquid

phase. In this case, equation (5.1.1) acquires an additional free energy term, which describes

the pressure difference between the liquid and vapour phases. This term can be rewritten

in terms of the chemical potential, µ, by expanding the pressures of the liquid and vapour

phases about the coexisting chemical potential, µco, and utilising the Gibbs-Duhem relation.

Doing so leads to

Ωex = γsvA+ γlvA+ ω(`)A+ δµ∆ρA` (5.1.3)

where ∆ρ = (ρl−ρv), δµ = µ−µco, and A` is the volume of the vapour film. This expression

can then be rewritten as [41, 50, 117]

Ωex

A
= ωex(`) = γsv + γlv + ω(`) + δµ∆ρ` (5.1.4)
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If instead of a planar substrate, the system consists of a large solute, as shown in figure

5.1(b), then the effective interface potential takes the form [34, 117, 145]

Ωex = γsv(Rs)Asv + γlv(Rs + `)Alv + ω(`;Rs)Asv + δµ∆ρVv (5.1.5)

where ω(`;Rs) is the curvature dependent binding potential. In this case, the substrate-

vapour surface area is Asv = 4πR2
s, the liquid-vapour surface area is Alv = 4π(Rs + `)2, and

the volume of the vapour film is Vv = 4π((Rs + `)3 −R3
s)/3. Substituting these gives

Ωex = γsv(Rs)Asv + γlv(Rs + `)Asv

(
1 +

2`

Rs
+
`2

R2
s

)
+ ω(`;Rs)Asv

+ δµ∆ρAsv`

(
1 +

`

Rs
+

`2

3R2
s

)
(5.1.6)

This can be simplified using two assumptions. Firstly, it is assumed that Rs is very large,

such that the surface tension terms can be approximated by their values at a planar substrate,

γsv(Rs) ≈ γsv and γlv(Rs + `) ≈ γlv. Secondly, if it is assumed that Rs � `, then terms of

order O(`2/R2
s) can be neglected. Under these assumptions, equation (5.1.6) reduces to

Ωex

Asv
= ωex(`;Rs) ≈ γsv + γlv

(
1 +

2`

Rs

)
+ ω(`;Rs) + δµ∆ρ` (5.1.7)

5.2 Equilibrium Drying Film Width

As was discussed in section 2.4.5, the equilibrium film width, `eq, is the film width for

which the surface free energy is minimum. This can be found by minimising the effective

interface potential. For the case of the planar substrate, minimising ωex(`) given in equation

(5.1.4) leads to
∂ωex(`)

∂`

∣∣∣∣
`=`eq

= 0 =
∂ω(`)

∂`

∣∣∣∣
`=`eq

+ δµ∆ρ (5.2.1)

For the case of the solute, minimising ωex(`;Rs) given in equation (5.1.7) leads to

∂ωex(`;Rs)

∂`

∣∣∣∣
`=`eq

= 0 =
∂ω(`;Rs)

∂`

∣∣∣∣
`=`eq

+
2γlv
Rs

+ δµ∆ρ (5.2.2)

The term 2γlv/Rs can be identified as the Laplace pressure, which arises due to the curvature

of the liquid-vapour interface [89]. The final two terms in equation (5.2.2) can be combined

to define the effective pressure as

p̃ =
2γlv
Rs

+ δµ∆ρ (5.2.3)

which implies an equivalence between the effects of substrate curvature and oversaturation.

Such an equivalence has been noted by other authors, for example, Stewart and Evans [34]

and Evans et al. [146].

77



CHAPTER 5. EFFECTIVE INTERFACE POTENTIAL ANALYSIS FOR CRITICAL
DRYING

5.3 Local Fluctuations

On the approach to the drying critical point, density fluctuations are expected diverge

according to some power law [41, 50]. Unlike the case of a bulk fluid, the faster divergence of

the correlation length parallel to the surface of the substrate or solute, ξ||, compared to the

perpendicular correlation length, ξ⊥, means that on the approach to critical and complete

drying, these fluctuations are localised to the surface of the substrate or solute [69]. Spatially

resolved measures of these density fluctuations, like χµ and χT presented in section 2.5, have

been shown to peak near the liquid-vapour interface at `eq [1, 23, 37, 113]. This can be

rationalised by the fact that the main effect of small changes in the local parameters of a

system with such an interface is to move the interface.

The behaviour of the density fluctuations on the approach to critical and complete drying

can therefore be understood by considering χµ(`eq) and χT (`eq). Making the assumption that

the density profile takes the form of a smooth function, ρ(z) ≡ S(z − `) like that shown in

figure 5.1(a), χµ(`eq) for a planar substrate can be written as [1]

χµ(`eq) =
∂ρ(z)

∂µ

∣∣∣∣
T,`=`eq

=
∂S(z − `)
∂(z − `)

∂(z − `)
∂µ

∣∣∣∣
T,`=`eq

= −ρ′(`eq)
∂`eq
∂µ

∣∣∣∣
T

(5.3.1)

where ρ′(`eq) represents the spatial derivative of the density profile evaluated at `eq, and it

has been used that ` = `(µ, T ). Similarly, χT (`eq) for a planar substrate can be written as

χT (`eq) = −ρ′(`eq)
∂`eq
∂T

∣∣∣∣
µ

(5.3.2)

For a large solute, the density profile is instead assumed to be a smooth function of ρ(r) ≡
S(r − (Rs + `)). In this case, using similar reasoning, χµ(`eq;Rs) and χT (`eq;Rs) can be

written as

χµ(`eq;Rs) = −ρ′(Rs + `eq)
∂`eq
∂µ

∣∣∣∣
T

(5.3.3)

χT (`eq;Rs) = −ρ′(Rs + `eq)
∂`eq
∂T

∣∣∣∣
µ

(5.3.4)

The similarity in forms of equation (5.3.1) and (5.3.2) imply a similarity in the behaviour

of the divergence of different measures of local density fluctuations on the approach to critical

drying. Writing these as a ratio gives

χT (`eq)

χµ(`eq)
=

(
∂`eq
∂T

)

µ

(
∂`eq
∂µ

)−1

T

(5.3.5)

In the case of a planar substrate, `eq ≡ `eq(µ, T ). Writing this in the more convenient form

of `eq ≡ `eq(δµ, T ), the temperature derivative of `eq can be written as

(
∂`eq
∂T

)

µ

=

(
∂`eq
∂T

)

δµ

+

(
∂`eq
∂δµ

)

T

(
∂δµ

∂T

)

µ

(5.3.6)
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Within δµ, only µco is a function of temperature, hence this simplifies to

(
∂`eq
∂T

)

µ

=

(
∂`eq
∂T

)

δµ

−
(
∂`eq
∂δµ

)

T

(
∂µco
∂T

)
(5.3.7)

Near to the drying critical point, both terms within this expression will diverge. If the first

were to diverge more slowly than the second, then equation (5.3.5) would reduce to

χT (`eq)

χµ(`eq)
∼ −∂µco

∂T
(5.3.8)

If this were to be the case, then it would imply that both χµ(`eq) and χT (`eq) diverge in

the same way on the approach to critical drying. By definition, this would also imply that

χ∗(`eq), defined in equation (2.5.3), diverge in the same way.

A condition for when it is true that the first term in equation (5.3.7) diverges more slowly

than the second can be found by considering the behaviour of the adsorption of the system,

which is related to `eq via equation (2.4.20). Substituting this relation gives a form of equation

(5.3.5) dependent on the adsorption

χT (`eq)

χµ(`eq)
=

(
∂Γ

∂T

)

µ

(
∂Γ

∂µ

)−1

T

(5.3.9)

Using similar reasoning that Γ ≡ Γ(δµ, T ), the total derivative can be written as

(
∂Γ

∂T

)

µ

=

(
∂Γ

∂T

)

δµ

−
(
∂Γ

∂δµ

)

T

(
∂µco
∂T

)
(5.3.10)

Hence, as before, if the first term diverges more slowly than the second, then equation (5.3.8)

is obtained.

As was discussed in section 2.1, the adsorption, Γ is related to γsl via

Γ

A
= −

(
∂γsl
∂µ

)

T

(5.3.11)

Near to the drying critical point, the singular part of γsl, denoted as γsing, is expected to have

a scaling function form, with a scaling variable of δµ/t̃∆, where t̃ is the reduced temperature

defined as t̃ = (T − TD)/TD, and ∆ is the gap exponent. γsing can therefore be written as

[41, 50]

γsing = γsl − γsv − γlv ∼ |t̃|2−αsΣ
(
δµ

|t̃|∆
)

(5.3.12)

where αs is the surface equivalent of the bulk heat capacity critical exponent, α, on the

approach to critical drying and Σ is a scaling function. Taking the derivative of equation

(5.3.12) with respect to µ allows for the singular part of the adsorption, Γsing, to be written

as

|Γsing| ∼ |t̃|2−αs−∆L
(
δµ

|t̃|∆
)

(5.3.13)

where L is the first derivative of Σ, and is itself a scaling function.
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Utilising the scaling form of Γsing, the T and µ derivatives of Γsing can be written as

(
∂|Γsing|
∂T

)

δµ

∼ |t̃|1−αs−∆L
(
δµ

|t̃|∆
)

+ |t̃|1−αs−∆

(
δµ

|t̃|∆
)
L′
(
δµ

|t̃|∆
)

(
∂|Γsing|
∂µ

)

T

∼ |t̃|2−αs−2∆L′
(
δµ

|t̃|∆
)

(5.3.14)

where L′ is the first derivative of L, and the term (δµ/|t̃|∆)L′(δµ/|t̃|∆) can be recognised as

a scaling function. Comparing the exponents, it is possible to deduce that, for the second

term in equation (5.3.10) to diverge faster than the first, ∆ > 1. By nature of definition of

`eq, this condition should also apply to equation (5.3.7).

A potential relation between the divergence of different measures of density fluctuations

on the approach to critical drying is not limited to the case of a planar substrate. Considering

equations (5.3.3) and (5.3.4), it can be deduced that

χT (`eq;Rs)

χµ(`eq;Rs)
=

(
∂`eq
∂T

)

µ

(
∂`eq
∂µ

)−1

T

(5.3.15)

should also hold. Considering equation (5.2.2), it can be seen that in the case of a curved

substrate, `eq ≡ `eq(p̃, T ). This can be rewritten in the more convenient form `eq ≡ `eq(p̃′, T ),

where p̃′ = p̃/∆ρ, in which case the temperature derivative of `eq becomes

(
∂`eq
∂T

)

µ

=

(
∂`eq
∂T

)

δµ

+

(
∂`eq
∂p̃′

)

T

(
∂p̃′

∂T

)

µ

=

(
∂`eq
∂T

)

δµ

+

(
∂`eq
∂T

)

µ

(
2

Rs

∂

∂T

(
γlv
∆ρ

)
− ∂µco

∂T

)
(5.3.16)

As Rs →∞, this must tend to the relation for a planar substrate, given in equation (5.3.8).

It can therefore be expected that, as in the planar case, the second term diverges faster than

the first provided ∆ > 1, and as such, equation (5.3.15) can be expected to follow

χT (`eq;Rs)

χµ(`eq;Rs)
∼
(

2

Rs

∂

∂T

(
γlv
∆ρ

)
− ∂µco

∂T

)
(5.3.17)

This again implies a simple relationship between all measures of density fluctuations on the

approach to critical drying. However, this relationship also suggests that curvature constrains

these density fluctuations, and therefore true divergence of χµ(`eq;Rs) and χT (`eq;Rs) is only

possible as Rs →∞.

5.4 Forms of the Binding Potential

The effective interface potentials given in equations (5.1.4) and (5.1.7) imply that the

binding potential, ω(`) or ω(`;Rs), determines the nature of drying within a system. Consid-

ering the case of a planar substrate, for first-order drying, ω(`) must have two minima located

at finite and infinite `eq, as shown in figure 5.3(a). When T < TD, the minimum for a finite

`eq is deeper, and hence a microscopic vapour film is favoured. In contrast, when T > TD, the

minimum at infinite `eq is deeper, and hence a macroscopic vapour film is favoured. Exactly
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T < TD

T > TD

`eq =∞

ω(`)

`

(b)ω(`)

`

(a)

T > TD

T = TD

T < TD

Figure 5.3: Forms of the binding potential for a fluid at coexistence in contact with a planar
substrate, ω(`), for the cases of (a) first-order drying and (b) critical drying. Similar forms are
expected to exist for the binding potential for a curved substrate, ω(`;Rs).

at T = TD, the two minima are equal, and hence first-order drying can occur [50]. For the

case of critical drying, ω(`) has only one minimum, as shown in figure 5.3(b). Below TD, this

occurs at finite `, and hence a microscopic film is favoured. As T → TD, this minimum moves

to increasingly larger ` and exactly at T = TD, the minimum occurs at ` = ∞, at which

point a macroscopic vapour film is favoured [50]. By nature of the similarity of the forms of

equations (5.1.4) and (5.1.7), the same forms must exist for ω(`;Rs).

As indicated in the surface phase diagrams presented in figure 2.8, the nature of drying

is dependent on the ranges of interactions within the system, which implies that the form

of ω(`), which determines the surface phase diagrams of figure 2.8, also varies depending

on the range of interactions within the system. This form is generally derived by using

statistical mechanics to find an approximation for ωex(`), which can then be compared to

equation (5.1.1) in order to determine terms which contribute to ω(`). The precise statistical

mechanics approach to finding ωex(`) varies depending on the system of interest. Here, only

the final form of ω(`) is presented, and the reader is directed to [41] in the case of SR ff LR

sf, and [50] in the case of LR ff LR sf, for more detailed derivations. Within these texts, it

can be seen that the binding potential can be separated into two components, dependent on

the ff and sf interactions respectively. Within this section, the binding potential for a planar

substrate for each case of interactions is discussed. This is followed by a discussion of how

the binding potential can be expected to change when the substrate is instead curved.

5.4.1 SR ff LR sf Interactions

As has been discussed, ω(`) has two components, relating to the effects of the ff and sf

interactions respectively. In the SR ff LR sf interactions case, the ff component is derived by

utilising a Landau-Ginzburg approximation for the density profile [41, 147]. This is typically

constructed using magnetic language, and fluid-Ising magnet universality applied to translate

the result back into fluid language. As Landau-Ginzburg theory is used, this approximation

is mean field. Following the derivations found in [41] and [147], the ff component of ω(`) can

be found to be

ωSR,ff (`) = a(T )e−`/ξ + b′(T )e−2`/ξ +H.O.T (5.4.1)
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`

ρl

ρv

ρ(z)

z0

(a)
σs σ

dw

ρ(r)

ρv ρl

`

Rs

r0
dw

(b)

σs σ

Figure 5.4: Illustration of sharp-kink (SK) approximation for the systems considered. (a) Under a SK
approximation for a planar substrate, the system is assumed to consist of three slabs, representing the
substrate (grey), vapour and liquid (both blue), the latter of which are taken to have the coexisting
densities ρv and ρl respectively. The width of the vapour slab is taken to be `. The density and
interaction of the fluid and surface are measured from the centre of the fluid and surface particles
respectively. This leads to a region of excluded volume of width dw. (b) Under a SK approximation
for a curved substrate, the system is assumed to consist of a large solute (grey), a vapour shell (light
blue) of width `, and a liquid shell (darker blue). A region of excluded volume (white) of width dw
exists between the solute and vapour due to the finite size of the particles. This leads to an effective
radius of Rs.

where ξ is the correlation length of the bulk vapour, a(T ) and b′(T ) are constants, and H.O.T

stands for higher order terms. This exponential form indicates that the bound liquid-vapour

interface and the substrate interact through the exponentially decaying tails of the density

profile [41]. It is also interesting to note that the derivations of this found in [41] and [147] do

not specify a form for the ff interaction potential. In fact, ωSR,ff (`) contains no information

of the microscopic interactions, and instead only requires that they be SR [144].

In order to evaluate the sf component, it is necessary to specify the density profile. How-

ever, to find this, it is typically necessary to perform a numerical study using a method such

as cDFT. As this is time consuming, and gives no analytic solution, ρ(z) is approximated.

One way in which to do this would be to use the result of the Landau-Ginzburg treatment

used for the ff component, however this form of the density profile also does not typically

lead to an analytic solution for ωsf (`). Instead, the simpler approximation of a sharp-kink

(SK) profile, which has the form [143]

ρ(z) =




ρv 0 < z < `

ρl ` < z
(5.4.2)

is used. The form of this profile is shown in figure 5.4(a). The profile is assumed to consist

of two fluid slabs of constant density, with the nearest to the substrate taking the coexisting

vapour density, ρv, and the slab furthest from the substrate taking the coexisting liquid
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density, ρl. At a distance `, there is a sharp transition between the two densities. Due to

the finite size of the fluid and substrate particles, there exists a region of excluded volume

between the substrate and the vapour slab, which has width dw, and is as shown in figure

5.4(a).

Using such a profile, the sf component of ω(`) can be found to be [41, 117]

ωLR,sf (`) = ∆ρρs

∫ ∞

`+dw
dzVext(z) (5.4.3)

Within the present work, Vext(z) is assumed to take the form given in equation (4.1.46),

though it should be noted that the factor of ρs in the prefactor of equation (4.1.46) is the

same ρs as in the equation above. Substitution of Vext into equation (5.4.3) leads to a form

of the sf component of ω(`) of

ωLR,sf (`) =
2πσ3

s

3
∆ρρsεs

[
σ9
s

60(`+ (dw + zmin))8
− σ3

s

2(`+ (dw + zmin))2

]
(5.4.4)

where ρs is the density of the substrate, and εs the sf attraction strength. Further details of

this derivation can be found in appendix D.1.

This expression can be rewritten as an inverse power series in `, by performing a Taylor

expansion of (` + dw)−2 and (` + dw)−8. Retaining only leading order terms from both

equations (5.4.1) and (5.4.4) then gives ω(`) for the case of SR ff LR sf interactions as

ωSR(`) = ωSR,ff (`) + ωLR,sf (`) = a(T )e−`/ξ +
b(T )

`2
+H.O.T (5.4.5)

where b(T ) is a constant with dimensions of energy which is defined as

b(T ) = −boρsεsσ6
s (5.4.6)

with bo = π∆ρ/3.

5.4.2 LR ff LR sf Interactions

The derivation for ω(`) in the case of LR ff LR sf interactions typically utilises cDFT to

construct a density functional of the excess grand potential, which can then be minimised

for a given ` to find the equilibrium density profile [50]. This then gives a form of the excess

grand potential which is a function of `, which can be compared to equation (5.1.1) to find

ω(`) [50]. However, as was discussed in section 4.1, minimising the grand potential must

normally be done numerically. To avoid this, and instead allow for an analytic form of ω(`),

a SK approximation like that in equation (5.4.2) is usually made for the density profile [143,

144].

Following the derivations of [50], [143] and [144], ω(`) for the case of LR ff LR sf interac-

tions can be found to be

ωLR(`) = ∆ρ

(
ρs

∫ ∞

`+dw
dzVext(z)− ρv

∫ ∞

`
dzφ(z)

)
(5.4.7)
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where φ(z) is the attraction felt by a single particle due to the ff interaction with all other

particles, and takes the form

φ(z) =

∫ ∞

z
dz′′φatt(z

′′ = |z′ − z̃|) (5.4.8)

The first term of equation (5.4.7) can be recognised as equation (5.4.3), and represents the

sf component of ω(`), whilst the second term represents the ff component.

Vext is assumed to have the form of equation (4.1.46), with ρs having been pulled out

of the prefactor of equation (4.1.46) in equation (5.4.7), whilst the attraction between fluid

particles is assumed to take the form of equation (4.1.45). Using these, ωLR(`) can be found

to be

ωLR(`) =
2π

3
∆ρ

(
ρsεsσ

3
s

[
σ9
s

60(`+ (dw + zmin))8
− σ3

s

2(`+ (dw + zmin))2

]

− ρvεσ
3

[
σ9

60`8
− σ3

2`2

])
(5.4.9)

For further details, see appendix D.2. Performing a Taylor expansion of (` + dw)−2 and

(`+ dw)−8 about ` then allows this to be written as

ωLR(`) =
b(T )

`2
+
c(T )

`3
+H.O.T (5.4.10)

where the constants b(T ) and c(T ) take the forms

b(T ) = bo(ρvεσ
6 − ρsεsσ6

s) c(T ) = 2(dw + zmin)ρsεsσ
6
sbo (5.4.11)

and bo is defined as before.

5.4.3 Effect of Curvature

If instead of a planar substrate, the system consists of a large solute, then the binding

potential will acquire terms proportional to the curvature. Despite this, ω(`;Rs) can be

derived in much the same way as in the preceding section. Considering first the case of LR

ff LR sf interactions, similar reasoning as in the planar substrate case leads to a form of the

binding potential very similar to that of equation (5.4.7) [145]

ωLR(`;Rs) = ∆ρ

(
ρs

∫ ∞

Rs+`
dr

(
r

Rs

)2

Vext(r;Rs − dw)− ρv
∫ ∞

Rs+`
dr

(
r

Rs

)2

φ(r;Rs)

)

(5.4.12)

where, the SK approximation described in figure 5.4(b) has been used, and is written as

ρ(r) =




ρv Rs < r < Rs + `

ρl Rs + ` < r
(5.4.13)

In the case of a solute, Vext(r;Rs − dw) takes the form of equation (4.1.54), without the
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factor of ρs in εsf , and φ(r;Rs) takes the form

φ(r;Rs) =

∫

|r|≤Rs
dr′′φatt(r

′′ = |r′ − r̃|) (5.4.14)

where φatt is as given in equation (4.1.53). Substituting these into equation (5.4.12) and

evaluating leads to [34, 117]

ωLR(`;Rs) = ωLR(`)

(
1 +

`

Rs
+O

(
`2

R2
s

ln

(
`

2Rs

)))
(5.4.15)

where ωLR(`) is the binding potential for a planar substrate, as given in equation (5.4.10).

In the case of SR ff LR sf interactions, the ff component is unchanged by the curvature

of the surface. The sf component takes the same form as above, and therefore obtains the

same curvature corrections as in equation (5.4.15). Within the construction of the effective

interface potential for a solute, it is assumed that Rs is very large, and therefore it can also

be assumed that Rs � `. Hence ω(`;Rs) in both the cases of LR ff LR sf and SR ff LR sf

interactions can be approximated as the equivalent binding potential at a planar substrate

ω(`;Rs) ≈ ω(`) (5.4.16)

5.5 Critical Drying in SR ff LR sf Systems

SR ff LR sf interactions best describe those found in numerical or molecular simulation

studies. Throughout this section, the expected behaviour of `eq and χµ(`eq;Rs) is investigated

in detail for such systems, first with a planar substrate then with a curved substrate. Several

previous studies have considered the former case [1, 32, 37], whilst the latter case has been

the focus of fewer studies [146]. The study by Evans et al. [146] in particular considered only

a hard solute and the behaviour of `eq.

5.5.1 Planar Substrate

Substitution of equation (5.4.5) into equation (5.1.4) gives ωex(`) for a system consisting

of a planar substrate in contact with an oversaturated fluid. Considering only leading order

terms, this is

ωex(`) = γsv + γlv + a(T )e−`/ξ +
b(T )

`2
+ δµ∆ρ` (5.5.1)

where a(T ) and b(T ) are temperature dependent constants with dimensions of energy per

area and energy respectively, and b(T ) takes the specific the form

b(T ) = −boρsεsσ6
s , bo =

π

3
∆ρ

Substitution of ωex(`) into equation (5.2.1) allows the equilibrium vapour film width, `eq, to

be identified as

−`eq
ξ

= ln

(
ξ

a

)
+ ln

(
δµ∆ρ− 2b

`3eq

)
(5.5.2)

85



CHAPTER 5. EFFECTIVE INTERFACE POTENTIAL ANALYSIS FOR CRITICAL
DRYING

where the temperature dependence of the constants a and b has been omitted. The divergence

of `eq on the approach to critical or complete drying is determined by the second term and,

due to the logarithmic nature, must be slow. It can be seen that `eq diverges only when both

δµ → 0 and εs → 0, hence the drying critical point in the case of SR ff LR sf interactions

must exist at (δµ = 0, εs = 0). The first of these conditions is expected, however the second

implies a lack of temperature dependence of the drying critical point. It can therefore be

concluded that critical drying occurs for all temperatures below the bulk critical temperature,

Tc. This agrees with the findings of Evans et al. [1, 38].

On the approach to critical drying along path (a) in figure 5.2(a), equation (5.5.2) predicts

that `eq ∼ − ln εs + 3 ln `eq. This relationship was previously reported by Evans et al. [1],

who also provided numerical evidence for such a relationship using cDFT for a truncated LJ

fluid. Considering the approach to complete drying along path (b) in figure 5.2(a), equation

(5.5.2) indicates that `eq ∼ − ln δµ. This agrees with the result expected for complete wetting

with SR forces [50].

