

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Chen, Yu

Title:
Efficient Continual Learning

Approaches and Measures

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Efficient Continual Learning
Approaches and Measures

By

YU CHEN

Department of Computer Science
UNIVERSITY OF BRISTOL

A dissertation submitted to the University of Bristol in ac-
cordance with the requirements of the degree of DOCTOR OF

PHILOSOPHY in the Faculty of Engineering.

NOVEMBER 2021

Word count: thirty seven thousand and two hundred

ABSTRACT

In the real world, we often encounter situations where data distributions are changing over
time, and we would like to timely update our models by the new data, with bounded growth
in system size and computational cost. Continual learning is a research topic for dealing

with such scenarios. The main challenge of continual learning is catastrophic forgetting: when
training a model by sequential tasks, the model tends to forget previously learned tasks after
learning new ones. Here different tasks mean different training and testing sets.

In Bayesian continual learning, we would prefer the posteriors of a new task being as close as
possible to the previous ones. We propose Gaussian Natural Gradients for Bayesian continual
learning, which uses natural gradients instead of conventional gradients as natural gradients
prefer the smallest change in terms of distributions rather than parameters. We also propose
Stein Gradient-based Episodic Memories that can construct compact episodic memories using the
information in posteriors in Bayesian continual learning. In addition, we propose Discriminative
Representation Loss for general continual learning, which decreases the diversity of gradients
between new and old tasks through optimizing representations instead of re-projecting the
gradients. It effectively improves performance with low computational cost compared with related
work.

Moreover, we propose β3-Item Response Theory model for evaluating classifiers in continual
learning. The ability inferred by β3-IRT is weighted by difficulty of individual samples, which can
provide more sensible evaluations than typically used average accuracy. We furthermore propose
Continual Density Ratio Estimation for evaluating generative models in continual learning
without storing any data from previous tasks. To the best of our knowledge, this is the first
measure for generative models that satisfies the restriction of continual learning.

In summary, we propose several efficient approaches and measures for continual learning in
this thesis.

i

DEDICATION AND ACKNOWLEDGEMENTS

I dedicate this thesis to my mother. Although she cannot recognize me anymore or be aware
of what I have achieved today due to Alzheimer’s disease, I believe this still will be a comfort
to her and she will be proud of me. I hope I could help people like her by my research in the

future. I also dedicate this thesis to my grandparents who were the closest family to me besides
my mother and took care of me when I was little. I will miss you always, grandpa and grandma.

I could not accomplish this work without the help and support from a number of people. I
would like to first acknowledge my supervisor Prof. Peter Flach. I made the success application of
the university’s scholarship because of his support and hence got the chance to become a Ph.D.
student with him. He provided me great guidance when I was stressed or disappointed by my
research progress and also gave me the freedom to do what I was interested. I have learned a
lot from him for doing research and being an academic. I would also like to express appreciation
to my second supervisor Dr. Tom Diethe. Tom helped me a lot with my research as well. He is
the one who gave me the initial idea for my first publication in IJCAI 2016. He also inspired my
interests in the research topics that have finally become projects composing this thesis. I enjoyed
our discussions as he can often broaden my readings and always has a sense of humour. I was
lucky to have Peter and Tom as my supervisors.

I would like to acknowledge my collaborators, Telmo Silva Filho, Ricardo B.C. Prudêncio, and
Song Liu, as well. They helped me a lot with finalizing ideas, conducting experiments, writing
and reviewing papers, which form an indispensable part of this work. I want to thank Song Liu
in particular as we had a lot of discussions and he has always been patient to me when I made
mistakes or had misunderstandings. My colleagues, Miquel Perello Nieto, Kacper Sokol, Hao
Song, Benjamin Arana Sanchez, Bohong Bo, Mengwei Xu, Zijian Shi, were always warmhearted
to me when I needed some help during my time in Bristol. It is a pleasure to meet them and I
would like to thank them sincerely.

I would also like to thank my family and friends who have supported me when I made the
decision to return to the university and study in the UK, especially my brother and sister in law,
my uncle and aunt, my very old friends Mei Xiang, Yunhan Luo, Qing Ge, Li Zhang, Tao Wu,
Xingyu Zhang. They are the reason that I can concentrate on my research without worrying too
much about my mother and without feeling lonely while I’m away from home.

I’m glad I have had this journey in my life, thank God.

iii

AUTHOR’S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the
requirements of the University’s Regulations and Code of Practice for Research
Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the
candidate’s own work. Work done in collaboration with, or with the assistance of,
others, is indicated as such. Any views expressed in the dissertation are those of the
author.

SIGNED: . DATE: .

v

TABLE OF CONTENTS

Page

List of Tables xi

List of Figures xiii

1 Introduction 1
1.1 Problem Setting . 1

1.2 Summary of Contributions . 4

1.3 Other Research Work . 6

2 Preliminaries: Variational Inference 9
2.1 Stochastic Variational Inference . 9

2.1.1 Reparameterization trick . 10

2.1.2 Automatic Differentiation Variational Inference 11

2.1.3 Black-Box Variational Inference . 12

2.2 Learning Deep Bayesian Models by Stochastic Variational Inference 13

2.2.1 Hierarchical Probabilistic Models with Latent Variables 13

2.2.2 Variational Auto Encoder . 15

2.2.3 Bayesian Neural Networks . 16

3 Background and Related Work of Continual Learning 17
3.1 Application Scenarios of Continual Learning . 17

3.2 Measurements of Continual Learning . 22

3.3 Main Categories of Approaches in Continual Learning 23

3.3.1 Regularization-based Approaches . 24

3.3.2 Architecture-based Approaches . 30

3.3.3 Replay-based Approaches . 35

3.4 Generative Models in Continual Learning . 41

3.5 Theoretical Analysis of Continual Learning . 42

3.6 Summary . 43

4 Natural Gradients and Stein Gradients for Bayesian Continual Learning 45

vii

TABLE OF CONTENTS

4.1 Gaussian Natural Gradient for Bayesian continual learning 45

4.1.1 Preliminary: Natural Gradient . 46

4.1.2 Gaussian Natural Gradient and the Adam optimizer 47

4.1.3 Related work . 49

4.2 Stein Gradient-based Episodic Memories . 51

4.2.1 Preliminary: Stein Variational Gradient Descent 51

4.2.2 Stein Gradient-based Episodic Memories . 52

4.2.3 Related work . 53

4.3 Experiments . 54

4.4 Summary . 58

5 Discriminative Representation Loss for Continual Learning 59

5.1 Introduction . 59

5.2 A New Perspective of Reducing Diversity of Gradients 60

5.2.1 The relation between gradients and representations 61

5.2.2 Connection with Deep Metric Learning . 66

5.3 Discriminative Representation Loss . 67

5.4 Online memory update and Balanced Experience Replay 69

5.5 Experiments . 71

5.5.1 Comparing Discriminative Representation Loss (DRL) with other baselines 71

5.5.2 Ablation study on DRL . 75

5.6 Experiments for CLVision Challenge . 77

5.7 Summary . 81

6 Measuring Classifiers in Continual Learning by
β3-IRT Model 83

6.1 Introduction . 84

6.2 Related work . 85

6.3 The β3-Item Response Theory model . 86

6.3.1 Model description . 87

6.3.2 Model inference . 88

6.4 Measuring Classifiers in Static Learning . 89

6.4.1 Experimental setup . 90

6.4.2 Exploring item parameters . 90

6.4.3 Assessing the ability of classifiers . 94

6.5 Measuring Classifiers in Continual Learning . 96

6.6 Summary . 102

viii

TABLE OF CONTENTS

7 Measuring Generative Models in Continual Learning by Continual Density
Ratio Estimation 103
7.1 Introduction . 103

7.2 Continual Density Ratio Estimation . 105

7.2.1 The problem setting of Continual Density Ratio Estimation (CDRE) 105

7.2.2 Kullback–Leibler Importance Estimation Procedure (KLIEP) 105

7.2.3 The basic form of CDRE . 106

7.2.4 An instantiation of CDRE: CKLIEP . 107

7.2.5 Asymptotic normality of CKLIEP . 107

7.2.6 Multiple original distributions in CDRE . 111

7.2.7 Dimensionality reduction in applications of CDRE 113

7.3 Online Applications . 114

7.3.1 Backwards covariate shift . 115

7.3.2 Tracing distribution shifts via KL-divergence 116

7.3.3 Monitoring real stock data for a regression model 117

7.4 Evaluating generative models in continual learning 118

7.4.1 Related measures for generative models in static learning 119

7.4.2 Experimental results in continual learning 121

7.5 Summary . 122

8 Conclusions and Future Work 127
8.1 Summary and Conclusions . 127

8.2 Future Work . 130

A Appendix 133
A.1 Code for Gaussian Natural Gradient (GNG) and Stein Variational Gradient De-

scent (SVGD) . 133

A.2 Code for DRL . 134

A.3 Code for β3-Item Response Theory (IRT) . 135

A.4 Code for CDRE . 137

Bibliography 139

ix

LIST OF TABLES

TABLE Page

1.1 Comparison between related learning paradigms . 3

3.1 Summary of the requirements of task information in different experimental scenarios

in continual learning. The task identifiers are associated with every samples in the

training or testing set. ‘3’ means mandatory, ‘o’ means optional, 7means not available

in the table. 19

3.2 An overview of introduced approaches in the three main categories. 25

5.1 Illustration of the Theorems by drawing pairs from different subsets that are defined

in Fig. 5.2a. We obtain the gradients and predictions by a linear model and a MLP with

two hidden layers (16 units for each) and ReLU (or tanh) activations. The gradients

are computed using all parameters of the model. We can see that the non-linear models

exhibit similar behaviors with the linear model as described in the theorems. One

exception is that the MLP with ReLU activations gets much less negative 〈gn, gm〉
in the case of S1 ∪ S2 for negative pairs, we consider the difference is caused by

representations to the final linear layer always being positive in this case due to ReLU

activations. 64

5.2 Demonstration of performance degradation in continual learning by compact rep-

resentations. We test tasks of split MNIST and split Fashion-MNIST by training a

Multi-layer Perceptron (MLP) (2 hidden layers with 100 units per layer and ReLU

activations) with and without L1 regularization at the first task. The memory is

formed by 300 samples that are randomly chosen. Representations are outputs of

hidden layers. We identify active dimensions of the representation space after learning

task 1 by selecting the hidden units that have a mean activation larger than 0.5 over

all learned classes. 67

5.3 Average accuracy (in %), the higher the better, the bold font indicates the best perfor-

mance on this criterion . 73

5.4 Average forgetting (in %), the lower the better, the bold font indicates the best perfor-

mance on this criterion . 73

xi

LIST OF TABLES

5.5 Average intransigence (in %), the lower the better, the bold font indicates the best

performance on this criterion . 74

5.6 Correlation between model performance and ρ-spectrum on all benchmark tasks . . . 74

5.7 Training time (in seconds) of the whole task sequence of several benchmarks. 75

5.8 Comparing the performance with or without the regularization terms (Lbt, Lwi) in

DRL. All criteria are in percentage. The bold font indicates the best performance of a

criterion. 76

5.9 Comparing DRL with different memory replay strategies, all criteria are in percentage. 77

5.10 Hyperparameters of all methods . 78

5.11 The search range of hyperparameters . 78

5.12 Experiment results of New Instances (NI) . 80

5.13 Experiment results of Multi-Task New Classes (Multi-Task-NC) 80

5.14 Experiment results of New Instances and Classes (NIC) 80

5.15 NI track results for the top 5 finalists of the challenge. 81

5.16 NC track results for the top 5 finalists of the challenge. 82

5.17 NIC track results for the top 5 finalists of the challenge. 82

6.1 Comparison between Ability and other Metrics (MNIST). ↑ indicates the higher the

better and vice versa. 96

6.2 Spearman’s Rank Correlation between Ability and other Metrics (MNIST) 96

6.3 Comparison between Ability and other Metrics (CLUSTERS) 96

6.4 Spearman’s Rank Correlation between Ability and other Metrics (CLUSTERS) 97

6.5 Comparing ability with other measurements on Split MNIST tasks, the numbers in

the parentheses are rankings under each measurement. ↑ indicates the higher the

better and vice versa. 100

6.6 Comparing ability with other measurements on Split Fashion-MNIST tasks, the

numbers in the parentheses are rankings under each measurement. 100

7.1 Results of the first experiment on MNIST. P =Q1/2 implies case (i) P contains half of

the classes of MNIST, and the Q includes all classes of MNIST, Q = P1/2 implies case

(ii) Q contains half of the classes of MNIST, and the P includes all classes of MNIST.

Standard deviations are from 5 runs. 120

7.2 Evaluating StyleGAN on FFHQ dataset using f -divergences 121

xii

LIST OF FIGURES

FIGURE Page

2.1 Factor graph of a general hierarchical probabilistic model. The grey circle represents

observed data, white circles represent latent variables, variables without circles

are hyperparameters, small black rectangles represent stochastic factors, and the

rectangular plate represents replicates. In this model α,β are global latent variables

while zi are local latent variables. 13

3.1 Depiction of common benchmarks in continual learning. ∀i ∈ {1,2, . . . , t},Di,D′
i respec-

tively denote the training and testing set of the i-th task, where t is the total number

of tasks. f (·; ·) represents the model, θi,Mi denote the model parameter and episodic

memory obtained after learning the i-th task. 20

3.2 Demonstration of scenarios of task boundaries. Each circle represents one data sample

of the data stream, t is the task identifier in the figure. 21

3.3 Demonstration of Elastic Weight Consolidation (EWC) by two tasks, the figure is

from Kirkpatrick et al. (2017). The ellipses are parameter regions leading to good

performance on task A (gray) and on task B (cream). The arrows point to the changed

locations from the optimum of task A after training task B. With EWC, the new

location is inside both ellipses and thus both tasks can obtain good performance. In

comparison, without penalty the new location leads to good performance on task B

but not good on task A, with L2 regularization it is not good for either task. 26

3.4 Illustration of the architecture of Progress & Compress (P&C) framework, the figure

is reproduced from Schwarz et al. (2018). The grey plates denote compress phases

(C), the white plates denote progress phases (P). πKB
t means outputs of the knowledge

base, πt means outputs of the active column. The previously learned parameters of the

knowledge base are preserved by EWC, the newly learned parameters are imported to

the knowledge base by knowledge distillation. 31

3.5 Demonstration of the training protocol of generative models in continual learning. At

task t the training set consists of samples of category t−1 and samples generated

by the model at the previous task, and the model is to generate samples from all

previously seen categories (figure reproduced from (Lesort et al., 2018)). 41

xiii

LIST OF FIGURES

4.1 Updating trajectory of parameters of 1-dimensional Bayesian linear regression in

continual learning. The x-axis is µw and y-axis is µb. The contour depicts the same

level of average Mean Squared Error (MSE) over seen tasks, to get equal or better

performance on seen tasks, the model needs to find an optimum inside the contour,

so the area of the contour becomes smaller and smaller when the model has learned

more tasks. The cross-mark indicates the position of true parameters of each task,

different colours represent different tasks. The learning rate is set to 0.001 for vanilla

Stochastic Gradient Descent (SGD) and 0.01 for all other methods. The initialization

of σw and σb is set to σ0 = 0.1. 49

4.2 Parameter trajectory of 1-dimensional Bayesian linear regression in continual learning.

All configurations are the same as in Fig. 4.1 except σ0 = 0.001. 50

4.3 Average accuracy on permuted and split tasks without (left) and with (right) episodic

memories. All methods are based on Variational Continual Learning (VCL). 55

4.4 Variance changes w.r.t. first task, top row is from models trained by Adam, bottom row

is from models trained by Adam + GNG, tested on permuted and split MNIST without

episodic memories. The x-axis is concatenated by tasks, the y-axis is concatenated

by Bayesian Neural Network (BNN) layers, as split tasks are tested on multi-head

models, so there is no layer 3 in Fig. 4.4b. 57

5.1 2-D classification examples, the x and y axis are the coordinates (also features) of

samples. We sequentially train a logistic regression model on two tasks: the first task

is to classify two classes as shown in (a); the second class is to incrementally classify a

third class as shown in (b) and (c). The solid lines are decision boundaries between

classes. 62

5.2 Illustration of how Pr(β > sp) in Theorem 5.2 behaves in various cases by drawing

negative pairs from different subsets of a 3-class feature space. The subsets are

displayed in Fig. 5.2a. The classifier is a linear model. y-axis in the right side of (b)

& (c) is for the case of x ∈ S1 ∪S2. We see that sp behaves in a similar way with β

but in a smaller range which makes β the key in studying Pr(β> sp). In the case of

x ∈ S3 the distribution of β has more mass on larger values than other cases because

the predicted probabilities are mostly on the two classes in a pair, and it causes all

〈gn, gm〉 having the opposite sign of 〈xn,xm〉 as shown in Tab. 5.1. 64

5.3 Similarities of gradients and representations of two classes in the MNIST dataset. The

x and y axis are the cosine similarity of gradients and representations, respectively.

Blue dots indicate the similarity of negative pairs, while orange dots indicate that of

positive pairs. 66

xiv

LIST OF FIGURES

5.4 Effects of LDRL on reducing diversity of gradients and ρ-spectrum. (a) and (b) display

distributions of similarities of representations and gradients. sDR
h and sh denote

similarities of representations with and without LDRL, respectively, sDR
g and sg

denote similarities of gradients with and without LDRL, respectively. (c) demonstrates

increasing α in LDRL can reduce ρ effectively. 68

5.5 Average accuracy of DRL+BER with different memory cost. The x axis is the index of

tasks, the shaded area is plotted by standard deviation of 10 runs. 77

6.1 Factor Graph of β3-IRT Model. The grey circle represents observed data, white circles

represent latent variables, small black rectangles represent stochastic factors, and the

rectangular plates represent replicates. M is number of respondents and N is number

of items, pi j is the observed response of respondent i to item j. 86

6.2 Examples of Beta ICCs for Different Values of Difficulty and Discrimination. Higher

discriminations lead to steeper ICCs, higher difficulties need higher abilities to achieve

higher responses. 87

6.3 Inferred Latent Variables of Items of Two Synthetic Datasets: CLUSTERS and

MOONS. Darker colour indicates higher value. Items closer to the class boundary get

higher difficulty and lower discrimination. 91

6.4 Examples of ICC in the CLUSTERS Dataset. Stars are the actual classifier responses

fit by the ICCs. 92

6.5 Correlation between Average Response and Difficulty Changes. (Under different

settings of discrimination, shown for classes 3 vs 5 of MNIST dataset. (a), (b) are from

validation data with 20% injected noise; (c), (d) no noise.) 93

6.6 Denoising Performance of Negative Discrimination in Different Settings. Tested on

MNIST dataset, means and standard deviations over 5 runs of all combinations of any

two classes. 93

6.7 Ability vs Average Response in the CLUSTERS dataset. The classifiers in the top right

getting similar avg, response around 0.7, but their abilities are diverse from 0.65 to 0.8. 94

6.8 Ability of classifiers with different noise fractions of validation data, which shows the

ability is robust to noisy validation data. 97

6.9 Factor graph of continual β3-IRT. t is the index of the current task, τ is the task index

that satisfies τ≤ t, Nτ is the number of items from the τ-th task. The prior of ability

θi in the t-th task is the posterior of the (t−1)-th task. The prior of difficulty δ in

the t-th task is the empirical prior computed by the number of correct and incorrect

predictions given by all classifiers after learning the t-th task. 98

6.10 The empirical distribution of average forgetting (a) and intransigence (b) of 10 contin-

ual learning methods on both benchmarks. The two benchmarks have very different

distributions of the average forgetting but similar distributions of the average intran-

sigence. 101

xv

LIST OF FIGURES

7.1 Demonstration of the variance of estimated parameters in Theorem 7.5 by 1-D

Gaussian distributions: fix qt−1(x) = N (0,1) and vary qt(x) = N (µt,1) by setting

µt = δk,δ= 0.1,k ∈ {0,1, . . . ,20}. When µt is larger the two distributions are less similar

and the variance is larger, which aligns with Theorem 7.5. 112

7.2 Demo experiment of backward covariate shift. (a) shows the data distribution of

training set at τ= 1 and τ= t. (b) displays the regression lines learned by the model at

τ= t, the cyan and red lines are fitted by Dt with and without importance weights,

respectively. 115

7.3 Comparing the performance of Continual KLIEP (CKLIEP) and KLIEP by synthetic

data in the scenarios of the single and multiple original distributions. (a) & (b) compare

the Mean Absolute Error (MAE) of log ratios and estimated KL-divergences for a single

original distribution, (c) compares the average KL-divergences for multiple original

distributions. The true values of KL-divergences are computed by true ratios. The

error bar is the standard deviation of 10 runs. 116

7.4 Sliding time windows of sampling the stock transaction data. We estimate p(x)/qt(x)

every half an hour and sampling the transaction data from a two-hour window. 117

7.5 Monitoring stock data shift by CDRE for updating a regression model of transaction

price prediction. (a) shows KL divergence between the training set of the regression

model and samples from the latest two hours monitored by CDRE. The blue line

is without restart during the progress of CDRE (the regression model has not been

updated), the orange line is with restart (the regression model has been retrained by

latest samples when the KL divergence larger than a threshold δ= 0.1), the shaded

area is plotted by the standard deviation of 5 runs. (b) shows the Mean Absolute

Percentage Error (MAPE) of the regression model without and with update by using

CDRE. 118

7.6 Visualized results of experiments on MNIST dataset. 120

7.7 Evaluating GANs in continual learning on Fashion-MNIST. The shaded area are

plotted by standard deviation of 10 runs. The x-axis is task index and y-axis is the

specified measurement as in each sub-caption. The y-axis in the right side of Fig. 7.7b

is the y-axis of the red line (f -GAN-rvKL), which is in a much larger scale than others.

All the measures are the lower the better. 123

xvi

LIST OF FIGURES

7.8 PRD curves evaluated at the last two tasks for all Generative Adversarial Networks

(GANs), which is plotted by two parts of generated samples and each part contains

50% density mass, one part includes samples with higher probability densities and

the other part includes samples with lower probability densities. The Precision and

Recall for Distributions (PRD) of the part with lower-density of samples generated by

WGAN (red dotted lines) is better than f -GAN-JS (blue dotted lines) at both tasks,

which could be the reason why f -divergences do not prefer f -GAN-JS over WGAN

like Fréchet Inception Distance (FID) and Kernel Inception Distance (KID). 124

7.9 Fashion-MNIST samples generated by several GANs in continual learning. In each

sub-figure, each row displays images generated by the model at each task, the order

is from the top to bottom (task 1 to 10). The generated samples are from all learned

classes at task i. The displayed samples are uniformly randomly chosen from generated

samples of each class. 125

xvii

C
H

A
P

T
E

R

1
INTRODUCTION

In this thesis, we discuss continual learning which is a research area tackling the essential

problem ‘catastrophic forgetting’ of sequential training in machine learning. We propose several

approaches for efficiently alleviating forgetting as well as novel measures for evaluating classifiers

and generative models in continual learning. As a start of this thesis, we first introduce the

problem setting of continual learning in Sec. 1.1. We then summarize our contributions and the

organization of the thesis in Sec. 1.2. In Sec. 1.3, we provide a brief introduction of research work

that I have done but not included in this thesis because they are not related to continual learning.

1.1 Problem Setting

Machine learning has gained significant attention in recent years because of the success of Deep

Neural Networks (DNNs) in many applications, such as computer vision, speech recognition,

robotics, machine translation, etc. Despite the notable research progress of DNNs, there are still

many open problems and continual learning is one among them.

In a conventional scenario of machine learning, a model is usually trained on a specific

training set for solving a specific problem (such as classification) where the model is assumed

to be static after training. We call such learning scenario as static learning in this thesis, and

call a combination of the specific training set and the corresponding problem as a task. Since a

few decades, neural networks have been found performing poorly when learning different tasks

sequentially due to a problem called catastrophic forgetting (McCloskey & Cohen, 1989; Ans &

Rousset, 1997, 2000), which refers to the phenomenon of a model forgetting previously learned

tasks while learning a new one. In recent years, increasing interest has emerged in continual

learning which aims to tackle this problem, and a line of work has been proposed for alleviating

forgetting in neural networks (Kirkpatrick et al., 2017; Zenke et al., 2017; Schwarz et al., 2018;

1

CHAPTER 1. INTRODUCTION

Nguyen et al., 2018; Lopez-Paz & Ranzato, 2017). The reason is that it has become a critical

problem in more practical scenarios. Nowadays the ubiquitous usage of the internet has resulted

in the emergence of numerous online applications which need to deal with amounts of data that

are generated sequentially. Consequently, models trained for these applications are required

to learn from online data without degradation of performance. Meanwhile, DNNs have shown

prominent advantages when training on large scale datasets but the computational expense

is costly in terms of time and memory. When new data have been received, retraining such a

model on all seen data would be unrealistic. However, conventional online learning algorithms

often make strong assumptions about the data, for example, that the data samples are from the

same or similar distributions (Shalev-Shwartz et al., 2011). When the data distribution changes

significantly, for instance, new categories of data have joined at different time, such algorithms

will not be able to resist catastrophic forgetting as well. For example, a recommender system

trained for a large retail platform (such as Amazon) often encounters scenarios that new goods

and customers are joined. It would be costly to retrain the recommender system on old and new

data jointly. A solution that is capable of online training and resistant to forgetting is desirable

in such a scenario. Eliminating forgetting may be impossible as we will see in a theoretical

analysis in Sec. 3.5. Nonetheless, gradual forgetting in a long period is still attractive for many

applications, such as forgetting on obsolete data.

Here we formalize the problem as follows. Suppose a model f (·;θ) is a function mapping

an input space to an output space and θ represents the model parameters. It receives training

datasets of a series of tasks sequentially. Let Dt = {X t,Yt} denote the training data of the t-th

task that can be the input of the model f (·;θ). The loss function of the t-th task can be expressed

as L (Dτ;θt)=L (f (Xτ;θt),Yτ), where Dτ can be any data from all learned tasks, it computes a

predefined loss by the output of the model function that is trained at the t-th task. The ultimate

goal of sequential training is to learn the optimal model parameters that satisfies:

θ∗t = argmin
θt

L (Dτ;θt), ∀τ≤ t(1.1)

Here θt is the parameters of the model learned at the t-th task. It is an ideal case that θt is

optimal to all learned tasks. In practice, the performance of the model trained on all tasks under

static learning can be viewed as the upper bound of its performance in continual learning. In

static learning all training sets are presented to the model at once without the cause of forgetting:

θ̃∗t =L (D1:t;θt), D1:t = {D1,D2, . . . ,Dt}(1.2)

In continual learning, the model has no or very limited access to data from previously learned

tasks. Instead, it may have the access to an episodic memory (a small memory where a few

samples of previous tasks have been stored) and/or the model parameters of the previous task. In

general, the optimization objective of continual learning methods can be written as:

θ̃t = argmin
θt

L ({Dt,Mt}; {θt, θ̃t−1})(1.3)

2

1.1. PROBLEM SETTING

where Mt represents the episodic memory at the t-th task (which could be empty for methods not

storing previous samples).

Let s(·) represent a measurement of the performance, the test set of task t is D′
t = {X ′

t,Y
′
t },

similarly, D′
1:t = {D′

1,D′
2, . . . ,D′

t}, then we can evaluate the model performance at the t-th task by

s(D′
t,θt)= s(f (X ′

t;θt),Y ′
t). Approaches to continual learning try to fill the gap between s(D′

1:t; θ̃t))

and s(D′
1:t; θ̃

∗
t) by making a better usage of Mt and θ̃t−1. The difficulty stems from the limited

resource that is available for preserving information of previous tasks. We want to do better than

to store all training data and retrain the model every time when receiving a new task or train

separate models for each task.

Table 1.1: Comparison between related learning paradigms

Continual learning Multi-task learning Transfer learning Meta learning

Objective L ({Dt,Mt}; {θt, θ̃t−1}) L (D1:t;θt) L (Dt; {θt, θ̃t−1}) L (D1:t;θt)

Measure s(D′
1:t;θt) s(D′

1:t;θt) s(D′
t;θt) s(Dt+1:t+k;θt)

Eq. (1.2) describes a general form of the objective in Multi-task learning, which learns multiple

tasks in parallel to obtain better generalization through information shared across those tasks.

Transfer learning deals with tasks in a sequential manner like continual learning. The difference

is that it focuses on transferring knowledge to a target task (which is the latest task in the

learning sequence). Meta learning aims to find a general solution space for a task distribution

and then a model can be adapted to a target task by very cheap cost (i.e. a few steps of gradient

update). During training phase, meta learning has access to a set of tasks that are sampled from

the task distribution. In testing time, the model is tested on another set of tasks from the same

distribution. Except continual learning, these learning paradigms do not care about preserving

performance on previously learned tasks, i.e. they do not tend to solve the problem of forgetting.

The practical aim of continual learning is to find an optimal trade-off between the resource

cost and the performance over all tasks. Moreover, there is another trade-off in terms of the

performance on old and new tasks, which we call the trade-off between stability and plasticity.

Stability means how stable the performance can be on old tasks; the plasticity indicates how

much the model can be changed for learning a new task, which decides how good the performance

can be on a new task. Under the same restrictions of resources, a model might lose plasticity

for accommodating new tasks when it has been consolidated on old ones because its growth is

restricted. This would limit forgetting but would not be satisfactory to new tasks. To this end,

our research objective is to provide efficient approaches that can generally perform well with

relatively low memory cost and limited computational overhead. In addition, we also aim to

provide novel measurements that are effective for model selection in continual learning regarding

incapable scenarios of existing measurements due to the trade-off residing in the performance

and the resource restriction. For instance, the average accuracy for evaluating classifiers may not

3

CHAPTER 1. INTRODUCTION

be able to tell a difference between two models because one model may have better performance

on forgetting and the other is better in terms of intransigence.

1.2 Summary of Contributions

In this thesis, we propose novel approaches and measures for continual learning which focus on

efficiently improving model performance and model evaluation under the restrictive settings of

continual learning. The main contributions of the work can be summarised as follows.

• We propose efficient methods for Bayesian continual learning (Chapter 4) which are based

on the framework of Variational Continual Learning (VCL) and have shown performance

improvements with relatively low computational overhead. One is a regularization-based

method called Gaussian Natural Gradient (GNG) that utilizes the natural gradients in

Bayesian neural networks with Gaussian mean-field priors. GNG can preserve important

parameters of previous tasks in a more efficient way compared with the conventional

gradient updates. The other is a replay-based method called Stein Gradient-based Episodic

Memories (SGEM) that utilizes the Stein Variational Gradient Descent (SVGD) for compos-

ing more representative episodic memories. It updates the samples in the memory buffer

according to the joint distribution of data and model parameters, which implicitly includes

the information of parameter posteriors in the episodic memory.

This work (Chen et al., 2018) was published in Continual Learning Workshop of 32nd

Conference on Neural Information Processing Systems (NeurIPS 2018) as ‘Facilitating

Bayesian continual learning by natural gradients and Stein gradients’, coauthored by Tom

Diethe, and Neil Lawrence. The main ideas were initiated by me after reading papers about

natural gradient (Szegedy et al., 2016) and SVGD (Liu & Wang, 2016). I wrote most of the

paper and carried out the experiments including implementation.

• We reveal the relation between diversity of gradients and discriminativeness of representa-

tions which connects Deep Metric Learning (DML) to gradient-based methods in continual

learning. Following these findings, we propose an efficient replay-based method called

Discriminative Representation Loss (DRL) (Chapter 5) for continual learning that have

shown better performance with much lower computational cost than gradient-based meth-

ods in the most restrictive setting (online training and single-headed model). In addition,

we provide comprehensive experimental results of an ablation study on DRL which have

demonstrated the effectiveness of DRL from different angles.