Substitution of equation (5.5.2) into equation (5.3.1) gives an expression for χµ(`eq). First

evaluating the derivative of `eq gives

∂`eq
∂µ

= −ξ∆ρ
(
δµ∆ρ− 2b

`3eq

(
1− 3ξ

`eq

))−1

(5.5.3)

Substitution of this then gives χµ(`eq) to be

χµ(`eq) = ξ∆ρρ′(`eq)

(
δµ∆ρ− 2b

`3eq

(
1− 3ξ

`eq

))−1

(5.5.4)

This indicates a power law divergence of density fluctuations on the approach to the drying

critical point, where δµ and b(T ) vanish, as expected. Considering first the approach to

critical drying, it can be deduced that χµ(`eq) ∼ ε−1
s . This is the same result as was obtained

by Evans et al. [1, 32], who confirmed it for a SR LJ fluid using cDFT and MC. On the

approach to complete drying, χµ(`eq) ∼ δµ−1. This relationship was previously reported by

Evans and Stewart [37], who confirmed it using cDFT for a SR LJ fluid.

Substitution of equation (5.5.2) into equation (5.3.2) gives χT (`eq). First evaluating the

derivative of `eq gives

− ∂`eq
∂T

=

(
1− `eq

ξ

)
∂ξ

∂T
+ ξ

(
1

∆ρ

∂∆ρ

∂T
− 1

a

∂a

∂T

)

+ ξ

(
δµ∆ρ− 2b

`3eq

)−1(
−∆ρ

∂µco
∂T

+
6b

`4eq

∂`eq
∂T

)
(5.5.5)

Assuming that the system is far below Tc, ξ will be small and not expected to grow quickly.

Because of this, the term proportional to its derivative can be neglected. From the Landau-

Ginzburg derivation of ωSR,ff (`), it can be found that the temperature dependence of a arises

because a ∝ ∆ρ [41]. With this knowledge, the second term on the right is zero. χT (`eq) can
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then be found to be

χT (`eq) = −ξ∆ρρ′(`eq)
(
δµ∆ρ− 2b

`3eq

(
1− 3ξ

`eq

))−1 ∂µco
∂T

= −χµ(`eq)

(
∂µco
∂T

)
(5.5.6)

This follows the relationship predicted in equation (5.3.8). It is therefore expected that in the

case of SR ff LR sf interactions and a planar substrate, all measures of density fluctuations

diverge in the same way on the approach to the drying critical point.

5.5.2 Curved Substrate

Substitution of equation (5.4.5) into equation (5.1.7) gives ωex(`;Rs) for a curved sub-

strate, or solute, in contact with an oversaturated fluid. Considering only leading order terms,

this is

ωex(`;Rs) = γsv + γlv + a(T )e−`/ξ +
b(T )

`2
+ p̃(T )` (5.5.7)

where p̃(T ) is defined in equation (5.2.3) as

p̃ = δµ∆ρ+
2γlv
Rs

Substitution of this into equation (5.2.2) gives an expression for `eq of

−`eq
ξ

= ln

(
ξ

a

)
+ ln

(
p̃− 2b

`3eq

)
(5.5.8)

where the temperature dependence is now omitted. This has the same form as in the case

of a planar substrate, as given in equation (5.5.2), with the only difference being that δµ∆ρ

has been replaced with p̃. This highlights that the effects of curvature within such systems

are equivalent to the effects of oversaturation. Considering the form of p̃, it can be seen that

as Rs →∞, equation (5.5.2) is recovered from equation (5.5.8), as expected. This then gives

the further condition that the drying critical point for a system with SR ff LR sf interactions

must exist where (δµ = 0, εs = 0, Rs = ∞). The latter condition is expected as true phase

transitions cannot occur in finite systems.

On the approach to critical drying along path (a) in figure 5.2(a), `eq can be seen to take

the form

`eq(δµ = 0;Rs) ∼ − ln

(
2γlv
Rs
− 2b

`3eq

)
(5.5.9)

Depending on the relative magnitudes of 2γlv/Rs and 2b/`3eq, two scaling regimes can be

identified as

`eq(δµ = 0;Rs) ∼





lnRs Rs � γlv`
3
eq

|b|

− ln εs + 3 ln `eq
γlv`

3
eq

|b| � Rs
(5.5.10)

In the second case, the expected behaviour is identical to that of a planar substrate. This

indicates that the effects of curvature of the substrate are only relevant when Rs is smaller

than a certain length scale. However, determining such a length scale is difficult, due to the

occurrence of `eq within the condition. Substitution of `eq ∼ lnRs and |b| = bo∆ρρsεsσ
3
s into
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this condition gives an estimate that, for curvature to be the dominant influence on `eq on

the approach to critical drying, Rs(lnRs)
−1 � 3γlv/boρsεsσ

3
s .

On the approach to complete drying along path (b) in figure 5.2(a), equation (5.5.8)

indicates that `eq ∼ − ln p̃. Again, two scaling regimes can be identified, however in this case,

it is far easier to determine the length scale which separates them. This is because p̃ can be

rewritten as

p̃ = δµ∆ρ

(
1 +

2γlv
δµ∆ρRs

)
= δµ∆ρ

(
1 +

Rc
Rs

)
(5.5.11)

where Rc = 2γlv/δµ∆ρ [146]. This can be identified as the same length scale for which an

oversaturated liquid subject to confinement will evaporate, the process of which is called

capillary evaporation [42]. Using this, the two scaling regimes of `eq on the approach to

complete drying along path (b) of figure 5.2(a) can be identified as

`eq(εs = 0;Rs) ∼





lnRs Rs � Rc

− ln δµ Rc � Rs
(5.5.12)

Such scaling regimes have previously been predicted by Evans et al. [146]. In the first case,

the same scaling as in the first case of equation (5.5.10) is recovered, whilst in the second case,

the scaling expected at a planar substrate is recovered. This indicates that again, the effects

of curvature are only relevant for Rs smaller than a specific length scale. Considering these

cases in conjunction with those of critical drying given in equation (5.5.10), it can be seen

that the individual effects of (δµ, εs, Rs) are each dominant in a region of parameter space

about the drying critical point, and that each is a measure of deviation from the critical

point.

Substitution of equation (5.5.8) into equation (5.3.3) gives χµ(`eq;Rs). First evaluating

the derivative of `eq gives

∂`eq
∂µ

= −ξ∆ρ
(
p̃− 2b

`3eq

(
1− 3ξ

`eq

))−1

(5.5.13)

which, when substituted, gives χµ(`eq;Rs) to be

χµ(`eq;Rs) = ξ∆ρρ′(Rs + `eq)

(
p̃− 2b

`3eq

(
1− 3ξ

`eq

))−1

(5.5.14)

Again, this expression is equivalent to that of a planar substrate, given in equation (5.5.4),

as Rs →∞.

Considering first the approach to critical drying, substitution of `eq(δµ = 0;Rs) allows

two regimes of χµ(`eq) to be identified

χµ(`eq(δµ = 0);Rs) ∼




Rs Rs � γlv`

3
eq

|b|

ε−1
s

γlv`
3
eq

|b| � Rs
(5.5.15)

This identifies that, for large Rs, χµ(`eq;Rs) diverges in the same way as if the substrate were
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planar, whilst for small Rs, the density fluctuations grow as the radius of the substrate or

solute is increased. On the approach to complete drying, the two scaling regimes are

χµ(`eq(εs = 0);Rs) ∼




Rs Rs � Rc

δµ−1 Rc � Rs
(5.5.16)

Again, the expected divergence of χµ(`eq) for a planar substrate is recovered for sufficiently

large Rs. For small Rs, χµ(`eq(εs = 0);Rs) diverges in the same way as χµ(`eq(δµ = 0);Rs).

As in the case of `eq, it can therefore be seen that there exist three regions of parameter space

in which the behaviour of χµ(`eq;Rs) is largely determined by the parameters (δµ, εs, Rs)

individually.

Substitution of equation (5.5.8) into equation (5.3.4) gives χT (`eq;Rs). First evaluating

the derivative of `eq gives

− ∂`eq
∂T

(
p̃− 2b

`3eq

(
1− 3ξ

`eq

))(
p̃− 2b

`3eq

)−1

=
∂ξ

∂T

(
1− `eq

ξ

)
+ ξ

(
1

∆ρ

∂∆ρ

∂T
− 1

a

∂a

∂T

)

+ ξ

(
p̃− 2b

`3eq

)−1( 2

Rs

(
∂γlv
∂T
− γlv

∆ρ

∂∆ρ

∂T

)
−∆ρ

∂µco
∂T

)
(5.5.17)

This can be simplified using the same assumptions as in the case of a planar substrate - that

the first term on the right can be neglected whilst the second term vanishes. Furthermore,

the chain rule can be used to simplify the third term on the right, and hence the local thermal

susceptibility can be written as

χT (`eq;Rs) = ξ∆ρρ′(Rs + `eq)

(
p̃− 2b

`3eq

(
1− 3ξ

`eq

))−1( 2

Rs

∂

∂T

(
γlv
∆ρ

)
− ∂µco

∂T

)
(5.5.18)

Once again, this has a similar form as that of χµ(`eq;Rs) given in equation (5.5.14), allowing

χT (`eq;Rs) to be rewritten as

χT (`eq;Rs) = χµ(`eq;Rs)

(
2

Rs

∂

∂T

(
γlv
∆ρ

)
− ∂µco

∂T

)
(5.5.19)

which is in agreement with the predictions of equation (5.3.17).

5.5.3 Validity of MFT Approach

The relations presented thus far have been obtained using MFT, hence fluctuations, such

as those in the shape of the liquid-vapour interface, have been ignored. To understand

whether this is a valid approach, it is important to calculate the upper critical dimension,

d∗, of the system. This can be done in a similar way as was done in section 2.4.2 for a bulk

fluid. Each approach to the critical point, either by path (a) for critical drying or path (b)

for complete drying in figure 5.2(a), features its own upper critical dimension, denoted d∗s

and d∗com respectively, which are considered in turn.
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Considering first the case of critical drying approached along path (a), and a planar

substrate, the singular part of the surface free energy, given in equation (5.5.1), can be

written as

ωsing(δµ = 0) = ωex(`eq(δµ = 0))− γsv − γlv =
b

`2eq

(
1− 2ξ

`eq

)
(5.5.20)

where the exponential term has been substituted for. Typically, this would be expected to

diverge as ωsing ∼ |t̃|2−αs [1, 41], where αs and t̃ are as defined in section 5.3. However, as has

been shown, critical drying occurs for all T < Tc for systems with SR ff LR sf interactions,

hence a more appropriate measure of deviation from the critical point for this system is

δεs = εs − εc, where εc is the critical sf attraction which, for a system with SR ff LR sf

interactions, is εc = 0. Using this, ωsing can instead be written as

ωsing ∼ |δεs|2−αs ∼ |δεs| (5.5.21)

where the second expression arises directly from equation (5.5.20), as b ∝ εs. This allows for

αs to be identified as αs = 1 [1].

The energy of a thermal fluctuation within this system can be found using

ωfluc =
kBT

ξ
(d−1)
||

(5.5.22)

where kB is Boltzmann’s constant, d = 3 is the dimension of the system, and the parallel

correlation length, ξ|| can be found using [50]

ξ|| ∼
(
∂2ωsing
∂`2

)−1/2

`=`eq(δµ=0)

(5.5.23)

Evaluating this for the case of SR ff LR sf interactions gives

ξ|| ∼
(

2b

`3eq

(
3

`eq
− 1

ξ

))−1/2

(5.5.24)

This is expected to vary as ξ|| ∼ |δεs|−ν||,s , on the approach to critical drying, hence ν||,s = 1/2

[1]. The upper critical dimension for this interfacial system is then found by equating the

critical exponents of ωsing and ωfluc, which gives [1]

2− αs = (d∗s − 1)ν||,s (5.5.25)

Substituting for αs and ν||,s gives the upper critical dimension of a system with SR ff LR sf

interactions to be d∗s = 1 + ν−1
||,s(2 − αs) = 3. This is the same as the physical dimension of

the system, hence the case of SR ff LR sf interactions is on the edge of the applicability of

MFT. Because of this previous studies have carried out detailed renormalisation group theory

calculations. These concluded that fluctuations alter only the amplitude, as opposed to the

critical exponents, of observables, and hence a MFT approach is valid [1].
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Equation (5.5.25) is also expected to apply to the case of complete drying, with the critical

drying critical exponents replaced with the equivalent exponents for complete drying. These

can be found in much the same way as above, by substituting, for example, `eq(εs = 0) into

ωsing and equation (5.5.23), and considering the behaviour with δµ as opposed to δεs. Doing

so leads to the conclusion that the complete drying critical exponents are αcom = 1 and

ν||,com = 1/2, which gives d∗com = 3. As this is equal to the dimension of the system, the case

of complete drying at εs = 0 in the case of SR ff LR sf interactions is again on the edge of the

applicability of MFT. As such, it is expected that there will be corrections to the amplitude

of observables, however the critical exponents should be correct.

Using αs, the gap exponent, which was shown in section 5.3 to provide a condition for

the validity of equations (5.3.8) and (5.3.17), can be determined. Noting that the adsorption,

Γ, is proportional to `eq, a scaling form for `eq similar to that of equation (5.3.13) can be

written as

`eq ∼ |δεs|2−αs−∆L
(

δµ

|δεs|∆
)
∼ |δεs|βs (5.5.26)

where the reduced temperature has been replaced with the appropriate parameter, δεs, for

this system. As seen in the second expression, this is expected to go as |δεs|βs , where βs is

the surface critical exponent for the adsorption [1]. Equating the relations gives [41]

∆ = 2− αs − βs (5.5.27)

The scaling of `eq(δµ = 0) was previously found to be logarithmic in εs, hence βs can be

identified as βs = 0. Substitution of αs = 1 and βs = 0 into this therefore gives the gap

exponent for a system with SR ff LR sf interactions as ∆ = 1. The condition for the validity

of equations (5.3.8) and (5.3.17) was that ∆ > 1, hence the case of SR ff LR sf interactions

is a marginal case for the applicability of these relations according to the analysis of section

5.3. It is therefore necessary to resort to a microscopic analysis, like that of the preceding

sections, to confirm the applicability of these relationships. Equation (5.5.6) shows that such

a relationship is indeed followed for the case of a planar substrate, whilst equation (5.5.19)

shows this for a curved substrate.

5.6 Critical Drying in LR ff LR sf Systems

The case of LR ff LR sf interactions, relevant to experiment, is difficult to implement

efficiently within numerical and computational studies. Approximations such as the SK

approximation have therefore been utilised extensively in previous studies of such systems

[41, 50, 143, 145]. Whilst these studies focused on the case of critical wetting, many of their

results are equally applicable to critical drying, due to the view that drying can be thought of

as wetting by a vapour, discussed in section 2.4.5. Because of this, various critical exponents

and forms of `eq are well known. There have also been several studies of the effects of the

drying critical point in systems with solutes [33, 34, 117, 145], however these studies were

limited to discussion of `eq and the corresponding ωex(`).
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5.6.1 Planar Substrates

For LR ff LR sf interactions in the case of a planar substrate, substitution of equation

(5.4.10) into equation (5.1.4) leads to

ωex(`) = γsv + γlv +
b(T )

`2
+
c(T )

`3
+ δµ∆ρ` (5.6.1)

where b(T ) and c(T ) are given in equation (5.4.11) as

b(T ) = bo(ρvεσ
6 − ρsεsσ6

s) c(T ) = 2(dw + zmin)ρsεsσ
6
sbo

and bo = π∆ρ/3. Considering these forms, it can be seen that c(T ) is positive for all

temperatures. Assuming ρs is held constant, b(T ) will move from negative to positive upon

increasing T , and therefore ρv. Because of this, b(T ) is the quantity which determines the

location of the minimum in ωex(`). The drying temperature, TD, can therefore be determined

as the temperature for which b(TD) = 0. Using this condition, the critical substrate attraction

strength, εc, can be found to be

εc =
ρvσ

6

ρsσ6
s

ε (5.6.2)

which is the same result as that of Evans et al. [38]. The behaviour of the system can then

be determined by b(T ). When T < TD, b(T ) < 0, and hence the minimum of ωex(`) occurs

for a finite value of `, which equates to the system favouring a microscopic vapour film. In

contrast, when T > TD, b(T ) > 0 and hence the only possible location of the minimum is

` =∞. This equates to a macroscopic vapour film being favoured [50].

Considering this behaviour, it can be deduced that b(T ) follows the same behaviour as

the reduced temperature on the approach to the drying critical point from below. This allows

for the definition of a more convenient dimensionless measure of deviation from the drying

critical point of

t′ = (ρvεσ
6 − ρsεsσ6

s)ε
−1σ−3 ∼ t̃ as t̃→ 0 (5.6.3)

named here as the effective reduced temperature. This is a similar definition to the effective

reduced temperature used by Stewart and Evans [33] within their work. The convenience of

this measure arises from the fact that b(T ) ∝ t′.

Substitution of equation (5.6.1) into equation (5.2.1) gives an equation for `eq of

2b(T )

`3eq
+

3c(T )

`4eq
= δµ∆ρ (5.6.4)

Omitting the explicit temperature dependence for convenience, on the approach to critical

drying along path (a) in figure 5.2(a), `eq takes the form

`eq(δµ = 0) = −3c

2b
(5.6.5)

which agrees with the result presented by Stewart and Evans [33], and is the drying equivalent

of earlier results for wetting [41]. As b(T ) ∝ t′, this result implies `eq(δµ = 0) ∼ |t′|−1, which
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allows the critical exponent, βs to be identified as βs = −1. This agrees with the exponent

predicted for the case of critical wetting in systems with LR ff LR sf interactions [41, 50].

On the approach to complete drying along path (b) in figure 5.2(a), equation (5.6.4)

predicts that

`eq(t
′ = 0) =

(
3c

δµ∆ρ

)1/4

(5.6.6)

which implies that `eq(t
′ = 0) ∼ δµ−1/4. This agrees with previous results reported by, for

example, [50].

Taking the derivative of equation (5.6.4) with respect to µ gives

∂`eq
∂µ

= −∆ρ

(
6b

`4eq
+

12c

`5eq

)−1

(5.6.7)

Substituting this into equation (5.3.1) gives χµ(`eq) as

χµ(`eq) = ∆ρρ′(`eq)
`eq
3

(
δµ∆ρ+

c

`4eq

)−1

(5.6.8)

Here, terms proportional to b(T ) have been substituted for using equation (5.6.4). On the

approach to critical drying along path (a) of figure 5.2(a), substitution of `eq(δµ = 0) reduces

this to

χµ(`eq(δµ = 0)) = −∆ρρ′(`eq)

(
81c4

32b5

)
(5.6.9)

This implies that χµ(`eq(δµ = 0)) ∼ |t′|−5, which indicates an incredibly fast power law

divergence of density fluctuations on the approach to critical drying. On the approach to

complete drying

χµ(`eq(t
′ = 0)) =

∆ρρ′(`eq)

4

(3c)1/4

(δµ∆ρ)5/4
(5.6.10)

which implies χµ(`eq(t
′ = 0)) ∼ δµ−5/4.

χT (`eq) is found by first taking the temperature derivative of equation (5.6.4). This can be

greatly simplified by recognising that each term contains a factor of ∆ρ and that it is this term

which gives c(T ) its temperature dependence. Rewriting b(T ) = b̃(T )∆ρ and c(T ) = c̃∆ρ

allows equation (5.6.4) to be simplified to

2b̃(T )

`3eq
+

3c̃

`4eq
= δµ (5.6.11)

Taking the temperature derivative then leads to

∂`eq
∂T

=

(
6b̃(T )

`4eq
+

12c̃

`5eq

)−1(
2πσ6ε

3`3eq

∂ρv
∂T

+
∂µco
∂T

)

= ∆ρ
`eq
3

(
δµ∆ρ+

c

`4eq

)−1(2πσ6ε

3`3eq

∂ρv
∂T

+
∂µco
∂T

)
(5.6.12)

93



CHAPTER 5. EFFECTIVE INTERFACE POTENTIAL ANALYSIS FOR CRITICAL
DRYING

where, in the first line, the temperature dependence has been made explicit for clarity, and in

the second line, the constants have been written in their original forms and b(T ) substituted

for using equation (5.6.4). Considering this form, it can be seen that

χT (`eq) = −χµ(`eq)

(
2πεσ6

3`3eq

∂ρv
∂T

+
∂µco
∂T

)
(5.6.13)

The terms within the brackets imply that χT (`eq) diverges in two ways however, due to the

factor of `−3
eq in the first term, it can be seen that the second will always diverge faster. This

can be seen explicitly by considering the individual cases of critical and complete drying.

Considering first the approach to critical drying along path (a) of figure 5.2(a), substitu-

tion of `eq(δµ = 0) and χµ(`eq(δµ = 0)) into equation (5.6.13) gives

χT (`eq(δµ = 0)) = ∆ρρ′(`eq)

[
−
(
πεσ6c

2b2

)
∂ρv
∂T

+

(
81c4

32b5

)
∂µco
∂T

]

∼ −χµ(`eq(δµ = 0))
∂µco
∂T

(5.6.14)

as the first term diverges more slowly. Similarly, substitution of `eq(t
′ = 0) and χµ(`eq(t

′ = 0))

into equation (5.6.13) gives

χT (`eq(t
′ = 0)) = −∆ρρ′(`eq)

[(
πεσ6

2(3)3/2c1/2(δµ∆ρ)1/2

)
∂ρv
∂T

+

(
(3c)1/4

4(δµ∆ρ)5/4

)
∂µco
∂T

]

∼ −χµ(`eq(t
′ = 0))

∂µco
∂T

(5.6.15)

Hence, in both the cases of critical and complete drying, the divergence of χT (`eq) follows

that of χµ(`eq), and the predicted relationship given in equation (5.3.8) is recovered.

5.6.2 Curved Substrates

Substitution of equation (5.4.10) into equation (5.1.7) gives ωex(`;Rs) for a curved sub-

strate, or solute, in a system with LR ff LR sf interactions to be

ωex(`;Rs) = γsv + γlv +
b(T )

`2
+
c(T )

`3
+ p̃` (5.6.16)

where p̃, given in equation (5.2.3), is

p̃ = δµ∆ρ+
2γlv
Rs

and b(T ) and c(T ) are as defined in the case of a planar substrate. Comparing equation

(5.6.16) to the equivalent expression for a planar substrate given in equation (5.6.1) shows

that, once again, the only difference is the substitution of δµ∆ρ in the latter for p̃ in the

former. As such, as Rs →∞, ωex(`;Rs)→ ωex(`) as expected.

Omitting the explicit temperature dependence and substituting equation (5.6.16) into
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equation (5.2.2) gives
2b

`3eq
+

3c

`4eq
= p̃ (5.6.17)

which again, differs only by the replacement of δµ∆ρ for p̃ compared to the equivalent expres-

sion for a planar substrate given in equation (5.6.4). Due to the complexity of the resulting

expression, little understanding can be gained by considering the approach to critical drying

along path (a) of figure 5.2(a).

On the approach to complete drying along path (b) of figure 5.2(a), `eq(t
′ = 0;Rs) becomes

`eq(t
′ = 0;Rs) =

(
3c

p̃

)1/4

(5.6.18)

This agrees with the expression obtained by Stewart and Evans [34], who further confirmed

this relation using cDFT. Using that p̃ can be written in terms of the length scale Rc as given

in equation (5.5.11), two scaling regimes can be identified as

`eq(t
′ = 0;Rs) ∼




R

1/4
s Rs � Rc

δµ−1/4 Rc � Rs
(5.6.19)

The first of these cases has been confirmed using cDFT by Stewart and Evans [33], whilst

the second case again shows that, for sufficiently large Rs, the scaling expected at a planar

substrate is recovered.

Taking the derivative of equation (5.6.17) with respect to µ gives

∂`eq
∂µ

= −∆ρ
`eq
3

(
p̃+

c

`4eq

)−1

(5.6.20)

where terms proportional to b have been substituted for using equation (5.6.17). Substituting

this into equation (5.3.3) then gives χµ(`eq;Rs) to be

χµ(`eq;Rs) = ∆ρρ′(Rs + `eq)
`eq
3

(
p̃+

c

`4eq

)−1

(5.6.21)

As with `eq little understanding is gained by considering χµ(`eq(δµ = 0);Rs).

On the approach to complete drying along path (b) of figure 5.2(a), χµ(`eq(t
′ = 0);Rs)

can be written as

χµ(`eq(t
′ = 0);Rs) =

∆ρρ′(Rs + `eq)

4

(3c)1/4

p̃5/4
(5.6.22)

Using equation (5.5.11) this can be written as two scaling regimes as

χµ(`eq(t
′ = 0);Rs) ∼




R

5/4
s Rs � Rc

δµ−5/4 Rc � Rs
(5.6.23)

Again, this shows that for large Rs, the scaling expected at a planar substrate is recovered,

and hence the influence of curvature on the growth of density fluctuations is limited to small
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Rs.