This work (Chen et al., 2020) was published on arXiv preprint as ‘Discriminative represen-

tation loss (DRL): Connecting Deep Metric Learning to Continual Learning’, coauthored by

Tom Diethe, and Peter Flach. The main idea came from demo experiments I have conducted

to analyze the results of a related work (Aljundi et al., 2019b). I wrote most of the paper

4

1.2. SUMMARY OF CONTRIBUTIONS

and implemented the experiments. The proposed method is also a winning solution of the

CLVision Challenge 1 of the Continual Learning workshop in CVPR 2020 and a part of the

publication ‘CVPR 2020 Continual Learning in Computer Vision Competition: Approaches,

Results, Current Challenges and Future Directions’ (LOM, 2022) on Artificial Intelligence.

• We propose the β3-IRT (Chapter 6) for evaluating classifiers in both static and continual

learning, which is a new Item Response Theory (IRT) model with richer Item Characteristic

Curve (ICC) shapes and hence is more flexible for fitting different datasets. We demonstrate

that the β3-IRT is robust to noisy data and can be applied to detect noisy test samples.

The ability of classifiers inferred by the β3-IRT provides an instance-wise basis metric

regarding the difficulty of each data instance, which is capable of evaluating models in

continual learning in a more informative way than conventional average accuracy.

This work (Chen et al., 2019) was published in the 22nd International Conference on

Artificial Intelligence and Statistics (AISTATS 2019) as ‘β3-IRT: A new item response model

and its applications’, coauthored by Telmo Silva Filho, Ricardo B. Prudêncio, Tom Diethe,

and Peter Flach. The initial idea was from a discussion with Peter and I developed it

towards applications in machine learning. I wrote the sections regarding technical details

of the method and experiments with classifiers of the paper, as well as implemented those

experiments.

• We propose a new framework Continual Density Ratio Estimation (CDRE) for estimating

density ratios in an online setting, which does not require storing historical samples in

the data stream and can be more accurate than standard DRE when the two distributions

are less similar (Chapter 7). CDRE is capable of evaluating generative models without

storing samples from the original distribution which is feasible under the restrictions

of continual learning, and to the best of our knowledge, there is no prior work that can

evaluate generative models in such a setting. Moreover, we provide an instantiation of

CDRE by using Kullback–Leibler Importance Estimation Procedure (KLIEP) (Sugiyama

et al., 2008) as a building block, and provide theoretical analysis of its asymptotic behaviour.

Besides evaluating generative models in continual learning, we also demonstrate the

efficacy of CDRE in several online applications, including backward covariate shift, tracing

distribution drift, monitoring real stock data for a regression model.

This work (Chen et al., 2021) was published on arXiv preprint as ‘Continual Density Ratio

Estimation in an Online Setting’, coauthored by Song Liu, Tom Diethe, and Peter Flach.

It also has been accepted at the Distribution Shift workshop in NeurIPS 2021. The main

idea is initiated by a discussion with Song regarding density ratio estimation in continual

learning. I have done most of the writing and implemented the experiments of the paper.

1https://sites.google.com/view/clvision2020/challenge?authuser=0

5

https://sites.google.com/view/clvision2020/challenge?authuser=0

CHAPTER 1. INTRODUCTION

As the chapters 4 to 7 of the thesis are introduced above, the rest of the thesis is organized as

follows:

• Chapter 2 introduces preliminary knowledge that is served as an important basis in

some related work and proposed methods, including several general methods of Stochastic

Variational Inference (SVI) that can be widely applied in deep Bayesian models, and

several Bayesian models using SVI for training, such as hierarchical probabilistic models,

Variational Auto Encoder (VAE), Bayesian Neural Network (BNN);

• In Chapter 3, we first introduce background knowledge of continual learning, including

different settings in application scenarios (which is highly related to the difficult level

of tasks), widely applied benchmarks in related work, commonly used measurements of

continual learning. We then review related work of continual learning, including three

main categories (regularization-based, architecture-based, replay-based) of approaches.

• Chapter 8 concludes all the proposed work in this thesis and discusses existing problems

and possible future work.

1.3 Other Research Work

Besides the work listed in the above section, there are several publications I have coauthored

but not included in the main contents of this thesis as they are not directly related to continual

learning:

• Zijian Shi, Yu Chen, John Cartlidge. The LOB Recreation Model: Predicting the Limit

Order Book from TAQ History Using an Ordinary Differential Equation Recurrent Neural

Network, in Proceeding of the 35th AAAI Conference on Artificial Intelligence (AAAI-2021).

This work proposes a generative model based on Ordinary Differential Equation Recurrent

Neural Network (ODE-RNN) for recreating Limited Order Book (LOB) data by Trades and

Quotes (TAQ) data, where the LOB data is usually costly to obtain access.

• Song Liu, Takafumi Kanamori, Wittawat Jitkrittum, Yu Chen. Fisher Efficient Inference of

Intractable Models, in Proceedings of the 33rd Conference on Neural Information Processing

Systems (NeurIPS 2019). This work proposes a Discriminative Likelihood Estimator (DLE)

based on Stein Density Ratio Estimation (SDRE) that is Fisher efficient for inferring models

with intractable likelihood function.

• Yu Chen, Tom Diethe, Peter Flach. ADLTM : A Topic Model for Discovery of Activities of

Daily Living in a Smart Home, in Proceedings of the 25th International Joint Conference on

Artificial Intelligence (IJCAI 2016). This work proposes a novel topic model along with an

segmentation algorithm which can effectively discover residents’ activities in a smart home

6

1.3. OTHER RESEARCH WORK

by sequential and unlabeled sensor data. The experiments were conducted by sensor data

from real smart homes and have shown potentials in real applications such as abnormal

activity detection, monitoring sleep quality.

• Yu Chen, Peter Flach. SVR-based modelling for the MoReBikeS challenge: Analysis, visu-

alisation and prediction, in Proceedings of the International Conference on ECML-PKDD

2015 Discovery Challenge Volume 1526(pp. 19–27). This work is a wining solution of the

ECML-PKDD 2015 Discovery Challenge 2. The challenge is to predict the number of avail-

able bikes in every bike rental stations 3 hours in advance using the historical records

of 200 stations. Our solution is a support vector regression model accompanying with

effective feature selection and transformation which are motivated by carefully designed

visualization at different time points.

2http://reframe-d2k.org/Challenge#NEWS_AND_RESULTS

7

http://reframe-d2k.org/Challenge#NEWS_AND_RESULTS

C
H

A
P

T
E

R

2
PRELIMINARIES: VARIATIONAL INFERENCE

In this chapter we provide a brief review of some preliminary techniques of Variational Inference

(VI) for Probabilistic models including Bayesian models that are not specific for continual learning

but are important to several related approaches and proposed methods in later chapters.

In Bayesian models, the posterior of a random variable z can be expressed through the

Bayesian rule:

p(z|x)= p(x|z)p(z)
p(x)

(2.1)

In continual learning, the prior p(z) is often defined as the posterior learned in the previous task,

which naturally introduces the previous learned knowledge to the current task. VI is a general

framework for learning various Bayesian models and the formulation of it can easily be adapted

to continual learning in such a straightforward way.

In the following we firstly introduce a few essential techniques of Stochastic Variational Infer-

ence (SVI) (Sec. 2.1) that are widely applied in deep Bayesian models and secondly demonstrate

the applications of these techniques on several representative deep Bayesian models (Sec. 2.2).

2.1 Stochastic Variational Inference

To model unobserved structures of data, probabilistic models construct the model through a set

of latent random variables, which we will collect together and denote using a single vector-valued

variable z in the rest of this chapter. These variables represent different underlying factors

that we want to understand. The objective of such models is often to infer the posterior of z
given observations x, where we have again collected all types of observation into a single vector.

Unfortunately, for most models of interest we cannot compute the exact posterior p(z|x) of most

9

CHAPTER 2. PRELIMINARIES: VARIATIONAL INFERENCE

models as it often involves infeasible integration when the dimensionality is too high or the

integrand is too complex (Bishop, 2006). In addition, we often want further analysis about the

posterior which requires computing expectations w.r.t. the posterior, leading to further infeasible

integration problems. Therefore, we alternatively deploy approximation methods for inferring

posteriors of Bayesian models. Variational Inference (VI) is a family of such approximation

methods that has been well studied and widely applied in practice (Blei et al., 2017; Zhang

et al., 2019). VI turns the learning objective into an optimization problem, which usually involves

minimizing the Kullback–Leibler (KL) divergence. As a result it is then feasible to make use of

existing optimization techniques, in particular Stochastic Gradient Descent (SGD). As SGD is

commonly applied in Deep Neural Networks (DNNs), VI provides a way to efficiently train deep

Bayesian models whilst making use of modern deep learning software packages and accelerated

hardware.

The basic idea of VI is to define an approximation q(z) of the true posterior p(z|x) and

minimize the KL-divergence between them. Minimizing the KL-divergence in VI is commonly

transformed to maximizing the Evidence Lower Bound (ELBO) to avoid the intractable computa-

tion of the marginal probability log p(x):

DKL(q(z)||p(z|x))= Eq[log q(z)]−Eq[log p(x,z)]+ log p(x)≥ 0,

→ log p(x)≥ Eq[log p(x,z)]−Eq[log q(z)]=LELBO
(2.2)

where log p(x) can be viewed as a constant w.r.t. z. The variational posterior q(z) is usually defined

in a tractable form and parameterized by certain parameters, denoted as q(z;θ). θ is also called

the variational parameter and represents the (set of) parameter(s) that we want to optimize.

Moreover, the joint distribution p(x,z) can be obtained by p(x,z) = p(x|z)p(z;β), where p(z;β)

is the prior of z and parameterized by some hyperparameters β. The optimal θ should satisfy

∇θLELBO = 0, but it is often difficult to obtain the closed form for it without strong assumptions.

SVI relaxes this requirement by using gradient descent to update variables iteratively and obtain

a solution that approximately satisfies ∇θLELBO ≈ 0. However, applying SVI to deep Bayesian

models often requires gradient back propagation and it may be difficult when the model involves

DNNs. In the following sections, we will introduce several methods that are proposed to solve

this problem.

2.1.1 Reparameterization trick

To directly compute the gradient of θ for the first term Eq[log p(x,z)] of LELBO, z needs to be

expressed as a deterministic and differentiable function of θ. Kingma & Welling (2013) introduced

reparameterization trick to achieve this goal. It uses a differentiable transformation g(ε,θ) with

an auxiliary noise variable ε to transform z:

(2.3) z= g(ε,θ) where ε∼ p(ε)

10

2.1. STOCHASTIC VARIATIONAL INFERENCE

For example, if we define q(z;θ) = N (z;µ,σ2), where θ = {µ,σ}, we can transform z as z =
µ+ εσ, ε∼N (0,1). There are three basic approaches to choose a particular q(z;θ) that can be

reparameterized as Eq. (2.3):

i) Tractable inverse CDF: let ε∼U (0, I), let g(ε,θ) be the inverse CDF of q(z;θ);

ii) Any "location-scale" family distributions, analogous to the Normal distribution example

above we can set g(·)=µ+σ ·ε;
iii) Composition of transformations, such as Log-Normal (exponentiation of Normal distri-

butions). In Sec. 2.1.2 we introduce an approach to automatically transform z in such a

compositional way.

In addition, Figurnov et al. (2018) proposed a reparameterization method that does not need an

invertible CDF of q(z;θ) and can be applied to a wider class of distributions, such as Gamma, Beta,

Dirichlet distributions. As these reparameterization methods cannot handle discrete variables,

Jang et al. (2017) proposed reparameterizing discrete random variables from a categorical

distribution by a Gumbel-Softmax distribution.

In practice, the variational posterior q(z|x) of a continuous variable z is often defined according

to its support. For example, when z ∈ [0,1], q(z|x) is often a Beta distribution; when z ∈ (0,+∞),

q(z|x) is often a Gamma distribution. Such rules are easy to process automatically and leads to a

convenient SVI framework that will be introduced in the next section.

2.1.2 Automatic Differentiation Variational Inference

Kucukelbir et al. (2017) proposed a general framework, Automatic Differentiation VI (ADVI), for

performing inference on various models by automatic transformation and differentiation. This

method includes two steps:

1) The first step of ADVI is to automatically transform the support of the latent variable to an

unconstrained space where the transformation T(·) is invertible and differentiable:

(2.4) ẑ= T(z), T : supp(p(z))→RK

Then the joint density can be expressed by ẑ:

(2.5) p(x,z)= p(x,T−1(ẑ))×|JT−1(ẑ)|

where JT−1 is the Jacobian matrix of the inverse of T.

2) The second step is to automatically compose a variational posterior by Gaussian distribu-

tions. There are two options, one is to posit a factorized (mean-field) Gaussian variational

approximation.

(2.6) q(ẑ;θ)=N (µ,σ2I)=
K∏

k=1
N (µk,σ2

k), θ = {µ,σ}

11

CHAPTER 2. PRELIMINARIES: VARIATIONAL INFERENCE

Here {µ,σ} are K-dimensional vectors, K is the dimension of z. The elements in z are

assumed to be independent in this case. Also we need to remove the constraint σ> 0 by

another transformation as Eq. (2.4).

Another option is to posit a full-rank Gaussian variational approximation, which generalizes

the mean-field Gaussian by relaxing the independence assumption:

(2.7) q(ẑ;θ)=N (µ,Σ)=N (µ,LLT)

Here θ = {µ,L}, Σ is re-parametrized by the non-unique formulation of Cholesky factoriza-

tion (Pinheiro & Bates, 1996), which relaxes the requirement of positive diagonal entries in

the unique factorization. So, L is a lower triangular matrix with unconstrained elements in

RK(K+1)/2.

After the two steps the ELBO can then be optimized by SGD using automatic differentiation

that has been commonly applied in DNNs. Although Kucukelbir et al. (2017) only proposed using

Gaussian variational posteriors, it can actually approximate Beta or Gamma distribution by

logit-Normal or Log-Normal distribution which are composition of transformations. Furthermore,

this framework could be extended to more options of posterior distributions by applying other

reparameterization methods.

2.1.3 Black-Box Variational Inference

Another general SVI method Black-Box VI (BBVI) (Ranganath et al., 2014) further relaxes the

requirement of differentiable joint probability p(x,z) and uses the score function ∇θ log q(z;θ) to

estimate the gradient ∇θLELBO. By assuming that θ satisfies ∇θ log p(x,z)= 0, then we can have:

∇θLELBO = Eq [(log p(x,z)− log q(z;θ)) ·∇θ log q(z;θ)](2.8)

Applying Monte Carlo integration, this gradient can be approximated by:

∇θLELBO ≈ 1
K

K∑
k

(log p(x,z(k))− log q(z(k);θ)) ·∇θ log q(z(k);θ)(2.9)

where z(k) ∼ q(z;θ). BBVI is easy to apply without the need of ∇θ log p(x,z). However, a major

drawback of this approach is the high variance of the approximated gradient. To reduce the high

variance, control variates were proposed (Ranganath et al., 2014; Paisley et al., 2012). The basic

idea is to construct a new function f̂ (z,θ) with the same expectation as Eq[f̂ (z,θ)]= Eq[f (z,θ)],

where f (z,θ) = (log p(x,z)− log q(z;θ)), but having lower variance, and then replace f (z,θ) by

f̂ (z,θ) in Eq. (2.9). For any model in with it is difficult to apply those reparameterization methods,

this method can be an alternative for the inference.

12

2.2. LEARNING DEEP BAYESIAN MODELS BY STOCHASTIC VARIATIONAL INFERENCE

2.2 Learning Deep Bayesian Models by Stochastic Variational
Inference

In this section we introduce how to apply SVI methods to several representative deep Bayesian

models, such as hierarchical probabilistic models, Variational Auto Encoders (VAEs), Bayesian

Neural Networks (BNNs). Several related works (e.g. Variational Continual Learning (VCL)

(Nguyen et al., 2018), Uncertainty-guided Continual Bayesian Neural Network (UCB) (Ebrahimi

et al., 2020)) and proposed approaches (Chapters 4 and 6) deployed SVI in very similar ways.

2.2.1 Hierarchical Probabilistic Models with Latent Variables

xi

α zi

β ζ
ξ

N

Figure 2.1: Factor graph of a general hierarchical probabilistic model. The grey circle represents
observed data, white circles represent latent variables, variables without circles are hyperparam-
eters, small black rectangles represent stochastic factors, and the rectangular plate represents
replicates. In this model α,β are global latent variables while zi are local latent variables.

Probabilistic models are a powerful and elegant framework that allows practitioners to

perform inference over latent variables with specified interpretations, whilst dealing with uncer-

tainty in a principled manner. Hierarchical probabilistic models can be cast in a form involving

local and global latent variables, in which each local variable is defined for each observation

whereas global variables are shared across observations. Local variables may depend on one or

more global variables to reflect the structural relation between the latent variables. Such models

are especially powerful when the underlying data structure is hierarchical. The factor graph

(Kschischang et al., 2001) of a general hierarchical probabilistic model is shown in Fig. 2.1, where

zi represents local latent variables varying with observed data samples xi, N is the number of

data samples. α and β represent global latent variables shared by all data samples, the difference

is β governs the local variables zi while α does not. ξ and ζ are hyperparameters of priors of α,β.

The definition of this model is as below:

α∼ p(α|ξ), β∼ p(β|ζ), zi|β∼ p(zi|β), xi|zi,α∼ p(xi|zi,α)(2.10)

13

CHAPTER 2. PRELIMINARIES: VARIATIONAL INFERENCE

A standard setting for VI assumes the latent variables are independent by conditioning on

their own variational factors. Consequently, the variational posteriors can be written as the mean-

field variational family (Blei et al., 2017). This technique can simplify the ELBO of hierarchical

probabilistic models to a great extent. By such factorization, the ELBO of the model in Fig. 2.1

can be written as:

LELBO = Eq[log p(x,z,α,β)]−Eq[log q(z;θ)]−Eq[log q(α;γ)]−Eq[log q(β;λ)](2.11)

Here, x= {x1, . . . ,xN }, z= {z1, . . . ,zN }. Θ= {
θ,γ,λ

}
where θ,γ,λ denote parameters of the varia-

tional posteriors of z,α,β, respectively. The learning process is to find optimal Θ∗ that maximizes

LELBO. Hoffman et al. (2013) proposed using SVI to optimize the ELBO of such a hierarchical

model by natural gradients when the priors and posteriors are from the exponential family and

are conjugate distributions. In addition to these conditions, the full conditional distribution of

latent variables are also required. For example, to optimize λ in Eq. (2.11), the first term in

Eq. (2.11) can be reduced to:

log p(x,z,α,β)= log p(β|x,z,α)+ log p(x,z,α)= log p(β|x,z)+const,

LELBO(λ)= Eq[log p(β|x,z)− log q(β;λ)]
(2.12)

Suppose the full conditional distribution and the variational posterior of the global variables β

are in the following form of the exponential family:

p(β|x,z)= h(β)exp{η(x,z)T t(β)−a(η(x,z))},

q(β;λ)= h(β)exp{λT t(β)−a(λ)}
(2.13)

where η(·) is the natural parameter, h(·) is the base measure, t(·) are the sufficient statistics and

a(·) is the log normalizer. In this case, the natural gradient of LELBO w.r.t. λ can be computed by:

(2.14) ∇̂λLELBO(λ),G−1∇λLELBO(λ)= Eq[η(x,z)]−λ,

where G = Eq[(∇λ log q(β;λ))2] is the Fisher information of q(β;λ). The natural gradient uses a

Riemannian metric to adjust the direction of the gradient, which accounts for the information

geometry of its parameter space and is much easier to compute than the conventional gradient of

LELBO in such a hierarchical model. Please refer to Sec. 4.1.1 for more detailed introduction of

natural gradient. However, here computing natural gradient requires full conditional probabilities

of all latent variables as in Eq. (2.13) which may not have a closed form or may be hard to compute.

To simplify inference over a hierarchical architecture, we can decouple latent variables based

on their Markov blanket and construct optimization objectives for them separately as suggested

in Winn & Bishop (2005), and the inference can be performed by gradient descent as introduced

in the previous section. For instance, the ELBO of local variables zi in Fig. 2.1 can be written as

follows:

max
θ

Lz(θ)=max
θ

N∑
i=1

[Eq(zi ;θi)[log p(xi|zi,α)+ log p(zi|β)− log q(zi;θi)]](2.15)

14

2.2. LEARNING DEEP BAYESIAN MODELS BY STOCHASTIC VARIATIONAL INFERENCE

We can construct Lα,Lβ analogously.

max
λ

Lβ(λ)=max
λ

Eq(β;λ)[
N∑

i=1
log p(zi|β)+ log p(β|ζ)− log q(β;λ)],

max
γ

Lα(γ)=max
γ

Eq(α;γ)[
N∑

i=1
log p(xi|zi,α)+ log p(α|ξ)− log q(α;γ)]

(2.16)

For large scale data, the ELBO is usually estimated by mini-batches rather than the whole

dataset. For computing the gradient for one mini-batch the approximation of the likelihood

term would need an adjustment (Kingma & Welling, 2013). For example, the likelihood term

of Lβ in Eq. (2.16) could be approximated by a mini-batch with size B as: N
B

∑B
i log p(zi|β). The

three objectives are optimized iteratively, i.e. when updating the local parameters θi the global

parameters λ,γ are fixed. The dependency between the latent variables now relies on stochastic

samples from their variational posteriors and the requirement of full conditional distributions

can be avoided. Furthermore, different inference methods can be applied to different parts of

the model, since they can be viewed as separate sub-models and are only connected by samples.

By such a factorization, SVI can be applied to a wider range of hierarchical models as a general

framework using automatic differentiation and gradient back propagation. We will demonstrate

applying this technique to a hierarchical Item Response Theory (IRT) model in Chapter 6.

2.2.2 Variational Auto Encoder

The Variational Auto Encoder (VAE) (Kingma & Welling, 2013) is a popular generative model

that combines neural networks and Bayesian inference. In the VAE a local variable is a latent

representation of an observation. The posterior of the local latent variable zi can be inferred

by a deterministic function of xi, where the function is simulated by a neural network, such as

zi ∼ q(zi;θi),θi = fα(xi), where α represents the parameters of the neural network f and it is the

global variable over all x. This inference technique is called amortized inference as the inference

of individual q(zi;θ) is amortized by inferring a shared function fα for all local variables.

In the vanilla VAE, the posterior q(zi;θi) is often a Gaussian distribution and then the output

of the inference network is split into two parts: {µi,σi}= fα(xi)= θi, by the reparameterization

trick zi =µi +σiε,ε∼N (0, I). Since zi can be viewed as a latent representation of xi, fα(·) plays

the role like an encoder to transform xi to zi. Analogously, a decoder is learned to recover xi

from zi. The decoder’s objective is to maximize the log-likelihood log p(xi|zi), where p(xi|zi) is

often a Gaussian distribution as well, such as p(xi|zi)=N (gβ(zi),σ2
nI). Here β is also a global

variable representing the parameters of the decoder g(·), σ2
n is the variance of a Gaussian noise

εn ∼N (0,σ2
n) which controls the smoothness of the loss. We can train the decoder and encoder

simultaneously in an end-to-end fashion by optimizing the ELBO as the same as other Bayesian

15

CHAPTER 2. PRELIMINARIES: VARIATIONAL INFERENCE

models:

max
α,β

L =
N∑

i=1

[
Eq(zi ;θi)[log p(xi|zi)]−DKL(q(zi;θi)||p(zi))

]
, where p(zi)=N (µ0,σ2

0I),

p(xi|zi)=N (gβ(zi),σ2
nI), q(zi;θi)=N (µi,σ2

i I), θi = {µi,σi}= fα(xi)

(2.17)

Here, the prior p(zi) is set by pre-fixed hyperparameters for simplicity. Nevertheless, the prior

can also be learned from the data in more advanced extensions to the vanilla VAE (van den Oord

et al., 2017; Tomczak & Welling, 2018).

2.2.3 Bayesian Neural Networks

Bayesian Neural Networks (BNNs) introduce a Bayesian treatment to deep neural networks by

imposing priors and posteriors on the network parameters (MacKay, 1992; Wang & Yeung, 2020)

and VI can be applied to BNN through gradient back propagation by the reparameterization as

well. In this case, the network parameters are the latent variables z. In a mean-field Gaussian

BNN, we usually define the prior and variational posterior of each parameter as a Gaussian

distribution and assume the parameters are independent from each other, which is the simplest

form of BNN.

max
θ

L = Eq(z;θ)

[
N∑

i=1
log p(xi|z)]−DKL(q(z;θ)||p(z))

]
,

where p(z)=N (0,σ2
0I), q(z;θ)=N (µ,σ2I), θ = {µ,σ}

(2.18)

The log-likelihood could be the cross-entropy loss for usual classification tasks which is also the

log-likelihood of a Categorical distribution. The prior can be interpreted as a regularization on

the posterior. By the reparameterization trick (Eq. (2.3)) the variational parameters {µ,σ} can be

optimized through gradient back propagation as we introduced above. The mean-field BNN may

not be flexible enough to approximate a more complex posterior as it assumes all parameters are

independent. However, to learn a full covariance matrix could be computationally prohibitive

for a large model. A compromise could be assuming the parameters are layer-wise dependent

and thus the covariance matrix is block-diagonal. We will introduce a method (Ritter et al., 2018)

using such an idea in the next section.

Summary

In this chapter we introduced a few basic techniques of SVI for learning deep Bayesian models

that are related to several chapters in the rest of this thesis. The formulation of ELBO in VI

is also an important basis for Bayesian continual learning. In the following chapter we will

introduce the related work of continual learning, which includes several Bayesian approaches

such as VCL (Nguyen et al., 2018) and UCB (Ebrahimi et al., 2020) that are highly dependent on

the methods we introduced in this chapter.

16

C
H

A
P

T
E

R

3
BACKGROUND AND RELATED WORK OF CONTINUAL LEARNING

In this chapter we introduce the background and review related work of continual learning.

We first summarize general application scenarios of continual learning and benchmark tasks

that are widely applied in the literature in Sec. 3.1. We then provide definitions of popular

evaluation metrics of continual learning in Sec. 3.2. In Sec. 3.3 we elaborate three main categories

of continual learning approaches: regularization-based, architecture-based, and replay-based

approaches. In addition, we give a brief review of generative models and theoretical analysis

of continual learning which have drawn much less attention but may play an important role

in future research. Through this chapter we provide an overview of the literature of continual

learning and justify the motivations of our methods.

3.1 Application Scenarios of Continual Learning

An application scenario of continual learning can be described by three protocols: task, model, and

training protocols. Different combinations of these protocols compose the scenario with various

degrees of difficulty as they have different requirements of the task information. Certain types of

approaches can only be applied to some of the scenarios because not all scenarios provide the

task information that is necessary to them.

According to the problem setting of continual learning introduced in Chapter 1, i.e. tasks are

received sequentially without full access to data of previous tasks, the task protocol of continual

learning can be categorized in the following three types (van de Ven & Tolias, 2019) :

1. Task-Incremental Learning (Task-IL): the model always has access to task identifiers

during training and testing time. The tasks may or may not have overlapping domains

and/or class;

17

CHAPTER 3. BACKGROUND AND RELATED WORK OF CONTINUAL LEARNING

2. Domain-Incremental Learning (Domain-IL): all tasks are trying to solve the same

problem with different input domain, for example, classifying the same set of classes with

different types of instances of each class, the task identifiers are not provided during testing

but may be available during training;

3. Class-Incremental Learning (Class-IL): the model learns disjoint classes of data at

each task which are exclusive to previously learned ones, the task identifiers are not

provided during testing but may be available during training.

Except for the Task-IL case, the other two are required to be tested without knowing task

identifiers. It is much easier to obtain better performance in the scenario of Task-IL since it is

feasible to train task-specific components that are also valid during testing with the access to

task identifiers. However, it is less practical in real applications as the task identifiers are often

not available during testing time. In this sense, Domain-IL and Class-IL are more realistic but

more difficult scenarios.

According to the task protocols, we can have two model protocols coping with different

knowledge of task identifiers, which result in very different degrees of the difficulty of preserving

the model performance on old tasks:

1. Task-agnostic: the model is shared across all learned tasks, which does not require task

identifiers during testing time;

2. Task-aware: each task has a specific component that is not shared with other tasks, which

requires task identifiers during training and testing time.

The task-agnostic model is a much more difficult setting than task-aware, even the simplest

task-aware model, a multi-headed model (in which each task has a separate output layer and

shares all other layers), can easily outperform carefully designed task-agnostic models as the

output layer is usually the most vulnerable layer in terms of forgetting.

Moreover, according to the way of accessing the training data of the current task there are

two different training protocols:

1. Offline-training: we can access the entire training set of the current task during training

time, i.e. the model can be trained on the training set with multiple epochs;

2. Online-training: we can only access to the training set of the current task in an online

fashion, i.e. the model can only be trained with one epoch on the training set of each task.

In practice, a model can be trained on a same batch by multiple iterations, or multiple

batches can be sampled from a same buffer for multiple iterations. The point is that past

samples can not be accessed again.

The training protocol does not depend on the task protocol or model protocol, however,

awareness of task identifiers and task boundaries during training is optional to online-training

but is necessary to offline-training.

18

3.1. APPLICATION SCENARIOS OF CONTINUAL LEARNING

Table 3.1: Summary of the requirements of task information in different experimental scenarios
in continual learning. The task identifiers are associated with every samples in the training or
testing set. ‘3’ means mandatory, ‘o’ means optional, 7means not available in the table.

Task Protocol Model Protocol Training Protocol
Task-IL Domain-IL Class-IL task-agnostic task-aware Offline Online

Task identifiers
(testing) 3 7 7 7 3 o o

Task identifiers
(training) 3 o o o 3 3 o

In general, the degree of difficulty of application scenarios in continual learning mainly

depends on the task protocol which decides the model protocol. The training protocol is relatively

independent but still relies on the availability of task identifiers. We summarize the requirements

of all the protocols in Tab. 3.1. It is clear that task-aware models can only be deployed in Task-IL

scenarios, and the online training is the only option when the task identifiers are not available

during training. The most difficult scenario is that there is no access to task identifiers during

training and testing, which indicates the only feasible option is task-agnostic models with online

training and Task-IL is not applicable in such a circumstance. However, it may be the most

pragmatic scenario for online applications with streaming data.

In the following, we will introduce common benchmarks in the literature of continual learning

and demonstrate applying different protocols to these benchmarks. In most of the related work,

split benchmarks (e.g. Split MNIST (Kirkpatrick et al., 2017)) and transformed benchmarks (e.g.

Permuted MNIST (Kirkpatrick et al., 2017)) are commonly applied to evaluate the proposed

approaches. The split benchmarks usually separate a dataset of a conventional classification

task (e.g. MNIST, CIFAR10, CIFAR100) to several subsets, where each subset corresponds to a

task and contains a subset of the classes in that dataset which is exclusive to other subsets. We

demonstrate Split-MNIST as a typical split benchmark in Fig. 3.1a. In this benchmark, there

are 5 tasks in total and each task contains 2 classes (digits) of the MNIST (LeCun et al., 2010)

dataset. The split benchmarks are often deployed as Task-IL or Class-IL scenarios, depending on

whether or not the task identifiers are available during testing time. The model protocols then

can be chosen accordingly. The choice of training protocols mainly depends on if the benchmark is

deployed to represent an online or offline application.

The transformed benchmarks generally consist of multiple tasks that are generated by

different transformations of a dataset. We also demonstrate Permuted-MNIST as a typical

transformed benchmark in Fig. 3.1b. It usually consists of 10 tasks (the number can be defined

freely as it does not depend on the number of classes in the dataset), where each task contains the

same 10 classes (digits) but with a different permutation of the MNIST images. The permutation

can be replaced by other transformation functions, such as rotation. The transformed benchmarks

represent applications that receives new instances of each class in a new task, which naturally

fit the Domain-IL scenario.