Dividing equation (5.6.17) by ∆ρ to eliminate the temperature dependence of c(T ) as in

the planar case and taking the temperature derivative gives

∂`eq
∂T

= −∆ρ
`eq
3

(
p̃+

c

`4eq

)−1( 2

Rs

∂

∂T

(
γlv
Rs

)
− ∂µco

∂T
− 2πεσ6

3`3eq

∂ρv
∂T

)
(5.6.24)

Substituting this into equation (5.3.4) gives χT (`eq;Rs) to be

χT (`eq;Rs) = ∆ρρ′(Rs + `eq)
`eq
3

(
p̃+

c

`4eq

)−1( 2

Rs

∂

∂T

(
γlv
∆ρ

)
− ∂µco

∂T
− 2πεσ6

3`3eq

∂ρv
∂T

)

= χµ(`eq;Rs)

(
2

Rs

∂

∂T

(
γlv
∆ρ

)
− ∂µco

∂T
− 2πεσ6

3`3eq

∂ρv
∂T

)
(5.6.25)

As in the planar case, the first two terms on the right diverge faster than the last, and hence

as in the case of SR ff LR sf interactions, it is expected that

χT (`eq;Rs)

χµ(`eq;Rs)
∼
(

2

Rs

∂

∂T

(
γlv
∆ρ

)
− ∂µco

∂T

)
(5.6.26)

which is in agreement with the predictions of equation (5.3.16).

5.6.3 Validity of MFT Approach

As in section 5.5.3, the validity of the MFT approach taken here can be assessed by

calculating the upper critical dimension of the system using equation (5.5.25). For critical

drying, the exponent, αs, is found by substituting equation (5.6.5) into the singular part of

equation (5.6.1). Doing so gives

ωsing(δµ = 0) = ωex(`eq)− γlv − γsv =
4b3

27c2
(5.6.27)

which is in agreement with that found by Stewart [117]. From this, it can be seen that

ωsing ∼ |t′|3, and hence αs = −1, as was found for critical wetting in [41]. The exponent ν||,s

is found by calculating ξ|| using equation (5.5.23), which gives

ξ|| ∼
∂2ωex(`)

∂`2

∣∣∣∣
−1/2

`=`eq(δµ=0)

=

(
−32

81

b5

c4

)−1/2

(5.6.28)

From this, it can be determined that ν|| = 5/2, again as given in [41]. Substituting αs and

ν|| into equation (5.5.25) then gives d∗s = 11/5. As this is smaller than the spatial dimension

of the system, d = 3, a MFT approach is expected to yield the correct critical exponents [41,

50].

For the case of complete drying, ωsing(t
′ = 0) is found by substituting equation (5.6.18)

into the singular part of equation (5.6.1), which gives

ωsing(t
′ = 0) = (δµ∆ρ)3/4c1/4

(
31/4 +

1

33/4

)
(5.6.29)
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This varies as ωsing(t
′ = 0) ∼ δµ3/4 and hence αcom can be identified as αcom = 5/4, which

agrees with the result presented for wetting with LR forces in [50]. The parallel correlation

length exponent, ν||,com can be identified to be

ξ|| ∼
∂2ωex(`)

∂`2

∣∣∣∣
−1/2

`=`eq(t′=0)

=
12−1/2

35/8
c1/8(δµ∆ρ)−5/8 (5.6.30)

which allows ν||,com to be identified as ν||,com = 5/8, which agrees again with [50]. Substitut-

ing this and αcom into the hyperscaling relation then gives an upper critical dimension for

complete drying of d∗com = 11/5. As this is less than the dimension of the system, d = 3, a

MFT approach is expected to yield the correct critical exponents for complete drying in the

LR ff LR sf regime.

Using the same approach as in section 5.5.3, the gap exponent can be calculated using

equation (5.5.27), and is found to be ∆ = 4. This agrees with the results presented in [41],

and implies that equations (5.3.8) and (5.3.17) are expected to be valid for systems with LR

ff LR sf interactions, in agreement with the findings of equations (5.6.15) and (5.6.26).

5.6.4 Scaling Function Forms

As was discussed in section 5.3, it is possible to write Γsing, and therefore `eq, in terms

of a scaling function. In section 5.3, this was done for a planar substrate, and the scaling

variable was stated to be δµ/|t̃|∆. Considering equation (5.6.4), and noting that t̃ ∝ t′, it

can be seen that this is the natural scaling variable, as `eq cannot be written as a function of

δµ and |t′| separately [41]. Furthermore, it was previously shown in section 5.6.3 that ∆ = 4.

`eq for the case of LR ff LR sf interactions and a planar substrate can therefore be written

as

`eq =
σ

|t′|L
(

δµ

ε|t′|4
)

(5.6.31)

where L is a scaling function, and the appropriate critical exponents have been substituted

for. This has the same form as that in [41]. This scaling function, L, must obey equation

(5.6.4) and hence it is possible to numerically calculate the form of L, as was done in [33].

Taking the derivative of equation (5.6.31) with respect to µ and substituting into equation

(5.3.1) gives a scaling function form of χµ(`eq) of

χµ(`eq) =
σ

ε|t′|5 ρ
′(`eq)L′

(
δµ

ε|t′|4
)

(5.6.32)

where L′ is the derivative of L, and is itself a scaling function, which must follow equation

(5.6.8). χT (`eq) can be found in a similar way to be

χT (`eq) = − σ

ε|t′|5 ρ
′(`eq)L′

(
δµ

ε|t′|4
)
∂µco
∂T

− σ

ε|t′|2 ρ
′(`eq)

(
L
(

δµ

ε|t′|4
)

+ 4

(
δµ

ε|t′|4L
′
(

δµ

ε|t′|4
)))

(5.6.33)
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where L′ is again the derivative of L, which must obey equation (5.6.25), and (δµ/ε|t′|4)L′(δµ/ε|t′|4)

is a scaling function. The first term in this expression for χT (`eq) shows a much faster diver-

gence than the remaining, and hence χT (`eq) can be written as

χT (`eq) ∼ −
1

|t′|5 ρ
′(Rs + `eq)L′

(
δµ

|t′|4
)
∂µco
∂T

= −χµ(`eq)
∂µco
∂T

(5.6.34)

If instead the substrate is curved, similar scaling functions can be found. The difference

between the expressions for `eq in the planar and curved substrate cases is the replacement

of δµ∆ρ in the former for p̃ in the latter. It is therefore sensible to suggest that the scaling

function form of `eq for a curved substrate be

`eq =
σ

|t′|L
(

p̃

ε∆ρ|t′|4
)

(5.6.35)

where L now obeys equation (5.6.17). Furthermore, in the limit of Rs →∞, this expression

recovers equation (5.6.31). Stewart and Evans [33] proposed a similar form for the case of

δµ = 0, and found excellent agreement between cDFT results for `eq, and the calculated

scaling function from equation (5.6.17).

Following the same procedure as in the planar case, χµ(`eq;Rs) can be written in a scaling

form as

χµ(`eq;Rs) = −ρ′(Rs + `eq)
σ

|t′|5L
′
(

p̃

ε∆ρ|t′|4
)

(5.6.36)

whilst χT (`eq;Rs) can be found to be

χT (`eq;Rs) ∼ ρ′(Rs + `eq)
σ

ε|t′|5L
′
(

p̃

ε∆ρ|t′|4
)(

2

Rs

∂

∂T

(
γlv
∆ρ

)
− ∂µco

∂T

)

= χµ(`eq;Rs)

(
2

Rs

∂

∂T

(
γlv
∆ρ

)
− ∂µco

∂T

)
(5.6.37)

where, as before, only the most strongly diverging terms are considered.

5.7 Discussion

Within this chapter, a comprehensive effective interface potential analysis has been pre-

sented for the case of critical drying in systems with both planar and curved substrates with

SR ff LR sf and LR ff LR sf interactions. This analysis has focused specifically on how a

drying critical point can be expected to influence the behaviour of the equilibrium vapour

film width, `eq, and the local compressibility and thermal susceptibility evaluated at `eq,

χµ(`eq)/χµ(`eq;Rs) and χT (`eq)/χT (`eq;Rs). A MFT approach has been applied, and has

been proven to yield the correct critical exponents in both the cases of SR ff LR sf and LR ff

LR sf interactions. The analysis presented within this chapter builds on previous work such

as [1, 33, 34, 41, 50, 143, 145, 146], extending these analyses to consider all parameters which

influence `eq, χµ(`eq)/χµ(`eq;Rs) and χT (`eq)/χT (`eq;Rs) in the vicinity of the drying critical

point.

Throughout this chapter, the behaviour of `eq and χµ(`eq)/χµ(`eq;Rs) has been found
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to depend on three parameters: the oversaturation, δµ = (µ − µco), the sf attraction, εs

and the radius of the solute/curved substrate, Rs. It has been found that each of these act

as the dominant influence over `eq and χµ(`eq)/χµ(`eq;Rs) in separate regions of parameter

space. In some cases, this region has been found to be well defined. For example, in the

case of εs = 0 for both SR ff LR sf and LR ff LR sf interactions, it was found that the

behaviour of `eq and χµ(`eq)/χµ(`eq;Rs) depended solely on Rs for Rs < Rc and solely

on δµ where Rs > Rc, where Rc = 2γlv/δµ∆ρ has been identified as the length scale of

capillary evaporation. This behaviour highlighted that the Rs exerts a strong influence over

the behaviour of the system only when it is small, and furthermore that behaviour expected at

a planar substrate is recovered when Rs →∞. This provides a direct connection between the

behaviour of `eq and χµ(`eq)/χµ(`eq;Rs) around solutes to that at planar substrates, and thus

supports the assertion in the postulates of chapter 1, that hydrophobicity and solvophobicity

on microscopic and macroscopic length scales are related by the influence of a drying critical

point. Furthermore, as Rc acts as a length scale which divides curvature dependent and

independent behaviour, it is possible that it provides a good crossover length scale between

the large length scale solvation and macroscopic regimes described in section 3.1.

Comparing the predicted growth of `eq, χµ(`eq) and χT (`eq) on the approach to critical

drying for the cases of SR ff LR sf and LR ff LR sf interactions, it can be seen that the

divergences are much faster in the latter. For example, `eq grows as a logarithm in the case

of SR ff LR sf interactions, whilst as a power law in the case of LR ff LR sf interactions.

The divergence of χµ(`eq) at a planar substrate is particularly fast in the case of LR ff LR

sf interactions on the approach to critical drying, diverging as |t′|−5. In the equivalent SR ff

LR sf case, this divergence is |δεs|−1. In terms of general behaviour, systems with SR ff LR

sf and LR ff LR sf interactions show little difference. For example, both cases of interactions

show evidence of scaling regimes dependent on the individual parameters (δµ, εs, Rs), and it

is possible to write the measures `eq and χµ(`eq)/χµ(`eq;Rs) in terms of scaling functions in

each.

The ability to write `eq and χµ(`eq;Rs) as scaling functions is particularly useful for the

case of LR ff LR sf interactions. Throughout this chapter, a SK approximation has been ap-

plied to the density profile, in order to find analytic forms for `eq, χµ(`eq;Rs) and χT (`eq;Rs).

This approximation gives the constants b(T ) and c(T ) to have the forms presented in equation

(5.4.11). Whilst the expression found for b(T ) is expected to be valid beyond a SK approxi-

mation, c(T ) is expected to depend on the exact form of the density profile [144], and hence

is not strictly valid beyond a SK approximation. This means that testing the predictions

of equations (5.6.17) and (5.6.21) would require numerical evaluation of c(T ). Stewart [117]

has previously presented a method to do this, however this required studying cDFT systems

very close to critical drying. Such systems are often not practical to implement, due to their

slow convergence. Hence, a scaling function form for `eq, χµ(`eq) and χT (`eq) which avoids

the factor of c(T ), and therefore prevents the need to study such difficult systems, is useful.

It should be noted that if c(T ) is known, it is possible to calculate the form of the scaling

function, L, explicitly, and therefore make predictions for observables such as `eq.

99



CHAPTER 5. EFFECTIVE INTERFACE POTENTIAL ANALYSIS FOR CRITICAL
DRYING

In addition to considering the behaviour of χµ(`eq)/χµ(`eq;Rs) and χT (`eq)/χT (`eq;Rs)

near to the drying critical point, it was predicted that a relationship should exist between

them. This relationship is presented in equation (5.3.8) for the case of a planar substrate and

equation (5.3.17) for the case of a curved substrate, and indicates that all measures of density

fluctuations diverge in the same way on the approach to the drying critical point. Initially,

it was shown that such a general relationship can be obtained by considering surface ther-

modynamics. Detailed effective interface potential analyses, which consider the microscopic

interactions, also confirmed such a relationship should exist.
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Chapter 6

Influence of Critical Drying in the

Solvophobic Response of a

Lennard-Jones Fluid

Verification of the effective interface potential predictions made in chapter 5 is best achieved

using cDFT as described in section 4.1. The simplicity of the numerical minimisation utilised

within this method allows for a wide range of parameters to be explored with very little com-

putational cost, which is advantageous as the effective interface potential analysis highlighted

that δµ, εs and Rs are all expected to significantly influence the behaviour of systems near

to the drying critical point. Perhaps because of this, cDFT has been used extensively in

previous studies of solvophobicity, for example [1, 32–34, 37, 112, 113, 146].

However, as has been discussed, cDFT within this thesis is limited to the study of LJ

fluids, and hence this chapter focuses specifically on solvophobicity. Both solutes and planar

surfaces are considered, and their solvophobic response is quantified using `eq and χµ(`eq;Rs)

as defined in sections 5.2 and 5.3 respectively. It should be noted that planar surfaces

correspond to the case where Rs = ∞. Predictions for the behaviour of `eq and χµ(`eq;Rs)

are found in sections 5.5 and 5.6 for the cases of SR ff LR sf and LR ff LR sf interactions

respectively, and will be referred to frequently throughout this chapter.

In addition to considering the predictions of the effective interface potential analysis, a

detailed study of the influence of parameters (δµ, εs, Rs) on the density profiles, ρ(r)/ρ(z) and

local compressibility profiles, χµ(r)/χµ(z) is presented within this chapter, as this provides

a more physical understanding of the influence of critical drying on solvophobicity than

the predictions of chapter 5 alone. Furthermore, to provide a more physical interpretation

of the degree of solvophobicity of each solute and planar surface considered, the Young’s

contact angle, found using equation (2.4.19), for each εs considered is given. It should be

appreciated that this provides only an indication of the solvophobicity, as Young’s contact

angle is strictly defined in the limit of a smooth planar surface in contact with a fluid at

liquid-vapour coexistence.
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Finally, it should be noted that the purpose of this chapter is not to test every relation

presented in chapter 5 - as has been discussed previously, many of these have already been

confirmed. Instead, this chapter focuses on understanding specifically the similarities and dif-

ferences between the behaviour of LJ fluids around solvophobic solutes and planar substrates,

and explores the potential influence of a drying critical point on each, with the purpose of

evaluating the accuracy of postulate 2 presented in chapter 1.

6.1 State Points and Bulk Parameters

Implementing cDFT as described in section 4.1.4 and analysing the behaviour of `eq and

χµ(`eq;Rs) according to the predictions of chapter 5 requires knowledge of many properties

of the bulk LJ fluid. It is the purpose of this section to present these properties, which are

given to a high degree of precision for two reasons. Firstly, near to the drying critical point,

small variations in parameters are expected to have a large influence on `eq and χµ(`eq;Rs),

due to their diverging behaviour. Secondly, the numerical consistency of all results presented

was tested using the appropriate sum rules presented in sections 4.1.5.1 and 4.1.5.2. For high

levels of consistency, it was necessary to have a high level of precision.

As a MFT approximation is used to describe the LJ fluids within cDFT in this thesis, the

bulk liquid-vapour phase diagram can be obtained using the methods presented in section

2.4.4. The cut-off radius of the ff interaction potential in systems described as being SR

ff was taken to be rc = 2.5σ, whilst in LR ff systems to be rc = 200σ, where σ was the

diameter of a fluid particle. The dimensionless bulk critical temperature, kBTc/ε, was found

using the conditions given in equation (2.4.18), whilst the sub-critical liquid-vapour phase

diagram was obtained using a program by Wilding [148]. The latter gave the coexisting

liquid, ρl, and vapour, ρv, densities, which allowed for ∆ρ = (ρl − ρv) to be calculated. The

liquid-vapour surface tension was obtained using cDFT, by finding the equilibrium density

profile when the liquid and vapour phases of a fluid at coexistence were brought into contact.

By constraining the system such that both phases remained present and in contact, a free

liquid-vapour interface naturally formed. γlv was then calculated using equations (2.1.7) and

(4.1.2). All fluids considered within this chapter were oversaturated. Their bulk density,

ρb, was found using a simple root finding algorithm which, starting at ρl, searched for the

density, ρb, for which a given chemical potential deviation, measured using the dimensionless

parameter βδµ, was satisfied. The corresponding χµ,b was then be found by substituting

ρb into equation (4.1.59). It should be noted that the SR and LR fluids considered within

this chapter obeyed a law of corresponding states, such that when the liquid-vapour phase

diagram of each was scaled by their respective bulk critical temperatures, the coexistence

curves collapsed onto one another. As χµ,b depended only on ρb and the temperature, T , it

also obeyed a law of corresponding states.

The value of εs for which critical drying occurs was found in chapter 5 to be εc = 0 for

the case of SR ff LR sf interactions, and as given in equation (5.6.2) for the case of LR ff

LR sf interactions. Within the geometry specific cDFT methods presented in sections 4.1.5.1

and 4.1.5.2, this parameter enters the sf attraction potential, given in equations (4.1.46)

and (4.1.54) for the cases of planar surfaces and solutes respectively, through the variable
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εsf = 2πρsεsσ
3
s/3. Within the present work, εsf was defined as εsf = ε̃sf ε, such that it was

a fraction of the ff attraction strength, ε. For a SR ff LR sf system, the critical sf attraction

was therefore εcsf,SR = ε̃csf,SR ε = 0, which meant ε̃csf,SR = 0. For a LR ff LR sf system, it is

necessary to rearrange equation (5.6.2). Doing so leads to

εcsf,LR = ε̃csf,LR ε =
2π

3
ρvσ

3ε (6.1.1)

and hence ε̃csf,LR = 2πρvσ
3/3. This agrees with the result obtained by Evans et al. [38], and

is remarkably simple.

Using the methods outlined, the bulk critical temperature for the SR LJ fluid considered

was found to be kBTc/ε = 1.319441624248. Table 6.1 gives the coexistence state point

parameters for this fluid for the temperature considered, T = 0.775Tc. This temperature

was chosen to reflect that used in previous work, for example [1, 32]. In addition, γlv and

ε̃csf,SR are given. Table 6.2 gives the liquid state points and parameters for the same fluid at

T = 0.775Tc, for the various finite βδµ studied.

The bulk critical temperature for the LR LJ fluid studied was found to be kBTc/ε =

1.415390136786. In contrast to the SR ff LR sf case, multiple temperatures were considered,

the coexisting properties of which can be found in table 6.3 along with γlv. Due to its

dependence on ρv, ε̃
c
sf,LR in the LR ff LR sf case is also temperature dependent, and its value

for each temperature considered is also given in table 6.3. As before, these temperatures were

chosen to reflect those used in previous work, for example [1, 32, 33, 37]. Table 6.4 gives the

off-coexistence state points used for the LR ff LR sf case. Unlike the SR ff LR sf case, only

βδµ = 10−3 was considered. This value was chosen to reflect approximately that of water

[96].

Table 6.1: Relevant liquid-vapour coexistence state points and properties for the MFT SR LJ fluid,
which had truncation rc = 2.5σ, used within this work. The critical substrate-fluid attraction, ε̃csf , is
also given.

T/Tc kBT/ε ρlσ
3 ρvσ

3 βσ2γlv ε̃csf

0.775 1.0225672588 0.597844705492 0.0343066397783 0.2573683657 0.0

Table 6.2: Relevant off-coexistence state points and properties for the bulk MFT SR LJ fluid, with
truncation rc = 2.5σ, used within this work. The temperature of all state points was T = 0.775Tc.

βδµ ρbσ
3 β−1σ3χµ,b

10−3 0.5980277945 0.1829266785

10−4 0.597863029 0.1832189495

10−5 0.597846538 0.1832482423

10−6 0.5978448887 0.1832511723
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Table 6.3: Relevant liquid-vapour coexistence state points and properties of the MFT LR LJ fluid,
with truncation rc = 200σ, considered within this work. The critical substrate-fluid attraction, ε̃csf ,
is also given.

T/Tc kBT/ε ρlσ
3 ρvσ

3 βσ2γlv ε̃csf

0.7 0.9907730958 0.667378745414 0.0180259142506 0.5451849116 0.0377533865

0.775 1.096927356 0.597844705492 0.0343066397783 0.3208420804 0.0718151658

0.85 1.203081616 0.521924905174 0.0603159413095 0.1603760082 0.1263254119

Table 6.4: Relevant state points and properties for the bulk MFT LR LJ fluid, with truncation
rc = 200σ, considered. For each state point, βδµ = 10−3.

T/Tc ρbσ
3 β−1σ3χµ,b

0.7 0.6675006410 0.1218310834

0.775 0.5980277945 0.1829266785

0.85 0.5222273831 0.3019506502

Throughout this chapter, Young’s contact angle is used to indicate the solvophobicity

of a solute or planar substrate. This was calculated using equation (2.4.19). Firstly, γlv

was calculated as discussed above. γsv/γsl were then calculated using cDFT, by finding

the equilibrium density profile of a system consisting of a planar substrate with given εsf

in contact with a vapour/liquid at liquid-vapour coexistence. The surface tension was the

evaluated using equations (4.1.2) and (2.1.7).

6.2 Density and Fluctuation Profiles

Many previous solvophobicity studies have sought to understand the influence of various

parameters on the density profile [1, 34, 37, 81, 108, 113]. Far fewer have considered the

local compressibility profile [1, 32, 37, 113], of which all considered only planar surfaces.

Therefore, in addition to providing a physical understanding of solvophobic behaviour un-

der varying conditions, this section investigates for the first time how curvature of a surface

influences the spatial form of the local compressibility. Also, in contrast to many of these

previous studies, a large number of combinations of non-zero parameters (βδµ,Rs, εsf ) were

considered. This section therefore provides a comprehensive understanding of the compet-

ing influence of parameters on the density and local compressibility profiles in solvophobic

systems.

6.2.1 Influence of Solute Size

The influence of solute size on ρ(r) has been considered in several previous studies of

solvophobicity [34, 81, 108]. Huang and Chandler [81], and Moody and Attard [108] both

used simulations of a SR LJ fluid to investigate small hard solutes with Rs ≤ 3σ. For

solutes of order Rs = σ, the density at the surface of the solute was found to be enhanced,

and oscillations, indicative of liquid packing effects, were pronounced. As the solute size

increased, both the density at the surface and the oscillations in the density profile depleted.

Stewart and Evans [34] used cDFT of a LR LJ fluid to investigate much larger hard solutes,
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of up to Rs ≈ 106σ. ρ(r) around these larger solutes showed significant depleted density

regions, or vapour films, near the surface of the solute, the width of which grew as the

solute size was increased. Furthermore, this study highlighted the equivalence of the effects

of oversaturation and curvature of substrate, as indicated by p̃ given in equation (5.2.3),

by comparing the density profiles of an oversaturated fluid at a planar substrate, to those

of a saturated fluid around a solute. If δµ was chosen such that δµ = 2γlv/Rs∆ρ, it was

found that the density profiles around the solute and at the planar substrate could not be

distinguished.

To our knowledge, no previous studies have considered the behaviour of χµ(r) around

solutes of varying size. However, considering that the form of the density profile around

a very large solute differs little from that at a planar substrate [34], and that χµ(r) is the

derivative of this density profile, it can be expected that χµ(r) take a similar form around a

solute as is found at a planar substrate. At smooth planar substrates, χµ(z) has been found

to exhibit a smooth peak near to the liquid-vapour like interface portion of the density profile,

the latter of which occurs at `eq [1, 37].

Figures 6.1 and 6.2 show the density (lower) and local compressibility (upper) profiles for

systems with SR ff LR sf and LR ff LR sf interactions respectively, for a variety of Rs and

δεsf = (ε̃sf − ε̃csf ) for the conditions T = 0.775Tc and βδµ = 10−3. It should be noted that

whilst ρ(r) is plotted on a linear scale, χµ(r) is plotted on a logarithmic scale. In each case,

the density profiles follow the behaviour observed by Stewart and Evans [34] for a hard solute

as Rs grows. Firstly, the contact density reduces towards that of the planar substrate, which

can be seen in equation (4.1.49) to be fixed by the pressure of the system. As the planar

contact density is neared, the width of the vapour film begins to increase. Increasing δεsf

can be seen to increase the contact density, as well as reduce the width of the vapour film.

As expected, the local compressibility profile around a solute differs little in form from

that at a planar substrate. Each profile exhibits a smooth peak located near the liquid-

vapour interface of the density profile, which grows as Rs grows. For very small solutes of

Rs = 10σ, the peak of χµ is ten times the bulk value, whilst for larger solutes, it is almost one

thousand times. This indicates that χµ is a highly sensitive measure of density fluctuations

in solvophobic systems with solutes, in agreement with the findings of previous studies of

planar surfaces [1, 32, 37].