19

CHAPTER 3. BACKGROUND AND RELATED WORK OF CONTINUAL LEARNING

�f(θ1; ℳ1) �f(θ2; ℳ2) �f(θ5; ℳ5)

�y ∈{0,1}

Task 1

�#1
�y ∈{2,3}

Task 2

�#2
�y ∈{8,9}

Task 5

�#5

�y ∈{0,1}

�{#′�1} �{#′�1, #′�2}

�y ∈{0,...,3}

�{#′�1, #′�2, . . . , #′�5}

�y ∈{0,...,9}

Training

Testing

(a) Depiction of split benchmarks for Split-X tasks where X is the dataset. In this
benchmark, there are 5 tasks in total and each task contains 2 classes (digits) of the
dataset.

�f(θ1; ℳ1) �f(θ2; ℳ2) �f(θ10; ℳ10)

�y ∈{0,…,10}

Task 1

�#1 = T1(#)
�y ∈{0,…,10}

Task 2

�y ∈{0,…,10}

Task 10

�{#′�1} �{#′�1, #′�2} �{#′�1, #′ �2, . . . , #′�10}

Training

Testing

�#2 = T2(#) �#10 = T10(#)

�y ∈{0,…,10}�y ∈{0,…,10} �y ∈{0,…,10}

(b) Depiction of transformed benchmarks for transformed-X tasks. In this benchmark,
there are 10 tasks in total and each task contains the same 10 classes (digits) with
different permutations of the features (column indices) of instances in the dataset.Ti
represents the permutation applied in the i-th task.

Figure 3.1: Depiction of common benchmarks in continual learning. ∀i ∈ {1,2, . . . , t},Di,D′
i respec-

tively denote the training and testing set of the i-th task, where t is the total number of tasks.
f (·; ·) represents the model, θi,Mi denote the model parameter and episodic memory obtained
after learning the i-th task.

20

3.1. APPLICATION SCENARIOS OF CONTINUAL LEARNING

t=1 t=1 t=1 t=1 t=2 t=2 t=2 t=2

clear task boundary

t=1 t=1 t=1 t=1t=2 t=2 t=2 t=2

no clear task boundary

t=2t=1

t=1 t=2

Figure 3.2: Demonstration of scenarios of task boundaries. Each circle represents one data sample
of the data stream, t is the task identifier in the figure.

Nonetheless, split and transformed benchmarks can be applied with all three task protocols

(van de Ven & Tolias, 2019). For example, Permuted-MNIST can be setup as a Class-IL application

by treating the combination of each permutation and class as a new class.

Besides the awareness of task identifiers, the awareness of task boundaries during training is

another source of difficulty to scenarios using online training. Many continual learning approaches

rely on the availability of task boundaries to consolidate the knowledge of a learned task which

we will see in Sec. 3.3. Note that knowing task identifiers during training does not mean knowing

the task boundaries because there might be no clear split between tasks (i.e., when receiving data

from a new task the model might still receive data from old tasks). We demonstrate the different

scenarios of task boundaries in Fig. 3.2. In addition, the specific setting of episodic memories is

also an important factor to the application scenarios. We will elaborate on this point along with

the introduction of replay-based approaches in Sec. 3.3 because it highly depends on the applied

strategy of experience replay.

Here we list the benchmarks we deployed in our experiments of Chapters 4 and 5, the

Permuted MNIST is setup as Domain-IL, other split benchmarks are setup as Task-IL or Class-IL

as specified in the latter chapters:

1) Permuted MNIST: 10 tasks using the MNIST dataset (LeCun et al., 2010), each task

includes the same 10 classes with different permutation of features.

2) Split MNIST: 5 tasks using the MNIST dataset, each task includes 2 classes which are

disjoint from the other tasks.

3) Split Fashion-MNIST: 5 tasks using the Fashion-MNIST dataset (Xiao et al., 2017), each

task includes 2 classes which are disjoint from the other tasks.

21

CHAPTER 3. BACKGROUND AND RELATED WORK OF CONTINUAL LEARNING

4) Split CIFAR-10: 5 tasks using the CIFAR-10 dataset (Krizhevsky et al., 2009), each task

includes 2 classes which are disjoint from other tasks.

5) Split CIFAR-100: 10 tasks using the CIFAR-100 dataset (Krizhevsky et al., 2009), each

task includes 10 classes which are disjoint from other tasks.

6) Split TinyImageNet: 20 tasks using the TinyImageNet dataset (Le & Yang, 2015), each task

includes 10 classes which are disjoint from other tasks.

3.2 Measurements of Continual Learning

As we introduced in Chapter 1, the stability of a model on old tasks is usually contradictory with

the plasticity for accommodating new tasks. To get an overview on the trade-off between the

stability and plasticity, an average performance over all learned tasks is the most convenient

way to evaluate proposed approaches in continual learning. In the literature, the most prevalent

choice for classification tasks is the average accuracy. Besides accuracy, other common metrics of

classification could be options as well, such as precision, recall, F1 score. However, the average

classification performance can not tell whether the stability or the plasticity is the main drawback

of an approach. To obtain a more comprehensive evaluation in continual learning, the following

three measurements are often used jointly for comparing different methods on a same benchmark

task sequence:

Average accuracy, which is evaluated after learning all tasks. Let at,i be the accuracy on

task i after learning task t, where t is the index of the latest task, the definition of average

accuracy is as follows:

(3.1) āt = 1
t

t∑
i=1

at,i,

.

Average forgetting (Chaudhry et al., 2018), which measures average accuracy drop of all

tasks after learning the whole task sequence:

(3.2) f̄ t = 1
t−1

t−1∑
i=1

max
j∈{i,...,t−1}

(a j,i −at,i),

This metric quantifies forgetting and is a critical criterion for evaluating continual learning

approaches since it is the main challenge in continual learning.

Average intransigence (Chaudhry et al., 2018), which measures the inability of a model to

learn new tasks:

(3.3) Ī t = 1
t

t∑
i=1

(a∗
i −ai,i),

where ai,i is the accuracy of task i at time i. a∗
i is the upper-bound accuracy of task i that could

be obtained by a model trained solely on this task. Instead of training an extra model for each

22

3.3. MAIN CATEGORIES OF APPROACHES IN CONTINUAL LEARNING

task, we use the best accuracy among all compared models as a∗
i in our experiments which

avoids additional computational overhead. This metric quantifies intransigence and provides a

complementary view of forgetting.

There are also some other metrics defined in a similar way, such as Backward Transfer (BWT)

(Lopez-Paz & Ranzato, 2017) which is very similar to average forgetting. The difference is that

BWT assumes ai,i is the highest accuracy of the i-th task given by the model which may not be

always true. Another metric Forward Transfer (FWT) (Lopez-Paz & Ranzato, 2017) evaluates

the initial performance on a new task before training on it, which shows if it is easy to transfer

from the learned tasks. This metric does not reflect the actual performance on the new task and

we consider the transferability is implied by the intransigence, hence, it is not adopted in our

experiments.

Although average accuracy can provide an overview on the trade-off between forgetting and

intransigence, it is not suitable for model selection in some cases. For example, when two models

have the same average accuracy but different forgetting and intransigence, it is hard to tell which

one is better if there is no extra criterion. In Chapter 6 we will introduce a novel measure which

can provide richer insights than average accuracy for evaluating classifiers in continual learning.

For generative models in continual learning, the measurements used in related work are

as the same as in static learning which use raw samples of all learned tasks to evaluate the

generated samples. Regarding the particular setting of continual learning, i.e. with very limited

or no access to samples of previous tasks, there is no prior work about how to evaluate generative

models in such a case, and we will address this issue in Chapter 7.

3.3 Main Categories of Approaches in Continual Learning

There are two main routes of exploring ideas for alleviating forgetting in continual learning:

i) preserving the knowledge of models of previous tasks; ii) preserving the knowledge of data

distributions of previous tasks. Most existing work focuses on either way of solving the forgetting

problem. In practice, a full solution to a real application could combine the strength of both ways.

In terms of preserving the knowledge of previous models, there are two main categories of

approaches: 1) regularization-based approaches, which focus on preserving important parameters

of the previous tasks and the model usually remains the same architecture; 2) architecture-based

approaches, which evolve the model by separately building task-shared and task-specific blocks

for each task; The architecture-based approaches are mostly restricted to the Task-IL scenario, i.e.

task identifiers are necessary during training and testing. A simple example is the multi-headed

model. In addition, architecture-based methods often deploy regularization-based methods in task-

shared components for alleviating forgetting on old tasks. For instance, applying regularization-

based methods to all shared layers of a multi-headed model except the multiple output layers.

On the other hand, replay-based approaches focus on preserving the knowledge of previous

23

CHAPTER 3. BACKGROUND AND RELATED WORK OF CONTINUAL LEARNING

data distributions by replaying data samples stored in the episodic memory or generated by a

generative model. In general, replay-based methods with episodic memories are more efficient

than methods in other categories because this type of approach can provide competitive per-

formance with much less computational cost. Particularly, when using a task-agnostic model

in the Class-IL scenarios, a simple replay-based method with a small episodic memory, such

as Experience Replay (ER) (Chaudhry et al., 2019b), can outperform SOTA methods in other

categories (Prabhu et al., 2020). The benchmarks of Class-IL (e.g. split-MNIST, split-CIFAR)

often have less similar tasks comparing with benchmarks of Domain-IL. Information shared

through parameters of such tasks is not enough for preserving good performance on past tasks.

In comparison, samples from past tasks are more informative in such cases. These results show

that replay-based method has great potential for efficiently solving practical problems in real

applications of continual learning. For this reason, we propose approaches mainly in this category,

such as DRL (Chapter 5), Stein-gradient based episodic memories (Chapter 4).

In the following sections we will review several representative approaches of each aforemen-

tioned category in continual learning.

3.3.1 Regularization-based Approaches

The most intuitive cause of catastrophic forgetting is that model parameters tend to change

towards fitting new data from a new task and thus deviate from optimal values of previously

learned tasks. A straightforward intuition to solve this problem is finding a point that is closest

to the optimal location of each task. Since the model is trained on a sequence of tasks, then

it would be preferred that the search space for a new task is close to the optimal location of

the previous task. This can be easily interpreted in a Bayesian way by viewing the preferred

search space as the prior distribution of model parameters. Applying the principle of Maximum A

Posteriori (MAP), we can obtain a general regularization term as the prior of model parameters

to prevent parameters changing too much for preserving reasonable performance on old tasks.

p(θ|X)∝ p(X |θ)p(θ) → θ∗ = argmax
θ

(log p(X |θ)+ log p(θ))(3.4)

where X is observed data, θ denotes model parameters, p(θ) represents the prior of θ. In

regularization-based methods of continual learning, the prior is often defined according to the

importance of parameters of previous tasks. For example, if the loss of previous tasks will

increase a lot by slightly changing a parameter, then the penalty on changing that parameter

would be large. The key point is how to identify and quantify the importance of parameters. The

regularization-based methods explore different ways to achieve this goal. In principle, when we

define the prior p(θ) by different forms we can get different regularization-based methods. In

this section, we will elaborate technical details of several SOTA methods in this category.

24

3.3. MAIN CATEGORIES OF APPROACHES IN CONTINUAL LEARNING

Table 3.2: An overview of introduced approaches in the three main categories.

Category Type Approach Authors & Year

Regularization
based

Weight importance

EWC Kirkpatrick et al. (2017)
OEWC Schwarz et al. (2018)

Kronecker factored Ritter et al. (2018)
SI Zenke et al. (2017)

VCL Nguyen et al. (2018)
UCB Ebrahimi et al. (2020)

Node importance
AGS-CL Jung et al. (2020)

UCL Ahn et al. (2019)

Architecture
based

Adding task-specific nodes
P&C Schwarz et al. (2018)
DEN Yoon et al. (2018)
REC Zhang et al. (2020b)

Adding task-specific masks

HAT Mallya et al. (2018)
CLAW Adel et al. (2020)
APD Yoon et al. (2020)

Batch Ensemble Wen et al. (2020)

Replay
based

Sampling strategy for replay
ER Chaudhry et al. (2019b)

CBRS Chrysakis & Moens (2020)
MIR Aljundi et al. (2019a)

Gradient-based

GEM Lopez-Paz & Ranzato (2017)
A-GEM Chaudhry et al. (2019a)

OGD Farajtabar et al. (2020)
MEGA Guo et al. (2020)

ORTHOG-SUBSPACE Chaudhry et al. (2020)
MER Riemer et al. (2019)
GSS Aljundi et al. (2019b)

Knowledge distillation
iCaRL Rebuffi et al. (2017)

DER & DER++ Buzzega et al. (2020)

Importance-based weight regularization

We first introduce Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) which can be

viewed as a starting point of regularization-based approaches in continual learning. It approxi-

mates the prior as a Gaussian distribution centered at the previous optimum and the covariance

matrix is estimated by the Hessian of parameters w.r.t. a previous loss.

Lτ(θ)≈Lτ(θ∗τ)+L
′
τ(θ

∗
τ)(θ−θ∗τ)+ 1

2
L

′′
τ (θ−θ∗τ)2,

∆Lτ =Lτ(θ)−Lτ(θ∗τ)≈ 1
2

L
′′
τ (θ−θ∗τ)2

(3.5)

Here Lτ(θ) is the loss on the τ-th task and θ∗τ is the optimal θ that satisfies L
′
τ(θ

∗
τ)= 0. According

to Eq. (3.5) we can see that the loss change on the τ-th task can be approximated by the Hessian

and the distance to θ∗τ , which leads to the principle idea of EWC. The loss function of EWC for a

25

CHAPTER 3. BACKGROUND AND RELATED WORK OF CONTINUAL LEARNING

Figure 1: elastic weight consolidation (EWC) ensures task A is remembered whilst training on task B. Training
trajectories are illustrated in a schematic parameter space, with parameter regions leading to good performance
on task A (gray) and on task B (cream). After learning the first task, the parameters are at ✓⇤A. If we take gradient
steps according to task B alone (blue arrow), we will minimize the loss of task B but destroy what we have learnt
for task A. On the other hand, if we constrain each weight with the same coefficient (green arrow) the restriction
imposed is too severe and we can only remember task A at the expense of not learning task B. EWC, conversely,
finds a solution for task B without incurring a significant loss on task A (red arrow) by explicitly computing how
important weights are for task A.

All the information about task A must therefore have been absorbed into the posterior distribution
p(✓|DA). This posterior probability must contain information about which parameters were important
to task A and is therefore the key to implementing EWC. The true posterior probability is intractable,
so, following the work on the Laplace approximation by Mackay [MacKay, 1992], we approximate
the posterior as a Gaussian distribution with mean given by the parameters ✓⇤A and a diagonal precision
given by the diagonal of the Fisher information matrix F . F has three key properties [Pascanu and
Bengio, 2013]: (a) it is equivalent to the second derivative of the loss near a minimum, (b) it can
be computed from first-order derivatives alone and is thus easy to calculate even for large models,
and (c) it is guaranteed to be positive semi-definite. Note that this approach is similar to expectation
propagation where each subtask is seen as a factor of the posterior [Eskin et al., 2004]. Given this
approximation, the function L that we minimize in EWC is:

L(✓) = LB(✓) +
X

i

�

2
Fi(✓i � ✓⇤A,i)

2 (3)

where LB(✓) is the loss for task B only, � sets how important the old task is compared to the new one
and i labels each parameter.

When moving to a third task, task C, EWC will try to keep the network parameters close to the
learned parameters of both task A and B. This can be enforced either with two separate penalties, or
as one by noting that the sum of two quadratic penalties is itself a quadratic penalty.

2.1 EWC allows continual learning in a supervised learning context

We start by addressing the problem of whether elastic weight consolidation could allow deep neural
networks to learn a set of complex tasks without catastrophic forgetting. In particular, we trained a
fully connected multilayer neural network on several supervised learning tasks in sequence. Within
each task, we trained the neural network in the traditional way, namely by shuffling the data and
processing it in small batches. After a fixed amount of training on each task, however, we allowed no
further training on that task’s dataset.

We constructed the set of tasks from the problem of classifying hand written digits from the MNIST
[LeCun et al., 1998] dataset, according to a scheme previously used in the continual learning literature
[Srivastava et al., 2013, Goodfellow et al., 2014]. For each task, we generated a fixed, random
permutation by which the input pixels of all images would be shuffled. Each task was thus of equal
difficulty to the original MNIST problem, though a different solution would be required for each.
Detailed description of the settings used can be found in Appendix 4.1.

Training on this sequence of tasks with plain stochastic gradient descent (SGD) incurs catastrophic
forgetting, as demonstrated in Figure 2A. The blue curves show performance on the testing sets of
two different tasks. At the point at which the training regime switches from training on the first
task (A) to training on the second (B), the performance for task B falls rapidly, while for task A it
climbs steeply. The forgetting of task A compounds further with more training time, and the addition

3

Figure 3.3: Demonstration of EWC by two tasks, the figure is from Kirkpatrick et al. (2017).
The ellipses are parameter regions leading to good performance on task A (gray) and on task B
(cream). The arrows point to the changed locations from the optimum of task A after training
task B. With EWC, the new location is inside both ellipses and thus both tasks can obtain good
performance. In comparison, without penalty the new location leads to good performance on task
B but not good on task A, with L2 regularization it is not good for either task.

current task is defined as follows:

(3.6) LEWC(θ)=Lt(θ)+ λ

2

t−1∑
τ=1

W∑
i=1

Fτ,i

(
θi −θ∗τ,i

)2

where θ∗
τ,i is the i-th parameter trained for a previous task τ; Lt(θ) is a usual loss of the current

task t, e.g., the cross entropy loss of classification tasks; W is the number of model parameters;

λ is a scalar parameter for adjusting the trade-off between the performance of the new and old

tasks. EWC proposes to approximate the diagonal of the Hessian with the Fisher information

and omits the off-diagonal information in the Hessian, which makes the prior is equivalent to

a mean-field Gaussian. This is done because computing the full Hessian is too expensive and

prohibitive for large models. Therefore, EWC evaluates the importance of individual parameters

by their Fisher information.

When moving to a new task, EWC will try to keep the network parameters close to the

learned parameters of all previous tasks. Fig. 3.3 shows how the introduced regularization term

differs from commonly used L2 regularization which can be interpreted as the importance of

all parameters are the same. The L2 regularization may lead to a closest position in terms of

Euclidean distance but outside of the optimal region of either task.

However, in Eq. (3.6) the Fisher information and the optimal parameters of previous tasks

need to be stored, while learning more tasks the memory cost will increase linearly with the

number of tasks. Schwarz et al. (2018) proposed Online EWC that approximates the overall

posterior of all previous tasks by a moving sum. Instead of storing individual Fisher Information

for each task, it only needs to store the optimal parameters of the last task and the moving sum

of Fisher information of previous tasks:

LOEWC(θ)=Lt(θ)+ λ

2

W∑
i=1

F∗
t−1,i(θi −θ∗t−1,i)

2, F∗
t = γF∗

t−1 +Ft, γ< 1(3.7)

26

3.3. MAIN CATEGORIES OF APPROACHES IN CONTINUAL LEARNING

where t is task index, γ is a hyperparameter that can control the speed of forgetting on older

tasks. This extension of EWC shows similar performance with original EWC using a constant

memory cost.

Instead of the diagonal approximation of the Hessian by Fisher information, Ritter et al.

(2018) proposed Kronecker-factored approximation of the Hessian which is a block-diagonal

approximation. It can preserve layer-wise correlations between parameters as one block consists

of parameters from one layer, and thus it is more accurate than the diagonal approximation with

Fisher information as used in EWC and Online EWC.

Hl =
∂2 log p(X |θ)

∂θl∂θl
=Ql ⊗H l , Ql = al−1aT

l−1, H l =
∂2 log p(X |θ)
∂hl∂hl

(3.8)

where Hl is one diagonal block of the estimated Hessian, l is the layer index, hl and al are

the pre-activation and activation output of the l-th layer respectively, θl is the weight matrix

of the l-th layer, ⊗ denotes Kronecker product. The computational complexity of this method is

O(maxl(|θl |2)), where |θl | is the number of parameters from the l-th layer. Although it is more

tractable than a full approximation of the Hessian matrix, it may still be expensive to compute

for a large model.

In addition to these methods that are based on the Hessian matrix, Synaptic Intelligence (SI)

(Zenke et al., 2017) suggested another regularization formulation for preserving important

parameters, which is inspired by biological neural networks:

(3.9) LSI(θ)=Lt(θ)+ c
∑

i
Ωt

i

(
θi −θ∗t−1,i

)2
, Ωt

i =
∑
j<t

ω
j
i(

∆
j
i

)2 +ξ

where c is a hyperparameter with the same usage as λ in Eq. (3.6), and ξ is used to bound the

expression in cases where ∆ j
i → 0. Ωt

i is the importance measure determined by two terms that

simulate the complexity of synapses in biological neural networks:

1) ω
j
i measures how much an individual parameter θi contributed to a drop in the loss of task

j, it is defined as follows:

ω
j
i ,−

∫ τ j

τ j−1
g i(θ(τ))θ′i(τ)dτ, g i(τ)= ∂L

∂θi
, θ′i(τ)= dθi

dτ
(3.10)

where τ represents time points of training. ω j
i can be approximated online as a running

sum during training.

2) ∆ j
i , θ

∗
j,i −θ∗j−1,i measures how far a parameter θi moved for task j.

Since Ωt
i is a sum over learned tasks as well, SI takes a constant memory cost as the same

as online EWC. However, SI does not outperform EWC or Online EWC according to empirical

results in related work (Nguyen et al., 2018; Prabhu et al., 2020).

27

CHAPTER 3. BACKGROUND AND RELATED WORK OF CONTINUAL LEARNING

Bayesian treatments of weight regularization

So far, the regularization-based approaches introduced above for common neural networks do not

explicitly learn a posterior for each parameter. Instead, Nguyen et al. (2018) proposed a continual

learning framework VCL for Bayesian neural networks that estimates posterior distributions of

parameters by VI (Sec. 2.1). The loss of VCL is then formed by the ELBO (Sec. 2.1): let θ denote

the network parameters, define a variational posterior qt(θ) of the parameters for the t-th task,

the approximated posterior of its previous task (qt−1(θ)) is treated as the prior of θ, then the

KL-divergence between the variational posterior and prior takes the role of regularization:

(3.11) LVCL (θ)=−Eqt(θ) [log p (Dt|θ)]+DKL (qt(θ)‖qt−1(θ))

In this setting, θ is a random variable and qt(θ) is further parameterized. For instance, qt(θ) is

often defined as a Gaussian distribution and parameterized by its mean and covariance matrix.

The optimization objective is to optimize such parameters of the variational posterior qt(θ) as the

same as we introduced in Sec. 2.2.3 for learning BNNs. When the posterior is assumed to be a

mean-field Gaussian distribution, VCL explicitly defines the importance of parameters as their

variance which can be easily inferred by Stochastic Variational Inference (SVI) (Sec. 2.1). However,

using the conventional gradient in SVI changes the variational parameters in the steepest

direction of the Euclidean space, which may cause a large difference in terms of distributions

by a small change on the variational parameters. We propose using natural gradients in the

gradient back-propagation of SVI in Chapter 4 to address this issue. Note that VCL can be a

general framework for Bayesian models, including deep generative models as well, such as VAE,

which we will introduce later in Sec. 3.4.

UCB (Ebrahimi et al., 2020) is another approach proposed for Bayesian neural networks in

continual learning. It applies SVI for optimizing the model parameters as well. One difference

is that UCB uses a pre-defined prior for all tasks which is a mixture of Gaussians with two

components and both components are zero-centered with different variance. Such a prior was

proposed by Blundell et al. (2015) to resemble a spike-and-slab prior.

LUCB (θ)=−Eqt(θ) [log p (Dt|θ)]+DKL (qt(θ)‖q0(θ)) ,

qt(θ)=N (µ,σ2I), q0(θ)=πN (0,σ2
1I)+ (1−π)N (0,σ2

2I), 0<π< 1,
(3.12)

Moreover, UCB introduces a scheduling of the learning rate by the standard deviation of the

posterior estimated by the last task.

µk ←µk−1 −αµ∇LUCB, σk ←σk−1 −ασ∇LUCB,

αt
µ←αt−1

µ σt−1 or αt−1
µ σt−1/|µ|, αt

σ←αt−1
σ

(3.13)

Here k is the index of update steps, t is the task index. This method uses the uncertainty of

model weights learned by the last task to adjust the learning rate for current task. Intuitively,

larger σ indicates the weight can vary in a wider range and thus can be changed faster when

28

3.3. MAIN CATEGORIES OF APPROACHES IN CONTINUAL LEARNING

learning a new task. This adjustment of learning rate is also very similar to the natural gradient

of mean-field Gaussian (Chapter 4).

Regularizing weights by node importance

Instead of introducing weight-wise uncertainty in Bayesian neural networks, Ahn et al. (2019)

proposes Uncertainty-regularized Continual Learning (UCL) to estimate node-wise uncertainty

and introduces several additional regularization terms for controlling stability and plasticity

separately. UCL also deploys the Bayesian paradigm with variational inference similar to VCL, in

which the parameter posteriors are approximated by mean-field Gaussian as well. In particular,

the variance of a neuron (i.e., a hidden node) is shared by its incoming weights, and the KL-

divergence term in Eq. (3.11) is replaced by several regularization terms which are extended

from the KL-divergence term:

LUCL =− log p (Dt|θ)+
L∑

l=1

1
2

∥∥∥Λ(l) ¯ (µ(l)
t −µ(l)

t−1)
∥∥∥2

2︸ ︷︷ ︸
(a)

+ (σ(l)
init)

2

∥∥∥∥∥∥
(
µ(l)

t−1

σ(l)
t−1

)2

¯ (µ(l)
t −µ(l)

t−1)

∥∥∥∥∥∥
1︸ ︷︷ ︸

(b)

+ β

2
1T

(
σ(l)

t

σ(l)
t−1

)2

− log

(
σ(l)

t

σ(l)
t−1

)2

+ (σ(l)
t)2 − log(σ(l)

t)2

︸ ︷︷ ︸

(c)

(3.14)

where L is the number of layers, µ(l)
t ,σ(l)

t denote the mean and standard deviation of weights in

the l-th layer for task t. ¯ and division are element-wise product and division, respectively. The

term (a) is to regularize changes on weights which connect to a node with small variance, where

Λ(l)
i, j ,max

(
σ(l)

init

σ(l)
t−1,i

,
σ(l−1)

init

σ(l−1)
t−1, j

)
, σ(l)

init is the initial variance of l-th layer. The term (b) is to regularize

changes on weights with large signal-to-noise ratio which are usually considered important in

pruning techniques. The term (c) keeps σ(l)
t close to

p
2σ(l)

t−1, which can increase the uncertainty of

a node and hence keep the plasticity of the model by gradually forgetting. β is the hyperparameter

for controlling the speed of forgetting. UCL introduces more flexible regularizations and reduces

the memory cost by just storing node-wise uncertainty.

Adaptive Group Sparsity based Continual Learning (AGS-CL) (Jung et al., 2020) is another

regularization-based method using node-wise importance but for non-Bayesian neural networks.

The loss function of AGS-CL is as follows:

LAGS-CL =Lt(θ)+µ
L∑

l=1

∑
nl∈G t−1

0

‖θnl‖2︸ ︷︷ ︸
(a)

+λ
L∑

l=1

∑
nl∈G\G t−1

0

Ωt−1
nl

‖θnl − θ̂(t−1)
nl

‖2︸ ︷︷ ︸
(b)

(3.15)

where nl is a node in l-th layer, θnl is the vector of incoming weights of node nl , G is the set

of all nodes in the model and G t−1
0 is the set of unimportant nodes estimated at task t− 1,

29

CHAPTER 3. BACKGROUND AND RELATED WORK OF CONTINUAL LEARNING

Ωt−1
nl

represents the importance of node nl at task t−1 which is the moving average of the

activation output of that node. The unimportant nodes are identified as G t−1
0 , {nl :Ωt−1

nl
= 0}.

The term (a) introduces a group lasso penalty on unimportant nodes which attempts to preserve

plasticity for new tasks. The term (b) penalizes deviation from important nodes and hence

preserves performance on previous tasks. In addition, AGS-CL proposes a strategy to re-initialize

connected weights of an unimportant node: a) fix the outgoing weights of the node to be 0, which

prevent backward propagation to upper layers from this node and hence reduce interference

caused by future tasks; b) re-initialize a part of incoming weights which are randomly chosen

with a probability ρ so that the plasticity of the model can be improved by re-activating some

unimportant nodes for future tasks.

Summary of regularization-based approaches

As we can see, regardless whether a regularization-based approach is designed for non-Bayesian

or Bayesian neural networks, the key is to provide effective measures for evaluating the weight

importance, e.g. the Fisher information, the uncertainty of a weight, the magnitude of a weight,

the importance of its connected node, etc.. Most of these methods have a common requirement

during training: awareness of task boundaries, because the weight or node importance for

regularization needs to be consolidated when the training on one task is done. This requirement

increases difficulties of regularization-based methods in some application scenarios, for instance,

in online training without clear task boundaries an extra strategy for detecting and deciding task

boundaries would be required.

3.3.2 Architecture-based Approaches

Applying regularization-based approaches, the model capacity can become a main problem when

all tasks share all the parameters of the model (i.e., the model capacity is fixed). In such a case,

getting a reasonable trade-off between the stability and plasticity will become more and more

difficult while the number of tasks increases because more weights have become important for

learned tasks and less weights can be altered for a new task. Architecture-based approaches

in continual learning solve this issue by adding task-specific components to the model for each

task, hence the model capacity can increase along with the number of tasks. Consequently, the

model consists of task-shared and task-specific components. However, the model capacity cannot

be expanded freely in most cases due to the limitation of available resources. To constrain the

expansion of the model, most architecture-based approaches aim to minimize the task-specific

components and enhancing the generalization ability of task-shared components. In addition, to

select the task-specific component for an input requires the task identifier of that input, which

restricts the application scenarios of architecture-based methods. We will introduce several

representative methods of this category in this section.

30

3.3. MAIN CATEGORIES OF APPROACHES IN CONTINUAL LEARNING

Progress & Compress: A scalable framework for continual learning

C

ππKBt+1 ππKBt+2ππKBt

EWC

taskt+1

EWC

DKL DKL

CP CP P

DKL

EWC

taskt+2taskt

t+2t+1t

Figure 1. Illustration of the Progress & Compress learning process.
In the compress phases (C), the policy learnt most recently by the
active column (green) is distilled to the knowledge base (blue)
while protecting previous contents with EWC (Elastic Weight
Consolidation). In the progress phases (P), new tasks are learnt by
the active column while reusing features from the knowledge base
via lateral, layerwise connections.

are optimised. Similar to the architecture of Progressive
Networks (Rusu et al., 2016a), layerwise connections be-
tween the knowledge base and the active column are added
to facilitate the reuse of features encoded in the knowledge
base, thus enabling positive transfer from previously learnt
tasks. At the completion of the progress phase, the active
column is distilled into the knowledge base, thus forming
the compress phase. During distillation, the knowledge base
must be protected against catastrophic forgetting such that
all previously learnt skills are maintained. We propose a
modified version of Elastic Weight Consolidation (Kirk-
patrick et al., 2017) to mitigate forgetting in the knowledge
base. The Progress & Compress (P&C) algorithm alternates
these two phases, allowing new tasks to be encountered,
actively learned, and then carefully committed to memory.
The approach is purposefully reminiscent of daytime and
nighttime, and of the role that sleep plays in memory consol-
idation in humans, allowing the important skills mastered
during the day to be filed away at night. As P&C uses two
columns of fixed sizes, it is scalable to a large number of
tasks. In experiments, we observe positive transfer, while
minimising forgetting, on a variety of domains.

2. The Progress and Compress Framework
The P&C architecture is composed of two components, a
knowledge base and active column. Both components can
be visualised as columns of network layers which compute
either predicted class probabilities (in case of supervised
learning) or policies/values (in case of reinforcement learn-
ing). The two components are learnt in alternating phases
(progress/daytime and compress/nighttime). Figure 1 pro-
vides an illustration of the architecture and the two phases
of learning when P&C is applied to reinforcement learning.

2.1. Learning a new task

The separation of the architecture into two components
allows P&C to focus on positive transfer when a new task is
introduced. As illustrated in Figure 1, the knowledge base
(light blue) is fixed, while parameters in the active column
(green) are optimised without constraints or regularisation,
allowing effective learning on the new task. In addition,
P&C enables the reuse of past information through simple
layerwise adaptors to the knowledge base (lateral arrows),
an idea borrowed from Progressive Nets.

Adaptors themselves are implemented as multi-layer per-
ceptrons. Specifically, if hi denotes the activations in layer
i, superscript KB the knowledge base, and � a nonlinearity,
the ith layer of the active column is computed as:

hi = �(Wihi�1 + ↵i � Ui�(Vih
KB
i�1 + ci) + bi) (1)

where bi and ci are biases, ↵i is a trainable vector of size
equal to the number of units in layer i, Wi, Ui, Vi are weight
matrices and � denotes elementwise multiplication. The
vector ↵i is initalised by sampling from U(0, 0.1). In the
case of convolutional networks, we use 1 ⇥ 1 convolutions
for the adaptors.

Note that one could make this phase similar to naive finetun-
ing of a network trained on previous tasks by not resetting
the active column or adaptors upon the introduction of a new
task. Empirically, we found that this can improve positive
transfer when tasks are very similar. For more diverse tasks
however, we recommend re-initialising these parameters,
which can make learning more successful.

2.2. Distillation and knowledge preservation

During the “compress” phase, newly learnt behaviour is
consolidated into the knowledge base. This is also where
methods guarding against catastrophic forgetting are intro-
duced. The consolidation is done via a distillation process
(Hinton et al., 2015; Rusu et al., 2015), which is an effec-
tive mechanism for transferring knowledge from the active
column to the knowledge base. In the RL setting it has the
additional advantage that the scale of the distillation loss
does not depend on the (scale of the) reward scheme, which
can be quite different for different tasks. We minimise the
cross-entropy between the teacher’s (active column) and
student’s (knowledge base) prediction/policy.

As a method of choice for knowledge preservation, we rely
on Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,
2017), a recently introduced method that poses an approx-
imate Bayesian solution to continual learning. The main
insight is that information pertaining to different tasks can
be incorporated sequentially into the posterior without suf-
fering catastrophic forgetting since the resulting posterior
does not depend on task ordering. However, the exact poste-

Figure 3.4: Illustration of the architecture of P&C framework, the figure is reproduced from
Schwarz et al. (2018). The grey plates denote compress phases (C), the white plates denote
progress phases (P). πKB

t means outputs of the knowledge base, πt means outputs of the active
column. The previously learned parameters of the knowledge base are preserved by EWC, the
newly learned parameters are imported to the knowledge base by knowledge distillation.

Increasing the model capacity by expansion and compression

Schwarz et al. (2018) proposed a Progress & Compress (P&C) framework for continual learning

that consists of two components: a) a knowledge base for preserving knowledge of learned tasks

and transferring knowledge to a new task; b) an active column for learning the new task. The

architecture of P&C framework is illustrated in Fig. 3.4. The two components are learned in

an interleaved manner. The active column is optimized during the Progress phase while the

knowledge base is fixed; the knowledge base is updated during the Compress phase while the

active column remains unchanged.

As shown in Fig. 3.4, the active column receives input from the knowledge base as an explicit

forward transfer:

hi =σ(Wihi−1 +αi ¯Uiσ(VihKB
i−1 +ci)+bi)(3.16)

where hi is the output of i-th layer in the active column, Wi,Ui,Vi are weight matrices, bi,ci

are biases, σ denotes the activation function, ¯ means element-wise product, αi is a trainable

vector for adapting the strength from the knowledge base. After completing a Progress phase, the

knowledge base will be updated by: 1) a knowledge distillation objective for consolidating the

knowledge of the latest task; 2) a regularization term for preserving knowledge of old tasks.

L KB
P&C(θ)= Ep(x)[KL(πt(·|x)||πKB

t+1(·|x))]+R(θKB
t+1,θKB

t)(3.17)

where πt(·) and πKB(·) are the outputs of the active column and the knowledge base respectively,

R(θKB
t+1,θKB

t) is the regularization term derived from EWC (Eq. (3.6)) or Online EWC (Eq. (3.7)).

As an early example of architecture-based approaches, the P&C framework demonstrates a

31

CHAPTER 3. BACKGROUND AND RELATED WORK OF CONTINUAL LEARNING

feasible way to apply regularization-based methods into architecture-based methods. However,

the progression expands the model by a fixed size which grows the model linearly with the

number of tasks. Some following work address these issues in a more flexible way which we will

introduce below.

Dynamically Expandable Networks (DEN) (Yoon et al., 2018) tries to dynamically increase

the model capacity by three steps:

1) Selective retraining – in this step, DEN trains each layer of the model from top to bottom

(output to input) by a regular loss of the current task with L1 regularization, while training

one layer, the lower layers are fixed to optimal parameters of the last task. After this round

of training, the non-zero weights are selected to be retrained for the current task again.

This step forces the sparsity of the model and identifies important weights for the current

task.

2) Dynamic network expansion – If after the first step the loss of the current task is larger than

a threshold, then add k new neurons to each layer and optimize the new parameters with

group sparsity regularization where the incoming weights of a neuron compose a group.

After training, unnecessary new neurons will be removed. This step increases the model

capacity when it is necessary. In addition, the task index of adding a group of parameters is

kept and used at inference time for selecting task-specific weights, which is equivalent to a

task-specific component.

3) Network split/duplication – If after the second step a neuron has drifted too much from

its previous value (measured by the L2 distance of its incoming weights), a duplication

of it will be added into the model and then the model needs to be retrained with a L2

regularization term for preserving previous weights.

DEN made the attempt to dynamically expand the model when it is necessary, however,

the procedure is quite complex and requires several runs of full training. More importantly,

the connections between the three steps are rather loose, for example, the important weights

identified at the first step are of no use for the later two steps and the model expansion is split

into two steps which is a bit cumbersome.

Zhang et al. (2020b) proposed a clearer process – Regularize, Expand and Compress (REC) –

for continual learning, which consists of two steps:

1) Expansion – in this step, techniques of Neural Architecture Search (NAS) are employed

to expand the network for accommodating a new task, meanwhile, regularization-based

methods can be used to prevent changes on important weights for previous tasks. Zhang

et al. (2020b) also proposed a regularization-based method, Regularized Weight Consolida-

tion (RWC), which adds a L2,1-norm (the sum of L2 norm of each column) regularization

term in addition to the EWC regularization for capturing layer-wise important parameters,

and also adds a L1 regularization to enforce sparsity in newly joined parameters. Using

32

3.3. MAIN CATEGORIES OF APPROACHES IN CONTINUAL LEARNING

NAS approaches for continual learning also has been proposed in Li et al. (2019) which is

followed by a fine-tuning process instead of compression (step 2).

2) Compression – after growing the model size in the expansion phase, techniques of network

compression are employed to reduce the model size in this step. REC also uses a knowledge

distillation method to compress the model to the initial size which keeps the model non-

expansive. The exact non-expansive restriction may not be necessary in which case a

dynamic expansion process can be adopted instead.

The two steps of REC compose a general process for continual learning that can depoly various

approaches of NAS and model compression in each step according to the needs of application

scenarios. Nontheless, NAS is computationally expensive and REC does not gain significant

improvement on performance comparing with standalone RWC. Moreover, using knowledge

distillation for compression may not perform well when there is no access to previous data, as the

training of student network is only based on data of current task.

Preventing forgetting by task-specific masks

Instead of adding new units to expand the model, several methods propose to learn task-specific

masks that can force each task to only use partial units of the network. Hard Attention to the

Task (HAT) (Mallya et al., 2018) learns task-specific attentions on hidden units of each layer.

ht
l = at

l ¯hl , at
l =σ(set

l)(3.18)

where hl is the output of l-th layer, at
l is learned attentions on hl for task t and ht

l is the task

adaptive output, σ(·) ∈ [0,1] is a gate function (e.g. sigmoid function), s is a positive scalar, et
l is

the learned task embedding of the l-th layer. To prevent performance degradation on previous

tasks, HAT apply an inverse attention on the gradient by a cumulative attention vector a≤t
l which

is the maximum attention among task 1 to t:

ĝt
l,i j =

[
1−min

(
a≤t

l,i,a
≤t
l−1, j

)]
gl,i j, a≤t

l =max
(
at

l ,a
≤t−1
l

)
(3.19)

This inverse attention is used to reduce the changes on parameters associated with high atten-

tions. In addition, HAT introduces sparsity of the task-specific component by a L1 regularization

on attentions as well.

Besides these non-Bayesian methods, Adel et al. (2020) proposed a Bayesian approach,

Continual Learning with Adaptive Weights (CLAW), that learns binary attentions on hidden

units. In CLAW the attention is defined as a random variable for selecting task-specific weights:

ht
l = (1+btαt

l)¯hl , αt
l,i ∼B(pl,i)(3.20)

where bt is a variable controlling the strength of attention vectors, B(pl,i) is approximated

by a Normal distribution N (pl,i, pl,i(1− pl,i)) that can leverage the reparameterization trick

(Sec. 2.1.1) in SVI.

33

CHAPTER 3. BACKGROUND AND RELATED WORK OF CONTINUAL LEARNING

According to Eq. (3.20), CLAW actually learns an additive decomposition of task-shared

and task-specific neurons for each task. Analogously, a recent work called Additive Parameter

Decomposition (APD) (Yoon et al., 2020) proposed a hierarchical additive decomposition for

learning sparse task-specific weight matrices. It firstly decomposes the model parameters to two

weight matrices: θt =σ¯Mt+τt, where σ is a task-shared weight matrix and τt is a task-adaptive

weight matrix, Mt is a weight mask matrix used for adopting weights of the task-shared matrix.

The loss function of APD is as follows:

LAPD(θt)=Lt(θt)+λ1‖τt‖1 +λ2‖σ−σ(t−1)‖2
2(3.21)

Similar to other architecture-based approaches, the L1 regularization of τt enforces sparsity of

task-adaptive weights which minimizes increased model size for each task. As usual, the L2

regularization minimizes the changes on the task-shared weights to prevent performance degra-

dation on previous tasks. Furthermore, APD introduces a new process, hierarchical knowledge

consolidation, to further decompose the task-adaptive matrix τt by a local-shared matrix and a

sparser task-adaptive matrix, which leverages the hierarchical shared information across tasks

by clustering task-adaptive matrices. This process further restricts the model expansion for each

task and then reduces memory cost.

Furthermore, Wen et al. (2020) introduced another decomposition of the weight matrix for

continual learning, in which the task-specific weight matrix is a rank-one matrix that can be

decomposed as the product of two vectors.

(3.22) Wt =W ¯Ft, Ft = rtsT
t

Here, W is the task-shared weight matrix that will be learned at the first task; Ft is the task-

specific weight matrix that will be learned through rt and st for each task. This method gives

another option to reduce the incremental memory cost besides enforcing sparsity into the task-

specific weight matrix. However, the generalization ability of the shared weights solely depends

on the expressiveness of the first task, which could be highly limited for later tasks. And the

rank-one task-spesific matrix could be less capable of capturing representations of complex tasks.

Summary of architecture-based approaches

The architecture-based approaches are very similar to many methods in Multi-task learning

(Ruder, 2017), which also have task-shared and task-specific components. The main difference is

that in multi-task learning a model has access to training sets of all tasks and it mainly attempts

to learn more general representations through task-shared components and hence improve

performance on every individual tasks. The architecture-based approaches in continual learning

focus on efficiently expanding the model capacity when it is necessary for accommodating a new

task. Methods in this category often rely on adding task-specific components and require keeping

the model architecture of previous tasks unchanged. Hence, conditioning on task identifiers during

34

3.3. MAIN CATEGORIES OF APPROACHES IN CONTINUAL LEARNING

training and testing time is usually mandatory. As a result, the architecture-based approaches are

generally more computationally expensive than regularization-based methods and less flexible

than replay-based methods in terms of application scenarios. For real applications, architecture-

based methods may become more practical if their requirement of task identifiers is eliminated

by working with replay-based methods, which could be a promising avenue for future work.

3.3.3 Replay-based Approaches

Like humans having memories, replay-based methods allow limited access to data of previously

learned tasks as episodic memories or having a generator to simulate data from previous tasks.

We will introduce generative replay in Sec. 3.4 and focus on replaying episodic memories in this

section. The replayed-based methods aim to efficiently utilize samples from the memories to

prevent forgetting and facilitate knowledge transfer while learning a new task, which can be

realized by different sampling strategies, refining gradients, and enforcing knowledge distillation

using the memorized samples. The main restriction of replay-based methods is the memory size,

which is often limited to be a small portion of the training set. The memory may or may not be

allowed to grow with the number of seen tasks depending on the application requirement. In

general, replay-based methods prefer more information preserved in a smaller memory which

leads to another important direction of research work in this category. Replay-based approaches

are feasible for most application scenarios and are usually more robust than other types of

approaches when using task-agnostic models.

Sampling strategies for experience replay in the online setting

The most straightforward replay-based approaches explore various sampling strategies for

replaying memorized samples, such as Experience Replay (ER) (Chaudhry et al., 2019b), Class-

Balancing Reservoir Sampling (CBRS)(Chrysakis & Moens, 2020), and Maximally Interfered

Retrieval (MIR) (Aljundi et al., 2019a). One advantage of these methods is the capability of

handling online training. There are two memory-update strategies often used with these sampling

strategies in the setting of online continual learning:

1) Reservoir sampling (Vitter, 1985), which selects each incoming data sample with a

probability |M |
n into the memory buffer, where |M | is the memory size and n is the number

of observed data samples so far. This method is often used to sample a subset from a data

stream with unknown length.

2) Ring buffer, which allocates the memory buffer equally to each seen class and selects data

samples into the memory by a First In First Out (FIFO) strategy.

Chaudhry et al. (2019b) provided an empirical study of these strategies. According to the experi-

mental results, Reservoir sampling performs better when the memory is not too small (at least

more than a few samples per class) and a hybrid strategy which switches Reservoir sampling to

35

CHAPTER 3. BACKGROUND AND RELATED WORK OF CONTINUAL LEARNING

ring buffer when memory size of each class is lower than a threshold nc performs constantly well

(i.e., guarantees at least nc samples per class). Chaudhry et al. (2019b) also suggeted a simple

sampling strategy called Experience Replay (ER) for composing the training batch (the batch

used for one gradient update). ER divides the training batch equally by samples from the episodic

memory and samples from a current task where samples from the memory are randomly sampled.

According to their experimental results, ER can outperform some SOTA methods, such as EWC

(Serra et al., 2018) and Averaged-Gradient Episodic Memory (GEM) (A-GEM) (Chaudhry et al.,

2019a) with a small size of the memory (e.g. 10 samples per class).

CBRS (Chrysakis & Moens, 2020) includes a memory-update strategy that is similar to the

hybrid strategy suggested in Chaudhry et al. (2019b) and capable of handling imbalanced data. It

keeps the memory equally divided by seen classes and selects samples for each class by Reservoir

sampling. Note that the memory may not be exactly equally divided when there are no enough

samples encountered for some classes. Chrysakis & Moens (2020) also suggested to form the

training batch as the same as in ER but use a weighted loss to combine the loss computed by new

samples and memorized samples, i.e.:

LCBRS =αLnew + (1−α)Lmem, α= 1/nc, nc is the number of seen classes.(3.23)

The combined loss generally put more weight on memorized samples in comparison with the loss

of ER and has shown better performance on forgetting than ER.

Besides uniformly randomly sampling from the memory buffer, Aljundi et al. (2019a) proposed

Maximally Interfered Retrieval (MIR) that selects top-k samples in the memory which would get

largest increment of the loss if the model parameters are updated by the batch of new samples.

The criterion is defined as follows:

sMIR(x,y)= `(fθv (x),y)−`(fθ(x),y), θv = θ−α∇L (fθ(X t),Yt)(3.24)

where (x, y) is a sample from the memory, (X t,Yt) is the batch of new samples, θ is the current

parameters, α is the learning rate, ` and L are the loss of one sample and one batch of samples

respectively. The intuition is to choose the samples of previous tasks that would be most interfered

(whose performance is most negatively impacted) by new samples into the training batch and thus

prevent their performance from further degrading. Applying MIR to ER has shown significant

improvement on ER in terms of average accuracy and forgetting, which indicates it is effective in

alleviating forgetting without sacrificing the performance on intransigence.

Utilizing gradients produced by the episodic memory

Another line of replay-based approaches focuses on utilising the gradients produced by samples

from the episodic memory. More specifically, those gradients are used to confine the gradients

produced by new samples. For example, Gradient Episodic Memory (GEM) (Lopez-Paz & Ranzato,

2017), Averaged-GEM (A-GEM) (Chaudhry et al., 2019a), Orthogonal Gradient Descent (OGD)

36

3.3. MAIN CATEGORIES OF APPROACHES IN CONTINUAL LEARNING

(Farajtabar et al., 2020) are all in this line. The basic idea of such gradient-based methods is

to reduce the interference on old tasks by forcing the inner product of the two gradients to be

non-negative:

(3.25) 〈gt, gk〉 =
〈
∂L (xt,θ)

∂θ
,
∂L (xk,θ)

∂θ

〉
≥ 0, ∀k < t

where t and k are time indices, xt denotes a new sample from the current task, and xk denotes a

sample from the episodic memory. Thus, the updates of parameters are forced to preserve the

performance on previous tasks as much as possible. In GEM (Lopez-Paz & Ranzato, 2017), gt is

projected to a direction that is closest to it in L2-norm whilst also satisfying Eq. (3.25):

gGEM = argmin
g̃

1
2
||gt − g̃||22, s.t.〈g̃, gk〉 ≥ 0, ∀k < t(3.26)

Optimization of this objective requires a high-dimensional quadratic program and thus is compu-

tationally expensive. A-GEM (Chaudhry et al., 2019a) alleviates the computational burden of

GEM by using the averaged gradient over a batch of samples from the episodic memory instead

of individual gradients of samples from the memory.

gA−GEM = argmin
g̃

1
2
||g− g̃||22, s.t. 〈g̃, gre f 〉 ≥ 0,(3.27)

where gre f is the average gradients produced by a batch of memorized samples. It can be solved

by g̃ = g− gT gre f

gT
re f gre f

which only involves computing inner products of gradients. This not only

simplifies the computation, but also obtains comparable performance with GEM.

Guo et al. (2020) proposed two adaptive schemes (MEGA-I & MEGA-II) based on A-GEM in

order to utilize the loss information during training for a better balanced loss between old and

new tasks.

θt
k+1 ← θt

k −η
(
α1(θt

k)∇`t(θt
k)+α2(θt

k)∇`re f (θt
k)

)
,

MEGA-I :

 α1(θ)= 1, α2(θ)= `re f (θ)/`t(θ), if `t(θ)> ε;
α1(θ)= 0, α2(θ)= 1, if `t(θ)≤ ε.

(3.28)

where `t and `re f are the expectation of loss over new samples and memorized samples, respec-

tively. MEGA-I adapts the weights of `t and `re f dynamically by preventing overfitting on new

samples with a loss threshold. MEGA-II tries to find a direction of gradients that maximize:

MEGA-II : max
g̃

`t(θ)
〈g̃, gt〉

||g̃||2 · ||gt||2
+`re f (θ)

〈g̃, gre f 〉
||g̃||2 · ||gre f ||2(3.29)

which adaptively chooses a direction of gradients that closer to the direction obtained by the

larger loss among `t(θ) and `re f (θ). Both schemes have shown improvements compared with

A-GEM by similar computational cost.

Orthogonal Gradient Descent (OGD) (Farajtabar et al., 2020) instead projects the gradient

of new samples to the direction that is orthogonal to gradients of samples from previous tasks,

37

CHAPTER 3. BACKGROUND AND RELATED WORK OF CONTINUAL LEARNING

which attempts to keep the model performance of previous tasks unchanged while learning a

new task.

g̃ ⊥∇ f j(x;θ∗k), ∀x ∈Mk, j ∈ {1. . . c}, k ≤ t,(3.30)

where f j is the j-th logit that corresponds to the true class of x, c is the number of classes, k is

the task index, Mk and θ∗k is the episodic memory and optimized parameters for the k-th task

respectively. Although this method shows higher accuracy than A-GEM, it incurs higher memory

cost as it needs to store gradients ∇ f j(x;θ∗k) of all learned tasks which could easily be prohibitive

when the model is large. In addition, OGD also requires the knowledge of task boundaries since

it needs to save the optimized gradients when finishing a task.

Chaudhry et al. (2020) proposed ORTHOG-SUBSPACE for learning orthonomal weight

matrices to obtain orthogonal subspaces of learned tasks. This method first ensures the gradients

of current and previous tasks are orthogonal by constructing a projection matrix Pt for each task

that satisfies:

PT
t Pt = I, PT

t Pk = 0, ∀k 6= t,(3.31)

where t and k are task indices; and then projects the output of the final hidden layer (the

representation to the linear layer) as φt = PthL. In this way gt
L ⊥ gk 6=t

L and orthonormal weight

matrices can preserve the inner product of gradients in each layer. Then the objective becomes

learning orthonormal weight matrices of each layer which is an optimization problem over Stiefel

Manifold (Bonnabel, 2013) and can be solved iteratively using the Cayley transform (Li et al.,

2020). For each layer l ∈ {1, . . . ,L} the weights is updated by the following steps:

A = gl(Wk
l)T −Wk

l gT
l , U = AWk

l ,

Y 0 =Wk
l −τU , τ=min(α,2q/(‖Wk

l ‖+ε)),
Y i =Wk

l − τ

2
A(Wk

l +Y i−1), i ∈ {1, . . . , s},

Wk+1
l =Y s

(3.32)

where τ is the adaptive learning rate and α, q, ε, s are hyperparameters. This method achieves

a similar goal as OGD without storing gradients of previous tasks. Although there are no

experimental results comparing these two methods directly, ORTHOG-SUBSPACE might perform

better as it shows larger improvements over A-GEM.

Another way to adjust the gradient direction is updating the parameters by a meta-learning

style. Meta-Experience Replay (MER) (Riemer et al., 2019) is such a method using multiple

batches to generate one-step update as Reptile (Nichol et al., 2018) which first optimizes across s

batches sequentially with SGD and learning rate α and then takes a final update with a learning

rate β after training on all batches: θ0 = θ0+β(θs−θ0). MER further serializes the updates within

each batch which approximately optimizes:

θ∗ = argmin
θ

Exi j ,yi j∼Dt∪Mt−1

[
2

s∑
i=1

b∑
j=1

[L (xi j,yi j)−
i−1∑
q=1

j−1∑
r=1

α〈∂L (xi j,yi j)
∂θ

,
∂L (xqr,yqr)

∂θ
〉]

]
(3.33)

38

3.3. MAIN CATEGORIES OF APPROACHES IN CONTINUAL LEARNING

where b is batch size and s is number of batches, α is the learning rate applied to updates within

each batch.

In addition, Aljundi et al. (2019b) propose Gradient-based Sample Selection (GSS), which

selects samples that produce most diverse gradients with other samples into the episodic memory.

Here the diversity is measured by the cosine similarity between gradients. Since the cosine

similarity is computed using the inner product of two normalized gradients, GSS embodies the

same principle as other gradient-based approaches introduced above.

M̂i = argmin
M

∑
n,m∈M

〈gn, gm〉
||gn|| · ||gm|| ,

s.t. M ⊂ (M̂i−1 ∪Bi), |M | = M
(3.34)

Here M is the memory size, i is the iteration index, and Bi is the i-th batch of the current

task. However, due to the limited size of episodic memories, GSS faces difficulties to construct

memories that are representative enough for all seen tasks. We will have a further discussion

about this in Chapter 5.

The gradient-based approaches require at least O(W) computational complexity in addition to

the usual gradient back-propagation, where W is the number of model parameters, which is much

more expensive than other replay-based methods when the model is large. And the obtained

performance is not significantly better compared with other replay-based methods. We make the

connection between the diversity of gradients and the discriminativeness of representations in

Chapter 5, which leads to a more efficient way to reduce the gradient diversity across tasks.

Knowledge distillation using the episodic memory

Another way to utilize the episodic memory is knowledge distillation, a technique was originally

proposed for knowledge compression and transferring (Hinton et al., 2015). Li & Hoiem (2017)

introduced Learning without Forgetting (LwF), a method adding the loss of knowledge distillation

into continual learning by feeding new samples to the previous model:

LLwF =λoLce(Ŷo, Ỹo)+Lce(Yn, Ỹn)+R,

Ŷo = S(f (Xn;θs,θo)), Ỹo = S(f (Xn; θ̂s, θ̂o)), Ỹn = S(f (Xn; θ̂s, θ̂n)),
(3.35)

where Lce is the cross entropy loss, S(·) is the softmax function, R is the regularization loss, f

represents the model function, θs is the shared parameter learned by the previous task, θo is the

specific parameter of old tasks, θ̂s and θ̂o are the updated θs and θo by the current task, and θ̂n

denotes new parameters added for the current task. Xn,Yn represents new samples and their

true labels of the current task. LwF is not a typical replay-based method as it does not replay

samples of old tasks. The loss of LwF is more like adding a regularization term by the knowledge

distillation loss. However, the knowledge distillation loss is easily adapted to experience replay as

39

CHAPTER 3. BACKGROUND AND RELATED WORK OF CONTINUAL LEARNING

was done in Incremental Classifier and Representation Learning (iCaRL) (Rebuffi et al., 2017):

LiCaRL =Lce(Ŷo, Ỹo)+Lce(Yn, Ỹn),

Ỹo = S(f (Xo;θn)), Ỹn = S(f (Xn;θn)), Ŷo = S(f (Xo;θo))
(3.36)

where θo and θn are model parameters learned by old and new tasks, respectively. Xo denotes

samples (or exemplars) from old tasks and Ŷo denotes their logits generated by the previous

model. In this case, Xo, Ŷo are stored in the episodic memory and the memory is updated at the

end of each task to include newly learned classes.

Buzzega et al. (2020) introduced Dark Experience Replay (DER) which includes an additional

L2-distance term for the knowledge distillation as follows:

LDER =Lce(Yt, Ỹt)+αEk<t[‖Zk − Z̃k‖2
2],

Ỹt = S(f (X t;θt)), Z̃k = f (Xk;θt), Zk = f (Xk;θk),
(3.37)

where X t denotes samples of the t-th task and Yt is the true label of X t, t and k are task indices,

Zk and Z̃k are logits of Xk produced by the model at the k-th task and t-th task, respectively.

In this case Xk, Zk are stored in the episodic memory by a Reservoir sampling strategy while

training on the k-th task. DER++ improves DER by an additional loss over memorized samples

as usual experience replay:

LDER++ =Lce(Yt, Ỹt)+αEk<t[‖Zk − Z̃k‖2
2]+βEk<t[Lce(Yk, Ỹk)], Ỹk = S(f (Xk;θt))(3.38)

where Yk are true labels of Xk which also needs to be stored in the memory. DER++ combines

the knowledge distillation and experience replay in a rather simple way yet has shown strong

performance in its empirical results.

Summary of replay-based approaches

The replay-based methods have the flexibility to cope with various application scenarios and

generally show strong performance with relatively low computational cost in terms of time

and RAM usage. The main drawback of replay-based methods is that the memory cost may

increase while learning more tasks, otherwise, the allocated memory could be not enough to

guarantee a minimum performance on learned tasks. To this end, the memory cost should be

considered as a performance measurement for replay-based methods too. We will introduce a

weighted combination of measurements including the memory cost in sec. 5.6, which is applied in

a continual learning challenge. As a result, the main challenge of replay-based methods is how

to make more efficient use of the memory and how to make the memorized information more

representative. We will show that this conclusion also aligns with the theoretical analysis of

continual learning in Sec. 3.5.

40

3.4. GENERATIVE MODELS IN CONTINUAL LEARNING

Figure 3.5: Demonstration of the training protocol of generative models in continual learning. At
task t the training set consists of samples of category t−1 and samples generated by the model
at the previous task, and the model is to generate samples from all previously seen categories
(figure reproduced from (Lesort et al., 2018)).

3.4 Generative Models in Continual Learning

The previously introduced methods mostly focus on classification tasks in continual learning. In

comparison, generative models in continual learning have different training protocols and can be

applied in unsupervised learning scenarios, such as representation learning. The main difference

in training is that we can draw samples from a generative model trained in previous tasks and

use those samples as replay memories of previous tasks, i.e., the generative model itself can

work like a replay buffer. A simplified scenario for generative models in continual learning is

depicted in Fig. 3.5, where the goal is to learn a generative model for one category (digit) per task

while still being able to generate samples of all previous categories. The training dataset of task

t consists of real samples of category t and samples of task 1 · · · t−1 generated by the previous

model.

Besides the standalone generative tasks in continual learning, generative models can be

applied to replay-based methods as a memory generator for classification tasks as well. For

example, Shin et al. (2017) propose using GANs as a generative replay component in classification

tasks. Moreover, Wu et al. (2018) show that a generative model can be jointly trained with a

classifier as a memory generator.

Objective of generator : min
θG

(
L G

GAN(θG ,D)+L G
CLS(θG ,D)

)
,

Objective of discriminator and classifier : min
θD ,θC

(
L D

GAN(θD ,D)+L D
CLS(θC,D)

)
,

L G
CLS(θG ,D)=−Ez∼pz,c∼pc [yc log pθC (GθG (z, c))]

(3.39)

Where L G
GAN and L D

GAN are the conventional loss of the generator and the discriminator of the

GAN, respectively. θG ,θD ,θC are parameters of the generator, discriminator, and the classifier,

respectively. D denotes the training set, pz = N (0,1) is the prior of z and pc = U {1, . . . ,K} is

the prior of classes. L D
CLS(θC,D) is the usual cross-entropy loss of classifiers. L G

CLS(θG ,D) is a

loss w.r.t. θG to maximize the likelihood of generated samples. In addition, the regularization-

41

CHAPTER 3. BACKGROUND AND RELATED WORK OF CONTINUAL LEARNING

based methods of continual learning, such as EWC, can also be applied to generative models as

demonstrated in (Wu et al., 2018).

When a generative model generates samples with higher fidelity it would be more resistant to

forgetting as the replayed samples would be more similar to raw samples. For high-dimensional

data using generative replay might be better than using episodic memories as the number of

replayed samples is not limited, however, the generative model needs to be able to simulate the

true data distribution which is also a challenging task. Lesort et al. (2018) provide a compre-

hensive study on generative models in continual learning, which focuses on GANs and VAEs.

The results show that GANs generate samples of higher quality than VAEs in most experiments.

Nonetheless, VAEs can also be applied to continual representation learning as introduced in

Rao et al. (2019) since the latent variable space of VAEs can be explicitly learned as represen-

tations. In principle, other types of generative models can be applied in continual learning as

well, like flow-based generative models (Rezende & Mohamed, 2015; Kingma & Dhariwal, 2018).

For Bayesian generative models, the framework of VCL can be used for transferring knowledge

through priors, such as for VAEs (Nguyen et al., 2018):

LVCL−VAE = Eqt(θ)[LVAE(θ)]−DKL(qt(θ)|qt−1(θ))(3.40)

Here, θ denotes parameters of a VAE which encoder and decoder are Bayesian neural networks,

qt(θ) and qt−1(θ) are the posterior of θ at task t and t−1. This framework is general to Bayesian

models as long as the posterior of parameters is able to be approximated. We adapt a hierarchical

probabilistic model into continual learning by this framework which will be introduced in

Chapter 6.