For both ρ(r) and χµ(r), increasing Rs causes the profile to tend to that found at a planar

substrate. Considering figures 6.1 and 6.2, there appears to be an upper limit of Rs for which

profiles at a curved substrate can be distinguished from those at a planar substrate. For

example, when δεsf = 0.0, it is impossible to distinguish the density profile of a substrate

with Rs = 104σ from that of a planar substrate, and only just possible to distinguish the

local compressibility profile. This indicates that the influence of Rs on ρ(r) and χµ(r) is only

strongly felt when Rs is small, which agrees with the predictions of chapter 5. Increasing

δεsf limits the range of Rs for which ρ(r) and χµ(r) can be distinguished from those at a

planar substrate. For example, for δεsf = 0.2 in both the cases of SR ff LR sf and LR ff LR

sf interactions, it is no longer possible to distinguish profiles for Rs = 104σ from those at the
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planar substrate.

Comparing figures 6.1 and 6.2, it can be seen that there is little difference in the behaviour

of systems with SR ff LR sf and LR ff LR sf interactions. The latter exhibit slightly larger

vapour films for smaller δεsf , and slightly larger peaks in χµ(r), in agreement with the

predicted behaviours of chapter 5.

6.2.2 Influence of Substrate-Fluid Attraction

The influence of δεsf on ρ(r) and χµ(r) can be seen more clearly in figures 6.3 and 6.4,

which show profiles for SR ff LR sf and LR ff LR sf systems respectively. Considering first the

density profiles, increasing δεsf can be seen to initially deplete the vapour film, before leading

to an increase in contact density, and the appearance of substantial oscillations, indicating

local packing of particles. The general forms of the density profile vary little with Rs, with

the main effect instead being reduced film widths. Similar patterns are observed in the local

compressibility profiles. Increasing δεsf reduces the magnitude of the fluctuations within the

system, and for large δεsf , clear oscillations are observed. These follow those observed in the

density profile, as has been discussed by Evans et al. previously [1]. Again, the general forms

differ little between different values of Rs.

This depletion in magnitude of χµ with decreasing Rs is most evident for small δεsf ,

indicating that Rs has a larger influence on χµ than δεsf in this region. However, for δεsf >

0.4 in the SR ff LR sf case, and δεsf > 0.6 in the LR ff LR sf case, the differences in profiles

between different values of Rs is far less noticeable. This indicates that in this region, δεsf

has a larger influence over the magnitude of the fluctuations than Rs. This observation of

two regimes in which the dominant influence on the density and local compressibility are Rs

and δεsf respectively agrees with the predictions of sections 5.5.2 and 5.6.2. Furthermore,

when δεsf > 0.4 and δεsf > 0.6 in the cases of figures 6.3 and 6.4 respectively, the form of the

density and local compressibility profile can be seen to change, with the latter in particular

exhibiting clear oscillations. Such a change in behaviour suggests a region in which the effects

of the drying critical point can be felt more strongly. It is interesting to note that these values

of δεsf correspond to Young’s contact angles of θ > 158.1◦ and 153.4◦ respectively.

Despite the differing appearances of ρ(r) and χµ(r) upon increasing δεsf , all δεsf consid-

ered in figures 6.3 and 6.4 are solvophobic. Each gives an equivalent Young’s contact angle

of θ > 90◦, and all but δεsf = 1.2 show a depleted contact density. Considering the density

profile, the solutes and planar substrate with δεsf = 1.2 may be thought to be solvophilic,

due to the enhancement of the fluid at the surface of the solute or substrate. However, con-

sidering χµ(r), this can be seen not to be the case. Whilst χµ(r) shows oscillations and a

much smaller variation from the bulk value than for other δεsf , its form differs substantially

from that expected at a solvophilic surface. In the latter, the oscillations in χµ(r) are centred

on χµ,b. This agrees with observations of other measures of density fluctuations discussed in

chapter 3, in that it is far easier to distinguish solvophobic and solvophilic behaviours in the

density fluctuations than in the density profile.
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6.2.3 Competing Influence of Solute Size and Chemical Potential Devia-

tion

It was previously reported by Evans et al. [146] in a study of a hard solute immersed in

a SR square well fluid that there exist two regimes of `eq in which the behaviour depends

independently on δµ and Rs. Stewart and Evans [34] made a similar observation for the case

of LR ff interactions, in a study of hard solute immersed in a LJ fluid. Such a prediction was

also made for both SR and LR ff interactions in the effective interface potential analysis of

chapter 5, and it was further shown in equations (5.5.16) and (5.6.23) that such regimes should

also exist for χµ(`eq;Rs). In all cases, these regimes were found or predicted to be separated

by the length scale of capillary evaporation, Rc = 2γlv/δµ∆ρ. This suggests a length scale

above which the curvature of the substrate has little influence over the behaviour of ρ(r)

and χµ(r). If this were the case, then for Rs � Rc, it should not be possible to distinguish

the density and local compressiblility profiles found around solutes from those found at the

planar substrate.

Figure 6.5 tests this assertion for a system with SR ff LR sf interactions, by considering

the density (lower) and local compressibility (upper) profiles around solutes of varying size

for varying βδµ. In each case, δεsf = 0. For βδµ = 10−3, Rc ≈ 913σ, and hence for

Rs � 913σ, it should be difficult to distinguish profiles around solutes from those obtained

at planar substrates. Considering figure 6.5, this can indeed be seen to be the case. For

Rs = 103σ, ρ(r) and χµ(r) are clearly different from those at the planar substrate. However,

by Rs = 104σ, it is near impossible to distinguish the profiles. Similar behaviours can be

seen for βδµ = 10−4, for which Rc ≈ 9134σ and for βδµ = 10−5, for which Rc ≈ 91340σ. In

agreement with the conclusions of previous studies [146], Rc appears to distinguish between

sizes of solutes for which Rs influences the behaviour of the system, and for which it does

not.

6.2.4 Influence of Temperature

Although temperature does not enter explicitly into the predictions of chapter 5, it implic-

itly effects the behaviour of solvophobic systems through terms such as γlv, ∆ρ and in the case

of LR ff LR sf interactions, ε̃csf . In section 5.6.4 it was also shown that `eq and χµ(`eq;Rs) for

the LR ff LR sf case can be written in a scaling function form, which obey equations (5.6.17)

and (5.6.21) respectively. These equations have temperature dependent constants b(T ) and

c(T ), and hence the scaling functions can be expected to vary with temperature. This is in

contrast to bulk scaling function forms like those presented in section 2.4.1, which instead

take only two forms, for below and above the bulk critical temperature respectively. It is

therefore interesting to consider the variation in the density and local compressibility profiles

with temperature.

Figure 6.6 shows the variation in ρ(r) (lower) and χµ(r) (upper) for a system with LR ff

LR sf interactions with βδµ = 10−3, δεsf = 0, and for varying T and Rs. As the temperature

is increased, the liquid-vapour interface in the density profile broadens, and the vapour film

grows in width. As the predictions of chapter 5 make use of a SK approximation for the
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density profile, this indicates that lower temperatures should provide more accurate results.

Lower temperatures are also associated with sharper peaks in the local compressibility profile,

as well as larger fluctuations in magnitude. Despite this, it can be seen that the predictions

of section 6.2.3, that Rc acts as a boundary on the ability to distinguish profiles around

hard solutes from those at a hard planar substrate, is largely followed at all temperatures

considered in figure 6.6. This indicates that although the SK approximation is not as reliable

at higher temperatures, many of the predictions made using it are.

6.3 Effective Interface Potential Predictions

Within this section, the predictions for the behaviour of `eq and χµ(`eq;Rs) made in

chapter 5 are investigated in detail. For all systems considered, `eq was calculated using the

equilibrium density profile obtained from cDFT according to equation (2.4.20), where the

adsorption per unit area, Γ/Asv, was found using equation (4.1.55) in the case of a solute

and equation (4.1.47) in the case of a planar substrate. χµ(`eq;Rs) was taken to be the

first value in the local compressibility profile which satisfied r > Rs + `eq when increasing r

from r = 0. For planar surfaces considered, χµ(`eq;Rs = ∞) was the first value in the local

compressibility profile which satisfied z > `eq, when increasing z from z = 0. It should be

noted that all fluids considered within this chapter were oversaturated and therefore `eq and

χµ(`eq;Rs) in all cases remained finite.

6.3.1 Equilibrium Film Width

Figure 6.7 compares the effective interface potential prediction for the behaviour of `eq for

the case of SR ff LR sf interactions, given in equation (5.5.8), to values of `eq obtained from

cDFT. All results in figure 6.7 were obtained at T = 0.775Tc, whilst other parameters varied

in the ranges (10−6 ≤ βδµ ≤ 10−3, 0.0 ≤ δεsf ≤ 1.0, 10σ ≤ Rs ≤ 108σ). Results obtained for

a planar substrate are also shown. Colour is used to indicate the value of δεsf , and associated

Young’s contact angle.

For δεsf < 0.4, there is clear agreement between the predictions of the effective interface

potential and the results obtained from cDFT for a wide range of (βδµ,Rs). The few excep-

tions to this are predominantly found where ln(βσ3(p̃ − 2b/`3eq)) > −3, and correspond to

solutes of size Rs < 20σ. This indicates a limit in Rs for which the predicted relationship is

applicable, which could be related to the crossover between the small and large length scale

solvation regimes discussed in section 3.1.4. The agreement between the predictions of the ef-

fective interface potential and cDFT results is poorer for δεsf > 0.4. Considering the profiles

of figure 6.3, this is unsurprising, as for δεsf > 0.4, the density profile is no longer reasonably

described by a SK approximation, which was a basic assumption of the derivations of section

5.5.

The predicted behaviour of `eq for the case of LR ff LR sf interactions is given in equation

(5.6.17) however, as discussed in section 5.7, it is not practical to use this form of `eq, due

to the difficulties involved in calculating the temperature dependent constant c(T ). For

this reason, figure 6.8 instead compares the predicted scaling function form of `eq, given

in equation (5.6.35), to results obtained from cDFT. Systems at three temperatures, T =
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Figure 6.7: Comparison of the predictions of equation (5.5.8) and results for `eq obtained from
cDFT, using equation (2.4.20), for the case of SR ff LR sf interactions. The temperature was held
constant at T = 0.775Tc, whilst other parameters varied in the range (10−6 ≤ βδµ ≤ 10−3, 0.0 ≤
δεsf ≤ 1.0, 10σ ≤ Rs ≤ 108σ). The value of δεsf and associated Young’s contact angle θ, for each
result is indicated by the colour.

0.7Tc, 0.775Tc and 0.85Tc, are shown, with the arrow indicating the direction of increasing

temperature. At each temperature, the chemical potential deviation was taken to be βδµ =

10−3, whilst other parameters varied in the ranges (0.0 ≤ δεsf ≤ 1.0, 10σ ≤ Rs ≤ 108σ).

Again, colour is used to indicate the value of δεsf , whilst the associated Young’s contact

angle for each value of δεsf for each temperature is given in the inset.

As predicted, the values of `eq obtained from cDFT fall onto three temperature dependent

curves, which each represent a temperature dependent scaling function that obeys equation

(5.6.17). If c(T ) were known, the exact form of this scaling function could be predicted from

equation (5.6.17). This was done by Stewart and Evans [33] for the case of δµ = 0, who

found excellent agreement between the calculated scaling function, and results obtained from

cDFT.

As was found in the case of SR ff LR sf interactions, there appears to be a limit in Rs for

which the expected relation is obeyed. This can be seen most clearly by the small deviations

from the apparent scaling function when ln(p̃/ε∆ρ|t′|4) > 10, which correspond to solutes of

Rs < 20σ. Values of `eq obtained for δεsf > 0.6 also appear not to obey the scaling function.

This can be seen most clearly by considering the yellow or light green results in figure 6.8,
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Figure 6.8: Comparison of results for `eq obtained from cDFT to the predicted scaling function
relationship for LR ff LR sf interactions given in equation (5.6.35). Results obtained from three
temperatures, T = 0.7Tc, 0.775Tc and 0.85Tc are shown, with the red arrow indicating the direction
of increasing temperature. Each result was obtained at βδµ = 10−3, with other parameters falling in
the range (0.0 ≤ δεsf ≤ 1.0, 10σ ≤ Rs ≤ 108σ). δεsf is indicated by the colour. The inset shows the
Young’s contact angles for each δεsf and temperature considered.

which correspond to δεsf > 0.8, as these clearly fall below the apparent scaling function

curve. As was found in the SR ff LR sf case, the density profiles for δεsf > 0.6 in figure

6.4 are not well described by a SK approximation, and hence the predictions of the effective

interface potential cannot be expected to be applicable for this region.

The influence of the parameters (βδµ, δεsf , Rs) on `eq can be better visualised by con-

sidering figure 6.9, which presents cDFT results for systems with SR ff LR sf interactions at

T = 0.775Tc in the form of contour plots. Figures 6.9(a) and 6.9(b) compare the influence

of the curvature, R−1
s , and δεsf on `eq, for systems at constant βδµ = 10−4 and βδµ = 10−6

respectively. In both cases, a very similar shape of contour is observed. For σ/Rs > 10−3, the

contours are largely horizontal, which suggests `eq is most heavily influenced by the curvature

of the solute. In contrast, for σ/Rs < 10−3, the contours are almost vertical, and hence it

appears that δεsf exerts the greatest influence over `eq. The region in which the contour

changes from near horizontal to near vertical gives an indication of the length scale for which

the behaviour of `eq crosses over from being curvature dependent to curvature independent.

These observations are in agreement with the predictions of equation (5.5.10), however it

should be noted that the fluids considered in figure 6.9 are oversaturated.
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given on the top axes by the equivalent Young’s contact angle.

Figure 6.9(c) compares the influence of R−1
s and βδµ for δεsf = 0.0 and, as expected,

agrees with the predictions of equation (5.5.12). For large σ/Rs, the contours are almost

completely horizontal, hence `eq is almost solely dependent on σ/Rs. In contrast, for small

σ/Rs, the contours are near vertical, and hence `eq depends almost solely on βδµ. The

curve in the contour, which represents the crossover between regimes, is expected to occur

at Rs = Rc. For βδµ = 10−3, this is Rc ≈ 913σ, which equates to σ/Rs ≈ 10−3. This is in

excellent agreement with figure 6.9(c).

The behaviour visualised in figure 6.9 for systems with SR ff LR sf interactions is also

expected for the case of LR ff LR sf interactions. Figure 6.10 compares contour plots for the

cases of (a) SR ff LR sf and (b) LR ff LR sf interactions at T = 0.775Tc and βδµ = 10−3, for

varying (δεsf , Rs). As expected, the shapes of figures 6.10(a) and 6.10(b) are very similar.

The largest difference between figures 6.10(a) and 6.10(b) is the generally larger values of `eq

in the case of LR ff LR sf interactions, which is most easily observed by comparing the left of

each figure. This is in agreement with the predictions of chapter 5, which indicate `eq grows

as a logarithm in the case of SR ff LR sf interactions, whilst as an inverse power law in the

case of LR ff LR sf interactions.

6.3.2 Local Density Fluctuations

Figure 6.11 compares the effective interface potential predictions for χµ(`eq;Rs) for the

case of SR ff LR sf interactions, given in equation (5.5.14), to results obtained using cDFT.

All results presented in figure 6.11 were obtained for a temperature of T = 0.775Tc, with

other parameters taking values in the ranges (10−6 ≤ βδµ ≤ 10−3, 0.0 ≤ δεsf ≤ 0.3, 10σ ≤
Rs ≤ 108σ). Results obtained for a planar substrate are also shown. Within figure 6.11, the

cDFT results are coloured according to δεsf .
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Figure 6.11: Comparison of effective interface potential prediction for χµ(`eq;Rs) given in equation
(5.5.14), and results obtained from cDFT. All cDFT results were collected at T = 0.775Tc, for pa-
rameters in the range (10−6 ≤ βδµ ≤ 10−3, 0.0 ≤ δεsf ≤ 0.3, 10σ ≤ Rs ≤ 108σ). The value of δεsf for
each result is indicated by the colour, and equivalent Young’s contact angles are given as an indication
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In general, figure 6.11 shows excellent agreement between the predictions of equation

(5.5.14) and the results obtained using cDFT when δεsf ≤ 0.2. Some deviation from the

predicted relationship is apparent in the lower left of figure 6.11, which corresponds to results

from systems in which Rs < 20σ. This is the same range of Rs for which deviation from

the predicted relationship of `eq was found in figure 6.7, and hence is unsurprising. There is

also some notable deviation in the top right of figure 6.11, where the results appear to curve.

These results relate to systems very close to the drying critical point, where χµ(`eq;Rs)/χµ,b

can be seen to be of order 106. This deviation from the predicted behaviour is therefore most

likely due to numerical errors in evaluating such large fluctuations.

For δεsf = 0.3, there is clear disagreement between the predicted relationship and results

obtained using cDFT. Considering figure 6.7, it can be seen that systems with δεsf ≥ 0.3

typically feature vapour films of width `eq < 2σ. As the effective interface potential analysis

assumes a thick vapour film, which is clearly not the case of δεsf ≥ 0.3, it is perhaps un-

surprising that the predictions are no longer obeyed. Alternatively, it could be that higher

order terms in the binding potential, which were neglected in chapter 5, become important

for such systems. This can be understood by considering the term 1− 3ξ/`eq within the pre-

dicted relationship of equation (5.5.2), where ξ = 0.51σ is the correlation length of the bulk
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of χµ(`eq;Rs), given in equation (5.6.36), and cDFT results for LR ff LR sf interactions. The inset
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figure 6.8

.

vapour, and can be found numerically by comparing cDFT results to equation (5.5.2). When

`eq < 3ξ = 1.53σ, 1− 3ξ/`eq becomes negative and thus the agreement in figure 6.11 breaks

down. If higher order terms were included in the binding potential, it is possible that the

relationship would not become negative. However, such terms are likely to feature constants

which depend on the shape of the liquid-vapour interface within the density profile, and are

thus likely to be difficult to evaluate.

The predicted behaviour of χµ(`eq;Rs) for the case of LR ff LR sf interactions is given

in equation (5.6.21) and as in the case of `eq, contains a term proportional to c(T ), which

is difficult to evaluate numerically. However, unlike the case of `eq, it is possible to remove

this term using equation (5.6.17). Doing so leads to an alternative form of the predicted

behaviour of χµ(`eq;Rs) for LR ff LR sf interactions of

χµ(`eq;Rs) = ∆ρ ρ′(Rs + `eq)
`eq
2

(
2p̃− b

`3eq

)−1

(6.3.1)
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where all variables take their meanings as in section 5.6.2.

Figure 6.12 compares the predictions of the effective interface potential for χµ(`eq;Rs)

to results obtained using cDFT, for both the scaling function form (main figure) given in

equation (5.6.36), and form given in equation (6.3.1) (inset). For all results, βδµ was held

constant at βδµ = 10−3, whilst other parameters varied in the ranges (0.0 ≤ δεsf ≤ 1.0, 10σ ≤
Rs ≤ 108σ). As in figure 6.8, three temperatures, T = 0.7Tc, 0.775Tc and 0.85Tc were

considered, and the arrows in figure 6.12 indicate the direction of increasing temperature. The

cDFT results are again coloured according to the value of δεsf at which they were obtained.

Equivalent Young’s contact angles can be found in the inset of figure 6.8. Considering first

the predicted scaling function form of χµ(`eq;Rs), it can be seen that for small δεsf , the

cDFT results appear to collapse onto three temperature dependent curves. These are much

closer to one another than in the case of `eq in figure 6.8, and are most clearly distinguished in

the lower right of the figure. For δεsf > 0.4, it is much less clear whether there is agreement

between the predicted relationship and the results obtained from cDFT, and whether there

are three scaling functions. Considering instead the predictions of equation (6.3.1) given in

the inset, it appears as though there is excellent agreement between the effective interface

potential predictions and cDFT results when δεsf < 0.6 at T = 0.775Tc and T = 0.85Tc,

and when δεsf < 0.4 at T = 0.7Tc. Comparing these values of δεsf to the expected Young’s

contact angles in the inset of figure 6.8, it can be seen that all correspond to θ > 150◦.

Careful inspection of the inset in figure 6.12 shows some disagreement between the predicted

relationship and cDFT results even at small δεsf , though these results typically relate to

values of Rs < 20σ, where disagreement was also found for the predictions of `eq in figure

6.8.

As in the case of `eq, the influence of individual parameters (βδµ, δεsf , Rs) is best visu-

alised using contour plots. Figures 6.14(a) and 6.14(b) compare the influence of Rs and δεsf

on χµ(`eq;Rs) for βδµ = 10−4 and βδµ = 10−6 respectively, whilst figure 6.14(c) compares

the influence of βδµ and Rs for δεsf = 0. All are for the case of SR ff LR sf interactions, at

T = 0.775Tc.

Much the same patterns as observed in figure 6.9 can be seen in figure 6.14, which is

unsurprising given that χµ(`eq;Rs) is related to the derivative of `eq, and that all behavioural

regimes predicted for `eq were also predicted from χµ(`eq;Rs) in section 5.5.2. Considering

first figures 6.14(a) and 6.14(b), it is clear that there exists a region of parameter space for

which Rs largely determines χµ(`eq;Rs), and a region for which δεsf does, as was predicted

in equation (5.5.15). The crossover between these regions seems to be very similar to that

for `eq seen in figures 6.9(a) and 6.9(b). In figure 6.14(c), the shapes of each contour are

near identical to those seen in figure 6.9(c), with the crossover between Rs and δµ regimes

occurring near Rc. It is worth noting the incredibly large values of χµ(`eq;Rs) seen in figure

6.14, which are up to 106 times their bulk value very close to the drying critical point, and

rarely fall below 10 times their bulk value. This highlights the sensitivity of χµ(`eq;Rs) as a

measure of density fluctuations.

As with `eq, the regimes of χµ(`eq;Rs) observed for a system with SR ff LR sf interactions
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Figure 6.13: Comparison of influence of Rs and δεsf on χµ(`eq;Rs) in systems with (a) SR ff LR
sf and (b) LR ff LR sf interactions, at T = 0.775Tc and βδµ = 10−3. The equivalent Young’s contact
angle for each δεsf is given on the top axes.

in figure 6.14 are also expected for systems with LR ff LR sf interactions. Figure 6.13 confirms

this, by comparing the influence of Rs and δεsf for βδµ = 10−3 in systems with (a) SR ff LR

sf and (b) LR ff LR sf interactions, at T = 0.775Tc. In general, χµ(`eq;Rs) is larger in the

case of LR ff LR sf interactions, which is in agreement with the predictions of chapter 5, due

to the more rapid divergence in the case of LR ff LR sf interactions compared to SR ff LR sf

interactions.

6.4 Discussion

The purpose of this chapter was to confirm the assertion made in postulate 2 of chapter

1, that the physical mechanism underlying solvophobicity is a drying surface critical point.

This has been done by comparing the predictions for the behaviour of `eq and χµ(`eq;Rs)

presented in the effective interface potential analysis of chapter 5 to results for a large number

of systems of varying (βδµ, δεsf , Rs, T ), obtained using cDFT. As the predictions of chapter

5 specifically relate the behaviour of `eq and χµ(`eq;Rs) to the existence of a drying critical

point, verification of their accuracy acts as strong evidence in favour of the assertion. These

predictions have been tested for systems with SR ff LR sf interactions, which best reflect

conditions of molecular simulation, and systems with LR ff LR sf interactions, which best

reflect conditions of experiment.

Figures 6.7, 6.8, 6.11 and 6.12 confirm the predictions of chapter 5 are obeyed for both

systems with SR ff LR sf and LR ff LR sf interactions, when Rs > 20σ for a limited range

of δεsf . The range of δεsf for which the predictions are obeyed has been shown to vary with

temperature, range of interactions and measure (`eq or χµ(`eq;Rs)) considered. However, in

each case, the range of δεsf for which the predictions are obeyed corresponds to Young’s

contact angles of θ > 150◦. As has been discussed, Young’s contact angle is strictly only

defined in the limit of a fluid at liquid-vapour coexistence in contact with a smooth planar
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Figure 6.14: Behaviour of χµ(`eq;Rs) with varying (a) Rs and δεsf at βδµ = 10−4, (b) Rs and δεsf
at βδµ = 10−6 and (c) Rs and βδµ at δεsf = 0.0, for the case of SR ff LR sf interactions. All results
were obtained at T = 0.775Tc.
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surface, which is a description not applicable to the systems considered here. Despite this, it

is interesting to note that the range of θ for which the predictions were obeyed is equivalent to

the range for ‘superhydrophobic’ behaviour discussed in section 3.1.3. The results presented

here therefore suggest that the influence of the drying critical point is most strongly felt in

the analogous ‘supersolvophobic’ regime.

Although weak to little agreement was found between the predictions of the effective in-

terface potential analysis and cDFT results for systems with θ < 150◦, there is reason to

believe that the drying critical point may exert some limited influence on these solvopho-

bic systems. This can be understood most clearly by considering the local compressibility

profiles for δεsf = 1.2 in figures 6.3 and 6.4. As was noted in section 6.2.2, although there

are clear oscillations, and χµ(r)/χµ,b is comparably smaller in magnitude than profiles for

corresponding lower δεsf , these local compressibility profiles take a form distinct from that

expected in the bulk or at a solvophilic substrate, as the oscillations are not centred on χµ,b.

This potentially indicates that the density fluctuations around weakly solvophobic solutes

and at weakly solvophobic planar surfaces are remnants of the critical fluctuations observed

in systems nearer to the drying critical point.

Figures 6.1 and 6.2 analysed the influence of Rs on the density and local compressibility

profiles of solvophobic systems with SR ff LR sf and LR ff LR sf interactions respectively.

For all cases of δεsf in each figure, it was found that as Rs increased, the profiles tended to

those expected at a planar substrate. This indicates that solvophobicity on microscopic length

scales is related to that on macroscopic length scales, which is to be expected as solvophobicity

on both of these length scales has been shown to be influenced by the drying critical point.

Within figures 6.1 and 6.2 there appears to be an upper limit of Rs, above which the profiles

could not be distinguished from those at a planar substrate. Such a limit suggests a length

scale which divides systems into those in which the behaviour is dependent on curvature and

those in which it is not. This corresponds to the idea of a crossover length scale between the

large length scale solvation and macroscopic regimes of hydrophobicity described in section

3.1. Whilst such a length scale should exist, there does not appear to be any definition used

commonly in the literature, as mentioned in section 3.1.4. It was suggested in chapter 5 that

a candidate for this was the length scale of capillary evaporation, Rc. At δεsf = 0.0, there is

strong evidence in favour of this, as can be seen in figures 6.5, 6.9(c) and 6.14(c). However,

when both βδµ > 0 and δεsf > 0, Rc does not accurately describe the crossover, as can

be seen in figures 6.9(a), 6.9(b), 6.14(a) and 6.14(b). In each of these figures, the curves in

the contours, which represents the crossover between curvature dependent and independent

behaviour, can be seen to largely occur for the same length scales, despite the different βδµ.

Hence, from these results, it is not possible to define a length scale which separates the large

length scale solvation and macroscopic regimes of solvophobicity.

Finally, from the results presented within this chapter, two interesting observations with

potential consequences for hydrophobicity can be made. Firstly, many of the systems con-

sidered featured the oversaturation predicted for water at ambient conditions, βδµ = 10−3,

and hence it has been confirmed that such an oversaturation is sufficiently close to the drying
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critical point to feel its effects. Secondly, density fluctuations in systems with βδµ = 10−3

with both SR ff LR sf and LR ff LR sf interactions presented in figure 6.13 are predominantly

influenced by the curvature of the system when Rs < 1000σ. Density fluctuations in such

systems with Rs < 1000σ are therefore not expected to vary substantially when exposed to

small changes in other parameters, (βδµ, δεsf ), and considering figure 6.6, when exposed to

small changes in the temperature. This is an interesting observation, because many of the bi-

ological processes discussed in section 3.1.2, which are believed to involve density fluctuations,

would be expected to occur on these length scales.
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Chapter 7

Influence of Critical Drying in the

Hydrophobic Response of Water

Examination of the validity of the predictions of the effective interface potential analysis of

chapter 5 for hydrophobic systems can be achieved using GCMC, as was presented in section

4.2. As discussed in section 4.2.7, this thesis makes use of a water model which features

only SR ff interactions, and models the sf interaction using the LR LJ potential described in

section 4.2.9. As such, the hydrophobic systems considered within this thesis have SR ff LR

sf interactions, and are thus expected to obey the predictions of section 5.5.

Due to the computational demand of GCMC, it was not possible to perform as detailed

a study for hydrophobicity as was performed for solvophobicity in chapter 6. Instead, this

chapter focuses on examining a smaller number of systems, and is limited to consideration of

solutes only. In particular, studying systems with planar substrates requires careful consid-

eration of the FS effect premature drying, discussed in section 2.4.6, which was not feasible

within the present work. Despite this, results presented within this chapter are expected to

allow for accurate conclusions on the validity of postulate 1 of chapter 1 for several reasons.

Firstly, if the predicted behaviour of `eq and χµ(`eq;Rs) occurs around the small solutes

considered here, there is no reason to believe it would not occur around larger solutes or in

the planar limit. Secondly, a previous study by Evans and Wilding [23] has considered the

influence of the drying critical point on hydrophobic systems with a planar slit geometry.

Although this study did not consider effective interface potential predictions, it does provide

density and local compressibility profiles with which results for solutes can be compared. Fi-

nally, if the results presented within this chapter indicate that hydrophobicity of microscopic

solutes is related to a drying critical point, then postulate 2 of chapter 1 is expected to be

valid. In this case, all general conclusions presented in chapter 6 for solvophobicity can be

expected to be applicable also for hydrophobicity.

This chapter proceeds in much the same way as chapter 6, presenting the state points and

bulk properties of mW required for the study, then considering density and local compress-

ibility profiles and finally testing the predictions of section 5.5. Following this, the process by

which the depleted density region at the surface of hydrophobic solutes forms is investigated,
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and compared to previous results of both simulation and experiment. This chapter is then

concluded with a discussion of the implications of the results presented with respect to the

postulates of chapter 1.

7.1 State Points and Bulk Properties

Water at ambient conditions exhibits a small oversaturation of approximately βδµ ≈ 10−3

[96]. To accurately model water, it is essential that this value be reproduced. As mW is a

relatively new model, many of its bulk properties are not yet widely reported, of which an

example is a highly accurate µ − T coexistence curve. Because of this, it was necessary to

carefully trace the liquid-vapour coexistence curve of mW prior to considering hydrophobicity,

which was done using the GCMC methods presented in section 4.2.8. This also provided

an opportunity to assess the suitability of mW for the study of hydrophobicity through

comparisons to real water and a popular water model SPC/E, which is presented in Appendix

E.

Figure 7.1 shows the liquid-vapour phase diagrams of mW relevant to this thesis. In each

case, ρ and T are given in both physical and reduced units. The physical density of the fluid

was obtained in units of gcm−3 using ρ =< N > M/V NA, where M = 18.015g is the molar

weight of water, NA is Avagadro’s number, V was the volume of the simulation box, and

< N > the average number of particles [132]. The filled points represent state points obtained

from simulation, whilst the hollow points represent state points obtained through histogram

reweighting, as described in section 4.2.5. In figure 7.1(a), the dotted curve represents the

mean density. In both figures 7.1(a) and 7.1(b), the critical point is represented by the larger

filled point. In all cases, the uncertainty, obtained using the methods described in section
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Figure 7.1: Liquid-vapour phase diagrams of mW, obtained using the methods of section 4.2.8. The
filled points represent simulation data, whilst the hollow points represent state points obtained using
histogram reweighting. The uncertainty of simulation points did not exceed symbol size. The critical
point is given by the larger filled point. Both physical and reduced units are given. In the latter,
σmw = 2.3925Å, whilst εmw = 6.189kcal/mol.
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4.2.11, did not exceed symbol size.

From figure 7.1(a), it can be seen that mW grossly over-predicts the bulk critical temper-

ature of water. Accounting for FS effects, mW was found to have a bulk critical temperature

of Tc,mw = 917.6K, which is similar to previous estimates by Xu and Molinero [138], and

by Russo et al. [141], though it should be noted that these previous studies do not make

clear whether FS effects were taken into account. Interestingly, despite a large over pre-

diction in Tc, mW performs well when reproducing the critical density. Accounting for FS

effects, this was found to be ρc,mw = 0.311gcm−3, which compares favourably to that of

water, ρc,w = 0.322gcm−3 [133]. This suggests that mW may more accurately reproduce the

liquid-vapour phase diagram of water if all temperatures and densities were scaled by their

bulk critical values.

Despite the larger Tc,mw, mW can be seen in figure 7.1(a) to reproduce the phase diagram

of water well near ambient conditions. Detailed analysis by Molinero and Moore [132] found

that the density of mW in fact agrees to within 1% of the experimental value of water

between the temperatures 250K ≤ T ≤ 350K. In addition, mW has previously been reported

to have a liquid-vapour surface tension at ambient conditions closer to that of water than

other leading water models [132], and it has been reported by Xu and Molinero [138] that

mW reproduces the liquid-vapour surface tension of water almost exactly at 360K. As these

two properties were discussed and argued in section 4.2.6 to be those important for the study

of hydrophobicity, this suggests that collecting results at either ambient conditions, taken to

be T = 300K, or at T = 360K, is sensible.

However, realistically it was not possible to do so because of the low move acceptance

ratio, defined as the number of accepted insertion and deletion moves compared to the total

number of moves proposed, of GCMC at these temperatures. Bulk simulations of mW at

300K and a realistic oversaturation of βδµ = 10−3 [96] showed move acceptance ratios of

≈ 0.1%, whilst at 360K and βδµ = 10−3, move acceptance was ≈ 0.3%. Although these

acceptance ratios may be expected to improve with the addition of hydrophobic solutes which

induce depleted density regions, even in this case, move acceptance at 300K and βδµ = 10−3

never exceeded 0.2%. This can be rationalised by considering figure 7.1(b). Below 400K, the

coexistence chemical potential, µco, decreases rapidly, indicating that it becomes progressively

more difficult to insert particles into the system.

It was therefore not feasible to perform a comprehensive study of hydrophobicity using

mW at temperatures below 400K. Instead, a strategy was devised to collect the majority

of results at the higher temperature of T = 426K, which was chosen to reflect the ratio of

ambient temperature to bulk critical temperature of water, T/Tc ≈ 0.46. This approach can

be justified using figure 7.2, which compares the phase diagrams of water and mW (a) in

physical units and (b) when scaled by the bulk critical temperature and density. Whilst the

phase diagrams in physical units show little similarity above 350K, the scaled phase diagrams

show remarkable agreement, particularly at T/Tc = 0.46, which is marked by the grey dotted

line. This implies mW has a comparable bulk structure to that of real water at corresponding

T/Tc and ρ/ρc.
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Figure 7.2: Comparison of the liquid-vapour phase diagrams of water (pink squares) and mW (blue
circles) (a) in physical units and (b) when units are scaled by their bulk critical values. The dotted
grey line represents the T/Tc ratio for water. Results for water were taken from [149].

Three temperatures were therefore considered within this chapter. The majority of the

results, particularly those used to verify the predictions of the effective interface potential,

were collected at 426K, where the move acceptance ratio was closer to 1%. Limited results

were collected at 300K and 360K, where move acceptance was low, for comparison. Table 7.1

provides details of the coexistence state points for each of these temperatures. Parameters

and bulk properties for mW at these temperatures for an oversaturation can be found in table

7.2. In each case, ρb was found according to section 4.2.10.1. χµ,b was obtained by using

histogram reweighting to find ρb at a higher µ and then performing a numerical derivative.

Due to the discretisation of the density within the simulation box into units of an integer

number of particles, it was not possible to distinguish ρb and χµ,b at βδµ = 0, 10−3, 10−4, and

hence the same value is given for each.

The systems considered within this chapter consisted of SR ff LR sf interactions, hence the

critical sf attraction in each was expected to be εc = 0.0. As in chapter 6, the sf attraction was

defined to be a fraction of the ff attraction, εmw = 6.189 kcal/mol, such that εsf = ε̃sfεmw.

Table 7.1: State points of mW at liquid-vapour coexistence for the temperatures used within this
work.

T (K) βµco

300 −15.53438

360 −12.75623

426 −10.66336
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Table 7.2: State points and bulk properties of mW for various temperatures at non-zero βδµ, which
are used within this work.

T (K) βδµ ρb (gcm−3) β−1σ3
mwχµ,b

300 10−3 0.99821 0.01190

360 10−3 0.98175 0.01557

426 10−3, 10−4 0.95981 0.02060

7.2 Density and Local Compressibility Profiles

The behaviour of the density profile of water local to hydrophobic solutes and planar

substrates has been discussed in several previous studies of hydrophobicity. Using simulations

of SPC/E, Huang and Chandler [9] investigated the behaviour of the density profile in the

small length scale solvation regime discussed in section 3.1.1. For solutes of Rs approximately

the same size as a SPC/E molecule, an enhanced contact density and prominent packing

effects were observed, as expected. As Rs was increased, Huang and Chandler [9] found

that the contact density decreased and oscillations within the density profile were depleted.

Huang and Chandler [9] extended their study to consider the large length scale solvation

regime using LCW theory, and found that for a hard solute, as Rs →∞, the contact density

depleted further, and smooth vapour films formed. This is the same behaviour as for both SR

and LR LJ fluids, presented in section 6.2. Furthermore, Huang and Chandler [9] found that

introducing a sf attraction suppressed the emergence of a vapour film, in a similar fashion to

that observed for solvophobicity in section 6.2.2. Simulation studies by Mamatkulov et al.

[22] and Mittal and Hummer [95] reported similar behaviour, and went further to consider the

effects of varying thermodynamic conditions such as temperature and pressure. Increasing

the temperature was found to encourage the growth of the vapour film [22], in agreement

with the findings for solvophobicity presented in section 6.2.4, whilst increasing the pressure

was found to suppress it [22, 95]. In a simulation study of SPC/E confined to a hydrophobic

slit, Evans and Wilding [23] also found evidence of vapour-like films at the surfaces of the

slit, which were suppressed upon increasing sf attraction.

To the best of our knowledge, no previous studies have considered the form of the local

compressibility around hydrophobic solutes. Despite this, its form is easily reasoned. Previous

studies of solutes and planar surfaces have reported similar behaviour in the density profiles

[9, 22, 23, 95]. As the local compressibility is simply the derivative of these density profiles,

it can therefore also be expected to be similar around solutes and planar surfaces.

7.2.1 Influence of Solute Size and Substrate-Fluid Attraction Strength

Figure 7.3 shows the density (lower) and local compressibility (upper) profiles of mW, at

T = 426K and βδµ = 10−3, around solutes of radii σmw ≤ Rs ≤ 17σmw for four values of

εsf , given as a fraction of εmw in the upper legend, and in physical units in the lower. The

bottom axis gives the distance measured from the centre of the solute in real units, whilst

the upper in units of σmw. The vertical grey dotted lines represent the surface of each solute

considered. The uncertainty of each profile was found according to section 4.2.11. For the
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density profile, this did not exceed the line width.

For the smallest value of Rs considered, Rs = σmw ≈ 0.24nm, the density profile shows

the behaviour expected of the small length scale solvation regime described in section 3.1.1,

and found by Huang and Chandler [9]. There is an enhanced contact density with clear oscil-

lations, and increasing the sf attraction has little influence. The local compressibility profile

follows the form of the density profile, and again shows little variation with sf attraction. This

also agrees with the behaviour expected in the small length scale solvation regime, in which

fluctuations are expected to be well described by those found in bulk water, and therefore

not enhanced.

Upon increasing Rs, figure 7.3 shows that the contact density reduces, eventually falling

below that of the bulk between 3σmw < Rs < 5σmw. For Rs larger than this, a region of

depleted density, termed here a vapour film for simplicity, emerges. The emergence of this

vapour film is accompanied by a change in the behaviour of the local compressibility, which

can be seen to exhibit a large peak centred on the interface between the depleted density

region and bulk liquid within the density profile. As Rs grows, oscillations in the density

profile are suppressed, which is also reflected in the local compressibility. For Rs > 5σmw,

the oscillations within the local compressibility are no longer centred on χµ,b. This behaviour

was specifically noted to differentiate solvophilic and solvophobic behaviour in section 6.2.2.

Increasing the sf attraction suppresses the vapour film, and thus suppresses the emergence of

a peak in the local compressibility profile. All of these behaviours are in good agreement with

those expected of the large length scale solvation regime, described in section 3.1.2, and for

the density profile, those reported in previous studies [9, 22, 95]. Interestingly, the crossover

between the small and large length scale solvation regimes occurs near 1nm, which is the

same length scale reported for water at ambient conditions in previous studies. [5, 9, 11, 83].

The density and local compressibility profiles presented in figure 7.3 have near identical

forms to those found at planar surfaces in the study by Evans and Wilding [23]. Whilst their

study used a slit geometry, for most values of sf attraction considered, the surfaces of the

slit could be considered independent or non-interacting, and hence the profile at each treated

as one expected to occur at a single planar surface. It is also worth noting the magnitude

of the local compressibility for the largest solutes in figure 7.3. For Rs = 17σmw ≈ 4.07nm

and εsf < 0.04εmw, the peak in the local compressibility is more than fifty times that in the

bulk. This should be compared to the depleted density region of the density profile, which

does not vary substantially from its bulk value, and extends less than a diameter of a mW

particle from the surface of the solute.

7.2.2 Influence of Chemical Potential Deviation

For mW at T = 426K and βδµ = 10−3, the length scale of capillary evaporation can

be calculated to be Rc = 2γlv/δµ∆ρ = 0.583µm, whilst for βδµ = 10−4, Rc = 5.83µm.

According to the general predictions of the effective interface potential analysis, the behaviour

of ρ(r) and χµ(r) around solutes of Rs < Rc and εsf = 0.0 should be largely determined by

Rs, and hence profiles for βδµ = 10−3 and βδµ = 10−4 should exhibit little difference. This
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predicted behaviour was found to be true for a LJ fluid in section 6.2.3.

Figure 7.4 shows the density (lower) and local compressibility (upper) profiles, scaled by

their bulk values, around solutes of Rs < Rc for εsf = 0.0 and T = 426K, and two values of

βδµ. In agreement with predictions, there is very little difference in ρ(r) and χµ(r) for the

two βδµ considered, despite the order of magnitude difference. Figure 7.4 therefore provides

first evidence that hydrophobicity may obey the scaling relations presented in section 5.5.

For completeness, it would be pertinent to test the further prediction that for Rs � Rc,

the density and local compressibility profiles for varying Rs become indistinguishable, as was

confirmed for a solvophobicity in section 6.2.3. However, due to the large values of Rs this

would require, it is simply not feasible here.

7.2.3 Influence of Temperature

In section 7.1, three temperatures were proposed as sensible state points. The first was

T = 300K, at which mW reproduces the density of water well. Molinero and Moore [132] also

showed that at 298K, the radial and angular distributions of mW are in excellent agreement

with experiment, hence this state point most accurately reproduces the structure of water.

The second temperature suggested was T = 360K, which is the temperature at which mW

reproduces the liquid-vapour surface tension of water almost exactly. Finally, the third state

point was T = 426K, which is expected to correspond to that of water at ambient conditions,

as shown in figure 7.2(b). Although the majority of results collected were at the latter
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Figure 7.4: Density (lower) and local compressibility (upper) profiles, scaled by their bulk values,
for mW at T = 426K and εsf = 0.0, and for varying Rs and βδµ. The uncertainty in each profile was
calculated according to section 4.2.11, and did not exceed line width in the case of the density.
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temperature, as each state point represents a different property expected to be important

for accurately modelling hydrophobicity, it is interesting to ask how hydrophobicity differs at

each of these temperatures.

Figure 7.5 shows the density (lower) and local compressibility (upper) profiles, scaled by

their bulk values, for solutes of εsf = 0 and three radii, for the state points discussed. Due to

the lower move acceptance ratios at lower temperatures, the uncertainty in these profiles is

larger, particularly for T = 300K. This further justifies the majority use of T = 426K. For all

temperatures considered, the density and local compressibility profiles take much the same

form. As Rs is increased, a region of depleted density and a peak in the local compressibility

emerge at the surface of the solutes, and oscillations indicative of liquid packing effects are

suppressed. These packing effects do not disappear completely at lower temperatures, which

is in contrast to Rs = 17σmw and T = 426K, where packing effects are no longer visible

in either the density and local compressibility profiles. At lower temperatures, the interface

in the density profile and the peak in the local compressibility profile can be seen to be

sharper. This same behaviour was also observed for the case of LR ff LR sf interactions for

solvophobicity, presented in section 6.2.4. Overall, the general behaviour for each of these

state points can be seen to be the same, and hence results collected at any of these can be

expected to accurately represent hydrophobic behaviour.
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Figure 7.5: Density (lower) and local compressibility (upper) profiles, scaled by their bulk values,
for mW around solutes of varying radii with εsf = 0.0. The temperature of the system is given in the
top right of each plot. In all cases, βδµ = 10−3. Uncertainties were calculated as described in section
4.2.11, and in the case of the density did not exceed line width.
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7.3 Effective Interface Potential Predictions

Unlike cDFT, the GCMC methods used within this chapter do not lend themselves to

as thorough a study of the predictions of the effective interface potential analysis, as was

performed for SR ff LR sf interactions for solvophobicity in figures 6.7 and 6.11. There

are several reasons for this. Firstly, within cDFT it is possible to use fine grids for the

density profile to obtain accurate results. For GCMC, it is not possible to use such fine

grids when calculating the density profile according to the methods of section 4.2.10.2, for

reasons including the large statistical noise which would be introduced and the unreasonable

computational resource it would require. The consequence of this is that calculations of the

adsorption per unit area using equation (4.1.55), which require numerical integration, have a

higher uncertainty compared the cDFT. As the predictions of both `eq and χµ(`eq;Rs), given

in equations (5.5.8) and (5.5.14) respectively, contain factors of `eq, their calculated values

will also have a larger uncertainty. In addition, table 7.2 shows that it is not possible to

distinguish ρl from ρb at T = 426K due to the discretisation of the density and the limited

number of mW particles which can reasonably be simulated. As both the predictions of `eq

and χµ(`eq;Rs), and the calculation of `eq itself from equation (2.4.20), contain factors of ∆ρ,

this limitation introduces further inaccuracy. Furthermore, the prediction of the behaviour

of χµ(`eq;Rs) requires an accurate estimate of the correlation length of the bulk vapour, ξ,

for mW. It was described in section 6.3 that an accurate prediction for this is most easily

obtained numerically by considering a planar substrate. Plotting numerical results for systems

very close to the drying critical point against the predictions of equation (5.5.2) permits an

estimate of ξ to be obtained from the gradient. As it was not possible to study systems with

planar substrates close to critical drying within the present work, an accurate estimate for ξ

could not be obtained.

Any attempt to test the predictions of `eq and χµ(`eq;Rs) of equations (5.5.8) and (5.5.14)

for mW was therefore likely to be difficult. Instead, the present work tests the simpler

predictions given in equations (5.5.12) and (5.5.16), that in the limit of Rs < Rc and εsf = 0.0,

the predicted behaviour of `eq and χµ(`eq;Rs) reduces to `eq ∼ lnRs and χµ(`eq;Rs) ∼ Rs.

For T = 426K and βδµ = 10−3, the conditions used throughout most of this chapter, the

length scale of capillary evaporation is Rc ≈ 0.583µm. As this is far larger than the largest

solute considered within the present work, Rs = 17σmw ≈ 4.07nm, all solutes considered can

be expected to obey these relations.

Figure 7.6(a) compares the prediction for `eq to data obtained from mW at T = 426K and

βδµ = 10−3. `eq was calculated in the same way as for the LJ fluid in chapter 6, using equation

(2.4.20). The adsorption was calculated by numerically integrating the density profile using

the trapezium rule, and the uncertainty taken to be O(dr2), where dr was the width of each

histogram bin within the density profile. Due to the inability to distinguish the coexisting

liquid density, ρl, from that of ρb given in table 7.2, and the fact that the coexisting vapour

density of a water model is expected to be several orders of magnitude lower than the liquid

density, ∆ρ was approximated as ∆ρ ≈ ρb.

For Rs > 5σmw, excellent agreement is found between the predictions of the effective
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Figure 7.6: (a) Comparison of predicted growth of `eq with Rs, given in equation (5.5.12), for the
case of Rs < Rc, to results obtained using GCMC simulations of mW. The uncertainty was taken
to be that associated with the calculation of the adsorption, Γ. (b) Comparison of predicted growth
of χµ(`eq;Rs) as given in equation (5.5.16) for the case of Rs < Rc, to data obtained using GCMC
simulations of mW. Uncertainty was calculated as described within the text, and did not exceed
symbol size. In both (a) and (b), the parameters were T = 426K, βδµ = 10−3 and εsf = 0.0. The
dotted lines are linear fits to the simulation data.

interface potential analysis and the results for `eq obtained from GCMC, particularly for

Rs ≥ 9σmw. Considering the left of figure 7.4, it can be seen that these values of Rs correspond

to density profiles with clear vapour films and limited packing effects. It is interesting to note

the values of `eq found, as even for Rs = 17σmw ≈ 4.07nm, `eq < σmw. This indicates

that although regions of depleted density do form at the surface of the hydrophobic solutes,

their width is very limited. It is therefore extraordinary that the predictions of the effective

interface potential analysis, which specifically assumes a thick vapour film, appear to be

obeyed.

Figure 7.6(b) compares the predicted relationship for χµ(`eq;Rs) to the results obtained

from mW for the same conditions as figure 7.6(a). In each case, χµ(`eq;Rs) was taken to

be the first value in the χµ(r) profile for which r > Rs + `eq. The uncertainty was found

using the standard error, defined in equation (4.2.29), in the value of χµ(`eq;Rs) between the

multiple parallel simulations performed, and did not exceed the symbol size. Again, excellent

agreement is found for Rs > 5σmw. This indicates that the scaling relationship predicted in

equation (5.5.16) is obeyed by these hydrophobic systems.

For solvophobicity, it was noted in section 6.3 that Rs remains the dominant influence

over `eq and χµ(`eq;Rs) for a region of parameter space where βδµ > 0 and εsf > 0. This can

be seen by considering values of Rs < 1000σ in figures 6.9(a), 6.9(b), 6.14(a) and 6.14(b). As

hydrophobicity has been shown to exhibit comparable behaviour to solvophobicity throughout

this chapter, it is reasonable to assume that such a region of parameter space should also

exist for hydrophobicity. It is therefore plausible that all systems with Rs > 5σmw presented
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Figure 7.7: Comparison of the prediction that systems with εsf > 0 obey the same relationships as
figure 7.6 to results obtained from GCMC for (a) `eq and (b) χµ(`eq;Rs). The parameters of each
system were T = 426K and βδµ = 10−3, whilst εsf is given by the symbol. Uncertainty was as
calculated in figure 7.6. Dotted lines are linear fits.

in figure 7.3 exhibit the scaling found for the case of εsf = 0.0 in figures 7.6(a) and 7.6(b).