3.5 Theoretical Analysis of Continual Learning

Most existing work in continual learning proposes methods for alleviating forgetting motivated

by heuristic or empirical analysis. A few authors have attempted to provide some theoretical

guidance for developing approaches in continual learning. In traditional online learning the

theoretical bounds are often developed with the assumption that the unseen data are from the

same distribution of the seen data or a distribution conditioned on the seen data. In contrast,

continual learning pursues the learning ability that is capable of learning from a task sequence

without any pre-conditioning. Although we expect the tasks are correlated to some extent but the

correlation is not assumed to be foreseen.

Knoblauch et al. (2020) develop a theoretical treatment of continual learning by set theory

which makes no assumption about the tasks. It shows that optimal algorithms in continual

learning can be interpreted as solving a version of the set intersection decision problem, which

is generally NP-hard. Moreover, it concludes that the optimal algorithms must have perfect

memories under mild regularities where a perfect memory contains information that can be used

42

3.6. SUMMARY

to reconstruct at least one optimal solution of all seen tasks. These theoretical findings lead to an

explanation of the better performance of replay-based methods compared with regularization-

based methods, where the latter narrows the searching space of an overall optimal solution in a

neighborhood of the solution of a previous task. In practice, it is more easily to reconstruct an

overall solution by data representations of tasks than parameters, especially for less homogeneous

tasks. It also explains why some regularization-based methods (such as LwF) use data to form

regularization instead of using parameters. From this point of view, there are two factors that are

critical to the efficiency of a continual learning algorithm: 1) how efficiently it constructs a memory

that close to the perfect memory; and 2) how efficiently it builds a solution based on the memory

and training set that close to the optimal solution for all seen tasks. We follow this lead and

propose several approaches which will be introduced in the following chapters. In particular, we

propose Gaussian Natural Gradient (GNG) for more efficiently updating parameters in Bayesian

continual learning and Stein Gradient-based Episodic Memories (SGEM) for constructing the

episodic memory along with posterior approximation in Chapter 4. In Chapter 5 we propose a

replay-based method DRL that is more efficient than gradient-based approaches with better

performance.

3.6 Summary

In this chapter we introduced three main categories of continual learning approaches and

compared the pros and cons of each category regarding different settings of application scenarios.

We also made connections between related approaches and gave an overview of specified branches

in each category. In addition, we introduced several methods for training generative models

continously as they can be complementary to classification tasks. Moreover, we aligned empirical

results in those related work with a theoretical analysis of continual learning which have shown

the importance of episodic memories for solving catastrophic forgetting.

43

C
H

A
P

T
E

R

4
NATURAL GRADIENTS AND STEIN GRADIENTS FOR BAYESIAN

CONTINUAL LEARNING

In this chapter, we propose the approaches to improve efficiency in Bayesian continual learning.

When using Bayesian models in continual learning, knowledge from previous tasks can be

retained in two forms: (i) as posterior distributions over the parameters, containing the knowledge

of the model gained from previous tasks, which then serve as the priors for the following task;

(ii) as episodic memories (referred as coresets in Nguyen et al. (2018)), containing knowledge of

data distributions of previous tasks. To cope with both forms, we propose a regularization-based

and a replay-based approach for Bayesian continual learning in this chapter, which are built upon

the Variational Continual Learning (VCL) framework and utilize the natural gradient and Stein

Variational Gradient Descent (SVGD) respectively. We first introduce the regularization-based

approach: Gaussian Natural Gradient (GNG), and then introduce the replay-based approach:

Stein Gradient-based Episodic Memories (SGEM). Finally, we provide experimental results for

both approaches along with the combination of them, which demonstrate that our methods

effectively bring improvements based on VCL.

4.1 Gaussian Natural Gradient for Bayesian continual learning

In Chapter 3 we introduced several regularization-based approaches for continual learning,

including Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), Synaptic Intelligence (SI)

(Zenke et al., 2017), Variational Continual Learning (VCL) (Nguyen et al., 2018), and Uncertainty-

guided Continual Bayesian Neural Network (UCB) (Ebrahimi et al., 2020), which adaptively

regularize the parameters when learning a new task by the importance of previous parameters.

Those approaches use different ways to measure the importance of previous parameters including

45

CHAPTER 4. NATURAL GRADIENTS AND STEIN GRADIENTS FOR BAYESIAN CONTINUAL

LEARNING

non-Bayesian and Bayesian treatments. In particular, VCL is a framework that makes use of

Variational Inference (VI) to facilitate continual learning for Bayesian Neural Networks (BNNs).

We recall the objective of VCL in Eq. (4.1) as it is the basis of our approach:

(4.1) LVCL = Eqt(θ) [log p (Dt|θ)]−DKL (qt(θ)‖qt−1(θ)) .

where t is the index of tasks and Dt is the training data of task t, qt(θ) represents the approxi-

mated posterior of parameters θ at task t. We can parameterize qt(θ) as q(θ;βt) if we assume

the posteriors of all tasks are from the same functional family. qt−1(θ) here takes the role as the

prior of qt(θ) as in VI. The regularization term is the KL-divergence between the posteriors of

the current and the previous task, which encourages the posterior of the current task being closer

to the previous task. VCL shows promising performance compared to EWC (Kirkpatrick et al.,

2017) and SI (Zenke et al., 2017), which demonstrates the effectiveness of Bayesian continual

learning.

However, conventional gradient methods give the direction of steepest descent of parameters

in Euclidean space, which might cause a large difference in terms of distributions following a

small change in terms of parameters. We posit that natural gradient methods may be a better

choice than the conventional gradient descent. The natural gradient is in the direction of steepest

descent in Riemannian space rather than Euclidean space (Pascanu & Bengio, 2014) as it adjusts

the vanilla gradient by Fisher information, which would prefer the smallest change in terms of

distribution while optimizing some objective function. Prior works (Honkela et al., 2007; Hoffman

et al., 2013) have been done for applying the natural gradient in VI in static learning, which have

shown effectiveness of the natural gradient for learning Bayesian models. According to Eq. (4.1)

we would want to keep the two posteriors q(θ;βt), q(θ;βt−1) as close as possible while optimizing

the likelihood Eqt(θ) [log p (Dt|θ)]. The natural gradient could be a more suitable choice than the

vanilla gradient for such an objective as it updates parameters with less changes on the posterior.

For a better understanding, we will provide more technique details of natural gradient in the

next section.

4.1.1 Preliminary: Natural Gradient

Let β be the parameter of the posterior of θ and ∆β denote a small change on β that is optimized

to satisfy:

∆β∗ = argmin
∆β

L (β+∆β), s.t. DKL(q(θ;β)||q(θ;β+∆β))= const(4.2)

46

4.1. GAUSSIAN NATURAL GRADIENT FOR BAYESIAN CONTINUAL LEARNING

Assuming ∆β→ 0, the KL-divergence can be expanded and approximated by the second-order

Taylor series (Pascanu & Bengio, 2014):

DKL(q(θ;β)||q(θ;β+∆β))= Eq(θ;β)[log q(θ;β)]−Eq(θ;β)[log q(θ;β+∆β)]

≈ Eq(θ;β)[log q(θ;β)]−Eq(θ;β)[log q(θ;β)+∇β log q(θ;β)∆β+ 1
2
∆βT∇2

β log q(θ;β)∆β]

= 1
2
∆βTEq(θ;β)[−∇2

β log q(θ;β)]∆β

(4.3)

Here we use Eq(θ;β)[∇β log q(θ;β)∆β] = ∆βEq(θ;β)[∇β log q(θ;β)] = ∆β∫ ∇βq(θ;β)dθ = 0. In addi-

tion,

Eq(θ;β)[−∇2
β log q(θ;β)]= Eq(θ;β)

[
−
∇2
β

q(θ;β)

q(θ;β)
+

(∇βq(θ;β)
q(θ;β)

)T (∇βq(θ;β)
q(θ;β)

)]
= Eq(θ;β)[∇β log q(θ;β)T∇β log q(θ;β)]= Fβ

Fβ is the Fisher information of β. Applying the first-order Taylor series on L (β+∆β) and using

Lagrangian relaxation with a positive scalar λ to solve Eq. (4.2) gives:

(4.4) ∆β∗ ≈ argmin
∆β

L (β)+∇βL (β)∆β+ 1
2
λ∆βT Fβ∆β, λ> 0.

Solving Eq. (4.4) by taking the derivative w.r.t ∆β, we have ∆β∗ =− 1
λ

F−1
β

∇βL (β), which gives

the definition of the natural gradient as follows:

∇̂βL (β), F−1
β ∇βL (β),(4.5)

In the rest of this chapter, we use ∇̂ to denote the natural gradient. Through the derivation

of natural gradient we can see that it is obtained by an extra constraint that minimizes the

KL-divergence between q(θ;β) and q(θ;β+∆β), which is more reasonable when we want each

update of the parameters leading to less change on their distributions. This property of natural

gradient helps with obtaining a more efficient update trajectory of parameters when optimizing

the objective of VCL.

4.1.2 Gaussian Natural Gradient and the Adam optimizer

In the simplest (and most common) formulation of BNNs, the weights are drawn from Gaussian

distributions with a mean-field factorization which assumes that the weights are independent.

Hence, we have an approximate posterior for each weight q(θi;µi,σi)=N (µi,σ2
i), where µi,σi

are variational parameters, and their Fisher information has an analytic form:

Fµi = 1/σ2
i , Fνi = 2, where νi = logσi.(4.6)

Let qt(θi)=N (µi,t,σ2
i,t), we have:

LVCL(θi)= Eqt(θi)[log p(Dt|θi)]−
(
log

σi,t−1

σi,t
+ 1

2

(
σ2

i,t + (µi,t −µi,t−1)2

σ2
i,t−1

−1

))
(4.7)

47

CHAPTER 4. NATURAL GRADIENTS AND STEIN GRADIENTS FOR BAYESIAN CONTINUAL

LEARNING

The natural gradient of the mean µi,t can be computed as follows:

ĝµi,t = ∇̂µi,tLVCL(θi)=σ2
i,t

(
g i − (σi,t−1)−2(µi,t −µi,t−1)

)
,

where g i ,∇θiEqt(θi)[log p(Dt|θi)], θi =µi,t +σi,tε0, ε0 ∼N (0,1)
(4.8)

Eq. (4.8) indicates that small σi,t can cause the magnitude of natural gradient to be much

reduced. However, BNNs usually need very small variances in initialization to obtain a reasonable

performance at prediction time, which brings difficulties of tuning learning rates when applying a

vanilla SGD optimizer to this Gaussian Natural Gradient (GNG). As shown in Figs. 4.1c and 4.2c

we can see how the scale of variance in initialization changes the magnitude of GNG. To tackle

this issue, we consider applying the Adam optimizer (Kingma & Ba, 2014) to GNG. Since Fνi is a

constant, its natural gradient is just the Euclidean gradient multiplied by a scalar, which makes

no difference in the Adam optimizer. We will explain this below.

The Adam optimizer (Kingma & Ba, 2014) provides a method which update step-size is

approximately bounded by the learning rate. It mostly ignores the scale of gradients in update

steps, which could compensate the drawback of GNG in BNNs. More precisely, the Adam optimizer

updates parameters as follows:

θk+1 ← θk −α∗ m̂k
/

(
√

v̂k +ε),(4.9)

where k is index of update steps, m̂k, v̂k are the moving average of the first and second moment

of the gradients, respectively. ε is a small number to prevent division from zero. α is the learning

rate. We can see that if re-scale the gradients by a scalar c the update step-size is invariant

because ∆θk ≈αk(cm̂k
/ √

c2v̂k)=αk(m̂k
/ √

v̂k), when ε→ 0.

Assume k →+∞, m̂k ≈ Ek[gk] and v̂k ≈ Ek[gT
k gk], where Ek indicates the expectation is over

k updates. Considering the first and second moments of the natural gradient ĝµi ,k,

Ek[ĝµi ,k]= Ek[σ2
i,k]Ek[gµi ,k]+cov(σ2

i,k, gµi ,k)

Ek[ĝ2
µi ,k]= (Ek[σ2

i,k]2 +var(σ2
i,k))Ek[g2

µi ,k]+cov(σ4
i,k, g2

µi ,k)
(4.10)

We can see that only when var(σ2
i,k)= 0 and gµi ,k are independent from σ2

i,k, the updates of GNG

are equal to the updates by Euclidean gradients with the Adam optimizer. In addition, larger

variance of the gradient will result in smaller updates when applying Adam optimization since

v̂k ≈ m̂2
k +vark(ĝµi,k).

Figs. 4.1 and 4.2 demonstrate how the optimization method and scale of σi affect parameter

updates in an 1-dimensional Bayesian linear regression model trained by 5 tasks continuously.

These tasks are independent and have different optimal solutions. The model is defined as

y ∼ N (wx+ b,0.1),w ∼ N (µw,σ2
w),b ∼ N (µb,σ2

b). The initialization of σw and σb is set to 0.1

and 0.001 in Figs. 4.1 and 4.2, respectively. The update steps in Fig. 4.1d are smaller than in

Fig. 4.2d, even when its initialization of the variance is larger, which is because larger value of

initialization σ0 results in a larger variance of gradients (see the difference between Fig. 4.1a

48

4.1. GAUSSIAN NATURAL GRADIENT FOR BAYESIAN CONTINUAL LEARNING

0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.0

0.2

0.4

0.6

0.8
task 1
task 2
task 3
task 4
task 5

(a) Vanilla SGD

0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.0

0.2

0.4

0.6

0.8
task 1
task 2
task 3
task 4
task 5

(b) Adam

0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.0

0.2

0.4

0.6

0.8
task 1
task 2
task 3
task 4
task 5

(c) SGD+GNG

0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.0

0.2

0.4

0.6

0.8
task 1
task 2
task 3
task 4
task 5

(d) Adam+GNG

Figure 4.1: Updating trajectory of parameters of 1-dimensional Bayesian linear regression in
continual learning. The x-axis is µw and y-axis is µb. The contour depicts the same level of
average MSE over seen tasks, to get equal or better performance on seen tasks, the model needs
to find an optimum inside the contour, so the area of the contour becomes smaller and smaller
when the model has learned more tasks. The cross-mark indicates the position of true parameters
of each task, different colours represent different tasks. The learning rate is set to 0.001 for
vanilla SGD and 0.01 for all other methods. The initialization of σw and σb is set to σ0 = 0.1.

and Fig. 4.2a) due to the reparameterization trick we applied to approximate the gradients in

VI. Since we draw samples of w and b to compute the gradients at each step, the variance of

gradients highly relate to the variance of both variables. Consequently, the step size of parameter

updates decreases according to Eq. (4.9). In general, GNG shows lower variance in parameter

updates, and it works better with Adam than with SGD.

4.1.3 Related work

As we introduced in Sec. 3.3.1, EWC and Online EWC (OEWC) also utilize Fisher information but

in a different way. In OEWC, the prior of the parameter θ at task t can be viewed as approximated

by p(θ)≈N (θ∗t−1, (F∗
t−1)−1) and the regularization term is derived from the perspective of MAP.

According to Eq. (3.7), the gradient of a parameter θi in OEWC is:

∇θiLOEWC =∇θiLt(θi)+λF∗
t−1,i(θi −θ∗t−1,i)(4.11)

49

CHAPTER 4. NATURAL GRADIENTS AND STEIN GRADIENTS FOR BAYESIAN CONTINUAL

LEARNING

0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.0

0.2

0.4

0.6

0.8
task 1
task 2
task 3
task 4
task 5

(a) Vanilla SGD

0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.0

0.2

0.4

0.6

0.8
task 1
task 2
task 3
task 4
task 5

(b) Adam

0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.0

0.2

0.4

0.6

0.8
task 1
task 2
task 3
task 4
task 5

(c) SGD+GNG

0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.0

0.2

0.4

0.6

0.8
task 1
task 2
task 3
task 4
task 5

(d) Adam+GNG

Figure 4.2: Parameter trajectory of 1-dimensional Bayesian linear regression in continual learning.
All configurations are the same as in Fig. 4.1 except σ0 = 0.001.

We can see that this is in a very different form in comparison with GNG (Eq. (4.8)). More

specifically, we optimize the variational parameters of the posteriors for BNNs instead of directly

optimizing the network weights as in EWC and OEWC.

A concurrent work (Tseran et al., 2018) proposes Vadam VCL which also utilising Fisher

information based on VCL. It deploys Vadam (Khan et al., 2018) in a similar way with VCL as

follows:

g̃µi,t =σ−1
i,t

[
g i −σ−2

i,t−1(µi,t −µi,t−1)
]

, σ−2
i,t ← st +σ−2

i,t−1, st ←λst + (1−λ)g2
i(4.12)

We can see that it complies with the formulation of VI but without learning specific parameters of

σi. Instead, it estimates the variance by a moving average of the diagonal of the Hessian matrix

(which can also be viewed as the Fisher information) and update the mean in a similar way as

Adam. UCB (Ebrahimi et al., 2020) is subsequent work that adapts the conventional gradients

by the variance of the posterior in a similar way with GNG but without the full treatment of the

natural gradient. In addition, it deploys a mixture Gaussian distribution as the prior of all tasks

instead of using the previous posterior qt−1(θi). The gradient approximated in UCB is as below:

g̃µi,t =Ω−1
i,t ∇µi,tLUCB, Ωi,t = 1/σi,t or |µi,t|/σi,t(4.13)

50

4.2. STEIN GRADIENT-BASED EPISODIC MEMORIES

The loss of UCB (LUCB) is given in Eq. (3.12). UCB adjusts the gradient in a similar way

with natural gradient. However, it solely relies on this adjustment to keep closer to important

previous parameters since it fixes the prior for all tasks with zero means. Ebrahimi et al. (2020)

provided experimental results comparing UCB with EWC, Vadam, and GNG, which shows UCB

outperforms these methods.

In the next section we will introduce a method of composing episodic memories based on the

framework VCL and in Sec. 4.3 we will show experimental results of combining GNG with it.

4.2 Stein Gradient-based Episodic Memories

In the context of continual learning, “episodic memories” (also referred as “coresets” in VCL

(Nguyen et al., 2018)) are small collections of data samples of every learned task, used for experi-

ence replay over learned tasks when learning a new task. The motivation is to retain summarized

information of the data distribution of learned tasks so that we can use this information to obtain

an optimal solution for old tasks along with solving a new task. On the other hand, the informa-

tion of a learned task is contained not only in its data samples but also in its trained parameters.

To this end we consider constructing the episodic memory with the use of approximated posteriors.

In this section we introduce an approach based on Stein Variational Gradient Descent (SVGD) to

compose the episodic memory not only including information of the data distribution but also

entailing information of the model parameters.

4.2.1 Preliminary: Stein Variational Gradient Descent

We have introduced several methods of Stochastic Variational Inference (SVI) in Chapter 2 which

approximate the posterior by an explicitly parameterized form. Besides approximating an explicit

posterior, we can also approximate samples from the variational posterior without an explicit

form of it. Liu & Wang (2016) provides a way to achieve this goal, which is Stein Variational

Gradient Descent (SVGD). Instead of optimizing the variational parameters of the approximated

posterior, SVGD transforms random samples from an initial distribution to samples from the true

posterior. Suppose we have a series of samples x from an initial distribution q(x) and transform

them as follows:

z= T(x)= x+εφq,p(x), x∼ q(x)

We denote the density of z as q[T](z). Here φq,p(·) is in the ball of a Reproducing Kernel Hilbert

Space (RKHS) H d: B = {φ ∈H d : ||φ||H d ≤D(q, p)}, D(q, p) is the Kernelized Stein Discrepancy

(KSD) defined as:

(4.14) D(q, p), arg max
φ∈H d

{Ex∼q(x)[trace(Apφ(z))], s.t. ‖φ‖H d ≤ 1}

51

CHAPTER 4. NATURAL GRADIENTS AND STEIN GRADIENTS FOR BAYESIAN CONTINUAL

LEARNING

Choose the optimal φ to decrease the KL-divergence between a target distribution p(z) and q[T](z)

in the steepest direction:

(4.15) φ∗
q,p(·), argmin

φ
∇εDKL(q[T]||p)|ε=0

Theorem 3.1 in Liu & Wang (2016) shows:

(4.16) ∇εDKL(q[T]||p)|ε=0 =−Eq(x)[trace(Apφ(x))]

where Ap is the Stein operator that satisfies the Stein Identity:

Ep[Apφ(x)]= 0, Apφ(x)=φ(x)∇x log p(x)T +∇xφ(x)

Lemma 3.2 in Liu & Wang (2016) gives:

φ∗
q,p(·)= Ex∼q(x)[κ(x, ·)∇x log p(x)+∇xκ(x, ·)],(4.17)

κ(·, ·) is a definite positive kernel in the Stein class of p (i.e.,
∫ ∇x(κ(x, ·)p(x))dx = 0) (Liu et al.,

2016). Eq. (4.17) suggests how to iteratively transform x from q(x) to samples from the target

distribution p(z) as at each step k we apply:

zk+1 = Tt(zk)= zk +εt−1φ
∗
q[Tk],p(zk), k ≥ 1, z0 = x, q[T0] = q(4.18)

which iteratively decreases the KL-divergence in the steepest direction with sufficiently small

{εk}. Thus, the Stein gradient of each sample can be computed as follows:

φ∗
q[Tk],p(z(i)

k)= 1
M

M∑
j=1

[
κ(z(j)

k ,z(i)
k)∇z(j)

k
log p(z(j)

k)+∇z(j)
k
κ(z(j)

k ,z(i)
k)

]
(4.19)

We continue to show how to take advantage of SVGD to generate episodic memories for Bayesian

continual learning.

4.2.2 Stein Gradient-based Episodic Memories

Since Stein gradients Liu & Wang (2016) can be used to generate samples of a target distribution,

we consider to compose episodic memories by using Stein gradients to generate samples from

the joint distribution p(x,θ|y), where x denotes the input data of the model, y denotes the true

class of x, and θ denotes model parameters. As the joint distribution also includes information

of the parameters, the memory could be more helpful to prevent parameters’ drifting as well.

Suppose the posterior of parameters θ are learned over the whole training set. As the true

posterior, p(θ|D) (D = {X ,Y } represents the training set) is usually not available, we approximate

it by the variational posterior q(θ) in VI and the joint distribution can be approximated by

p̃(x,y,θ) = p(y|x,θ)q(x)q(θ), q(x) is the empirical marginal distribution of x. Here we assume

q(x) and q(θ) are independent because q(θ) is learned in a separate process and fixed during the

memory updates. p(y|x,θ) is given by the model output, q(x|y) denotes the empirical conditional

distribution of x given y. We can apply Stein gradient to update x of a given class y as follows.

52

4.2. STEIN GRADIENT-BASED EPISODIC MEMORIES

Theorem 4.1. Let θ ∼ q(θ), p̃(x,y,θ) = p(y|x,θ)q(x)q(θ), p̃(x,θ|y) = p̃(x,y,θ)/p(y), define the

transformation T(x) = x+ εφ(x), when x ∼ q(x|y), denote T(x) ∼ q[T](x|y), assume p(y) = 1/K,

q(x)= 1/N, where K is the number of classes, N is the total number of samples of all classes, given

y we have:

φ∗(x|y), argmin
φ

∇εDKL(q(θ)q[T](x|y)|| p̃(x,θ|y))|ε=0

= Ex∼q[T](x|y)[κ(x, ·)∇xEq(θ)[log p(y|x,θ)]+∇xκ(x, ·)]

Proof.

∇εDKL(q(θ)q[T](x|y)|| p̃(x,θ|y))=∇ε
∫ ∫

q(θ)q[T](x|y) log
q(θ)q[T](x|y)p(y)
p(y|x,θ)q(x)q(θ)

dθdx

=∇ε
∫

q(θ)
∫

q[T](x|y) log
q[T](x|y)p(y)
p(y|x,θ)q(x)

dxdθ

=∇ε
∫

q(θ)
∫

q[T](x|y) log
1
K q[T](x|y)

p(y|x,θ)q(x)
dxdθ

=
∫

q(θ)∇ε
∫

q[T](x|y)
(
log

q[T](x|y)
p(y|x,θ)q(x)

− logK
)

dxdθ

= Eq(θ)
[∇εDKL(q[T](x|y)||p(y|x,θ)q(x))

]
The last equality above is because ∇ε

∫
q[T](x|y) logKdx=∇ε logK = 0. According to Eq. (4.16):

∇εDKL(q(θ)q[T](x|y)|| p̃(x,θ|y))|ε = Eq(θ)[Eq[T](x|y)[trace(Apφ(x|y))]],

where Apφ(x|y)=φ(x|y)∇x log(p(y|x,θ)q(x))+∇xφ(x|y)
(4.20)

Because q(x)= 1/N, ∇x log(p(y|x,θ)q(x))=∇x log p(y|x,θ). By Lemma 3.2 in Liu & Wang (2016)

(Eq. (4.17)) we prove the theorem.

Suppose we have a series of samples x from the empirical distribution q(x|y), and we update

them iteratively to move closer to samples from the joint distribution p̃(x,θ|y) by xk+1 = xk +
εφ∗(xk|y), according to Theorem 4.1, the Stein gradient can be computed by:

φ∗(x(i)
k |y)= 1

M

M∑
j=1

[
κ(x(j)

k ,x(i)
k)

1
S

S∑
s=1

(
∇x(j)

k
log p(y|x(j)

k ,θs)
)
+∇x(j)

k
κ(x(j)

k ,x(i)
k)

]
, θs ∼ q(θ)(4.21)

In the mean-field BNNs, q(θ)=N (µ,σ2I). We update the samples selected into the memory by

Stein gradients along with the procedure of VI when q(θ) is also updated iteratively. The updates

by Stein gradients do not affect the usual parameter updates and can work with other approaches

for Bayesian continual learning.

4.2.3 Related work

There are some existing approaches of Bayesian coreset construction for scalable machine learning

Huggins et al. (2016); Campbell & Broderick (2018), which have a similar goal with composing

53

CHAPTER 4. NATURAL GRADIENTS AND STEIN GRADIENTS FOR BAYESIAN CONTINUAL

LEARNING

the episodic memory in continual learning, i.e., using as few samples as possible to represent a

large dataset. In continual learning, the memory cost often increases with the number of tasks,

hence, we would prefer the memory size used for each task as small as possible. The basic idea

of Bayesian coresets is to find a sparse weighted subset of data to approximate the likelihood

over the whole dataset. In their problem setting the coreset construction is an objective combined

with the posterior approximation, and the computational cost is at least O(MN) Campbell &

Broderick (2018), where M is the coreset size and N is the dataset size. In Bayesian continual

learning, the memory construction does not play a role in the posterior approximation of a task

as we learn a new task over the whole training set. Hence, we can construct the episodic memory

in different ways without affecting the posterior approximation. Moreover, the computational

complexity of the Stein gradient method is O(M2), which is significantly cheaper than O(MN)

when M << N.

On the other hand, there is some related work on composing the episodic memory in continual

learning. For example, Nguyen et al. (2018) propose selecting top K-centres of the training data

into the memory. Aljundi et al. (2019b) introduce using the gradient diversity to select most

difficult samples into the memory and Chaudhry et al. (2019b) also show that randomly sampled

memory can perform well on various tasks. We also found that randomly sampled memory can

outperform the one selected by gradient diversity and will provide detailed analysis in Chapter 5.

In the next section, we will present experimental results of SGEM in comparison with episodic

memories composed by K-centres and random samples.

4.3 Experiments

In all experiments we applied a Bayesian Neural Network (BNN) with two hidden layers, each

layer with 100 hidden units and ReLu activations, all split tasks tested using multi-head models

which follows the setting in Nguyen et al. (2018). We tested our methods in the framework of VCL

(Nguyen et al., 2018) on three benchmarks: permuted MNIST, split MNIST, and split fashion

MNIST tasks, which are introduced in Sec. 3.1. The results are displayed in Fig. 4.3, the left

column shows results of GNG with Adam and the right column shows results of SGEM. The error

bars are from 5 runs by different random seeds.

We applied a RBF kernel to the Stein gradients which follows the setting described in Liu

& Wang (2016). For experiments with episodic memories, the memory size is 200 per task in

permuted MNIST and 40 in split tasks, which is the same as used in Nguyen et al. (2018). We

tested two different usages of the episodic memories. The first is training a predictive model

solely by memorized samples of each seen task to perform prediction for that task. The predictive

model is fine-tuned based on the model trained at the latest task and this setting is used in

Nguyen et al. (2018). The loss function of the predictive model is as follows:

L̂t = Eqt(θ) [log p (Ct|θ)]−KL
(
qt(θ)‖q∗

t (θ)
)
.(4.22)

54

4.3. EXPERIMENTS
P

er
m

ut
ed

M
N

IS
T

1 2 3 4 5 6 7 8 9 10
Number of tasks

0.88

0.90

0.92

0.94

0.96

0.98

Av
er

ag
e

ac
cu

ra
cy

1 2 3 4 5 6 7 8 9 10
Number of tasks

0.92

0.93

0.94

0.95

0.96

0.97

0.98

A
ve

ra
ge

 a
cc

ur
ac

y

Adam + random coreset
Adam + kcenter coreset
Adam + Stein coreset
Adam + GNG + random coreset
Adam + GNG + kcenter coreset
Adam + GNG + Stein coreset

regret
predictive

Sp
li

t
M

N
IS

T

1 2 3 4 5
Number of tasks

0.95

0.96

0.97

0.98

0.99

1.00

Av
er

ag
e

ac
cu

ra
cy

Adam
Adam + GNG

1 2 3 4 5
Number of tasks

0.980

0.985

0.990

0.995

1.000

A
ve

ra
ge

 a
cc

ur
ac

y

Adam + random coreset
Adam + kcenter coreset
Adam + Stein coreset
Adam + GNG + random coreset
Adam + GNG + kcenter coreset
Adam + GNG + Stein coreset

regret
predictive

Sp
li

t
Fa

sh
io

n
M

N
IS

T

1 2 3 4 5
Number of tasks

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Av
er

ag
e

ac
cu

ra
cy

1 2 3 4 5
Number of tasks

0.965

0.970

0.975

0.980

0.985

0.990

A
ve

ra
ge

 a
cc

ur
ac

y

Adam + random coreset
Adam + kcenter coreset
Adam + Stein coreset
Adam + GNG + random coreset
Adam + GNG + kcenter coreset
Adam + GNG + Stein coreset

regret
predictive

Figure 4.3: Average accuracy on permuted and split tasks without (left) and with (right) episodic
memories. All methods are based on VCL.

As shown in Eq. (4.22), Ct = {c1, c2, . . . , ct} represents the collection of episodic memories of learned

tasks at time t and q∗
t (θ) is the optimal posterior obtained by the usual training procedure over

the t-th task without using the episodic memory. The second usage is to add a regret loss using

the episodic memory to the objective function of VCL, which does not require a separate predictive

model:

L̂t = Eqt(θ) [log p (Dt|θ)]+Eqt(θ) [log p (Ct−1|θ)]−KL
(
qt(θ)‖q∗

t−1(θ)
)
,(4.23)

where the second term Ct−1 in Eq. (4.23) is the regret loss constructed by memorized samples

55

CHAPTER 4. NATURAL GRADIENTS AND STEIN GRADIENTS FOR BAYESIAN CONTINUAL

LEARNING

of previous tasks. The results of the first usage (predictive) are displayed in dotted line and the

second usage (regret) in solid line in the right column of Fig. 4.3.

The regret usage gives better performance in general, and SGEM outperforms other two

methods in most cases. Moreover, SGEM with GNG shows better performance than others in

permuted MNIST tasks as in the permuted MNIST task GNG with Adam outperforms standalone

Adam when not using episodic memories. There is no significant difference in split tasks between

with and without GNG, and we provide some further analysis in the following.