Figures 7.7(a) and 7.7(b) test this proposition for mW at T = 426K and βδµ = 10−3 for

three values of εsf > 0.0. In all cases, linear behaviour is found for Rs > 5σmw, in agreement

with predictions. This indicates that `eq and χµ(`eq;Rs) are indeed predominantly influenced

by Rs in this regime, in agreement with the contour plots presented for solvophobicity in

section 6.3.

7.4 Form of Depleted Density Region

Throughout this chapter, the depleted density region observed in the density profiles of

figures 7.3, 7.4 and 7.5 has been referred to as a vapour film. However, as was discussed

in section 3.1.3 for the macroscopic regime of hydrophobicity, there is substantial debate as

to whether the form of the depleted density region at the surface of a planar substrate is

that of a film or ‘gap’, or whether it instead takes the form of ‘nanobubbles’. As the density

and local compressibility profiles for hydrophobic solutes presented here and for macroscopic

substrates presented in [37] show little difference, it is reasonable to expect that this debate

extend to solutes. Figures 7.8 and 7.9 show snap-shots of cross-sections through the centre

of the simulation box for all nine solute sizes considered. For both figures 7.8 and 7.9,

the temperature was held constant at T = 426K and the chemical potential deviation at

βδµ = 10−3, whilst the sf attraction was taken to be εsf = 0.0 in the former and εsf = 0.02εmw

in the latter. In each cross-section, the ratio of the size of the mW particles, shown in blue,

to the size of the solute, shown in purple, is to scale. The depth of each mW particle is
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Rs =1σmw Rs =3σmw Rs =5σmw

Rs =7σmw Rs =9σmw Rs =11σmw

Rs =13σmw Rs =15σmw Rs =17σmw

Figure 7.8: Cross-sections through centre of simulation box showing a snapshot of the positions of
mW particles (blue) with respect to the solute (purple). The ratio of the size of the mW particles
to the solute is to scale in each case. Darker blue mW particles represent particles closer to the
foreground, whilst lighter mW particles represent those closer to the background. The parameters of
each system were T = 426K, βδµ = 10−3 and εsf = 0.0. The radius of each solute is given in the
lower left of each cross-section.

represented by the shade of blue, with lighter shades indicating particles further away.

Figures 7.8 and 7.9 support the nanobubble view for the form of the depleted density

region around solutes. Considering first figure 7.8, it can be seen that for small Rs < 5σmw,

there is little evidence that the hydrophobic solute disrupts the behaviour of mW particles,

in agreement with the behaviour expected from the small length scale solvation regime.

However, as Rs increases, small bubbles begin to appear at the surface of the solute. For

Rs = 7σmw and Rs = 9σmw, these bubbles can be observed in the lower left of the solute.

They do not extend far from the surface of the solute, and appear to be limited in depth. By

Rs = 11σmw, the bubbles appear to be more spread over the surface, and can be observed
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Rs =1σmw Rs =3σmw Rs =5σmw

Rs =7σmw Rs =9σmw Rs =11σmw

Rs =13σmw Rs =15σmw Rs =17σmw

Figure 7.9: Cross-sections through centre of simulation box showing a snapshot of the positions of
mW particles (blue) with respect to the solute (purple). The ratio of the size of the mW particles and
solute is to scale in each case. Darker blue mW particles represent particles closer to the foreground,
whilst lighter mW particles represent those closer to the background. The parameters of each system
were T = 426K, βδµ = 10−3 and εsf = 0.02εmw. The radius of each solute is given in the lower left
of each cross-section.

most clearly in the upper right of the solute. Lighter blue mW particles can be seen easily

here, which indicates that these bubbles have more depth. For Rs > 11σmw, nanobubbles can

be observed extensively over the surfaces of the solutes. However, these again do not extend

very far from the surface of the solute. This is in agreement with the expectation that the

parallel correlation length diverge more quickly than the perpendicular correlation length, in

systems near to the critical drying surface phase transition. Figure 7.9 shows much the same

behaviour though, as would be expected for system with larger εsf , the bubbles appear to be

more suppressed.

Over the course of a simulation, these nanobubbles fluctuate in shape, location and form.

139



CHAPTER 7. INFLUENCE OF CRITICAL DRYING IN THE HYDROPHOBIC
RESPONSE OF WATER
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Figure 7.10: Cross-sections through centre of simulation box showing snapshots of the positions of
mW particles (blue) with respect to a solute (yellow) of radius Rs = 17σmw during the course of a
simulation. The ratio of the size of the mW particles and solute is to scale in each case. Darker blue
mW particles represent particles closer to the foreground, whilst lighter mW particles represent those
closer to the background. The parameters of the system were T = 426K, βδµ = 10−3 and εsf = 0.0.

This can be seen in figure 7.10, which shows snap-shots of cross-sections for a system con-

sisting of a solute of radius Rs = 17σmw, over the course of a simulation. As in figures 7.8

and 7.9, the temperature and chemical potential deviation were held constant at T = 426K

and βδµ = 10−3 respectively. The sf fluid attraction was εsf = 0.0. Whilst in all snap-shots

nanobubbles are clearly visible, in some they are more widespread than others. For exam-

ple, in figures 7.10(f) and 7.10(h), the nanobubbles can be seen to cover the surface of the

solute substantially, indicating a somewhat film-like depleted density region. In contrast, in

figures 7.10(b) and 7.10(d), the nanobubbles are far more localised. This variation highlights

the large density fluctuations present around hydrophobic solutes. Whilst these nanobubbles

grow and shrink frequently, on average they lead to a region of depleted density at the surface

140



7.5. DISCUSSION

of the solute, as indicated by the corresponding density profile of this system, shown in figure

7.3.

The emergence of nanobubbles on the surface of a planar substrate in contact with a LJ

fluid has been reported previously in simulations by Evans et al. [32]. These were found

to cover large areas of the surface, however to extend only a few fluid particle diameters

perpendicularly, in agreement with the experimental AFM findings for water by Tyrrell and

Attard [88] and Steitz et al. [103]. The results presented within this thesis suggest that these

nanobubbles are also present around hydrophobic solutes of Rs > 1nm.

7.5 Discussion

Within this chapter, GCMC simulations have been used to study hydrophobic systems

with the purpose of evaluating the validity of postulate 1 and 2 presented in chapter 1. Density

and local compressibility profiles around solutes of nine different radii have been presented,

for a range of parameters (βδµ, εsf , T ), and several of the predictions of the effective interface

potential analysis for systems with SR ff LR sf interactions have been tested. In addition,

the form of the depleted density region around solutes has been considered, and compared

to the forms reported at planar substrates in experiment [88, 103].

All results presented within this chapter support postulate 1. The density and local

compressibility profiles presented for solutes in figure 7.3 have near identical forms to those

found at planar substrates by Evans and Wilding [23] for the water model SPC/E, indicating

that hydrophobicity on microscopic length scales behaves in the same way as hydrophobicity

on macroscopic length scales. Figures 7.4, 7.6 and 7.7 provide evidence that microscopic

hydrophobic systems obey the predictions of the effective interface potential, and are there-

fore influenced by a drying critical point. Evans and Wilding [23] provided evidence that

macroscopic hydrophobic systems are also influenced by a drying critical point. Combined,

these results are strong evidence in support of the mechanism underlying hydrophobicity on

microscopic and macroscopic length scales being a drying surface critical point.

Although the values of Rs investigated for hydrophobicity within this chapter differ from

those investigated for solvophobicity in chapter 6, similar forms of the density and local

compressibility profiles have been observed in each case. These forms have also been found

to exhibit similar behaviour when varying the temperature and chemical potential deviation.

Furthermore, evidence provided in sections 7.3 and 6.3 supports both hydrophobicity and

solvophobicity being related to a drying critical point. Overall, this is overwhelming evidence

in favour of postulate 2, that hydrophobicity is no more than a specific case of solvophobicity.

This suggests that all qualitative conclusions drawn in chapter 6 for solvophobicity, should be

equally applicable to hydrophobicity. Of course, quantitative conclusions drawn in chapter

6, for example that the effects of the drying critical point in solvophobic systems is only felt

when Rs > 20σ, do not apply to hydrophobicity.

The study presented within this chapter has been limited both by computational resource

and FS effects. It has not been possible to test many of the predictions of section 5.5 due

to the limited systems sizes which could reasonably be simulated, the onset of premature
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drying in systems with planar substrates, and due to the inaccuracies introduced through

limited knowledge of the precise values of ρv, ρl, ξ, as was outlined in section 7.3. Whilst it

would be pertinent to test more of the predictions of the effective interface potential analysis,

particularly in the planar limit, there is no reason to believe that the conclusions drawn

here would change. These conclusions are therefore expected to be accurate, despite the

limitations within the present study.

Finally, it is worth returning to the observation made in section 6.4, that density fluctu-

ations in systems with solutes of similar size ratios of biomolecules to water molecules are

largely uninfluenced by changes in local conditions. It has been shown in figure 7.4 that

varying βδµ has very little influence on the local compressibility. Varying the temperature

by over 100K in figure 7.5 can be seen to only marginally influence the local compressibility.

Increasing the sf attraction between the solutes and water can be seen to have a larger im-

pact on the local compressibility in figure 7.3, as can varying Rs. Hence, whilst changes in

local thermodynamic conditions do not appear to have much influence on the local density

fluctuations, changes in geometric or solute chemical conditions do. This is interesting for

several reasons. Firstly, if a uniform hydrophobic polymer chain partially collapses, part of

the chain will then have a larger physical size compared to the stretched parts, and also a

different sf attraction strength. From the results presented here, these two effects can be

expected to enhance local density fluctuations in the collapsed region of the chain, which

may facilitate further collapse. These observations are in agreement with previous findings

[30, 98]. Secondly, topology and chemical heterogeneity have been widely reported to be

influential in many biological processes, such as protein folding [73]. Although several studies

have investigated density fluctuations in the processes mentioned [30, 31, 98], the measures

of density fluctuations the authors used did not include the spatial information that the

local compressibility offers. A study of the changes in the local compressibility during the

hydrophobic polymer collapse or biological assembly could therefore be very interesting.
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Chapter 8

Comparison of Measures of

Fluctuations on the Approach to

Critical Drying

In section 2.5, three measures of local density fluctuations, the local compressibility χµ, the

local thermal susceptibility χT , and the reduced density χ∗, were introduced. The first two

of these were then shown to be related to one another on the approach to critical drying,

through equation (5.3.8) in the case of a planar substrate, and equation (5.3.17) in the case of

a curved substrate or solute. Specifically, this was predicted to be the case if the gap exponent

satisfied ∆ > 1. Whilst this was confirmed to be the case for LR ff LR sf interactions, it

was found that ∆ = 1 for the case of SR ff LR sf interactions. As a case of the edge of the

applicability of the relation, a full microscopic analysis was required to confirm that systems

with SR ff LR sf interactions obey the expected relations. Such an analysis was presented in

section 5.5, and confirmed that equations (5.3.8) and (5.3.17) were expected to be obeyed in

the case of SR ff LR sf interactions.

After this, all further results considered only χµ. This is justified if a relationship does

indeed exist between χµ and χT in the limit of critical drying, as knowledge of one effectively

gives knowledge of the other. Equation (2.5.3) shows that χ∗ is defined with respect to χµ and

χT , and hence knowledge of χµ alone then also gives χ∗. However, as yet the relationships in

equations (5.3.8) and (5.3.17) have not been tested. Furthermore, no justification has been

made for the choice of χµ, as opposed to χT , utilised extensively in chapters 6 and 7. Within

this chapter, the choice of χµ is justified, and the predicted relations between χµ and χT for

both planar substrates and solutes verified.

8.1 State Points and Bulk Properties

Within this chapter, systems with SR ff LR sf interactions are used to test the accuracy

of the relations presented in equations (5.3.8) and (5.3.17). With a gap exponent of ∆ = 1,

these systems are expected to be on the edge of the applicability of these relations. If the

relations are obeyed in such a marginal case, then they can then also be expected to be
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obeyed in all systems with ∆ > 1, for example, those with LR ff LR sf interactions. All

results within this chapter were collected using cDFT as described in section 4.1. Table 8.1

presents the bulk properties of the state points for systems with SR ff LR sf interactions at

kBT/ε = 0.775kBTc/ε = 1.0225672588 considered within this chapter. The bulk density, ρb,

was found in the same way as in section 6.1, whilst χµ,b was found using equation (4.1.59).

χT,b was found by performing a numerical derivative of ρb with respect to temperature within

cDFT, whilst χ∗,b followed naturally from equation (2.5.3).

Table 8.1: Bulk properties of the state points for a system with SR ff LR sf interactions at kBT/ε =
0.775kBTc/ε = 1.0225672588 considered within this chapter.

βδµ ρbσ
3 εσ3χµ,b εσ3χT,b/kB σ3χ∗,b

10−3 0.5980277945 0.1788896299 -0.8757469527 2.1734350790

10−4 0.597863029 0.1791754507 -0.8765597781 2.1753526845

10−5 0.597846538 0.1792040971 -0.8766412340 2.1755448811

10−6 0.5978448887 0.1792069624 -0.8766493631 2.1755640868

8.2 Comparison of Profile Behaviour Near to Critical Drying

By definition, the behaviour of χµ and χT is dependent on the behaviour of the density

profile. Near to critical drying, the density profile takes the form of a depleted density region

or vapour-like film, with a liquid-vapour like interface with the bulk. In sections 6.2 and

7.2, it was found that increasing the chemical potential, µ, moved this interface towards the

surface of the solute or planar substrate - a behaviour rationalised by the fluid moving further

from liquid-vapour coexistence. The resultant derivative, χµ, then took the form of a smooth

positive peak. Using similar reasoning, the effect of increasing the temperature, T , should be

to move the fluid towards liquid-vapour coexistence, and hence the liquid-vapour interface

away from the surface of the solute or planar substrate. In this case, the derivative is also

expected to take the form of a smooth peak, however is now expected to be negative. χT is

therefore expected to follow a similar shape and form to χµ, but with opposite sign, as would

be expected from the relationships predicted from the effective interface potential analysis in

equations (5.3.8) and (5.3.17). By nature of its definition in equation (2.5.3), χ∗ should also

take this form and be positive. It should be noted that, because the behaviour of changing

(µ, T ) is to move the liquid-vapour interface in opposite directions, the peaks in χµ and χT

are not expected to align exactly.

Figure 8.1 compares χµ(z), χT (z) and χ∗(z) for a system with SR ff LR sf interactions

and a planar substrate at parameters T = 0.775Tc, βδµ = 10−3 and δεsf = 0.0. The latter

of these parameters for the case of SR ff LR sf interactions equates to considering a hard

substrate. Each profile is scaled by its bulk value in the main figure, whilst the inset shows

the dimensionless raw profiles. The density profile, scaled by its bulk value, is also given

in the lower figure for comparison. From the raw profiles within the inset, it is clear that

the expected behaviour is observed. χµ and χT show very similar forms with opposite sign,

whilst χ∗ features a smooth peak and is positive. In terms of magnitude, χµ and χT appear

similar, whilst χ∗ is much larger. However, when scaled by their bulk value, χµ can be seen to

vary far more than χT or χ∗. This indicates that χµ is the most sensitive measure of density
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Figure 8.1: Fluctuation (upper) and density (lower) profiles, scaled by their bulk values, for a
system with a hard planar substrate and SR ff LR sf interactions. The measure of density fluctuation
is denoted as χx, where x = µ, T, ∗. The parameters for the system were T = 0.775Tc, βδµ = 10−3

and δεsf = 0.0. Raw fluctuation profiles are given in the inset, and have been made dimensionless by
multiplying by εσ3, εσ3/kB and σ3 in the cases of χµ, χT and χ∗ respectively.

fluctuations near to critical drying, and hence justifies its use in previous chapters.

It was found in chapter 6 that χµ took the same form around solutes as it did at planar

surfaces, which is expected as the density profile also takes the same form in both cases.

As χT and χ∗ show the same behaviour as χµ, it is natural to assume that they also take

the same forms around solutes as they do at planar surfaces. Increasing the curvature of

the substrate acts to move the system away from the drying critical point, and thus the

liquid-vapour interface in the density profile closer to the surface of the solute. The effect

of curvature on the fluctuation profiles should therefore be to move the peaks closer to the

surface of the solute, and to reduce their magnitude.

Figure 8.2 compares the fluctuation and density profiles for two radii of solutes for the

same parameters as in figure 8.1. The two radii of solutes shown were chosen such that

they demonstrated the behaviour when Rs = 102σ < Rc and Rs = 104σ > Rc, where Rc =

2γlv/δµ∆ρ is the length scale of capillary evaporation discussed previously and was previously

discussed in chapter 6 to separate regimes in which curvature is expected to influence the

behaviour of the density fluctuations near to critical drying (Rs < Rc) and in which it is not

(Rs > Rc). The dimensionless raw profiles are shown on a linear scale in the inset, whilst
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Figure 8.2: Fluctuation (upper) and density (lower) profiles, scaled by their bulk values, for two hard
solutes of radius Rs = 102σ (pink) and Rs = 104σ (blue) in systems with SR ff LR sf interactions.
The measure of density fluctuation is denoted as χx, where x = µ, T, ∗. The parameters for each
system were T = 0.775Tc, βδµ = 10−3 and δεsf = 0.0. Raw fluctuation profiles are given in the inset
and have been made dimensionless by multiplying by εσ3, εσ3/kB and σ3 in the cases of χµ, χT and
χ∗ respectively.

in the main figure, the profiles are shown scaled by their bulk values on a logarithmic scale.

For comparison, the density profiles for each radii of solute, scaled by their bulk values, are

shown in the lower figure.

Considering first the case of Rs = 104σ, the influence of curvature can be seen to be

muted, as expected for a solute which falls into the curvature independent scaling regime.

The magnitude of the fluctuations is reduced only slightly compared to those found at the

equivalent planar substrate in figure 8.1, and the peak is moved only marginally closer to the

surface of the solute. For Rs = 102σ, the curvature of the substrate can be seen to have a

much larger influence over the behaviour of the density fluctuations. Whilst the general form

of the profiles remains unchanged as expected, the magnitude of each measure is depleted

substantially compared to Rs = 104σ, and the peak in each profile moved far closer to the

surface of the solute. As in the planar case, χµ can be seen to vary the most from its bulk

value for both radii of solutes.
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8.3 Effective Interface Potential Predictions

The effective interface potential analysis predicts that the ratio of χT to χµ follow the

specific forms given in equations (5.3.8) and (5.3.17) for the cases of planar and curved

substrates respectively. These are repeated here for convenience. For a planar substrate, it

is expected that
χT (`eq)

χµ(`eq)
∼ −∂µco

∂T
(8.3.1)

whilst for a curved substrate or solute, the expectation is

χT (`eq;Rs)

χµ(`eq;Rs)
∼
(

2

Rs

∂

∂T

(
γlv
∆ρ

)
− ∂µco

∂T

)
(8.3.2)

Defining the left hand side of each relation as the ‘ratio’ and the right as the ‘expected’, the

disagreement in each relation, δe, can be defined as

δe =
|Ratio− Expected|
|Expected| (8.3.3)

These relations are valid in the vicinity of the drying critical point, therefore δe can be

expected to reduce as the drying critical point is approached. For the case of SR ff LR

sf interactions, this drying critical point is expected to occur at the parameters (βδµ =

0.0, δεsf = 0.0, Rs =∞). The gradient of the coexistence curve was found using the program

by Wilding [148], previously used in section 6.1, and was evaluated to be

∂µco
∂T

∣∣∣∣
T=0.775Tc

= 0.8339999979(5)k−1
B

Figure 8.3(a) compares δe for a planar substrate in systems with varying βδµ and δεsf .

As the drying critical point parameters are approached, δe can be seen to tend towards zero,

which confirms that the relation given in equation (8.3.1) is obeyed in the vicinity of the drying

critical point. Very close to critical drying, for example when βδµ = 10−5 and δεsf = 0.0,

δe appears to increase. For such parameters, χµ and χT are expected to be thousands of

times their bulk values, and rapidly varying. It should therefore be noted that an increase

in δe very close to the drying critical point does not imply a break down in the relation,

but instead highlights the difficulty in accurately evaluating the large and rapidly varying

density fluctuations. As δεsf is increased, δe also increases. By δεsf = 0.2, δe > 0.12 for all

βδµ considered, and hence the relation presented in equation (8.3.1) is no longer obeyed well.

This is to expected, as it was shown in figure 6.11 that the drying critical point has limited

influence in systems with SR ff LR sf interactions when δεsf > 0.2.

Figure 8.3(b) compares δe for systems with solutes of varying size at βδµ = 10−4 for two

values of δεsf . This value of βδµ was chosen as figure 8.3(a) shows that it is suitably close to

the drying critical point to give low δe in the planar limit, however far enough away to allow

for accurate numerical evaluation of the density fluctuations. Considering the relation in

equation (8.3.2), and the behaviour shown in figure 8.2, two regimes of δe can be expected to

exist. For large Rs, the second curvature independent term in equation (8.3.2) is expected to
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Figure 8.3: Variation in δe on the approach to critical drying in a system with SR ff LR sf interactions
and (a) a planar substrate or (b) a curved substrate. In both cases, T = 0.775Tc, whilst in (b),
βδµ = 10−4.

dominate. In this case, equation (8.3.2) should reduce to equation (8.3.1) and hence δe in this

regime should be constant and similar to the value for the equivalent parameters (βδµ, δεsf )

in figure 8.3(a). For small Rs, the first curvature dependent term in equation (8.3.2) can be

expected to dominate.

This does appear to be the case in figure 8.3(b). For Rs > 104σ for both δεsf = 0.0

and δεsf = 0.1, δe can be seen to be fairly constant, and similar to the values for the planar

substrate in figure 8.3(a). For Rs < 104σ, δe can be seen to increase, becoming particularly

large when Rs = 102σ. To some extent, large δe is not unexpected at such small values of Rs.

Firstly, these values of Rs represent systems very far from the drying critical point, where

equation (8.3.2) cannot be expected to be obeyed. Secondly, from the left of figure 6.11, it can

be seen that the predictions of the effective interface potential analysis are not well obeyed

for small values of Rs, particularly as δεsf is increased. It is worth noting the value of Rs for

which δe changes behaviour in figure 8.3(b) corresponds well to the length scale of capillary

evaporation, which for βδµ = 10−4 is Rc = 9134σ. For δεsf = 0.0 this is to be expected, as it

was previously shown in section 6.2.3 that Rc in this case separates radii of solutes for which

the solvophobic behaviour is curvature dependent and independent. However, the behaviour

for δεsf = 0.1 in figure 6.14(a) suggests that curvature independent behaviour should begin

for smaller values of Rs, and hence it is surprising that δe becomes curvature independent

also at Rc when δεsf = 0.1.

8.4 Discussion

Within this chapter, it has been confirmed that the mesoscopic thermodynamic relations

predicted to exist between χµ and χT on the approach to the drying critical point in section

5.3 are indeed obeyed. This is true for both planar substrates, for which the relation is given

in equation (5.3.8), and for curved substrates, for which the relation is given in equation
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(5.3.17). This confirms that χµ, χT and by nature of equation (2.5.3) χ∗, diverge in the same

way on the approach to the drying critical point. Any study of the influence of critical drying

on hydrophobicity and solvophobicity is therefore free to choose any of these as the measure

of density fluctuations, as knowledge of one is equivalent to knowledge of all.

Within this study, χµ was chosen, in part due to its ease of access within the GC ensemble.

Comparing the profiles of χµ, χT and χ∗ for planar and curved substrates given in figures 8.1

and 8.2, it can be seen that this choice is also justified by the larger variation χµ shows from

its bulk value than χT or χ∗. However, it should be noted that the magnitude of χT depends

heavily on the definition of the thermal de Broglie wavelength, Λ, which was discussed in

section 2.2 [71]. Within the present work, and is standard for cDFT and simulation studies,

this has been defined as Λ = σ and Λ = σmw when using cDFT and GCMC respectively, and

as such χT shows less variation from its bulk value than χµ. However, if the temperature

dependence of Λ is maintained, such that Λ ≡ Λ(T ), it has been shown by Eckert at. al. [71]

that χT varies significantly more from its bulk value than χµ. Whilst both conventions are

valid, the simplest and most commonly used is the one adopted within the present work, and

hence the results presented within this thesis are the most relevant to the majority of studies.

It should also be noted that the relationships predicted between χµ and χT are expected to

be valid in either convention.
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Chapter 9

Conclusions

Hydrophobicity and solvophobicity present in many ways. Around both solutes and surfaces

in contact with fluids near to liquid-vapour coexistence, regions of depleted density, colloqui-

ally referred to as vapour films, have been shown both within this thesis and previous work

[6, 9, 22–27] to emerge. These regions are associated with enhanced density fluctuations, and

it has been the purpose of this thesis to understand the physical origin of these. Doing so

requires a measure of density fluctuations which allows for their magnitude and spatial loca-

tion with respect to the solute or surface to be understood. Within this thesis, the measure

of choice for this was the local compressibility, χµ(r), which was defined in equation (2.5.1).