As one model has a limited capacity, and each different task contains some different informa-

tion, the ideal case for continual learning is that each new task shares as much information as

possible with previous tasks, and occupying as little extra capacity of the model as possible. This

is analogous to model compression Louizos et al. (2017), but one key difference is we want more

free parameters instead of parameters that are frozen to zero. For example, assume there are k

parameters in a model with a mean-field prior and the log-likelihood of the current task is as:

log p(Dt|θ1,θ2, . . . ,θk)= log p(Dt,θ1,θ2, . . . ,θk)−
k∑

i=1
log p(θi).(4.24)

If θ1 is absolutely free for this task, it indicates the log-likelihood is a constant w.r.t. θ1, then we

have:

∇θ1 log p(Dt,θ2, . . . ,θk|θ1)= 0, ∀θ1.(4.25)

In this case, θ1 is free to change without affecting other parameters or the likelihood of the

data. Hence, no matter what value of θ1 is set to in future tasks, it will not affect the loss of

previously learned tasks. In realistic situations, θ1 is unlikely to be absolutely free. However, it is

feasible to maximize the entropy of θ1, larger entropy indicating more freedom of θ1. For instance,

minimizing KL divergence includes maximizing the entropy of parameters:

DKL(qt(θ)||qt−1(θ))=−Eqt [log qt−1(θ)]−Hqt (θ).(4.26)

On the other hand, it is undesirable to change parameters with lower entropy instead of those

with higher entropy while learning a new task, since it could cause performance degradation on

previous tasks.

The entropy of a Gaussian distribution is determined by its variance alone. In this sense,

a larger decrease of the variance indicates larger decrease of the entropy of a parameter. To

understand why GNG works better on permuted MNIST tasks, we visualized how the variances

of parameters change in Fig. 4.4 where all changed values are normalized as below for a better

scaling in the visualization:

(4.27) ∆σi,t =
σi,t −maxiσi,1

maxiσi,1
,

In the above equation maxiσi,1 is the maximal variance among all parameters at the first task.

When the variance of parameters is decreased by learning a new task, the entropy of the model

56

4.3. EXPERIMENTS

layer 1

layer 2

layer 3

tas
k 1

tas
k 2

tas
k 3

tas
k 4

tas
k 5

tas
k 6

tas
k 7

tas
k 8

tas
k 9

tas
k 1

0

layer 1

layer 2

layer 3 1.5

1.2

0.9

0.6

0.3

0.0

(a) permuted MNIST

layer 1

layer 2

tas
k 1

tas
k 2

tas
k 3

tas
k 4

tas
k 5

layer 1

layer 2

0.10

0.08

0.06

0.04

0.02

(b) split MNIST

Figure 4.4: Variance changes w.r.t. first task, top row is from models trained by Adam, bottom row
is from models trained by Adam + GNG, tested on permuted and split MNIST without episodic
memories. The x-axis is concatenated by tasks, the y-axis is concatenated by BNN layers, as split
tasks are tested on multi-head models, so there is no layer 3 in Fig. 4.4b.

is decreased as well. We can think of it as new information written into the model, so when the

model has learned more tasks, more parameters have reduced variance as shown in Fig. 4.4. The

darker colour indicates larger decrease of the variance. In an ideal case, a parameter with larger

variance should be chosen to write new information preferentially to avoid erasing information of

previous tasks. Therefore, it would be preferred if the dark colour spread more evenly in latter

tasks in Fig. 4.4, and Adam + GNG appears to have this property for the permuted MNIST

task (Fig. 4.4a). However, there is no notable difference caused by GNG for split MNIST tasks

(Fig. 4.4b), which is consistent with their performance in terms of average accuracy over tasks.

We posit there are some parameters important across split tasks that are constantly rewritten

for a new task. The reason could be that split tasks are less homogeneous than permuted tasks

and thus less parameters can be shared (staying invariant) across tasks, therefore, the changes

57

CHAPTER 4. NATURAL GRADIENTS AND STEIN GRADIENTS FOR BAYESIAN CONTINUAL

LEARNING

over parameters are less evenly spread even with GNG.

4.4 Summary

In this chapter we proposed two methods to obtain improvements over VCL for Bayesian continual

learning: one is a regularization-based method utilising natural gradient to adjust the gradient

of variational parameters of the approximated posterior in BNNs; the other is a replay-based

method utilising SVGD to compose the episodic memory along with the posterior approximation

for BNNs. The regularization-based method GNG has shown notable improvements on permuted

MNIST tasks, however, on split tasks it has similar performance with just applying the Adam

optimizer to VCL. On the other hand, the replay-based method SGEM also shows more gains

on permuted MNIST tasks than on split tasks. Since both methods attempt to preserve more

information of the posteriors of previous parameters, the results suggest that keeping closer to

previous posteriors may not be beneficial to less homogeneous tasks as the optimal posterior for

multiple tasks may not be close to the one learned previously. This is also an intrinsic issue of

regularization-based methods for Non-Bayesian models. In general, regularization-based methods

result in much worse performance on split tasks in single-headed models (van de Ven & Tolias,

2019) because the final linear layer tends to be largely changed by learning a new task. In the

next chapter we will introduce an approach to alleviate the conflicts between tasks through the

perspective of gradients, which can efficiently reduce diversity of gradients between tasks with

much less computational cost than directly adjusting the gradients during training.

58

C
H

A
P

T
E

R

5
DISCRIMINATIVE REPRESENTATION LOSS FOR CONTINUAL

LEARNING

Through Chapter 4 we found that constraining parameters to be close to previous values in

continual learning may not be satisfactory for less homogeneous tasks. As replay-based methods

exhibit more robust performance in such cases, we turned to explore in this direction for a

more general solution. In Sec. 3.3 we introduced several gradient-based replay approaches that

constrain the gradients resulting from new samples with those from memorized samples, aiming

to reduce the diversity of gradients from different tasks. In this chapter, we investigate the

relation between diversity of gradients and discriminativeness of representations, demonstrating

connections between Deep Metric Learning (DML) and continual learning. Based on these

findings, we propose a simple yet highly efficient method, called Discriminative Representation

Loss (DRL), for continual learning. In comparison with several state-of-the-art methods, DRL

shows effectiveness with low computational cost on multiple benchmark experiments in the

setting of online continual learning. In the following sections, we first briefly review the problem

background in Sec. 5.1, then we show the connections between gradients and representations

empirically and theoretically in Sec. 5.2 which lead to the definition of our method in Sec. 5.3. In

Sec. 5.5, we present comprehensive experimental results including an ablation study on DRL.

Finally, we provide our experimental results for the CLVision challenge hosted by the Continual

Learning Workshop of CVPR 2020 in Sec. 5.6.

5.1 Introduction

Gradient-based approaches using episodic memories have been receiving increasing attention

recently in the literature of continual learning. As we introduced in Sec. 3.3.3, the essential idea is

59

CHAPTER 5. DISCRIMINATIVE REPRESENTATION LOSS FOR CONTINUAL LEARNING

to use gradients produced by samples from episodic memories to constrain the gradients produced

by new samples, e.g. by ensuring the inner product of the pair of gradients is non-negative

(Lopez-Paz & Ranzato, 2017) as follows:

(5.1) 〈gt, gk〉 =
〈
∂L (xt,θ)

∂θ
,
∂L (xk,θ)

∂θ

〉
≥ 0, ∀k < t

where t and k are time indices, xt denotes a new sample from the current task, and xk denotes

a sample from the episodic memory. Thus, the parameter updates are forced to preserve the

performance on previous tasks as much as possible. GEM (Lopez-Paz & Ranzato, 2017), A-GEM

(Chaudhry et al., 2019a), and OGD (Farajtabar et al., 2020) aim to re-project the gradients

produced by new samples to a direction close to or orthogonal to gradients produced by memorized

samples. GSS (Aljundi et al., 2019b) selects samples that produce most dissimilar gradients with

other samples into episodic memories. Although GSS suggests the samples with most diverse

gradients are important for generalization across tasks, Chaudhry et al. (2019b) show that the

average gradient over a small set of random samples may obtain good generalization as well.

In this chapter, we answer the following questions: i) Which samples tend to produce diverse

gradients that strongly conflict with other samples and why are such samples able to help with

generalization? ii) Why does a small set of randomly chosen samples also help with generalization?

iii) Can we reduce the diversity of gradients in a more efficient way? Our answers to these

questions shed light on the relation between diversity of gradients and discriminativeness of

representations, and further lead to connections between Deep Metric Learning (DML) (Kaya &

Bilge, 2019; Roth et al., 2020) and continual learning. Drawing on these findings we propose a

new approach, Discriminative Representation Loss (DRL), for classification tasks in continual

learning. Our method shows improved performance with relatively low computational cost in

terms of time and RAM cost when compared to several state-of-the-art (SOTA) methods across

multiple benchmark tasks in the setting of online continual learning.

5.2 A New Perspective of Reducing Diversity of Gradients

According to the basic idea of gradient-based approaches (Eq. (5.1)), negative inner product

between gradients produced by current and previous tasks results in conflicting parameter

update which may increase the loss of either current or previous task, and hence leads to worse

performance in continual learning. Liu et al. (2020) suggest that the variance of gradients

relates to the Gradient Signal to Noise Ratio (GSNR) , which plays a crucial role in the model’s

generalization ability:

GSNR= E2
p(x)[g]/Varp(x)[g], g =∇θL (x,θ).

Intuitively, when more of the gradients point in diverse directions, the variance will be larger,

leading to a smaller GSNR and worse generalization, which indicates that reducing the diversity

60

5.2. A NEW PERSPECTIVE OF REDUCING DIVERSITY OF GRADIENTS

of gradients can increase GSNR and then improve generalization. This finding leads to the

conclusion that samples with the most diverse gradients (i.e., the gradients have largely negative

similarities with other samples) contain the most critical information for generalization, which is

consistent with in Aljundi et al. (2019b).

5.2.1 The relation between gradients and representations

We first conducted a simple experiment on classification tasks of 2-D Gaussian distributions,

aimed to identify samples with most diverse gradients in the 2-D feature space. We trained

a linear model on the first task to discriminate between two classes (blue and orange dots

in Fig. 5.1a). We then applied the algorithm Gradient-based Sample Selection with Integer

Quadratic Programming (GSS-IQP) (Aljundi et al., 2019b) to select 10% of the samples of training

data that produce gradients with the lowest similarity (black dots in Fig. 5.1a), which is defined

as:

M̂ = argmin
M

∑
i, j∈M

〈g i, g j〉
||g i|| · ||g j||(5.2)

It is clear from Fig. 5.1a that the samples in M̂ are mostly around the decision boundary between

the two classes. Increasing the size of M̂ results in the inclusion of samples that trace the outer

edges of the data distributions from each class. It indicates that gradients can be strongly opposed

when samples from different classes are very similar. Samples close to decision boundaries are

most likely to exhibit this characteristic. This result of the first task suggests that more similar
representations in different classes result in more diverse gradients. An extreme example

would be two samples with same features having different labels. In this case, if one sample

results in a minimal loss, then the other will result in a maximal loss, and hence the gradient to

decrease the loss of the latter sample must increase the loss of the former.

Intuitively, storing the decision boundaries of previously learned classes should be an effective

way to preserve classification performance on those classes. However, why randomly chosen

samples can help the model generalize well? To answer this question, we introduced a second

task - training the model above on a third class (green dots). We tested two strategies to select

samples from the first task into the episodic memory: one is storing samples selected by M̂ (black

dots in Fig. 5.1b), which is the GSS-IQP method ((Aljundi et al., 2019b)); the other is storing

randomly chosen samples (black dots Fig. 5.1c). We display the decision boundaries (purple lines

in Figs. 5.1b and 5.1c, which split the feature space in a one vs. all manner) learned by the model

after learning task 2 with the two memory strategies. The model with random memory shows

better performance than the one with GSS-IQP as it learns more accurate decision boundaries. It

is because samples in M̂ have much less variance along the x-axis than the true data distributions

of the first two classes, which increases difficulties of learning new boundaries when adding the

third class. Through these experiments, we can see that if the episodic memory only includes

samples representing the learned boundaries, it may miss important information when the model

61

CHAPTER 5. DISCRIMINATIVE REPRESENTATION LOSS FOR CONTINUAL LEARNING

4 2 0 2 4 6
x

4

2

0

2

4

6

8

y

class 0
class 1
M

(a) Samples with most diverse
gradients (M̂) after learning task
1, the green line is the decision
boundary.

4 2 0 2 4 6
x

4

2

0

2

4

6

8

y

class 0
class 1
class 2
memory

(b) Learned decision boundaries
(purple lines) after task 2. Here
the episodic memory includes sam-
ples in M̂.

4 2 0 2 4 6
x

4

2

0

2

4

6

8

y

class 0
class 1
class 2
memory

(c) Learned decision boundaries
(purple lines) after task 2. Here
the episodic memory consists of
random samples.

Figure 5.1: 2-D classification examples, the x and y axis are the coordinates (also features) of
samples. We sequentially train a logistic regression model on two tasks: the first task is to classify
two classes as shown in (a); the second class is to incrementally classify a third class as shown in
(b) and (c). The solid lines are decision boundaries between classes.

is required to incrementally learn new classes. It explains why randomly selected memories may

generalize better in continual learning. Ideally, with M̂ large enough, the model can remember

all edges of each class, and hence learn much more accurate decision boundaries sequentially.

However, memory size is often limited in practice, especially for high-dimensional data. Under

such a restriction, we would prefer storing samples that contain more information of the true data

distribution. These experimental results suggest that: less compact representations within
classes help with learning new boundaries incrementally.

Now we formalize the connection between the diversity of gradients and the discriminative-

ness of representations for the linear model. Notations: Negative pair represents two samples

from different classes. Positive pair represents two samples from a same class. Let L represent

the softmax cross entropy loss, W ∈RD×K is the weight matrix of the linear model, and xn ∈RD

denotes the input data, yn ∈RK is a one-hot vector that denotes the label of xn, D is the dimension

of representations, K is the number of classes. Let pn = sof tmax(on), where on = WTxn, the

gradient gn =∇WL (xn,yn;W). xn,xm are two different samples when n 6= m.

Lemma 5.1. Let εn = pn −yn, we have: 〈gn, gm〉 = 〈xn,xm〉〈εn,εm〉,

Proof. Let `
′
n = ∂L (xn,yn;W)/∂on, by the chain rule, we have 〈gn, gm〉 = 〈xn,xm〉〈`′

n,`
′
m〉. By the

definition of softmax cross-entropy loss L , we can find `
′
n = pn −yn = εn.

Theorem 5.2. Suppose yn 6= ym, and let cn denote the class index of xn (i.e. yn,cn = 1,yn,i = 0,∀i 6=
cn). Let β, pn,cm + pm,cn and sp, 〈pn, pm〉, then:

Pr
(
sign(〈gn, gm〉)= sign(−〈xn,xm〉)

)
=Pr(β> sp),

62

5.2. A NEW PERSPECTIVE OF REDUCING DIVERSITY OF GRADIENTS

Proof. According to Lemma 5.1 and yn 6= ym, we have

〈εn,εm〉 = 〈pn, pm〉− pn,cm − pm,cn = sp −β

When β> sp, we must have 〈εn,εm〉 < 0. According to Lemma 5.1, we prove this theorem.

Theorem 5.2 says that for samples from different classes, 〈gn, gm〉 gets an opposite sign

of 〈xn,xm〉 with a probability that depends on the predictions pn and pm. This probability of

flipping the sign especially depends on β which reflects how likely the model will misclassify both

samples to its opposite class in the pair.

Theorem 5.3. Suppose yn = ym, when 〈gn, gm〉 6= 0, we have:

sign(〈gn, gm〉)= sign(〈xn,xm〉)

Proof. Because
∑K

k=1 pn,k = 1, pn,k ≥ 0,∀k, and cn = cm = c,

〈εn,εm〉 =
K∑

k 6=c
pn,k pm,k + (pn,c −1)(pm,c −1)≥ 0(5.3)

According to Lemma 5.1, we prove the theorem.

Theorem 5.3 says that 〈gn, gm〉 has the same sign as 〈xn,xm〉 when the two samples are from

the same class.

For a better understanding of the theorems, we conduct empirical study by partitioning the

feature space of three classes into several subsets as shown in Fig. 5.2a and examine four cases

of pairwise samples by these subsets: 1). x ∈ S0, both samples in a pair are near the intersection

of the three classes; 2). x ∈ S0∪S1, one sample is close to decision boundaries and the other is far

away from the boundaries; 3). x ∈ S3, both samples close to the decision boundary between their

true classes but away from the third class; 4). x ∈ S1 ∪S2, both samples are far away from the

decision boundaries.

By training a linear model, we show the empirical distributions of β and sp upon the four

subsets in Figs. 5.2b and 5.2c, respectively. In general, sp shows similar behaviors with β in the

four cases but in a smaller range, which makes β> sp tends to be true except when β is close

to zero. Basically, a subset including more samples close to decision boundaries leads to more

probability mass on larger values of β, and the case of x ∈ S3 results in largest mass on larger

values of β because the predicted probabilities mostly concentrate on the two classes in a pair. As

shown in Tab. 5.1, more mass on larger values of β leads to larger probabilities of flipping the

sign. These results demonstrate that samples with most diverse gradients (i.e., gradients that

have largely negative similarities with other samples) are close to decision boundaries because

the model tends to classify such samples as the opposite class and hence the predictions result

in a large β. When x ∈ S1 ∪S2, 〈gn, gm〉 is also mostly negative as shown in Tab. 5.1, because

〈xn,xm〉 is negative and the probability of flipping the sign is mostly zero due to β concentrates

63

CHAPTER 5. DISCRIMINATIVE REPRESENTATION LOSS FOR CONTINUAL LEARNING

4 2 0 2 4 6
x

4

2

0

2

4

6

8

y

S0

S1

S2S3

(a) Splitting samples into several
subsets in a 3-class classification
task. Dots in different colors are
from different classes.

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

6

7

8

pr
ob

ab
ilit

y
de

ns
e

x S0
x S0 S1
x S3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.01e5

x S1 S2

(b) Estimated distributions of β
when drawing negative pairs from
different subsets.

0.0 0.2 0.4 0.6 0.8 1.0
sp

0

2

4

6

8

10

pr
ob

ab
ilit

y
de

ns
e

x S0
x S0 S1
x S3

0.0

0.4

0.8

1.2

1.6

2.01e5

x S1 S2

(c) Estimated distributions of sp
when drawing negative pairs from
different subsets.

Figure 5.2: Illustration of how Pr(β> sp) in Theorem 5.2 behaves in various cases by drawing
negative pairs from different subsets of a 3-class feature space. The subsets are displayed in
Fig. 5.2a. The classifier is a linear model. y-axis in the right side of (b) & (c) is for the case of
x ∈ S1∪S2. We see that sp behaves in a similar way with β but in a smaller range which makes β
the key in studying Pr(β> sp). In the case of x ∈ S3 the distribution of β has more mass on larger
values than other cases because the predicted probabilities are mostly on the two classes in a
pair, and it causes all 〈gn, gm〉 having the opposite sign of 〈xn,xm〉 as shown in Tab. 5.1.

Table 5.1: Illustration of the Theorems by drawing pairs from different subsets that are defined in
Fig. 5.2a. We obtain the gradients and predictions by a linear model and a MLP with two hidden
layers (16 units for each) and ReLU (or tanh) activations. The gradients are computed using
all parameters of the model. We can see that the non-linear models exhibit similar behaviors
with the linear model as described in the theorems. One exception is that the MLP with ReLU
activations gets much less negative 〈gn, gm〉 in the case of S1∪S2 for negative pairs, we consider
the difference is caused by representations to the final linear layer always being positive in this
case due to ReLU activations.

Negative pairs (Thm. 1) Positive pairs (Thm.2)
S0 S0 ∪S1 S3 S1 ∪S2 S0 S0 ∪S1 S3 S1 ∪S2

Pr(〈xn,xm〉 > 0) 1. 0.877 1. 0. 1. 0.99 1. 1.

Linear
Pr(〈gn, gm〉 < 0) 0.727 0.725 1. 0.978 0. 0.007 0. 0.

Pr(β> sp) 0.727 0.687 1. 0. – – – –

MLP (ReLU)
Pr(〈gn, gm〉 < 0) 0.72 0.699 1. 0.21 0.013 0.01 0. 0.

Pr(β> sp) 0.746 0.701 1. 0. – – – –

MLP (tanh)
Pr(〈gn, gm〉 < 0) 0.745 0.744 1. 0.993 0.004 0.007 0. 0.

Pr(β> sp) 0.766 0.734 1. 0. – – – –

around zero. 〈gn, gm〉 are also close to zero in this case according to Lemma 5.1 as the predictions

are close to true labels, hence, such samples are not considered with most diverse gradients.

We can see that the results of positive pairs in Tab. 5.1 match Theorem 5.3. In the case of S0∪
S1 the probabilities from the linear model do not add up to exactly 1 because the implementation

of cross-entropy loss in tensorflow smooths the function by a small value for preventing numerical

issues which slightly changes the gradients. As 〈xn,xm〉 is mostly positive for positive pairs,

〈gn, gm〉 hence is also mostly positive. On the other hand, if 〈xn,xm〉 is negative then 〈gn, gm〉

64

5.2. A NEW PERSPECTIVE OF REDUCING DIVERSITY OF GRADIENTS

will be negative, which indicates representations within a class are expected to have non-negative

inner products.

Extending the theoretical analysis based the a linear model, we also provide empirical study

of non-linear models (MLPs). As demonstrated in Tab. 5.1, Pr(β> sp) in MLPs are very similar

with the linear model since it only depends on the predictions and all models have learned

reasonable decision boundaries. Pr(〈gn, gm〉 < 0) is also similar with the linear model except in

the case of S1 ∪S2 for negative pairs, in which case the MLP with ReLU gets much less negative

〈gn, gm〉. As MLP with tanh activations is still consistent with the linear model in this case,

we consider the difference is caused by the representations always being positive due to ReLU

activations. These results demonstrate that non-linear models exhibit similar behaviors with

linear models and mostly align with the theorems.

Since only negative 〈gn, gm〉 causes conflicts when updating parameters, we consider re-

ducing the diversity of gradients by reducing negative 〈gn, gm〉, which could have two ways:

1) minimizing the representation inner product of negative pairs, which pushes its value to be

negative or zero (for positive representations); 2) decreasing the probability of flipping the sign

(Pr(β > sp)). According to Theorem 5.2, minimizing the representation similarity of negative

pairs may not only help with the first way but also the second way since more discriminative

representations are easier for prediction. In addition, according to Fig. 5.2 and Tab. 5.1 larger sp

likely accompanies larger Pr(β> sp). For example, x∼ S3 gets larger prediction similarities than

x∼ S0 due to the predictions put most probability mass on both classes of a pair, which results

in larger β and hence larger Pr(β> sp). For this reason, we consider to minimize the prediction

similarity as well, hence, we also include logits in the representations.

We verify the relation between gradient similarity and representation similarity by training

two binary classifiers for two groups of MNIST classes ({0,1} and {7,9}). The classifiers have

two hidden layers each with 100 hidden units and ReLU activations. We randomly chose 100

test samples from each group to compute the pairwise cosine similarities. Representations

are obtained by concatenating the output of all layers (including logits) of the neural network.

We concatenate outputs of all layers as the representation. Gradients are computed by all

parameters of the model. We display the similarities in Figs. 5.3a and 5.3b. The correlation

coefficients between the gradient and representation similarities of negative pairs are -0.86

and -0.85 respectively, which of positive pairs are 0.71 and 0.79 respectively. In all cases, the

similarities of representations show strong correlations with the similarities of gradients. The

classifier for class 0 and 1 gets smaller representation similarities and much less negative

gradient similarities for negative pairs (blue dots). It also gains a higher accuracy than the other

classifier (99.95% vs. 96.25%), which illustrates the potential of reducing the gradient diversity

by decreasing the representation similarity of negative pairs.

65

CHAPTER 5. DISCRIMINATIVE REPRESENTATION LOSS FOR CONTINUAL LEARNING

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Similarity of gradients

0.6

0.7

0.8

0.9

1.0

Si
m

ila
rit

y
of

 re
pr

es
en

ta
tio

ns

diff class
same class

(a) Similarities of gradients vs. repre-
sentations (class 7 & 9)

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Similarity of gradients

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Si
m

ila
rit

y
of

 re
pr

es
en

ta
tio

ns

diff class
same class

(b) Similarities of gradients vs. repre-
sentations (class 0 & 1)

Figure 5.3: Similarities of gradients and representations of two classes in the MNIST dataset.
The x and y axis are the cosine similarity of gradients and representations, respectively. Blue
dots indicate the similarity of negative pairs, while orange dots indicate that of positive pairs.

5.2.2 Connection with Deep Metric Learning

Reducing the representation similarity between classes shares the same concept as learning

larger margins which has been an active research area for a few decades. For example, Kernel

Fisher Discriminant analysis (KFD) (Mika et al., 1999) and distance metric learning (Weinberger

et al., 2006) aim to learn kernels that can obtain larger margins in an implicit representation

space, whereas Deep Metric Learning (DML) (Kaya & Bilge, 2019; Roth et al., 2020) leverages

deep neural networks to learn embedding that maximize margins in an explicit representation

space. In this sense, DML has the potential to help with reducing the diversity of gradients in

continual learning.

However, the usual concepts in DML may not entirely be appropriate for continual learning,

as they also aim to learn compact representations within classes (Schroff et al., 2015; Wang

et al., 2017; Deng et al., 2019). In continual learning, the unused information for the current task

might be important for a future task, e.g. the results of Figs. 5.1b and 5.1c indicate that compact

representations of a current task might omit important information in the data distribution for

a future task. Even if we store diverse samples into the memory, the learned representations

may be difficult to generalize on future tasks when the necessary dimensions are omitted in

early tasks. It is because the omitted dimensions can only be relearned by using limited samples

in the memory. We demonstrate this by training a model with and without L1 regularization

at the first task of split-MNIST and split-Fashion MNIST. In order to verify the influence of

compact representations more precisely, we remove the L1 regularization in the later tasks so

that the model is flexible to relearn omitted dimensions without extra penalty. The results are

shown in Tab. 5.2. We see that with L1 regularization the model learns much more compact

representations in the first task and gives a similar performance with the one not adding L1

loss. However, the performance suffers from larger and larger degradation when more tasks have

been encountered. The results suggest that less compact representation space may be beneficial

to preserve necessary information for future tasks and it is difficult to enrich representations

66

5.3. DISCRIMINATIVE REPRESENTATION LOSS

Table 5.2: Demonstration of performance degradation in continual learning by compact repre-
sentations. We test tasks of split MNIST and split Fashion-MNIST by training a MLP (2 hidden
layers with 100 units per layer and ReLU activations) with and without L1 regularization at the
first task. The memory is formed by 300 samples that are randomly chosen. Representations are
outputs of hidden layers. We identify active dimensions of the representation space after learning
task 1 by selecting the hidden units that have a mean activation larger than 0.5 over all learned
classes.

L1
(t=1)

Act. Dim.
(t=1)

Avg. Accuracy (in %)
t=1 t=2 t=3 t=4 t=5

Split-MNIST
no 51 99.9 97.4 93.7 90.6 85.4
yes 5 99.7 93.0 87.1 68.4 53.5

Split-Fashion
no 66 98.3 90.3 83.1 74.4 77.3
yes 8 97.4 88.9 75.7 56.1 50.2

over learned tasks with small memories when learning a new task. Therefore, we propose an

opposite way to DML regarding the within-class compactness: minimizing the similarities within

the same class for obtaining less compact representation space.

Roth et al. (2020) proposed a ρ-spectrum metric to measure the information entropy contained

in the representation space: ρ = DKL(U ||SΦX
). The ρ-spectrum computes the KL-divergence

between a discrete uniform distribution U and the spectrum of data representations SΦX
, where

SΦX
is normalized and sorted singular values of the representation matrix Φ(X) , Φ denotes the

representation extractor (e.g. a neural network) and X is input data samples. Lower values of ρ

indicate higher variance of the representations and hence more information entropy retained.

Roth et al. (2020) also introduced a ρ-regularization method to restrain over-compression of

representations. The ρ-regularization method randomly replaces negative pairs by positive

pairs with a pre-selected probability pρ. Nevertheless, switching pairs is inefficient and may be

detrimental to the performance in an online setting because some samples may never be learned

in this way. Thus, we propose a different way to restrain the compression of representations

which will be introduced in the following section.

5.3 Discriminative Representation Loss

Based on our findings in the above section, we propose an auxiliary objective Discriminative

Representation Loss (DRL) for classification tasks in continual learning, which is straightforward

and efficient. Instead of explicitly re-projecting gradients during training process, DRL helps

with decreasing gradient diversity by optimizing the representations. As defined in Eq. (5.4), DRL

consists of two parts: one is for minimizing the inner products of representations from different

classes (Lbt) which can reduce the diversity of gradients from different classes, the other is for

minimizing the inner products of representations from a same class (Lwi) which helps preserve

67

CHAPTER 5. DISCRIMINATIVE REPRESENTATION LOSS FOR CONTINUAL LEARNING

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
pairwise similarity of representations

0

5

10

15

20

pr
ob

ab
ilit

y
de

ns
e

diff class sh
diff class sDRh
same class sh
same class sDRh

(a) Similarities of representations
with and without LDRL

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
pairwise similarity of gradients

0

1

2

3

4

5

6

7

8

pr
ob

ab
ilit

y
de

ns
e

diff class sg
diff class sDRg
same class sg
same class sDRg

(b) Similarities of gradients with
and without LDRL

0 2 4 6 8 10
α

2

3

4

5

6

7

ρ

(c) Relation between α and ρ-
spectrum.

Figure 5.4: Effects of LDRL on reducing diversity of gradients and ρ-spectrum. (a) and (b) display
distributions of similarities of representations and gradients. sDR

h and sh denote similarities of
representations with and without LDRL, respectively, sDR

g and sg denote similarities of gradients
with and without LDRL, respectively. (c) demonstrates increasing α in LDRL can reduce ρ

effectively.

discriminative information for future tasks in continual learning.

LDRL =Lbt +αLwi, α> 0,

Lbt =
1

Nbt

B∑
i=1

B∑
j 6=i,yj 6=yi

〈hi,h j〉, Lwi = 1
Nwi

B∑
i=1

B∑
j 6=i,yj=yi

〈hi,h j〉,(5.4)

B is training batch size. Nbt, Nwi are the number of negative and positive pairs, respectively.

α is a hyperparameter controlling the strength of Lwi, hi is the representation of xi, yi is the

label of xi. The final loss function combines the commonly used softmax cross entropy loss for

classification tasks (L) with DRL (LDRL) as below:

L̂ =L +λLDRL, λ> 0,(5.5)

where λ is a hyperparameter controlling the strength of LDRL. We provide experimental results

of an ablation study on Lbt and Lwi in Tab. 5.8 in Sec. 5.5, according to which Lbt and Lwi both

have shown effectiveness on improving the performance. We also show the correlation between

ρ-spectrum and the model performance in Tab. 5.6 in Sec. 5.5.

We verify the effects of LDRL by training a model with/without LDRL on Split-MNIST tasks:

Fig. 5.4a shows that LDRL notably reduces the representation similarity of negative pairs while

making representations within a class less similar; Fig. 5.4b shows more probability mass of

the gradient similarity of negative pairs are pushed around zero and more probability mass

of positive pairs are pushed towards zero. Fig. 5.4c demonstrates increasing α can effectively

decrease ρ-spectrum to a low-value level, where lower values of ρ indicate higher variance of

the representations and hence more information entropy retained. These results confirm that

DRL can achieve our expectation for reducing negative gradient similarities and preventing over

compactness of representations. We will provide experimental results for a more comprehensive

evaluation of model performance in sec. 5.5.