It was proposed in chapter 1 that enhanced density fluctuations within hydrophobic and

solvophobic systems were related to a drying surface critical point. This hypothesis has been

tested in three ways. Firstly, an effective interface potential analysis was performed in chapter

5, to anticipate how systems close to this critical point should be expected to behave. To

quantify this behaviour, two measures were used: the equilibrium width of the vapour film,

`eq, and the the magnitude of the local compressibility at `eq, χµ(`eq;Rs). The validity of the

predictions of chapter 5 were then evaluated for solvophobic systems consisting of solutes and

planar surfaces in contact with a LJ fluid in chapter 6 using cDFT. Systems encompassing all

parameters identified in chapter 5 as influencing behaviour near critical drying - the radius of

the solute, Rs, the deviation of the chemical potential of the fluid from its value at coexistence,

δµ, and the magnitude of the attraction felt between the fluid and solute/substrate, εsf -

were explored. The validity of the predictions for the behaviour of `eq and χµ(`eq;Rs) in

hydrophobic systems were investigated in chapter 7 using GCMC of a simple water model,

mW. In contrast to cDFT, GCMC is far more computationally demanding, which limited the

range of parameters which could be considered.

This thesis concludes by returning to postulates in chapter 1 and assessing their validity

in light of the results presented.
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Postulate 1

The physical mechanism which underlies hydrophobicity is a surface critical point called dry-

ing, and it is this mechanism which relates hydrophobicity on the microscopic and macroscopic

length scales.

Within chapter 7 only solutes were considered. Because of this, the present work was

limited in the number of relationships identified in chapter 5 it could verify for hydrophobicity.

For small hard solutes, which equated to δεsf = 0, the effective interface potential analysis

predicted that `eq ∼ lnRs and χµ(`eq;Rs) ∼ Rs. This was tested in figure 7.6, where excellent

agreement was found. Such relationships were also predicted to remain valid for small δεsf ,

which was shown to be true in figure 7.7. Chapter 5 predicted that these systems should

depend little on δµ, which was confirmed in figure 7.4. All predictions of chapter 5, which

could reasonably be tested using the methods utilised within this thesis, were therefore found

to be obeyed by hydrophobic systems. This is clear evidence that the mechanism underlying

hydrophobicity is indeed a drying surface critical point.

Although only solutes were considered here, it is possible to examine the relation between

the behaviour of hydrophobicity on the microscopic (solute) and macroscopic (planar surface)

length scales, due to previous work by Evans and Wilding [23]. Their study considered both

density and local compressibility profiles of the SPC/E water model confined within a slit

with smooth planar surfaces. For most values of surface-water attraction considered in [23],

the surfaces could be considered non-interacting, and hence each thought of as a single smooth

planar surface. Both the density and local compressibility profiles of Evans and Wilding’s

study [23] show near identical forms to those presented in figure 7.3 for solutes. Evans and

Wilding’s study specifically related the hydrophobic behaviour observed at planar surfaces to

a critical drying transition. This is clear evidence that the both microscopic and macroscopic

hydrophobicity is related to the drying critical point.

Whilst all evidence presented within this thesis, and evidence presented in previous studies

[23], supports the postulate, it may be pertinent to test more of the predictions of chapter

5 before formally concluding it to be valid. For example, investigating the accuracy of the

predicted behaviour specific to a planar substrate, which was presented in section 5.5.1, would

definitively prove whether macroscopic hydrophobicity is related to critical drying, and would

quantitatively relate hydrophobicity of solutes and surfaces. Such a study is likely to be very

demanding and plagued by FS effects.

All results for hydrophobicity presented within this thesis were obtained using molecular

simulation of a particular water model, and hence it is sensible to ask how well they can be

expected to describe physical phenomenon. The water model used, mW, is well documented

to accurately describe the structure of water at ambient conditions, and to outperform other

popular water models when reproducing the liquid-vapour surface tension [132], both of which

are properties expected to be important in studies of hydrophobicity. However, the majority

of results presented in chapter 7 were not obtained at ambient conditions, but instead at a

higher temperature. This temperature was chosen to reflect the ratio of ambient temperature

to the temperature of the bulk critical point for water, T/Tc ≈ 0.46. Figure 7.2(b) justifies
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CHAPTER 9. CONCLUSIONS

this, as it can be seen that when both the density and temperature of the liquid-vapour

coexistence curves of mW and water are scaled by their bulk critical values, the coexistence

curves of water and mW collapse onto one another. The results presented within this thesis

were therefore gathered at a state point of mW which corresponded to the state point for

water at ambient conditions. In addition, limited results for mW were obtained at ambient

conditions, and compared to those obtained at higher temperatures in figure 7.5. Very similar

behaviour is observed at all temperatures. Considering all of this, it is concluded that the

results presented within this thesis accurately characterize the hydrophobic behaviour of

mW near ambient conditions, and can be expected to reasonably describe the hydrophobic

behaviour of real water under similar conditions.

Postulate 2

Hydrophobicity is simply a specific case of solvophobicity, and the mechanism underlying both

is a drying critical point.

Chapter 6 tested almost all of the predictions of the effective interface potential analysis

for the case of solvophobicity using cDFT, and found excellent agreement. Figures 6.7 and

6.11 showed that the predicted behaviour of `eq and χµ(`eq;Rs) is obeyed for a wide range

of parameters, whilst contour plots in figures 6.9 and 6.14 provided a visual understanding

of the role of individual parameters in solvophobicity. Specific predictions, for example that

for Rs > Rc, where Rc is the length scale of capillary evaporation, it should not be possible

to distinguish behaviour of solutes from that of a surface, were also confirmed. Chapter

6 provided a wealth of evidence that solvophobicity on both microscopic and macroscopic

length scales is related to a drying critical point.

As all predictions of chapter 5 tested for hydrophobicity were also obeyed, it is highly likely

that hydrophobicity and solvophobicity are both influenced by critical drying. Furthermore,

the density and local compressibility profiles for hydrophobicity presented in section 7.2 and

for solvophobicity in section 6.2 exhibit remarkably similar behaviour, in form and also when

varying Rs and εsf . Because of this, it can be concluded that hydrophobicity is simply a

specific case of solvophobicity, and hence the postulate is valid. The results presented in

chapter 6 for solvophobicity then serve as further evidence in support of postulate 1.

The results presented to validate the postulates specifically refer to systems with SR

ff LR sf interactions, which best represent those expected in computational studies. It was

highlighted in section 2.4.5 that the range of ff and sf interactions is important for determining

firstly whether the drying transition is critical, and secondly for identifying its location.

Experimental systems are expected to have LR ff LR sf interactions, and whilst these systems

are also expected to undergo critical drying, the conditions for the drying critical point are

not the same as in the case of SR ff LR sf interactions. Because of this, all predictions of

chapter 5 investigated for solvophobic systems with SR ff LR sf interactions in chapter 6 were

also verified for systems with LR ff LR sf interactions. Excellent agreement was again found,

and hence the conclusions drawn from the postulates within this thesis can be expected to

be applicable to experimental conditions.
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During the effective interface potential analysis of chapter 5, it was found that the local

compressibility, χµ, and the local thermal susceptibility, χT , were related to one another in

the vicinity of the drying critical point. Explicitly, equations (5.3.8) and (5.3.17) for planar

and curved substrates respectively predicted that χµ and χT diverge in the same way on

the approach to critical drying. Subsequent analysis within chapter 5 suggested that these

relations should be obeyed by systems with both SR ff LR sf and LR ff LR sf interactions.

Within chapter 8, these predictions were tested using cDFT of systems with SR ff LR sf

interactions, and excellent agreement was found for systems very near to the drying critical

point.

It has already been noted within this chapter that future investigations should consider

testing the validity of the predictions of chapter 5 for planar hydrophobic substrates. In

addition to this, there are many possible directions for future study. For example, within this

thesis, evidence has been presented in chapter 7 and appendix E for a possible law of corre-

sponding states between mW and water. It would be interesting to take this further, in order

to confirm whether such a relationship exists. If one were to be found, it could provide further

insight into the influence of the structure of water on its unusual characteristics. Another

possible avenue for future work is to apply the spatially resolved measures of density fluctu-

ations, shown within this work to be highly sensitive measures in microscopic hydrophobic

and solvophobic systems, to more realistic situations such as proteins or hydrophobic poly-

mers. These measures could be particularly insightful when considering substrates with both

hydrophilic and hydrophobic areas. Such areas would induce different spatial forms of, for

example, χµ, with hydrophilic fluctuations following the density profile with its peaks and

troughs and hydrophobic fluctuations exhibiting a large peak. Investigating how these types

of fluctuations interact with one another when in close proximity could provide further under-

standing into the behaviour of water near chemically heterogeneous surfaces. This could, for

example, help explain why water in the vicinity of Melittin and the BphC enzyme, discussed

in chapter 3, behaves in the way it does.

Finally, it is worth considering the relevance of this thesis to applications of hydrophobic-

ity. Only smooth, chemically homogeneous solutes and surfaces have been considered within

the present work, which have been taken to interact with fluids via very simple interaction

potentials. The models employed here are therefore somewhat removed from the proteins and

plant leaves discussed in chapter 3. Nevertheless, this thesis has provided evidence for the

physical origin of enhanced density fluctuations observed in such systems, and furthermore

provided a comprehensive understanding of how such fluctuations depend on changes in local

conditions, such as the chemical potential. This thesis therefore contributes to understanding

the fundamental physics behind hydrophobicity.
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Appendix A

Partial Derivatives of the Rosenfeld

Functional

The one-body direct correlation function for the hard-sphere fluid, defined in equation (4.1.32),

requires knowledge of the partial derivatives of the excess free energy density with respect to

the weighted densities. For the Rosenfeld functional, defined in equation (4.1.30), these are

∂ΦRF

∂n0
= − ln(1− n3)

∂ΦRF

∂n1
=

n2

1− n3

∂ΦRF

∂n1
= − n2

1− n3

∂ΦRF

∂n3
=

n0

1− n3
+
n1n2 − n1 · n2

(1− n3)2
+
n3

2 − 3n2n2 · n2

12π(1− n3)3

∂ΦRF

∂n2
=

n1

1− n3
+
n2

2 − n2 · n2

8π(1− n3)2

∂ΦRF

∂n2
= − n1

1− n3
(A.0.1)
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Appendix B

Derivations for Implementation of

Planar Substrates in cDFT

This appendix gives detailed derivations relevant to the implementation of a smooth planar

substrate and one-component attractive fluid within cDFT.

B.1 Lennard-Jones Fluid-Fluid Interaction

The attractive part of the Lennard-Jones interaction between two particles located at r

and r′ respectively under the WCA splitting is

φatt(r
′ = |r− r′|) =





−ε r′ < rmin

4ε
[(

σ
r′

)12 −
(
σ
r′

)6]
rmin < r′ < rc

0 r′ > rc

(B.1.1)

where rmin = 21/6σ is the location of the minimum of the potential, rc is the cut-off radius

of interaction, ε is the well-depth, and σ is the diameter of a fluid particle. If the fluid is in

contact with a smooth planar substrate, then the density profile will be homogeneous parallel

to the surface of the substrate. This potential can therefore be reduced to a function of the

perpendicular distance from the substrate only, by analytically evaluating the interaction felt

by a single particle due to a plane of particles of homogeneous density a given distance away.

Consider figure B.1 which shows a single particle, p, located at a distance z from the

surface of the planar substrate. Due to the form of φatt(r
′) given in equation (B.1.1), p will

interact with planes of fluid particles of homogeneous density in one of three ways

1. If the plane of fluid particles falls within rmin of p, then p will interact with the plane

via all parts of φatt(r
′). This is the case for the plane at z′.

2. If the plane of fluid particles is further than a distance rmin but less than a distance rc

from p, then the particle will interact with the plane via only part of φatt(r
′). This is

the case for the plane at z′′.

3. If the plane of fluid particles is further than a distance rc from p, then p will not interact
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|z − z′′|

r′

x′

z′z′′z′′′

rmin

rc

p

Figure B.1: Illustration of the interaction between a particle p, located a distance z from a planar
substrate, and various planes of particles of homogeneous density, at distances z′, z′′, and z′′′ from
the substrate. p interacts with other particles via a piece-wise potential, the components of which are
indicated by the circles of radius rmin and rc centred on p.

with the plane. This is the case for the plane at z′′′.

The potential felt by p due to any plane of fluid particles can be expressed generally as

φplane(x
′) =

∫ 2π

0
dϕ′

∫ ∞

0
dx′x′φatt(r

′) (B.1.2)

Using Pythagoras theorem, x′ can be rewritten as x′ =
√
r′2 − |z − z̃|2, where z̃ is general

distance measured from the substrate. The derivative of x′ can then be written as x′dx′ =

r′dr′. Performing the change of variables then gives the expression

φplane(r
′) = 2π

∫ ∞

|z−z̃|
dr′r′φatt(r

′) (B.1.3)

Considering the first scenario, which equates to the plane located at z′ in figure B.1, the

interaction at p can be found to be

φplane(|z − z′| < rmin) = 2π

∫ rmin

|z−z′|
dr′r′(−ε) + 2π

∫ rc

rmin

dr′r′4ε

[( σ
r′

)12
−
( σ
r′

)6
]
]

= −2πε

[
r′2

2

]rmin

|z−z′|
+ 8πε

[
− σ12

10r′10
+

σ6

4r′4

]rc

rmin

= πε

[
|z − z′|2 − r2

min +
4

5
σ12

(
1

r10
min

− 1

r10
c

)
− 2σ6

(
1

r4
min

− 1

r4
c

)]

(B.1.4)

The second scenario corresponds to the plane located at z′′ in figure B.1. The potential felt
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by p due to such a plane is then

φplane(rmin < |z − z′′| < rc) = 2π

∫ rc

|z−z′′|
dr′r′4ε

[( σ
r′

)12
−
( σ
r′

)6
]

= πε

[
4

5
σ12

(
1

|z − z′′|10
− 1

r10
c

)
− 2σ6

(
1

|z − z′′|4 −
1

r4
c

)]

(B.1.5)

For the third scenario, corresponding to the plane located at z′′′, the interaction potential

will be zero everywhere. Therefore, the potential felt at a particle p located a distance z from

the substrate due to a plane of fluid particles of homogeneous density at a distance z̃ from

the substrate, can be written as

φatt(|z− z̃|) =





πε
[
|z − z̃|2 − r2

min + 4
5σ

12
(

1
r10min
− 1

r10c

)
−

2σ6
(

1
r4min
− 1

r4c

)]
|z − z̃| < rmin

πε
[

4
5σ

12
(

1
|z−z̃|10 − 1

r10c

)
− 2σ6

(
1

|z−z̃|4 − 1
r4c

)]
rmin < |z − z̃| < rc

0 |z − z̃| > rc

(B.1.6)

This can then be substituted into equation (4.1.38) to find c(1)(z).

B.2 Lennard-Jones Substrate-Fluid Interaction

The smooth planar substrate is imagined to be formed of planes of particles of diameter,

σs and to be of homogeneous density, ρs. Each particle within the substrate is assumed to

individually interact with the fluid via

Vext(r
′) =




∞ z < 0

4εs

[(
σs
r′

)12 −
(
σs
r′

)6]
z > 0

(B.2.1)

where εs is the well-depth of the interaction and r′ is the distance between the interacting

fluid and substrate particles.

Consider a single fluid particle, p, located at a distance z from the surface of the substrate,

as shown in figure B.2. The attractive interaction felt at p due to a plane of substrate particles

of homogeneous density a distance z′ from the particle is given by

Vplane(r
′) =

∫ 2π

0
dϕ′

∫ ∞

0
dx′x′ρsVext(r

′; z > 0) (B.2.2)

Substituting for Vext(r
′; z > 0) and using Pythagoras theorem to rewrite r′2 = x′2 + z′2 gives

Vplane(x
′; z > 0) = 8πεsρs

∫ ∞

0
dx′
[

σ12
s x
′

(x′2 + z′2)6
− σ6

sx
′

(x′2 + z′2)3

]
(B.2.3)
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z

z′

r′

x′ p

Figure B.2: Illustration of the interaction between a particle p, which is located a distance z from
the surface of the planar substrate, and a plane of substrate particles of homogeneous density which
is located at a distance z′ from the particle.

Applying the substitution s′ = x′2, ds′ = 2x′dx′ reduces this to

Vplane(z
′; z > 0) = 4πεsρs

∫ ∞

0
ds′
[

σ12
s

(s′ + z′2)6
− σ6

s

(s′ + z′2)3

]

= 4πεsρs

[
σ12
s

5z′10
− σ6

s

2z′4

]
(B.2.4)

The potential at p due to all particles within the substrate is then found by integrating over

all planes of particles within the substrate, which gives

Vext(z; z > 0) =

∫ ∞

z
dz′Vplane(z

′; z > 0)

= εsf

[
2

15

(σs
z

)9
−
(σs
z

)3
]

(B.2.5)

where εsf = 2πεsρsσ
3
s/3.

At the surface of the substrate, Vext(z) diverges. However, due to the limits of finite

number representation in computers, this divergence is capped at a large number. For the

discretised systems considered within cDFT, this can lead to nonphysical behaviour in the

density profile close to the surface of the planar substrate. To avoid this, Vext(z) is shifted

such that the minimum occurs at the surface of the substrate. The location of the minimum

can be found to be zmin = (2/5)1/6σs, and hence the final potential used is

Vext(z) =





∞ z < 0

εsf

[
2
15

(
σs

z+zmin

)9
−
(

σs
z+zmin

)3
]

z > 0
(B.2.6)
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B.3 Contact Sum Rule

The planar contact sum rule takes the form [42, 111, 125]

p = −
∫ ∞

−∞
dzρ(z)

dVext(z)

dz
(B.3.1)

where p is the pressure of the fluid. The derivative of Vext(z) can be found by first separating

it into the sum of its purely repulsive and purely attractive components

Vext,rep(z) =




∞ z < 0

0 z > 0
Vext,att(r) =





0 z < 0

εsf

[
2
15

(
σs

z+zmin

)9
−
(

σs
z+zmin

)3
]

z > 0

(B.3.2)

and taking the derivatives of each component individually. The derivative of Vext,rep(z) is

poorly defined at z = 0. To prevent this ambiguity, the derivative is rewritten as [42]

dVext,rep(z)

dz
= −β−1eβVext,rep(z) d

dz
e−βVext,rep(z) (B.3.3)

Substituting for Vext,rep(z) in the second exponential gives a Heaviside function, whose deriva-

tive is the well defined Dirac-Delta function. This then gives

−
∫ 0

−∞
dzρ(z)

dVext,rep(z)

dz
= β−1

∫ 0

−∞
dzρ(z)eβVext,rep(z)δ(z) = β−1ρ(0+) (B.3.4)

where β = (kBT )−1 and 0+ represents the approach from the right of the substrate, where

the density profile is well defined. Evaluating the attractive interaction part gives

−
∫ ∞

0
dzρ(z)

dVext,att(z)

dz
= −εsf

∫ ∞

0
dzρ(z)

[
3σ3

s

(z + zmin)4
− 6σ9

s

5(z + zmin)10

]
(B.3.5)

Therefore, the contact sum rule is

p = β−1ρ(0+)− εsf
∫ ∞

0
dzρ(z)

[
3σ3

s

(z + zmin)4
− 6σ9

s

5(z + zmin)10

]
(B.3.6)
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Appendix C

Derivations for Implementation of

Solutes in cDFT

This appendix gives detailed derivations for the implementation of solutes within cDFT.

C.1 Lennard-Jones Fluid-Fluid Interaction Potential

Consider a system consisting of a smooth spherical solute, of radius Rs, in contact with

a fluid which interacts with itself via the potential given in equation (B.1.1). The solute acts

as a spherically symmetric external potential on this fluid. As the density profile takes the

symmetry of the external potential, it is also expected to be spherically symmetric.

The layout for such a system is given in figure C.1. Consider the fluid particle p located at

the vector r. Due to the spherical symmetry of the density profile, it is possible to analytically

evaluate the interaction potential felt by p due to a shell of other fluid particles located on

the general vector r̃. As the system has radial symmetry, the alignment of the vectors r and

r̃ can be freely chosen to be

r = rk̂

r̃ = r̃ sin θ̃ cos ϕ̃î + r̃ sin θ̃ sin ϕ̃ĵ + r̃ cos θ̃k̂

|r− r̃| = r2 + r̃2 − 2rr̃ cos θ̃ (C.1.1)

where î, ĵ and k̂ represent unit vectors along the x, y and z axes respectively. The angle, ϕ̃

varies in the x − y plane in figure C.1, between 0 and 2π. The angle, θ̃ varies in the y − z
plane. Its limits are related to the angle of r̃ at which the shell of constant density intersects

various parts of the fluid-fluid interaction potential. Two general angles for this are defined

in figure C.1: γ is the angle at which r̃ intersects the r < rmin part of the potential and α

the angle at which r̃ intersects the rmin < r < rc part.

Due to the piece-wise nature of φatt(|r − r̃|) given in equation (B.1.1), there are several

possible scenarios. Assuming first that Rs is sufficiently large, such that α < π, the possible

scenarios are then
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p
rc

rmin
r′

r′′

r z

y
x

Rs

α

γ

Figure C.1: Illustration of the interaction between a particle, p, located at r, and various spherically
symmetric shells of fluid particles of constant density, located at r′ and r′′. The components of the
interaction potential between p and each shell are shown by the blue circles of radius rmin and rc.
The angle subtended from the axis z to r′′ is denoted as α, whilst the angle subtended by the z-axis
and r′ is denoted at γ.

1. If |r − r̃| < rmin, as is the case for particles on the vector r′ in figure C.1, then p will

interact with these particles via all parts of φatt(|r− r̃|).

2. If rmin < |r − r̃| < rc, which is the case for the vector r′′ in figure C.1, then p will

interact with these particles with only the components φatt(|r− r̃| > rmin).

3. If |r− r̃| > rc, the particle p will not interact with the particles.

The potential felt at p due to one shell of particles with constant density is given by

φshell(|r− r̃|) =

∫ 2π

0
dφ̃

∫
dθ̃φatt(|r− r̃|) (C.1.2)

Considering the first scenario, corresponding to r′, the potential felt at p due to all particles

on r′ can be found to be

φshell(|r−r′|) =

∫ 2π

0
dϕ′

∫ γ

0
dθ′ sin θ′(−ε)+

∫ 2π

0
dϕ′

∫ α

γ
dθ′ sin θ′4ε

[
σ12

|r− r′|12
− σ6

|r− r′|6
]

(C.1.3)

Evaluating the first integral gives

∫ 2π

0
dϕ′

∫ γ

0
dθ′ sin θ′(−ε) = −2πε(cos γ − 1) = −2πε

[
(r − r′)2 − r2

min

2rr′

]
(C.1.4)
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where the substitution for (cos γ−1) is found using the cosine rule. The second integral takes

the form

∫ 2π

0
dϕ′

∫ α

γ
dθ′ sin θ′4ε

[
σ12

|r− r′|12
− σ6

|r− r′|6
]

=

8πε

∫ α

γ
dθ′ sin θ′

[
σ12

(r2 + r′2 − 2rr′ cos θ′)6
− σ6

(r2 + r′2 − 2rr′ cos θ′)3

]
(C.1.5)

Using the substitutions, A = r2 + r′2, B = 2rr′ and u = cos θ′ such that du = − sin θ′dθ′,

this integral can be simplified to

∫ 2π

0
dϕ′

∫ α

γ
dθ′ sin θ′4ε

[
σ12

|r− r′|12
− σ6

|r− r′|6
]

= −8πε

∫ cosα

cos γ
du

[
σ12

(A−Bu)6
− σ6

(A−Bu)3

]

= −8πε

B

[
σ12

5

(
1

(A−B cosα)5
− 1

(A−B cos γ)5

)
−

σ6

2

(
1

(A−B cosα)2
− 1

(A−B cos γ)2

)]
(C.1.6)

Substituting A−B cosα = r2
c and A−B cos γ = r2

min, the final result is

φshell(|r− r′|) =
πε

rr′

[
(r − r′)2 − r2

min +
4

5
σ12

(
1

r10
min

− 1

r10
c

)
− 2σ6

(
1

r4
min

− 1

r4
c

)]
(C.1.7)

The second scenario, given by the vector r′′ in figure C.1, gives

φshell(|r− r′′|) =

∫ 2π

0
dϕ′

∫ α

0
dθ′ sin θ′4ε

[
σ12

|r− r′′|12
− σ6

|r− r′′|6
]

= 8πε

∫ α

0
dθ′ sin θ′

[
σ12

(r2 + r′′2 − 2rr′′ cos θ)6
− σ6

(r2 + r′′2 − 2rr′′ cos θ′)3

]
(C.1.8)

Using the same substitution as before, with r′ replaced by r′′, and noting that A−B = (r−r′′)2

this evaluates to

φshell(|r− r′′|) =
πε

rr′′

[
4

5
σ12

(
1

(r − r′′)10
− 1

r10
c

)
− 2σ6

(
1

(r − r′′)4
− 1

r4
c

)]
(C.1.9)

For the third scenario, the potential will be zero everywhere. The potential felt at p due to a

spherical shell of fluid particles at constant density a general radial distance r̃ from the origin

can be written as

φatt(|r − r̃|) =





πε
rr̃

[
(r − r̃)2 − r2

min + 4
5σ

12
(

1
r10min
− 1

r10c

)
−

2σ6
(

1
r4min
− 1

r4c

)]
|r − r̃| < rmin

πε
rr̃

[
4
5σ

12
(

1
(r−r̃)10 − 1

r10c

)
− 2σ6

(
1

(r−r̃)4 − 1
r4c

)]
rmin < |r − r̃| < rc

0 |r − r̃| > rc
(C.1.10)
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This derivation assumes that α < π, which equates to r + r̃ > rc. This is true providing

2Rs > rc. For a short-ranged fluid attraction, with rc = 2.5σ, this interaction potential is

therefore valid providing Rs > 1.25σ. For the long-ranged fluid potential, with rc = 200σ,

this is true only if Rs > 100σ.