68

5.4. ONLINE MEMORY UPDATE AND BALANCED EXPERIENCE REPLAY

Algorithm 1: Ring Buffer Update with
Fixed Buffer Size

Input: Bt - current data batch,
Ct - the set of classes in Bt,
M - memory buffer,
C - the set of classes in M ,
K - memory buffer size.

for c in Ct do
Get Bt,c - samples of class c in Bt,
Mc - samples of class c in M ,
if c in C then

Mc =Mc ∪Bc
else

Mc =Bc, C=C∪ {c}
end if

end for
R = |M |+ |B|−K
while R > 0 do

c′ = argmaxc |Mc|
remove the first sample in Mc′ ,
R = R−1

end while
return M

Algorithm 2: Balanced Experience Replay
Input: M - memory buffer,

C - the set of classes in M ,
B - training batch size,
Θ - model parameters,
LΘ - loss function,
Bt - current data batch,
Ct - the set of classes in Bt,
K - memory buffer size.

M ← MemoryUpdate(Bt,C t,M ,C,K)
nc,Cs,Cr ← ClassSelection(Ct,C,B)
Btrain =;
for c in Cs do

if c in Cr then
mc = nc +1

else
mc = nc

end if
Get Mc C samples of class c in M ,
Bc

mc∼ Mc C sample mc samples from Mc
Btrain =Btrain ∪Bc

end for
Θ←Optimizer(Btrain,Θ,LΘ)

The computational complexity of DRL is O(B2H), where B is training batch size, H is the

dimension of representations. B is usually small (not larger than 20) in related work with the

online setting (Chaudhry et al., 2019a,b; Aljundi et al., 2019b), and commonly H ¿W , where W

is the number of network parameters. In comparison, the computational complexity of A-GEM

(Chaudhry et al., 2019a) and GSS-greedy (Aljundi et al., 2019b) are O(BrW) and O(BBmW),

respectively, where Br is the reference batch size in A-GEM and Bm is the memory batch size in

GSS-greedy. The computational complexity discussed here is additional to the cost of common

back-propagation. We compare the training time of all methods in Tab. 5.7, which shows the

representation-based methods are much faster than gradient-based approaches.

Since DRL depends on the negative and positive pairs in the training batch, we suggest a bit

more sophisticated replay strategy than vanilla ER to work with DRL and introduce it in the

next section.

5.4 Online memory update and Balanced Experience Replay

We follow the online setting of continual learning as was done for other gradient-based

approaches with episodic memories (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019a; Aljundi

69

CHAPTER 5. DISCRIMINATIVE REPRESENTATION LOSS FOR CONTINUAL LEARNING

Algorithm 3: Class Selection for Balanced Experience Replay (BER)
Input: Ct - the set of classes in current data batch Bt,

C - the set of classes in the memory M ,
B - training batch size,
mp - minimum number of positive pairs (mp ∈ {0,1}) .

nc = bB/|C|c, rc = B mod |C|,
if B > |C| or mp == 0 then
Cr

rc∼C C sample rc classes from all seen classes without replacement.
Cs =C

else
Cr =;, nc = 1, ns = B−|Ct|, C ensure the training batch including samples

from the current task.
Cs

ns−1∼ (C−Ct) C sample ns −1 classes from all seen classes except classes in Ct.
Cs =Cs

⋃
Ct,

Cr
1∼Cs C sample one class to have a positive pair

end if
Return: nc,Cs,Cr

et al., 2019b), in which the model only trained with one epoch on the training data. We update

the episodic memories by the basic ring buffer strategy: keep the last nc samples of class c in

the memory buffer, where nc is the memory size of a seen class c. We have deployed the episodic

memories with a fixed size, implying a fixed budget for the memory cost. Further, we maintain a

uniform distribution over all seen classes in the memory. The buffer may not be evenly allocated

to each class before enough samples are acquired for newly arriving classes. We show pseudo-code

of the memory update strategy in Alg. 1 for a clearer explanation. For class-incremental learning,

this strategy can work without clear task boundaries, i.e., the model may still see samples from

previous classes when a new class has joined.

Since DRL and methods of DML depend on the pairwise similarities of samples, we would

prefer the training batch to include as wide a variety of different classes as possible to obtain

sufficient discriminative information. Hence, we adjust the ER strategy (Chaudhry et al., 2019b)

for the needs of such methods. The idea is to uniformly sample from seen classes in the memory

buffer to form a training batch, so that this batch can contain as many seen classes as possible.

Moreover, we ensure the training batch includes at least one positive pair to enable the parts

computed by positive pairs in the loss when the number of learned classes is much larger than

the training batch size. In addition, we also ensure the training batch includes at least one class

from the current task. We call this Balanced Experience Replay (BER). The pseudo code is in

Alg. 2. Note that we update the memory and form the training batch based on the task ID instead

of class ID for Domain-IL tasks (e.g. permuted MNIST tasks), as in this case each task always

includes the same set of classes.

We provide the details of online ring buffer update and Balanced Experience Replay (BER) in

70

5.5. EXPERIMENTS

Algs. 1 to 3. We directly load new data batches into the memory buffer without a separate buffer

for the current task. The memory buffer works like a sliding window for each class in the data

stream and we draw training batches from the memory buffer instead of directly from the data

stream. In this case, one sample may not be seen only once as long as it stays in the memory

buffer. This strategy is a more efficient use of the memory when |B| < nc, where |B| is the loading

batch size of the data stream (i.e., the number of new samples added into the memory buffer at

each iteration), we set |B| to 1 in all experiments and we will have a discussion of this in the

following section.

5.5 Experiments

In this section we provide comprehensive experimental results for evaluating our method DRL

and we also provide an ablation study on DRL from various aspects to obtain more insights on it.

The results show that DRL is efficient to alleviate forgetting in the online setting with limited

training data and without the need of task identifiers during testing, which is the most difficult

situation among the application scenarios of continual learning.

5.5.1 Comparing DRL with other baselines

We evaluate our methods on multiple benchmark tasks by comparing with several baseline

methods in the setting of online continual learning.

We have conducted experiments on the following Benchmark tasks that have been introduced

in Sec. 3.1, here we give the settings of training size and memory size. The setting of tasks on

MNIST and CIFAR10 follows (Aljundi et al., 2019b):

1) Permuted MNIST: the training size is 1000 samples per task and memory size is 300;

2) Split MNIST: the training size is 1000 samples per task and memory size is 300;

3) Split Fashion-MNIST: the training size is 1000 samples per task and memory size is 300;

4) Split CIFAR-10: the training size is 2000 samples per task and memory size is 1000;

5) Split CIFAR-100: the training size is 5000 samples per task and memory size is 5000.

6) Split TinyImageNet: the training size is 5000 samples per task and memory size is 5000.

N.B.: We use single-head (shared output) models in all of our experiments, meaning that we

comply with the task-agnostic model protocol (no task identifiers during testing) and the online

training protocol. Such settings are more difficult for continual learning but more practical in

real applications. Our experimental results show worse performance than those in some related

works (Delange et al., 2021; Requeima et al., 2019) due to these settings as well.

We compare our methods with 6 Baselines: two gradient-based baselines (A-GEM (Chaudhry

et al., 2019a) and GSS-greedy (Aljundi et al., 2019b)), two standalone experience replay methods

71

CHAPTER 5. DISCRIMINATIVE REPRESENTATION LOSS FOR CONTINUAL LEARNING

(ER (Chaudhry et al., 2019b) and BER), two SOTA methods of DML (Multisimilarity (Wang et al.,

2019) and R-Margin (Roth et al., 2020)). These methods are introduced in Sec. 3.3 except for the

last two. We provide a brief introduction of Multisimilarity and R-Margin in the following:

Multisimilarity (Wang et al., 2019): A SOTA method of DML which has shown outstanding

performance in a comprehensive empirical study of DML (Roth et al., 2020). We adopt the loss

function of Multisimilarity as an auxiliary objective in classification tasks of continual learning,

the batch mining process is omitted because we use labels for choosing positive and negative

pairs. The loss of Multisimilarity is defined as below:

Lmulti =
1
B

B∑
i=1

[
1
α

log[1+ ∑
j 6=i,yj=yi

exp(−α(sc(hi,h j)−γ))]+ 1
β

log[1+ ∑
yj 6=yi

exp(β(sc(hi,h j)−γ))]

](5.6)

where sc(·, ·) is cosine similarity, α,β,γ are hyperparameters.

R-Margin (Roth et al., 2020): A SOTA method of DML which deploy the ρ regularization

method for Margin loss (Wu et al., 2017) and has shown outstanding performance in Roth et al.

(2020). We similarly deploy R-Margin for continual learning as an auxiliary objective, which uses

the Margin loss (Wu et al., 2017) with the ρ regularization (Roth et al., 2020) as introduced in

Sec. 5.2.2. The loss is defined as below:

Lmargin =
B∑

i=1

B∑
j=1

γ+I j 6=i,yj=yi (d(hi,h j)−β)−Iyj 6=yi (d(hi,h j)−β)(5.7)

where d(·, ·) is Euclidean distance,I denotes the indicator function, β is a trainable variable and γ

is a hyperparameter.

N.B.: We deploy the losses of Multisimilarity and R-Margin as auxiliary objectives as the

same as DRL because using standalone such losses causes difficulties of convergence in our

experimental settings.

We use the Average accuracy, Average forgetting, Average intransigence as performance

measures, the definitions of which are provided in Sec. 3.2.

Regarding the Experimental settings of the models, we use the vanilla SGD optimizer for

all experiments without any scheduling; all networks are trained from scratch without any

preprocessing of data except normalization. We use a MLP with two hidden layers and ReLU

activations for tasks on MNIST and Fashion-MNIST, and each layer has 100 hidden units.

For tasks on CIFAR data sets and TinyImageNet we use the same reduced Resnet18 as used

in Chaudhry et al. (2019a). We concatenate outputs of all layers as representation in MLPs.

For Resnet18, representations are the concatenation of outputs of the final hidden layer and

the linear layer. We consider the outputs of hidden layers behave like different levels of the

representation, and when higher layers (layers closer to the input) generate more discriminative

representations it would be easier for lower layers to learn more discriminative representations

as well. It improves the performance of MLPs in our observations. For ResNet18 we found that

72

5.5. EXPERIMENTS

including outputs of higher hidden layers performs almost as the same as only including the

final representation, so we just include the final hidden layer for lower computational cost,

and this also a common setting for conventional neural networks in the literature of DML. We

deploy BER (Alg. 2) as the replay strategy for DRL, Multisimilarity, and R-Margin. The standard

deviation shown in all results are evaluated over 10 runs with different random seeds. We use

10% of training set as validation set for choosing hyperparameters by cross validation. To make

a fair comparison of all methods, the configurations of GSS-greedy are as suggested in Aljundi

et al. (2019b), with batch size set to 10 and each batch receives multiple iterations. For the

other methods, we use the ring buffer memory as described in Alg. 1, the loading batch size

is set to 1, following with one iteration, the training batch size is provided in Tab. 5.10. More

hyperparameters are given in Tab. 5.10 as well.

Table 5.3: Average accuracy (in %), the higher the better, the bold font indicates the best perfor-
mance on this criterion

P-MNIST S-MNIST Fashion CIFAR10 CIFAR100 TinyImageNet

DRL 80.5±0.4 88.1±0.6 77.9±0.8 40.4±1.5 19.3±0.5 8.3±0.2
BER 79.2±0.3 85.2±1.1 77.0±0.7 37.3±1.4 18.2±0.4 6.7±0.8
ER 78.2±0.6 83.2±1.5 75.8±1.4 39.4±1.6 18.3±0.3 7.6±0.6

A-GEM 76.7±0.5 84.5±1.1 66.4±1.5 25.7±3.3 16.5±1.2 2.0±0.8
GSS 77.1±0.3 82.8±1.8 72.5±0.9 33.6±1.7 13.9±1.0 3.3±0.2

Multisim 79.5±0.6 86.3±1.1 77.2±0.6 38.9±3.2 18.4±0.5 6.8±1.0
R-Margin 78.0±0.3 85.6±0.9 76.6±0.8 36.7±1.7 18.3±0.5 6.4±0.3

Table 5.4: Average forgetting (in %), the lower the better, the bold font indicates the best perfor-
mance on this criterion

P-MNIST S-MNIST Fashion CIFAR10 CIFAR100 TinyImageNet

DRL 4.5±0.2 8.9±0.7 16.6±1.9 41.4±3.2 29.0±1.0 27.0±1.4
BER 5.1±0.3 13.0±1.5 18.2±2.7 52.3±1.6 35.9±1.0 26.0±1.2
ER 7.1±0.6 17.2±1.9 24.0±2.7 50.3±1.9 37.0±1.5 28.5±2.0

A-GEM 5.4±0.4 12.6±1.3 37.0±1.9 40.4±4.6 25.3±1.4 24.4±0.6
GSS 7.6±0.2 17.9±2.4 27.4±2.2 27.6±4.0 18.6±0.7 11.3±0.7

Multisim 5.0±0.7 12.0±1.4 18.8±2.2 48.0±3.8 35.8±0.6 37.6±0.4
R-Margin 5.4±0.3 12.5±1.4 17.1±3.0 50.5±2.6 35.1±0.5 38.1±0.7

As we follow the online setting of training on limited data with one epoch, we either use

a small loading-batch size or iterate on one batch several times to obtain necessary steps for

gradient optimization. We chose a small batch size with one iteration instead of larger batch

size with multiple iterations because by our memory update strategy (Alg. 1) it achieves similar

performance without tuning the number of iterations. Since GSS-greedy has a different strategy

for updating memories, we use its reported settings in (Aljundi et al., 2019b).

73

CHAPTER 5. DISCRIMINATIVE REPRESENTATION LOSS FOR CONTINUAL LEARNING

Table 5.5: Average intransigence (in %), the lower the better, the bold font indicates the best
performance on this criterion

P-MNIST S-MNIST Fashion CIFAR10 CIFAR100 TinyImageNet

DRL 2.0±0.5 2.8±0.3 6.9±1.0 9.9±1.5 9.0±1.0 25.0±7.5
BER 3.0±0.2 2.5±0.3 7.7±1.2 4.3±0.6 4.0±0.6 28.3±0.5
ER 1.8±0.4 1.2±0.1 4.1±0.6 3.8±1.0 2.8±1.0 11.8±2.5

A-GEM 7.0±0.7 3.5±0.3 1.0±0.3 25.4±2.1 15.2±1.0 21.4±1.3
GSS 7.6±0.2 0.8±0.3 27.4±2.2 27.9±2.0 22.3±1.4 45.0±0.1

Multisim 2.6±0.2 2.2±0.3 6.2±1.0 6.1±1.1 3.8±0.6 4.0±1.2
R-Margin 3.6±0.4 2.4±0.3 10.5±1.7 6.3±2.1 4.5±0.7 3.9±0.4

Table 5.6: Correlation between model performance and ρ-spectrum on all benchmark tasks

Coefficient P-MNIST S-MNIST Split Fashion CIFAR10 CIFAR100 TinyImageNet

Avg. Acc. −0.3997 −0.2870 −0.8189 −0.3214 −0.6833 −0.8138
Avg. Forg. 0.2684 0.0959 0.7649 −0.4076 −0.7127 −0.4296
Avg. Intran. 0.1264 0.3831 −0.5035 0.4550 0.8112 0.4532

Tabs. 5.3 to 5.5 give the average accuracy, forgetting, and intransigence of all methods on

all benchmark tasks, respectively. TinyImageNet gets much worse performance than other

benchmarks because it is the most difficult one as it has more classes (200), a longer task

sequence (20 tasks), and higher feature dimensions (64×64×3). As we can see, the forgetting

and intransigence often contradictory to each other which is a common phenomenon in continual

learning. Our method DRL is able to get a better trade-off between them and thus outperforms

other methods over most benchmark tasks in terms of average accuracy. We provide an ablation

study of the two components in DRL in Tab. 5.8 which shows Lwi helps with obtaining an

improved intransigence and Lbt brings an improved forgetting in most cases. The two terms

in DRL are complementary to each other and combining them brings benefits on both sides. In

addition, Multisimilarity and R-Margin both have shown relatively good performance, which

indicates learning a better representation could be a more efficient way than direct gradient

re-projection.

As shown in Tab. 5.6 the ρ-spectrum shows strong correlation to average accuracy on several

benchmarks. In addition, it always has a negative correlation to average accuracy and mostly

a positive correlation to average intransigence. The reason could be the ρ-spectrum helps with

learning new decision boundaries across tasks which facilitates accommodating new tasks in most

cases. On Split Fashion-MNIST the ρ-spectrum has a positive correlation to average forgetting

and a negative correlation to average intransigence which could be because the learned classes

have more influence on new decision boundaries in this case. In general, the ρ-spectrum is the

smaller the better because it indicates the representations are more informative. However, it may

74

5.5. EXPERIMENTS

be detrimental to the performance when ρ is too small because the learned representations are

too noisy to classify as demonstrated in (Roth et al., 2020).

Tab. 5.7 compares the training time of all methods on several benchmarks. We can see

that simply memory-replay methods ER and BER are faster than others; representation-based

methods DRL, Multisimilarity, and R-Margin take similar training time with memory-replay

methods; the gradient-based methods A-GEM and GSS are much slower than others, especially

on a larger model. The experiments with the MLP have been tested on a laptop with an 8-core

Intel CPU and 32G RAM, the experiments with the reduced Resnet18 have been tested on a

server with a NVIDIA TITAN V GPU.

Table 5.7: Training time (in seconds) of the whole task sequence of several benchmarks.

DRL BER ER A-GEM GSS Multisim R-Margin

P-MNIST (MLP) 12.48±0.16 11.17±0.18 10.38±0.05 28.0±0.09 33.98±0.6 12.91±0.13 13.45±0.14
S-MNIST (MLP) 5.6±0.14 5.29±0.08 5.25±0.02 13.41±0.47 19.07±1.31 5.89±0.09 6.29±0.43

CIFAR10 (r. Resnet18) 265.1±0.9 264.3±0.6 261.5±0.3 1067.1±5.6 5289.4±7.3 286.4±0.7 281.7±0.8

5.5.2 Ablation study on DRL

In this section we provide results of an ablation study on DRL. We have conducted a series of ex-

periments to obtain more insights on DRL, including comparing the two terms of within/between-

classes in DRL, comparing different memory-replay strategies and memory cost with DRL.

Comparing the two terms of DRL: Tab. 5.8 provides the results of comparing the effects of

the two terms in DRL. In general, both of them show improvements on standalone BER in most

cases. Lbt gets more improvements on forgetting, Lwi gets more improvements on intransigence.

Overall, combining the two terms obtains a better trade-off between forgetting and intransigence.

It indicates preventing over-compact representations while maximizing margins can improve the

learned representations that are easier for generalization over previous and new tasks. Regarding

the weights on the two terms, a larger weight on Lwi is for less compact representations within

classes, but a too dispersed representation space may include too much noise. We set α to 1 or 2

in our experiments (Tab. 5.10). A larger weight on Lbt is more resistant to forgetting but may

be less capable of transferring to a new task. In addition, we notice that with standalone Lbt

we can only use a smaller λ than with both terms otherwise the gradients will explode in a high

probability. We show the hyperparameters of all methods in Tab. 5.10.

Comparing different replay strategies: We compare DRL with different memory replay

strategies in Tab. 5.9 which shows DRL has general improvements based on the applied replay

strategy. BER has consistently shown better performance on forgetting whereas ER has shown

better performance on intransigence. The performance of DRL obviously correlates to the applied

replay strategy, e.g., DRL+BER gets better performance on forgetting than DRL+ER. We see

75

CHAPTER 5. DISCRIMINATIVE REPRESENTATION LOSS FOR CONTINUAL LEARNING

Table 5.8: Comparing the performance with or without the regularization terms (Lbt, Lwi) in
DRL. All criteria are in percentage. The bold font indicates the best performance of a criterion.

BER DRL
with none with Lbt with Lwi with both

P-MNIST

Avg. Accuracy 79.2±0.3 79.6±0.4 80.1±0.4 80.5±0.4
Avg. Forgetting 5.1±0.3 4.8±0.3 4.9±0.5 4.5±0.2

Avg. Intransigence 2.9±0.2 2.6±0.2 1.9±0.3 1.9±0.5

S-MNIST

Avg. Accuracy 85.2±1.1 86.5±0.9 86.6±0.7 88.1±0.6
Avg. Forgetting 13.0±1.5 11.3±1.3 11.7±1.1 8.9±0.7

Avg. Intransigence 1.4±0.3 1.4±0.3 1.0±0.2 1.7±0.3

Fashion

Avg. Accuracy 77.0±0.7 77.3±0.8 77.1±0.8 77.9±0.8
Avg. Forgetting 18.2±2.7 18.1±2.4 18.5±2.2 16.6±1.9

Avg. Intransigence 3.7±1.8 3.6±1.5 3.4±1.1 4.1±1.4

CIFAR10

Avg. Accuracy 37.3±1.4 40.4±1.8 39.4±0.8 40.4±1.6
Avg. Forgetting 52.3±1.6 45.7±2.1 46.6±2.1 41.4±3.2

Avg. Intransigence 3.5±0.6 5.6±1.0 5.9±1.8 9.0±1.5

CIFAR100

Avg. Accuracy 18.2±0.4 18.7±0.3 18.5±0.4 19.3±0.5
Avg. Forgetting 35.9±1.0 34.7±0.5 36.2±0.5 29.0±1.0

Avg. Intransigence 3.1±0.6 3.7±0.3 2.5±0.4 8.1±1.0

TinyImageNet

Avg. Accuracy 6.7±0.8 7.2±0.5 6.7±0.4 8.3±0.2
Avg. Forgetting 26.0±1.2 39.6±0.7 40.4±0.3 27.0±1.4

Avg. Intransigence 17.3±1.9 3.9±1.0 3.7±0.5 14.8±1.5

that on benchmarks which are more difficult in terms of intransigence DRL+ER obtains better

performance than DRL+BER, e.g., on TinyImageNet benchmarks.

Comparing different memory cost: Fig. 5.5 compares average accuracy of DRL+BER on

MNIST tasks with different memory cost. The fixed memory size (M = 300) getting very similar

average accuracy with memory M = 50/class in Split MNIST while it takes less cost of the memory

after task 3. Meanwhile, the fixed memory size (M = 300) gets much better performance than M =

50/task in most tasks of Permuted MNIST and it takes less cost of the memory after task 6. Since

the setting of fixed memory size takes larger memory buffer in early tasks, the results indicate

better generalization of early tasks can benefit later tasks, especially for more homogeneous tasks

such as Permuted MNIST. The results also align with findings in (Chaudhry et al., 2019b) and a

hybrid memory strategy could bring improvements as suggested in (Chaudhry et al., 2019b).

We provide the chosen hyper-parameters of all methods on all benchmarks in Tab. 5.10.

We set the original hyperparameters of Multisimilarity recommended as the same as in (Roth

et al., 2020) which generally perform well on multiple complex data sets. For hyperparameters of

Multisimilarity (Eq. (5.6)), α= 2, β= 40, γ= 0.5; for R-Margin (Eq. (5.7)), the initial value of β is

0.6, γ= 0.2, pρ = 0.2. In Tab. 5.11 we give the search range of these hyperparameters.

76

5.6. EXPERIMENTS FOR CLVISION CHALLENGE

Table 5.9: Comparing DRL with different memory replay strategies, all criteria are in percentage.

DRL+ BER DRL + ER BER ER

P-MNIST
Avg. Accuracy 80.5±0.4 78.9±0.4 79.2±0.3 78.2±0.6

Avg. Forgetting 4.5±0.2 6.7±0.3 5.1±0.3 7.1±0.6
Avg. Intransigence 2.2±0.5 1.5±0.2 3.1±0.2 1.9±0.4

S-MNIST
Avg. Accuracy 88.1±0.6 84.2±1.4 85.2±1.17 83.2±1.5

Avg. Forgetting 8.9±0.7 16.1±1.8 13.0±1.5 17.2±1.9
Avg. Intransigence 2.4±0.3 0.6±0.1 2.1±0.3 0.8±0.1

Fashion
Avg. Accuracy 77.9±0.8 76.5±1.0 77.0±0.7 75.8±1.4

Avg. Forgetting 16.6±1.9 23.5±1.9 18.2±2.7 24.0±2.7
Avg. Intransigence 6.5±1.4 2.5±1.2 6.2±1.8 2.7±1.4

CIFAR10
Avg. Accuracy 40.4±1.6 36.0±1.7 37.3±1.4 39.4±1.7

Avg. Forgetting 41.4±3.2 49.6±4.6 52.3±1.6 50.3±1.9
Avg. Intransigence 9.8±1.5 7.6±1.8 4.2±0.6 3.7±1.0

CIFAR100
Avg. Accuracy 19.3±0.5 19.6±1.0 18.2±0.4 18.3±0.3

Avg. Forgetting 29.0±1.0 34.9±1.1 35.9±1.0 37.0±1.4
Avg. Intransigence 9.6±1.0 4.0±0.9 4.6±0.6 3.4±1.0

TinyImageNet
Avg. Accuracy 8.3±0.2 11.3±1.0 6.7±0.8 7.6±0.6

Avg. Forgetting 27.0±1.4 30.0±0.9 26.0±1.2 28.5±2.0
Avg. Intransigence 10.8±1.5 5.1±0.8 13.3±1.9 10.1±2.5

1 2 3 4 5 6 7 8 9 10
t

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

Av
g.

 A
cc

ur
ac

y

M=300
M=100/task
M=50/task
M=30/task

(a) Permuted MNIST

1 2 3 4 5
t

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Av
g.

 A
cc

ur
ac

y

M=300
M=50/class
M=30/class
M=10/class

(b) Split MNIST

Figure 5.5: Average accuracy of DRL+BER with different memory cost. The x axis is the index of
tasks, the shaded area is plotted by standard deviation of 10 runs.

5.6 Experiments for CLVision Challenge

The CLVision Challenge 1 was hold by the Continual Learning workshop in CVPR 2020. It

consists of three tracks (each is a different benchmark) based on the CORe50 dataset (Lomonaco

& Maltoni, 2017). DRL is a wining solution for this challenge as it shows consistently good

performance on all benchmarks (Lomonaco et al., 2020). We provide experimental results of DRL

for the CLVision Challenge in this section. In these experiments we used a pre-trained model, a

1https://sites.google.com/view/clvision2020/challenge?authuser=0

77

https://sites.google.com/view/clvision2020/challenge?authuser=0

CHAPTER 5. DISCRIMINATIVE REPRESENTATION LOSS FOR CONTINUAL LEARNING

Table 5.10: Hyperparameters of all methods

P-MNIST S-MNIST Fashion CIFAR-10 CIFAR-100 TinyImageNet

training batch size 20 10 10 10 10 5
learning rate 0.1 0.02 0.02 0.1 0.05 0.1
learning rate (A-GEM) 0.02 0.001 0.001 0.1 0.05 0.01
ref batch size
(A-GEM)

256 256 256 512 1500 1000

α of DRL 2 2 2 1 1 2
λ of DRL 1×10−3 1×10−2 1×10−2 2×10−3 2×10−3 5×10−4

λ of Multisim 5 1 1 2 1 5
λ of R-Margin 2×10−5 1×10−3 1×10−3 1×10−4 1×10−3 1×10−3

λ of standalone Lbt 1×10−4 5×10−4 5×10−4 2×10−4 2×10−4 5×10−5

Table 5.11: The search range of hyperparameters

The grid-search range

training batch size [5,10, 20, 50, 100]
learning rate [0.001, 0.01, 0.02,0.05, 0.1, 0.2]
ref batch size
(A-GEM)

[128, 256, 512, 1000, 1500, 2000]

α of DRL [0.1, 0.2, 0.5, 1, 2, 4]
λ of DRL [1,2,5]× [10−5,10−4,10−3,10−2,10−1]
λ of Multisim [10, 8, 6, 5, 4, 3, 2, 1, 0.5, 0.2, 0.1, 0.05]
λ of R-Margin [1,2,5]× [10−5,10−4,10−3,10−2,10−1]

ResNet50 (He et al., 2016) or ResNeSt50 (Zhang et al., 2020a) trained on ImageNet (Russakovsky

et al., 2015). In all experiments we set α= 1 in DRL.

CORe50 is a image dataset collected for object recognition. It consists of 164,866 images with

128×128 pixels, which are photos of 50 domestic objects from 10 categories. For each object the

dataset includes 11 video sessions (∼300 frames recorded with a Kinect 2 at 20 fps) characterized

by relevant variations in terms of lighting, background, pose and occlusions. More information

about this dataset can be found in Lomonaco & Maltoni (2017). In this challenge each object is

treat as a class which means there are 50 classes in total for all tracks. The three tracks are

defined as below:

1. NI: it has 8 tasks each of which includes the same 50 classes encountered over time. Each

task is composed of different images collected in different environmental conditions. It is a

typical Domain-IL scenario.

2. Multi-Task-NC: the 50 classes are split into 9 different tasks where 10 classes in the first

task and 5 classes in the other 8. The task identifier is provided during training and test

which means it is a Task-IL scenario and we used a multi-headed model in experiments of

78

5.6. EXPERIMENTS FOR CLVISION CHALLENGE

this track.

3. NIC: it is composed of 391 tasks each of which containing 300 images of a single class. No

task identifier is provided and each task may contain images of a class seen before as well

as a completely new class. This is a mixture scenario of Domain-IL and Class-IL that is

likely happen in practice.

The evaluation applied in this challenge is a weighted sum over several metrics which aim

to measure the efficiency and accuracy of each solution jointly. Such a setting emphasizes the

scalability of continual learning approaches for real applications in practice. The individual

metrics are defined as below (Lomonaco et al., 2020):

1. Final accuracy on the test set2: computed only at the end of the training procedure.

2. Average accuracy over time on the validation set: computed at the end of every task.

3. Total training/test time: total running time from start to end of the main function (in

minutes).

4. RAM usage: total memory occupation of the process and its eventual sub-processes. It is

computed at every epoch (in MB).

5. Disk usage: only of additional data produced during training (like replay patterns) and

additionally stored parameters. It is computed at every epoch (in MB).

The final aggregation metric (CLscore) is the weighted average of the 1-5 metrics (0.3, 0.1, 0.15,

0.125, 0.125 respectively).

Tabs. 5.12 to 5.14 show our experimental results of each track of the challenge. The test

accuracy of some tests are from submissions we submitted to the challenge and those without

test accuracy are results we have not submitted. We have tested three different replay strategies:

BER, ER, and shuffle. Shuffle is a basic replay strategy that shuffles the memorized samples

with new training data to obtain a mixture training set. BER gives higher accuracy than ER in

NI track, whereas ER gets better accuracy than BER in Multi-Task-NC track. The difference is

the NI track uses a single-headed model and the Multi-Task-NC uses a multi-headed one. Hence,

Multi-Task-NC suffers much less on forgetting and ER gets better performance on intransigence.

Interestingly, the basic shuffle strategy works better for NIC. It is probably because the task

sequence is very long (391 tasks) and the training set is quite small (300 samples) for each

task. In such a case, the memorised samples from previous tasks will compose the majority of

the training samples in latter tasks. By the shuffle strategy all the memorised samples will be

selected into the training batch for certain, whereas ER and BER may missed some samples

during training due to the random sampling from the memory. In general, ResNeSt50 works

better than ResNet50 and applying DRL obtains better performance than without it.