Cases for when α < π can be evaluated in much the same way as above. Doing so gives

two new cases for the interaction potential

φatt(|r − r̃|) =





πε
rr̃

[
(r − r̃)2 − r2

min + 4
5σ

12
(

1
r10min

1
(r+r̃)10

)
− |r − r̃| < rmin,

−2σ6
(

1
r4min
− 1

(r+r̃)4

)]
r + r̃ < rc

πε
rr̃

[
4
5σ

12
(

1
(r−r̃)10 − 1

(r+r̃)10

)

−2σ6
(

1
(r−r̃)4 − 1

(r+r̃)4

)]
rmin < |r − r̃| < rc,

r + r̃ < rc

(C.1.11)

Finally, it should be noted that there is also the possibility that γ = π, which occurs when

2Rs < rmin. As rmin = 21/6σ, this would require considering substrates of approximately the

same size as a fluid particle. This is not considered here and hence this case is irrelevant.

C.2 Lennard-Jones Substrate-Fluid Interaction Potential

The solute is taken to be smooth and centred on the origin. It is assumed it is made

of particles of constant density ρs and diameter σs, which individually interact with fluid

particles according to

Vext(r
′) =




∞ r < Rs

4εs

[(
σs
r′

)12 −
(
σs
r′

)6]
r > Rs

(C.2.1)

where εs is the minimum of the potential, which occurs at Rs + rmin and Rs is the radius

of the solute. Due to the radial symmetry, the external potential felt by a particle p can be

reduced to a function of the radial distance from the origin only.

Consider the particle p as given in figure C.2. As in the derivation of the fluid-fluid

interaction, the radial axis is chosen to coincide with the Cartesian z-axis. The external

potential felt at p due to a plane of particles within the solute a distance r − z′ away is

Vplane(r
′; r > Rs) =

∫ 2π

0
dϕ′

∫ √R2
s−z′2

0
dx′x′ρsVext(r

′) (C.2.2)

where Pythagoras theorem has been used to find the maximum value of x′. Substituting for

Vext(r
′), and using Pythagoras theorem to write r′2 = (r−z′)2 +x′2, Vplane(x

′) can be written

as

Vplane(x
′; r > Rs) = 8πεsρs

∫ √R2
s−z′2

0
dx′x′

[
σ12
s

(x′2 + (r − z′)2)6
− σ6

s

(x′2 + (r − z′)2)3

]
(C.2.3)
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z

x
y

Rs

p

z′

r′

r − z′

r
x′

Figure C.2: Diagram of necessary components for the integration of Vext(r). A particle p, shown in
blue, interacts with a solute of radius Rs shown in grey. The solute is assumed to be of homogeneous
density. The interaction between p and the solute can therefore be found by first finding the interaction
between p and a plane of particles within the solute, shown in red, and then integrating over all planes
of particles. The variables needed to perform this calculation are given by the arrows.

Applying the substitution, s = x′2, ds = 2x′dx′, this evaluates to

Vplane(z
′; r > Rs) = 4πεsρs

[
σ12
s

5

(
1

(r − z′)10
− 1

(R2
s + r2 − 2rz′)5

)
−

σ6
s

2

(
1

(r − z′)4
− 1

(R2
s + r2 − 2rz′)2

)]
(C.2.4)

The full external potential felt at p is then found by integrating over all planes of particles

within the solute, which gives

Vext(r; r > Rs) =

∫ Rs

−Rs
dz′Vplane(z

′)

= εsf

[
2

15
σ9
s

(
1

(r −Rs)9
− 1

(r +Rs)9

)
+

3

20r
σ9
s

(
1

(r +Rs)8
− 1

(r −Rs)8

)
+

σ3
s

(
1

(r +Rs)3
− 1

(r −Rs)3

)
+

3

2r
σ3
s

(
1

(r −Rs)2
− 1

(r +Rs)2

)]
(C.2.5)

where εsf = 2πεsρsσ
3
s/3. For numerical reasons, the substrate-fluid interaction potential is

then shifted such that the minimum occurs at the surface of the solute. This is equivalent to
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replacing r with r+ = r + rmin. The full piece-wise interaction is then

Vext(r) =





∞ r < Rs

εsf

[
2
15σ

9
s

(
1

(r+−Rs)9 −
1

(r++Rs)9

)
+ 3

20r+
σ9
s

(
1

(r++Rs)8
− 1

(r+−Rs)8

)

+σ3
s

(
1

(r++Rs)3
− 1

(r+−Rs)3

)
+ 3

2r+
σ3
s

(
1

(r+−Rs)2 −
1

(r++Rs)2

)]
r > Rs

(C.2.6)

C.3 Contact Sum Rule

The contact theorem sum rule for a curved substrate or solute is derived using [126]

(
∂Ω

∂Rs

)

T,µ

= 4π

∫
drr2ρ(r)

∂Vext(r)

∂Rs
(C.3.1)

Considering the form of the external potential given in equation (C.2.6), it can be seen that

the external potential can be separated into the sum of its purely repulsive and attractive

components as

Vext,rep(r) =




∞ r < Rs

0 r > Rs
(C.3.2)

Vext,att(r) =





0 r < Rs

εsf

[
2
15σ

9
s

(
1

(r+−Rs)9 −
1

(r++Rs)9

)
+ 3

20r+
σ9
s

(
1

(r++Rs)8
− 1

(r+−Rs)8

)

+σ3
s

(
1

(r++Rs)3
− 1

(r+−Rs)3

)
+ 3

2r+
σ3
s

(
1

(r+−Rs)2 −
1

(r++Rs)2

)]
r > Rs

(C.3.3)

where r+ = r + rmin represents that the minimum of the attractive potential is shifted such

that it coincides with the surface of the solute. The density is poorly defined at r = Rs, and

hence a similar substitution as in the planar case is used

dVext,rep(r)

dRs
= −β−1eβVext,rep(Rs) d

dRs
e−βVext,rep(Rs) (C.3.4)

The second exponential can be recognised as expressing a Heaviside function therefore, similar

to the planar case, the repulsive component evaluates to

4π

∫ Rs

0
drr2ρ(r)

dVext,rep(Rs)

dRs
= 4πR2

skBTρ(R+
s ) (C.3.5)

where R+
s signifies that we approach from the right, where the density profile is well defined.

165



APPENDIX C. DERIVATIONS FOR IMPLEMENTATION OF SOLUTES IN CDFT

The attractive component can be evaluated to give

4π

∫ ∞

Rs

drr2ρ(r)
∂Vext,att(r)

∂Rs

= 4πεsf

∫ ∞

Rs

drr2ρ(r)

[
6σ9

s

5

(
1

(r+ −Rs)10
+

1

(r+ +Rs)10
− 1

r+(r+ +Rs)9
− 1

r+(r+ −Rs)9

)

+3σ3
s

(
1

r+(r+ +Rs)3
+

1

r+(r+ −Rs)3
− 1

(r+ +Rs)4
− 1

(r+ −Rs)4

)]
(C.3.6)

Finally, the grand potential can be rewritten as a function of Rs and the differential

evaluated to be

(
∂Ω

∂Rs

)

T,µ

=
∂

∂Rs

(
−p
(
V − 4

3
πR3

s

)
+ 4πR2

sγ(Rs)

)

T,µ

= 4πR2
s

[
p+

2γ(Rs)

Rs
+
∂γ(Rs)

∂Rs

]

(C.3.7)

where p is the pressure, V the volume and γ the surface tension. Combining the individual

components gives the contact sum rule for a curved substrate of

p+
2γ(Rs)

Rs
+
∂γ(Rs)

∂Rs
= kBTρ(R+

s )+

εsf
R2
s

∫ ∞

Rs

drρ(r)r2

[
6σ9

s

5

(
1

(r+ −Rs)10
+

1

(r+ +Rs)10
− 1

r+(r+ +Rs)9
− 1

r+(r+ −Rs)9

)

+3σ3
s

(
1

r+(r+ +Rs)3
+

1

r+(r+ −Rs)3
− 1

(r+ +Rs)4
− 1

(r+ −Rs)4

)]
(C.3.8)
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Appendix D

Binding Potential Derivations

This appendix details derivations relevant to the binding potential of section 5.4.

D.1 Short-Ranged Fluid-Fluid Long-Ranged Substrate-Fluid Interactions

The sf component of the binding potential for a system consisting of a planar substrate

with SR ff LR sf interactions is found using [41, 117]

ωLR,sf (`) = ∆ρρs

∫ ∞

`+dw
dzVext(z) (D.1.1)

For the planar substrate,

Vext(z) =





∞ z < 0

2π
3 εsσ

3
s

[
2
15

(
σs

z+zmin

)9
−
(

σs
z+zmin

)3
]

z > 0
(D.1.2)

Substituting this and evaluating the integral gives

ωLR,sf (`) =
2π

3
∆ρρsεsσ

3
s

[
− σ9

s

60(z + zmin)8
+

σ3
s

2(z + zmin)2

]∞

`+dw

=
2π

3
∆ρρsεsσ

3
s

[
σ9
s

60(`+ (dw + zmin))8
− σ3

s

2(`+ (dw + zmin))2

]
(D.1.3)

Only leading order terms are required for the binding potential, hence the term proportional

to (`+ (dw + zmin))−8 is neglected. The remaining term is Taylor expanded to give

ωLR,sf (`) =
2π

3
∆ρρsεsσ

3
s

[
− 1

2`2
+

(dw + zmin)

`3
+O

(
1

`4

)]

= −π
3

∆ρρsεsσ
6
s

1

`2
+

2π

3
∆ρρsεsσ

6
s

(dw + zmin)

`3

=
b(T )

`2
+
c(T )

`3
(D.1.4)

where

b(T ) = boρsεsσ
6
s c(T ) = 2(dw + zmin)boρsεsσ

6
s (D.1.5)
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and bo = π∆ρ/3.

D.2 Long-Ranged Fluid-Fluid Long-Ranged Substrate-Fluid Interactions

In the case of LR ff LR sf interactions, the binding potential has the form [50, 117]

ωLR(`) = ∆ρ

(
ρs

∫ ∞

`+dw
Vext(z)dz − ρv

∫ ∞

`
φ(z)dz

)
(D.2.1)

where ∆ρ = (ρl − ρv) is the difference between the coexisting liquid and vapour densities, ρs

is the density of the substrate, Vext is the external potential, φ is the attractive ff interaction

felt by a single fluid particle due to the presence of all others, and all other measures are as

given in figure 5.4. The first term was evaluated previously in appendix D.1, where Vext is

assumed to have the form of equation (D.1.2). The second term can be evaluated by assuming

a form for φ(z).

φ(z) is the energy felt by a single particle due to a slab of fluid. It can therefore be found

by evaluating

φ(z) =

∫ ∞

z
φatt(z

′′ = |z′ − z̃|)dz′′ (D.2.2)

where φatt is a purely attractive potential assumed to have the form of equation (B.1.6). As

LR potentials are considered, rc is taken to be rc =∞. In this case, φatt(z
′′) becomes

φatt(z
′′) =




πε(z′′2 − r2

min) + 4πε
[
σ12

5r10min
− σ6

2r4min

]
z′′ < rmin

4πε
[
σ12

5z′′10 − σ6

2z′′4

]
z′′ > rmin

(D.2.3)

Evaluating equation (D.2.2) for the first case can be done using

φ(z; z < rmin) = πε

∫ rmin

z

[
z′′2 − r2

min +
4σ12

5r10
min

− 2σ6

r4
min

]
dz′′ + πε

∫ ∞

rmin

[
4σ12

5z′′10
− 2σ6

z′′4

]
dz′′

(D.2.4)

whilst for the second case this is done using

φ(z; z > rmin) = 4πε

∫ ∞

z

[
σ12

5z′′10
− σ6

2z′′4

]
dz′′ (D.2.5)

Performing these integrals leads to

φ(z) =





4πε
[
− r3min

6 − z3

12 + 2σ12

9r9min
− 2σ6

3r3min
−
(

σ12

5r10min
− σ6

2r4min

)
z +

r2minz
4

]
z < rmin

4πε
[
σ12

45z9
− σ6

6z3

]
z > rmin

(D.2.6)

It is assumed that the vapour film is thick, and hence ` > rmin. Because of this, the first case
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for φ(z) is irrelevant, and hence the ff part of the binding potential can be evaluated to be

ωLR,ff (`) = −∆ρρv

∫ ∞

`
4πε

[
σ12

45z9
− σ6

6z3

]

= −2π

3
∆ρρvε

[
− σ12

60z8
+

σ6

2z2

]∞

`

= −2π

3
∆ρρvε

[
σ12

60`8
− σ6

2`2

]
(D.2.7)

Substituting this and equation (D.1.4) into equation (D.2.1) then gives

ωLR(`) =
2π

3
∆ρ

[
ρsεsσ

6
s

(
− 1

2`2
+

2(dw + zmin)

`3

)
+ ρvεσ

6

(
1

2`2

)]
+O

(
1

`4

)

=
b(T )

`2
+
c(T )

`3
+O

(
1

`4

)
(D.2.8)

where the constants b(T ) and c(T ) are identified as

b(T ) = bo(ρvεσ
6 − ρsεsσ6

s) c(T ) = 2bo(dw + zmin)ρsεsσ
6
s (D.2.9)

and bo = π∆ρ/3.
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Appendix E

Assessment of Suitability of mW

for the Study of Hydrophobicity

Having only been proposed in 2009, mW is a relatively new model for water and has been used

only in a handful of studies of hydrophobicity, for example [138–140]. Furthermore, many of

its bulk properties have not yet been fully explored and are not widely reported. However,

it shows great promise for use in the study of hydrophobicity for many reasons. Firstly, it is

able to accurately reproduce the density and structure of water at ambient conditions [132].

Secondly, its liquid-vapour surface tension at ambient conditions is closer to that of water

than many popular water models [132]. Importantly, mW models a water molecule as a single

particle, and reproduces the tetrahedral structure using only SR interactions. This greatly

reduces the computational resource required, and thus allows larger systems to be accessed

more easily. Within this appendix, the suitability of mW as a water model for use in the

study of hydrophobicity is assessed, through comparisons of mW’s phase diagram and surface

tension properties to those of both real water, and a leading model of water, SPC/E.

E.1 Comparison of Critical Point Properties

Whilst the critical temperature, Tc, of mW has been mentioned in previous studies [138,

141], it is unclear whether these studies took into account FS effects. In order to do so, it is

necessary to follow the GCMC method outlined in section 4.2.8.1. Firstly, the critical point

parameters for several simulation box sizes, quantified by the length of the cubic box, L, must

be determined. This is done by comparing the distributions of the scaling variable, defined

in equation (4.2.28) as M = ρ − su, where ρ is the density, u the energy density and s a

mixing parameter, to the universal Ising distribution. Figure E.1 shows these comparisons

for the distributions obtained within the present study for the five box lengths considered.

On average, the value of the mixing parameter was found to be s = 0.33. This agrees well

with the value quoted by Russo et al. [141], though their value was related to a weaker value

of the tetrahedrality parameter, λ, than used in mW.

Figure E.2 compares the Tc and critical density, ρc obtained from each box length, L,

considered to the expected FS scaling relationships, given in [68]. For the case of Tc in figure
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Figure E.1: Comparison of scaling variable distribution of mW (symbols) for various lengths (L) of
cubic simulation box, to the Ising distribution (solid line), obtained from [142].

E.2(a), the uncertainty was taken to be 1K. Excellent agreement to a linear fit (dotted line)

can be seen. Extrapolating this to infinite L gives a critical temperature of Tc = 917.6K. This

is similar to that quoted by Xu and Molinero [138], of Tc ≈ 925K. Figure E.2(b) compares

the values of ρc obtained for each Tc in figure E.2(a) to the expected scaling relation. In this

case, the uncertainty was found by considering the densities of the upper and lower limits of

Tc from figure E.2(a). Again, excellent agreement with a linear fit is found. Extrapolation to

infinite L gives a critical density of ρc = 0.311gcm−3.

Table E.1 compares the critical point properties of mW obtained here to those of SPC/E,

obtained from [133], and water, obtained from [149]. The critical temperature of mW is
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Figure E.2: Finite size scaling analysis of the critical (a) temperature and (b) density of mW, in both
physical and reduced units. Uncertainties in (a) are taken to be 1K, whilst in (b), the uncertainty is
taken to be the density of the upper and lower critical temperatures from (a). The exponents were
taken to be those used by Wilding [68] and had the values θ = 0.54, ν = 0.629 and d = 3. σmw and
εmw were as defined in section 4.2.7 and took the values σmw = 2.3925Å and εmw = 6.189kcal/mol.
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clearly much larger than that of SPC/E or real water. mW is therefore unable to accurately

reproduce this. However, the critical density of mW is in very good agreement with that of

water, and is much closer than that of SPC/E.

Table E.1: Critical point properties for water, the popular water model SPC/E and mW. Properties
for water were obtained from [149], whilst properties for SPC/E were obtained from [133].

Model Tc (K) ρc (gcm−3)

Water 647.096 0.322

SPC/E 638.6 0.273

mW 917.6 0.311

E.2 Comparison of Liquid-Vapour Phase Diagram

Sub-critical liquid-vapour coexistence state points for mW have been reported previously

[132], however these studies have generally focused on properties near ambient conditions.

In order to assess mW’s coexistence properties, the entire liquid-vapour coexistence curve

should be considered. This was found within the present work using the GCMC methods

outlined in section 4.2.8.2. Figure E.3(a) shows the liquid-vapour coexistence diagram of

mW, along with that of water and SPC/E, in physical units.

Due to its much larger Tc, the liquid-vapour phase diagram of mW extends over a larger

range of temperatures than that of water and SPC/E. Despite this, figure E.3(a) shows that

mW reproduces the coexisting liquid density of water fairly well for T < 400K. Below 350K,

the agreement is similar to that of SPC/E, which indicates that, in terms of coexistence

properties, mW is a good alternative model to SPC/E near ambient conditions. However,

above 400K, mW over-predicts the density of water. This is most severe when T > 420K,
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Figure E.3: Liquid-Vapour phase diagram for mW (circles), SPC/E (triangles) and water (squares)
in (a) physical units and (b) scaled units. Data for SPC/E was obtained from [150] whilst for water
from [149].
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and suggests that away from ambient conditions, mW is a poor model of water.

The excellent agreement between the critical density of water and mW suggests that mW

may better reproduce the phase diagram of water if T and ρ in both cases were scaled by their

critical values. This is tested in figure E.3(b). The agreement between the phase diagrams of

mW and water is remarkable, and far better than between that of water and SPC/E. Small

differences in the coexistence curves of water and mW can be seen near to the bulk critical

point, though these may be partially due to FS effects, and thus further study is needed to

confirm whether the deviation in behaviour does occur.

E.3 Comparison of Liquid-Vapour Surface Tension

In addition to reproducing the structure of water, a good water model for the study of

hydrophobicity is expected to reproduce the liquid-vapour surface tension. Molinero and

Moore [132] have previously shown that mW at ambient conditions has a surface tension

closer to that of water then SPC/E, and it was noted by Xu and Molinero [138] that mW

almost exactly reproduces the surface tension of water at 360K. Investigation of the behaviour

of the surface tension of mW over its entire temperature range is therefore of interest.

The liquid-vapour surface tension can be determined from the probability distributions

of the density at each coexistence state point in figure E.3, using [1, 151, 152]

γlv =

(
1

2βL2

)
ln

(
Pmax
Pmin

)
(E.3.1)

where L is the side length of a cubic simulation box, Pmax is the maximum probability within

the distribution, which will be in the vapour or liquid peaks, and Pmin is the minimum of the

density distribution, which occurs between the liquid and vapour peaks. Figure E.4 shows

the surface tension values obtained from mW, along with values for SPC/E and water.
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Figure E.4: Comparison of surface tension of mW (circles), SPC/E (triangles) and water (squares).
Data for SPC/E was obtained from [134], whilst data for water was obtained from [149].
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In agreement with the findings of Molinero and Moore [132], figure E.4 shows that the

surface tension of mW is closer to that of water than SPC/E at ambient conditions. Similarly,

in agreement with Xu and Molinero [138], the surface tensions of mW and water also appear

near identical at 360K. Only when T > 400K does SPC/E appear to better reproduce the

surface tension of water. mW’s higher critical temperature again means that its surface

tension extends over a much larger temperature range than water or SPC/E, however it is

interesting to note that much like water, the surface tension of mW features a weak ‘S’ shape,

in agreement with the behaviour expected of associating fluids.

In light of the excellent agreement between the phase diagrams of mW and water, it is

interesting to ask whether mW is better able to reproduce the liquid-vapour surface tension

properties of water if T and γlv are scaled appropriately. In section 2.4.5, it was mentioned

that γlv is expected to vanish as γlv ∼ (1−T/Tc)µ on the approach to the bulk critical point,

where µ in this case is a critical exponent [50, 153]. Using this expected scaling, figure E.5

compares γlv for mW, SPC/E and water. The results presented in figure E.5 are interesting,

and in many ways inconclusive. Comparing first SPC/E and water, it can be seen that βσ2γlv

is very similar in each case. However the gradient for SPC/E appears to be different from

water. In contrast, the values of βσ2γlv for mW and for water are very different, however for

the range −2 < ln(1 − T/Tc) < −0.6, the gradients appear as though they may correspond

well. Outwith this range, there is little agreement between the gradients, though this is not

unsurprising. When ln(1 − T/Tc) < −2, the expected relation between γlv and (1 − T/Tc)
appears to break down for mW. This range corresponds to T/Tc > 0.86 which, from figure

E.3(b) can be seen to be the range for which the agreement in the scaled phase diagrams

of mW and water was poor. It was suggested that the poor agreement in figure E.3(b) for
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Figure E.5: Comparison of the surface tension of mW (circles), SPC/E (triangles) and water
(squares) in scaled units. Data for SPC/E was obtained from [134], whilst data for water was obtained
from [149]. σ represents the diameter of a fluid particle/molecule, and was taken to be σmw = 2.3925Å
in the case of mW [132], σspc/e = 3.1656Å in the case of SPC/E [150] and σw = 2.8Å for the case of
water [154].
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T/Tc > 0.86 was due to finite size effects which were not accounted for. Such effects would

also explain the change in behaviour of mW in figure E.5 when ln(1− T/Tc) < −2. There is

also disagreement between the gradients of mW and water when ln(1− T/Tc) > −0.6, which

would correspond to T/Tc < 0.46. In this range of scaled temperatures, water approaches

its freezing point, hence any difference in behaviour is understandable. Figure E.5 therefore

provides early evidence that the liquid-vapour surface tension of water and mW may obey

similar scaling relationships, however to confirm this, a far more detailed study must be

performed. Such a study is beyond the scope of this thesis.

E.4 Summary

Near ambient conditions, mW is an excellent model for the study of hydrophobicity. It

performs just as well as SPC/E when reproducing the density of water in the liquid branch

of the coexistence phase diagram below 350K, and outperforms SPC/E when reproducing

the surface tension of water below approximately 400K. As mW utilises only short-ranged

interactions, and coarse grains a water molecule into a single particle, it is also far more

computationally efficient than SPC/E.

Away from ambient conditions, mW does not reproduce the properties of water as well

as SPC/E. mW features a much higher critical temperature than water, and above 400K,

grossly overestimates the surface tension. However, when the phase diagrams of mW, SPC/E

and water are all scaled by their critical temperatures and densities, mW and water show

remarkable agreement. The same is not true for SPC/E and water. Furthermore, when the

appropriate scaling is applied to the liquid-vapour surface tension, mW and water appear to

have similar gradients. These two observations potentially imply that mW and water obey a

law of corresponding states [153]. If this were the case, it would make mW an excellent model

for water at all temperatures. A firm conclusion on this is not possible within the present

work, as far more properties than the bulk phase diagram and liquid-vapour surface tension

would need to be considered, and finite size effects close to the critical point accounted for.

Such considerations are beyond the scope of the present work. Nevertheless, this observation

that mW and water may have corresponding states does not appear to have been made

previously, and hence it would be very interesting to investigate further.
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