2Accuracy in CORe50 is computed on a fixed test set. Rationale behind this choice is explained in Lomonaco &
Maltoni (2017)

79

CHAPTER 5. DISCRIMINATIVE REPRESENTATION LOSS FOR CONTINUAL LEARNING

Table 5.12: Experiment results of NI

Mem. size Batch size ER type λDR Test Acc. Avg. Valid Acc.
RAM Usage

(Mb)
Time
(m)

ResNet50

100 32 Shuffle 0. 0.79 0.74 19678.42 6.
100 16 Shuffle 0. N/A 0.75 16573.91 8.62
100 16 ER 0. N/A 0.76 16560.55 9.92
100 16 BER 0. N/A 0.75 16611.49 19.71
100 16 ER 0.0002 0.81 0.79 16558.13 10.1
100 16 BER 0.0002 0.82 0.78 16625.19 19.88
300 16 BER 0.0002 0.83 0.77 16447.77 19.56
300 16 BER 0.001 0.83 0.79 16502.56 19.88

2000 16 BER 0.001 N/A 0.77 17506.92 20.48

ResNeSt50
1500 16 BER 0. N/A 0.77 18340.47 40.95
1500 16 BER 0.001 0.89 0.81 18342.86 21.25

Table 5.13: Experiment results of Multi-Task-NC

Mem. size Batch size ER type λDR Test Acc. Avg. Valid Acc.
RAM Usage

(Mb)
Time
(m)

ResNet50

20 32 Shuffle 0. 0.9 0.51 23863.71 5.66
100 32 Shuffle 0. N/A 0.50 24121.09 6.14
100 16 Shuffle 0. N/A 0.52 19400 8.73
100 16 BER 0.0002 0.94 0.54 19583.7 20.92
100 16 ER 0.0002 N/A 0.53 19579 10.0
500 16 ER 0.0002 0.95 0.54 19047.21 9.7

ResNeSt50 500 16 ER 0.0002 0.97 0.54 19167.67 13.47

Table 5.14: Experiment results of NIC

Mem. size Batch size ER type λDR Test Acc. Avg. Valid Acc.
RAM Usage

(Mb)
Time
(m)

ResNet50

10 32 Shuffle 0. 0.81 0.53 13683.84 65.08
50 32 Shuffle 0.0002 0.84 0.55 21275.17 126.76
50 16 Shuffle 0.0002 N/A 0.49 22183.93 264.84
50 16 ER 0. N/A 0.04 15017.92 22.11
50 16 ER 0.0002 N/A 0.04 15074.38 22.37
50 2 BER 0.0002 N/A 0.18 12088.44 220.98

ResNeSt50 50 32 Shuffle 0.00001 0.89 0.57 21571.89 154.56

80

5.7. SUMMARY

Tabs. 5.15 to 5.17 shows the results of the top 5 teams of the three tracks. The average

performance in the last row of all three tables is the average over all finalists (11 teams entered

in the final phase) in the challenge. Yc14600 is our team using DRL as the solution for all

final submissions. All the top solutions used pre-trained models and most of them included a

preprocessing procedure whereas we did not. In addition to experimental results in the previous

section, these results demonstrate that our method is efficient with pre-trained model in practical

scenarios as well. Please refer to Lomonaco et al. (2020) for more details.

Table 5.15: NI track results for the top 5 finalists of the challenge.

team name
test acc

(%)
avg. val acc

(%)
run time

(m)
avg. ram

(mb)
max ram

(mb)
avg. disk

(mb)
max disk

(mb) CLscore

UT_LG 0.91 0.90 63.78 11429.83 11643.63 0 0 0.692
Yc14600 0.88 0.85 22.58 17336.38 18446.90 0 0 0.648
ICT_VIPL 0.95 0.93 113.70 2459.42 2460.16 421.875 750 0.629
Jodelet 0.84 0.85 3.11 18805.60 18829.96 0 0 0.612
Soony 0.85 0.81 25.57 16662.73 17000.10 0 0 0.602

avg 0.82 0.78 100.74 18987.80 21135.96 30.13 53.57 0.52

5.7 Summary

Gradient-based approaches have shown that the diversity of gradients computed on data from

different tasks is a key to generalization over these tasks. In this chapter, we formally connect

the diversity of gradients to discriminativeness of representations, which leads to an alternative

way to reduce the diversity of gradients in continual learning. We subsequently exploit ideas

from DML for learning more discriminative representations, and furthermore identify the shared

and different interests between continual learning and DML. In continual learning we would

prefer larger margins between classes the same as in DML. The difference is that continual

learning requires less compact representations for better compatibility with future tasks. Based

on these findings, we provide a simple yet efficient approach to achieve better performance for

classification tasks in continual learning.

81

Table 5.16: NC track results for the top 5 finalists of the challenge.

team name
test acc

(%)
avg. val acc

(%)
run time

(m)
avg. ram

(mb)
max ram

(mb)
avg. disk

(mb)
max disk

(mb) CLscore

Ar1 0.93 0.53 16.02 10263.19 14971.72 0 0 0.693
UT_LG 0.95 0.55 19.02 13793.31 16095.20 0 0 0.691
Yc14600 0.97 0.54 11.81 15870.62 19403.57 0 0 0.686
Soony 0.97 0.55 55.02 14005.91 16049.12 0 0 0.679
Jodelet 0.97 0.55 2.55 17893.58 23728.84 0 0 0.679

avg 0.85 0.51 63.77 17624.83 21773.26 43.27 43.27 0.60

Table 5.17: NIC track results for the top 5 finalists of the challenge.

team name
test acc

(%)
avg. val acc

(%)
run time

(m)
avg. ram

(mb)
max ram

(mb)
avg. disk

(mb)
max disk

(mb) CLscore

UT_LG 0.91 0.58 123.22 6706.61 7135.77 0 0 0.706
Jodelet 0.83 0.54 14.12 10576.67 11949.16 0 0 0.694
Ar1 0.71 0.48 28.19 3307.62 4467.64 0 0 0.693
ICT_VIPL 0.90 0.56 91.29 2485.95 2486.03 192.187 375 0.625
Yc14600 0.89 0.57 160.24 16069.91 21550.97 0 0 0.586

avg 0.72 0.47 134.03 10606.70 13249.99 19.22 37.50 0.56

C
H

A
P

T
E

R

6
MEASURING CLASSIFIERS IN CONTINUAL LEARNING BY

β3-IRT MODEL

We have proposed several approaches for classification tasks in continual learning in the preceding

chapters. How to evaluate the approaches of continual learning is still an open question as it

relates to performance in terms of different aspects, such as forgetting and intransigence. In this

chapter, we propose a new evaluation method for classifiers in continual learning, which is based

on Item Response Theory (IRT). IRT aims to assess latent abilities of respondents based on the

correctness of their answers to aptitude test items with different difficulty levels. We propose

the β3-IRT model, which models continuous responses using a more expressive formulation and

enables a new metric for evaluating classifiers. As β3-IRT is a Bayesian probabilistic model, it can

be easily fitted in the framework of VCL for evaluating classifiers in continual learning. We show

that the assessed ability by β3-IRT is a joint measure regarding both forgetting and intransigence

which is adaptive to the context. It may provide more insights when average accuracy fails to tell

the difference between classifiers.

In the following, we first introduce the background and related work of IRT model in Secs. 6.1

and 6.2. We then provide technique details of our method β3-IRT in Sec. 6.3. Finally, we show the

effectiveness of β3-IRT for evaluating classifiers by two scenarios: i) assess the ability of binary

classifiers in static learning, and further analyze the inferred difficulty and discrimination of

data instances (Sec. 6.4); ii) assess the ability of multi-class classifiers in continual learning and

further analyze the difference between the ability and average accuracy in continual learning

(Sec. 6.5).

83

CHAPTER 6. MEASURING CLASSIFIERS IN CONTINUAL LEARNING BY
β3-IRT MODEL

6.1 Introduction

Unlike classical test theory, which is concerned with performance at the test level, IRT focuses

on the finer detail of test items, by modeling responses (answers) given by respondents with

different abilities (Embretson & Reise, 2013). Item Response Theory (IRT) is widely adopted in

psychometrics for estimating human latent ability in tests. The concept of item depends on the

application, and can represent for test questions, judgments or choices in exams. In practice,

IRT models estimate latent difficulties of the items and the latent abilities of the respondents

based on observed responses in a test, and have been commonly applied to assess performance of

students in exams.

Recently, IRT was adopted to analyze Machine Learning (ML) classification tasks (Martínez-

Plumed et al., 2016). Here, items correspond to instances in a dataset, while respondents are

classifiers. The responses are the outcomes of classifiers on the test instances (right or wrong

decisions collected in a cross-validation experiment) which are limited to be binary. In addition,

an Item Characteristic Curve (ICC) is estimated for each item (instance), which is a logistic

function that returns the probability of a correct response for the item based on the respondent

ability. This ICC is determined by two item parameters: difficulty, which is the location parameter

of the logistic function; and discrimination, which affects the slope of the ICC. Binary IRT models

are limited when the techniques of interest return continuous responses (e.g. class probabilities).

Continuous IRT models have been developed and applied in psychometrics (Noel & Dauvier,

2007) but the flexibility is still limited since ICCs are limited to logistic functions.

To address the issues of binary and logistic-based IRT models, we propose a new IRT model

called β3-IRT. β3-IRT is defined by a new parameterization of IRT models such that: a) the

observed responses are continuous instead of binary; b) the resulting ICCs are not limited to

logistic curves, different shapes can be obtained depending on the item parameters, which allows

more flexibility when fitting responses for different items; c) abilities and difficulties are in the

[0,1] range, which gives a unified scale for easier interpretation and evaluation.

We demonstrate that this model provides a method for assessing the ‘ability’ of classifiers by

means of an aggregated metric weighted by instance-wise ‘difficulty’. Several metrics (Sec. 3.2)

have been proposed for evaluating classifiers in continual learning as classification tasks have

drawn most attentions in continual learning. However, most of them are average measures

which can easily be skewed by a single task. And some metrics can only evaluate one specific

aspect of the performance in continual learning, such as forgetting, intransigence, which leaves

a problem of model selection: what is the appropriate way to combine the evaluations given by

these metrics. We demonstrate that the ‘ability’ is capable of jointly measuring different aspects

of classification performance in continual learning, which provides an effective way for model

selection in continual learning.

84

6.2. RELATED WORK

6.2 Related work

In Item Response Theory, the probability of a correct response for an item depends on the latent

respondent ability and the item difficulty. Most previous studies on IRT have adopted binary

models, in which the responses are either correct or incorrect. Such models assume a binary

response xi j of the i-th respondent to the j-th item. In the IRT model with two item parameters

(2PL), the probability of a correct response (xi j = 1) is defined by a logistic function with location

parameter δ j and shape parameter a j. Responses are modelled by the Bernoulli distribution

with parameter pi j as follows:

(6.1) xi j = Bern(pi j), pi j =σ(−a jdi j), di j = θi −δ j

where σ(·) is the logistic function. The 2PL model gives a logistic Item Characteristic Curve (ICC)

mapping ability θi to expected response as follows:

(6.2) E[xi j|θi,δ j,a j]= pi j = 1
1+ e−a j(θi−δ j)

At θi = δ j the expected response is 0.5. The slope of the ICC (the derivative w.r.t. θi−δ j) at θi = δ j

is a j/4. If a j = 1,∀ j, a simpler model is obtained, known as 1PL (one item parameter logistic),

which describes items solely by their difficulties. Generally, discrimination a j indicates how the

probability of correct responses changes as the ability increases. High discriminations lead to

steep ICCs at the point where ability equals difficulty, with small changes in ability producing

significant changes in the probability of correct response.

Despite their wide use in psychometrics, binary IRT models are of limited use when responses

are naturally produced on continuous scales. Particularly in ML, binary models are not adequate

if the responses to evaluate are class probability estimates. There have been earlier approaches

to IRT with continuous approaches. In particular, Noel & Dauvier (2007) proposed an IRT model

which adopts the Beta distribution with parameters mi j and ni j as follows:

mi j = e(θi−δ j)/2, ni j = e−(θi−δ j)/2 = m−1
i j ,

pi j ∼ Beta(mi j,ni j).

In this model pi j is the continuous response given by respondent i to item j. Similar to standard

IRT, parameter θi is the ability of the respondent and δ j is the difficulty of the item. mi j and ni j

can be interpreted as acceptance and refusal parameters to the response, which are defined as a

function of ability-difficulty distance on some latent range. This model also gives a logistic ICC

mapping ability to expected response for item j of the form:

(6.3) E[pi j|θi,δ j]=
mi j

mi j +ni j
= 1

1+ e−(θi−δ j)

Although the β3-IRT model also assumes the responses are from a Beta distribution, there are

several crucial distinctions:

85

CHAPTER 6. MEASURING CLASSIFIERS IN CONTINUAL LEARNING BY
β3-IRT MODEL

pij

Beta

↵ij �ij

✓i �j aj

Beta(1, 1) Beta(1, 1) N (1,�2
0)

F↵ F�

i 2 {1, . . . , M} j 2 {1, . . . , N}

6

Figure 6.1: Factor Graph of β3-IRT Model. The grey circle represents observed data, white
circles represent latent variables, small black rectangles represent stochastic factors, and the
rectangular plates represent replicates. M is number of respondents and N is number of items,
pi j is the observed response of respondent i to item j.

• Eq. (6.3) does not have a discrimination parameter which is similar to the standard 1PL

(One-Parameter Logistic) IRT model. The ICC therefore has a fixed slope of 0.25 at θi = δ j

as it assumes that all items have the same discrimination a j = 1;

• Eq. (6.3) assumes a real-valued scale for abilities and difficulties, whereas β3-IRT uses a

[0,1] scale to avoid issues with interpreting extreme values;

• Eq. (6.3) is still fixed in the form of logistic function whereas β3-IRT opens the door to more

options including non-sigmoidal ICCs as depicted in Figure 6.2.

We will elaborate on the details of β3-IRT in the following section.

6.3 The β3-Item Response Theory model

In this section, we introduce the parameterization and inference method of β3-IRT in details,

highlighting the differences with existing IRT models.

86

6.3. THE β3-ITEM RESPONSE THEORY MODEL

(a) a j = 2. (b) a j = 1. (c) a j = 0.5.

Figure 6.2: Examples of Beta ICCs for Different Values of Difficulty and Discrimination. Higher
discriminations lead to steeper ICCs, higher difficulties need higher abilities to achieve higher
responses.

6.3.1 Model description

β3-IRT can be depicted by a factor graph as shown in Fig. 6.1 and Eq. (6.4) below accordingly

gives the model definition:

pi j ∼ Beta(αi j,βi j), αi j =Fα(θi,δ j,a j)=
(
θi

δ j

)a j

, βi j =Fβ(θi,δ j,a j)=
(

1−θi

1−δ j

)a j

,

θi ∼ Beta(1,1), δ j ∼ Beta(1,1), a j ∼N (1,σ2
0)(6.4)

In Fig. 6.1, M is the number of respondents and N is number of items, pi j is the observed

response of respondent i to item j, which is drawn from a Beta distribution. The parameters of

the Beta distribution αi j,βi j are computed from θi (the ability of participant i), δ j (the difficulty

of item j), and a j (the discrimination of item j). θi and δ j are also drawn from Beta distributions

and their priors are set to Beta(1,1) in a general setting. In specific applications, the priors can

be adjusted according to the prior knowledge of the data. Moreover, the default priors could be

parameterized by further hyperparameters when there is further prior information available.

The discrimination a j is drawn from a Normal distribution with prior mean 1 and variance σ2
0,

where σ0 is a hyperparameter of the model. The default prior mean of a j is set to 1 rather than 0

because the discrimination a j is a power factor here.

When comparing probabilities we often use ratios (e.g. the likelihood ratio). Similarly, here

we use the ratio of ability to difficulty since in our model these are measured on a [0,1] scale

as well: a ratio smaller/larger than 1 means that ability is lower/higher than difficulty. These

ratios are positive reals and hence map directly to α and β in Eq. (6.4). Importantly, the new

parameterization enables us to obtain non-logistic ICCs. In this model the ICC is defined by the

expectation of Beta(αi j,βi j) and then obtains the form:

E[pi j|θi,δ j,a j]=
αi j

αi j +βi j
= 1

1+
(

δ j
1−δ j

)a j
(

θi
1−θi

)−a j(6.5)

87

CHAPTER 6. MEASURING CLASSIFIERS IN CONTINUAL LEARNING BY
β3-IRT MODEL

The expectation of responses is 0.5 when θi = δ j and the curve has slope a j/(4δ j(1−δ j)) at that

point. Fig. 6.2 shows examples of Beta ICCs for different regimes depending on a j:

a j > 1 : a logistic shape similar to standard IRT,

a j = 1 : parabolic curves with vertex at 0.5,

0<a j < 1 : anti-logistic behaviour.

Note that the model allows for negative discrimination, which indicates items that are somehow

harder for more able respondents. Negative a j can be divided similarly:

−1<a j < 0 : decreasing anti-logistic,

a j =−1 : decreasing parabolic curves with vertex at 0.5,

a j <−1 : decreasing logistic.

We will see examples in Sec. 6.4 that negative discrimination can in fact be useful for identifying

‘noisy’ items, where higher abilities obtain worse responses. For instance, if an item in class

1 is wrongly labelled as in class 2, a well-trained classifier could make a prediction that is

contradictory to the label but a random classifier might get a more ‘correct’ response by a random

guess.

6.3.2 Model inference

The method we applied to learn the latent variables in β3-IRT is meanfield Bayesian VI (Bishop,

2006), i.e. the variables are assumed to be independent. The conventional Maximum Likelihood

Estimation (MLE) can also be applied to the model and we have conducted experiments using

MLE as well. Such experiments use data formed by student answers from an online platform for

response prediction, applying the likelihood function shown in Eq. (6.5). They are not included in

this thesis because they are not related to classifier evaluation. Please refer to Chen et al. (2019)

for more details.

As we introduced in Sec. 2.1, the optimization objective of VI is the lower bound of the

KL divergence between the true posterior and variational posterior of latent variables. The

three latent variables (θi,δ j,a j) in β3-IRT are on the same level of the model structure, which

makes the model highly non-identifiable (Nishihara et al., 2013) (i.e., easily result in undesirable

combinations of these variables): for instance, when pi j is close to 1 (high correctness), it usually

indicates αi j > 1 and βi j < 1, which can arise when θi > δ j (ability larger than difficulty) with

positive a j, or θi < δ j (ability smaller than difficulty) with negative a j. To prevent negative

discrimination in such a case, we employ the coordinate ascent method of VI (Blei et al., 2017),

keeping a j fixed while optimizing θi and δ j and vice versa (see also Alg. 4). In addition, we set

the prior of discrimination as N (1,1) to reflect the assumption that discrimination is more often

88

6.4. MEASURING CLASSIFIERS IN STATIC LEARNING

Algorithm 4: Variational Inference for β3-IRT

1 Set number of iterations L iter, randomly initialize φ,ψ, λ;
2 for t in range(Titer) do
3 for k in range(K iter) do
4 Compute ∇ΘLlocal according to Eq. (6.6), Θ= {φ,ψ};
5 Θk ←Θk−1 −η∇ΘLlocal

6 end
7 Compute ∇λLglobal according to Eq. (6.6);
8 λt ←λt−1 −ζ∇λLglobal

9 end

positive than negative. According to the adjustment of updating variables, we separately define

two loss functions for local and global variables:

Llocal =
M∑

i=1

N∑
j=1
Eq[log p(pi j|θi,δ j)]+

M∑
i=1

Eq[log p(θi)− log q(θi|φi)]+
N∑

j=1
Eq[log p(δ j)− log q(δ j|ψ j)]

(6.6) Lglobal =
N∑

j=1
Eq[log p(pi j|a j)+ log p(a j)− log q(a j|λ j)]

Here, φ,ψ,λ are parameters of the variational posteriors of θ,δ,a, respectively. In order to apply

the reparameterization trick (Kingma & Welling, 2013), we use Logit-Normal to approximate the

Beta distribution in variational posteriors. The steps to perform VI of the model are shown in

Alg. 4. η and ζ denote the learning rate for updating local and global variables and they can be

different. Any gradient descent optimization algorithm can be applied to this algorithm, such as

the Adam optimizer (Kingma & Ba, 2014) that was used in our experiments. We implemented

Alg. 4 based on the probabilistic programming library Edward (Tran et al., 2016).

6.4 Measuring Classifiers in Static Learning

We now apply β3-IRT for measuring classifiers in static learning (i.e., all classifiers are just

trained on a single task). Here, each ‘respondent’ is a different classifier and items are instances

from a classification dataset. Note that an entire dataset could be considered as an item too, with

associated difficulty, the classifiers then could be evaluated over multiple datasets. The responses

are the probabilities that a classifier assigned to the correct class of each instance. Specifically,

the observed response is given by pi j =∑
k I(yj = k)pi jk, where I(·) is the indicator function, yj is

the label of item j, k is the index of each class, and pi jk is the predicted probability of item j

belonging to class k given by classifier i.

The following steps are deployed to obtain the responses from M classifiers on a dataset:

1. Train all M classifiers on the training set Dtrain;

89

CHAPTER 6. MEASURING CLASSIFIERS IN CONTINUAL LEARNING BY
β3-IRT MODEL

2. Use all trained classifiers to predict the class probabilities pi jk for each data instance in a

validation set Dval, which gives pi j, ∀ j ∈ {1,2, . . . , N}, N = |Dval|.

Inference is then performed for the β3-IRT model as demonstrated in Alg. 4, using the responses

of the M classifiers to N validation instances.

6.4.1 Experimental setup

We first applied the β3-IRT model on two synthetic binary classification datasets, MOONS and

CLUSTERS, which are chosen because they are convenient for visualization. Both datasets

are available in scikit-learn (Pedregosa et al., 2011). Each dataset is divided into training and

validation sets, each set with 400 instances. We also conducted experiments on classes 3 vs 5

from the MNIST dataset (LeCun et al., 2010), chosen as they are similar and contain difficult

instances. For the MNIST dataset, the training and validation sets have 1000 instances. The

classes are balanced in each dataset. We inject noise in the validation set by flipping the label yj

for 20% of randomly chosen data instances. The hyperparameter of discrimination σ0 is set to 1

across all tests unless specified explicitly.

We tested 12 classifiers in this experiment: (i) Naive Bayes; (ii) MLP (two hidden layers with

256 and 64 units); (iii) AdaBoost (Hastie et al., 2009); (iv) Logistic Regression (LR); (v) k-Nearest

Neighbours (KNN) (K=3); (vi) Linear Discriminant Analysis (LDA) (Friedman et al., 2001);

(vii) Quadratic Discriminant Analysis (QDA) (Friedman et al., 2001); (viii) Decision Tree (Breiman

et al., 1984); (ix) Random Forest (Breiman, 2001); (x) Calibrated Constant Classifier (assign

probability p = 1/K to all instances, K is the number of classes); (xi) Positive classifier (always

assign positive class to instances, i.e. pi j1 = 1); (xii) Negative classifier (always assign negative

class to instances, i.e. pi j0 = 1). The last two are specific for binary classification cases and the

two classes are denoted as positive (k = 1) and negative (k = 0) class, respectively. All except the

last three are taken from scikit-learn (Pedregosa et al., 2011) using default configuration unless

specified explicitly. We add the last three classifiers to the group because they can represent

incapable respondents, giving a reference to the inferred abilities of the classifiers.

6.4.2 Exploring item parameters

Figs. 6.3a and 6.3b show the empirical distributions of the mean of inferred difficulties and

discriminations in the CLUSTERS and MOONS datasets. Instances near the true decision

boundary have higher difficulties and lower discriminations for both datasets, whereas instances

far away from the decision boundary have lower difficulties and higher discriminations. Fig. 6.4

illustrates ICCs fitting different abilities to items with different combinations of difficulty and

discrimination. Our model provides more flexibility than logistic-shape ICC in both non-noisy

and noisy cases.

90

6.4. MEASURING CLASSIFIERS IN STATIC LEARNING

−2 −1 0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6

δ (Difficulty)

−2 −1 0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6

a (Discrimination)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

Histogram of δ

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Histogram of a

IRT item parameters

(a) Dataset CLUSTERS

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

δ (Difficulty)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

a (Discrimination)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

Histogram of δ

−1.0 −0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

Histogram of a

IRT item parameters

(b) Dataset MOONS.

Figure 6.3: Inferred Latent Variables of Items of Two Synthetic Datasets: CLUSTERS and
MOONS. Darker colour indicates higher value. Items closer to the class boundary get higher
difficulty and lower discrimination.

There are some items inferred to have negative discrimination: these are mostly items with

incorrect labels, as shown in Fig. 6.5a. The negative discrimination fits the case when a low-valued

response (correctness) is given by a classifier with high ability to an item with low difficulty.

Figs. 6.5a and 6.5b shows that negative discrimination flips high difficulty to low difficulty in

comparison with the results where the discrimination is fixed. Figs. 6.5c and 6.5d show that when

there are no noisy items, no negative discriminations are inferred by the model.

However, unlike the common setting of label noise detection (Frénay & Verleysen, 2014),

using negative discrimination to identify noisy labels requires that the training set can only

include a few noisy examples. It is because the negative discriminations are inferred by items

91

CHAPTER 6. MEASURING CLASSIFIERS IN CONTINUAL LEARNING BY
β3-IRT MODEL

(a) Difficulty low, positive discrimination high.
Instance is non-noisy item far from decision
boundary.

(b) Difficulty high, positive discrimination low.
Instance is non-noisy item close to decision
boundary.

(c) Difficulty high, negative discrimination low.
Instance is noisy item close to decision bound-
ary.

(d) Difficulty low, negative discrimination high.
Instance is noisy item far from decision bound-
ary.

Figure 6.4: Examples of ICC in the CLUSTERS Dataset. Stars are the actual classifier responses
fit by the ICCs.

receiving low responses from classifiers with high abilities. Noise in the training set introduces

noise to classifiers’ abilities (especially for methods like KNNs). Therefore, the model will not be

able to infer negative discrimination correctly since the responses given by the classifiers are

not reliable. The experimental results of such cases are compared in Fig. 6.6. This is a common

issue in ensemble-based approaches for noise detection, which has been addressed for instance

by Sluban & Lavrač (2015). Our model can be trained on a small noise-free training set and

then updated incrementally with identified non-noisy items, which could still be practical in

real applications. In contrast, in experiments using human responses, such as student exams,

92

6.4. MEASURING CLASSIFIERS IN STATIC LEARNING

0.0 0.2 0.4 0.6 0.8 1.0

Average response

0.0

0.2

0.4

0.6

0.8

1.0

D
iffi

cu
lt

y

Correlation between difficulty and response

noise item

detected noise item

non-noise item

(a) a j is learned.

0.0 0.2 0.4 0.6 0.8 1.0

Average response

0.0

0.2

0.4

0.6

0.8

1.0

D
iffi

cu
lt

y

Correlation between difficulty and response

noise item

non-noise item

(b) a j is fixed to 1.

0.0 0.2 0.4 0.6 0.8 1.0

Average response

0.0

0.2

0.4

0.6

0.8

1.0

D
iffi

cu
lt

y

Correlation between difficulty and response

noise item

detected noise item

non-noise item

(c) a j is learned.

0.0 0.2 0.4 0.6 0.8 1.0

Average response

0.0

0.2

0.4

0.6

0.8

1.0

D
iffi

cu
lt

y

Correlation between difficulty and response

noise item

non-noise item

(d) a j is fixed to 1.

Figure 6.5: Correlation between Average Response and Difficulty Changes. (Under different
settings of discrimination, shown for classes 3 vs 5 of MNIST dataset. (a), (b) are from validation
data with 20% injected noise; (c), (d) no noise.)

0 10 20 30 40 50

Noise fraction (percentile)

0.0

0.2

0.4

0.6

0.8

1.0

Precision and recall under different noise fractions

Recall

Precision

(a) Noise only in validation set

0 10 20 30 40 50

Noise fraction (percentile)

0.0

0.2

0.4

0.6

0.8

1.0

Precision and recall under different noise fractions

Recall

Precision

(b) Noise in training and validation set

Figure 6.6: Denoising Performance of Negative Discrimination in Different Settings. Tested
on MNIST dataset, means and standard deviations over 5 runs of all combinations of any two
classes.

93

CHAPTER 6. MEASURING CLASSIFIERS IN CONTINUAL LEARNING BY
β3-IRT MODEL

Figure 6.7: Ability vs Average Response in the CLUSTERS dataset. The classifiers in the top
right getting similar avg, response around 0.7, but their abilities are diverse from 0.65 to 0.8.

there is no separate training set to build students’ abilities before getting their responses to

questions because the students are assumed to be trained by formal education already. In such

cases, β3-IRT can be a good option for detecting suspicious questions that might have wrong

standard answers.

6.4.3 Assessing the ability of classifiers

Fig. 6.7 shows a monotonic increasing relation between ability and average response except

the top right and bottom left of the figure. However, most classifiers are in the top right part,

with ability between 0.7 and 0.8 and avg. response around 0.72, and the highest ability does not

correspond to the highest avg response. This is because the inferred ability can be considered as

an element-wise weighted mean which we will discuss now.

Tabs. 6.1 and 6.3 shows the comparison between abilities and several popular classifier

evaluation metrics on the MNIST and CLUSTERS dataset, respectively. Tabs. 6.2 and 6.4 give

the Spearman’s rank correlation between these metrics for the two datasets. We can see that

ability behaves differently from the other metrics because it is not using uniform aggregates of

predicted probabilities (unlike log-loss, Brier score), instead, the aggregation is weighted by the

difficulties and discriminations of corresponding items. This can be seen from the equation below:

(6.7)
(

1
p̄i j

−1
)1/a j

(
1
δ j

−1
)
= 1
θi

−1, p̄i j =
αi j

αi j +βi j

Here, p̄i j is the expected response of item j given by classifier i, αi j and βi j are defined in

Eq. (6.4). For example, a low p̄i j for a difficult instance will not give high penalty to the ability θi.

94

6.4. MEASURING CLASSIFIERS IN STATIC LEARNING

Assume the discrimination a j = 1, according to Eq. (6.7):

(
1

p̄i j
−1

)(
1
δ j

−1
)
+1= 1

θi
,

We have four typical scenarios of a classifier:

1) giving a high response (high correctness) to an easy item, e.g., p̄i, j = 0.8, δ j = 0.2→ θi = 0.5;

2) giving a low response (low correctness) to a difficult item, e.g., p̄i, j = 0.2, δ j = 0.8→ θi = 0.5;

3) giving a high response to a difficult item, e.g., p̄i, j = 0.8, δ j = 0.8→ θi = 16
17 ≈ 0.94;

4) giving a low response to an easy item, e.g., p̄i, j = 0.2, δ j = 0.2→ θi = 1
17 ≈ 0.06.

The first two scenarios are likely to happen for most classifiers and the model tends to infer

the ability as mediocre. If we initialize the ability as 0.5, then both cases will not make notable

change on it. The third and fourth scenarios will change the ability towards 1 and 0, respectively,

which means giving a difficult item a correct response will gain most on the ability and the vice

versa. Moreover, when 1
p̄i j

−1< 1 (response is high), if 0< a j < 1 then the strength of increasing θi

will be stronger; when 1
p̄i j

−1> 1 (response is low), if a j > 1 then the strength of decreasing θi will

be weaker. As demonstrated in Fig. 6.3, we see that when difficulty δ j is high the discrimination

a j is often close to zero, and vice versa. It indicates with non-fixed discrimination getting higher

response on a difficult item has stronger strength to change the ability than getting lower

response on an easy item. According to these results we see that the difficulty of each item plays

an important role for inferring the ability of a classifier. In addition, the difficulty of an item

can be viewed as the relative difficulty to a specific group of respondents since it depends on the

average response over all respondents (Fig. 6.5). Consequently, the assessed ability is relative

ability among this certain group as well.

The ability learned by β3-IRT provides a new scaled measurement for classifiers, which

evaluates their performance on a weighted instance-wise basis. This characteristic also results

in adaptive behavior of the ability when the classifiers are evaluated on different datasets,

for instance, the Spearman’s rank correlation between ability and several other measures (e.g.

accuracy, F1, Brier score, log-loss) are very different on the MNIST (Tab. 6.2) and CLUSTERS

(Tab. 6.4) datasets. It helps to identify the classifier that is most capable of classifying difficult

items, which can be very helpful in an ensemble or crowd-sourcing scenario. Another advantage

of ability as a measurement of classifiers is that it is robust to noisy validation data. Fig. 6.8

demonstrates that the inferred abilities of the classifiers stay nearly constant as the noise fraction

in the validation set is increased until half of the validation points are incorrectly labeled. In

contrast, other measures will be highly affected by noisy items since they are determined by the

given labels, e.g., average accuracy will monotonically decreasing when increasing noisy items.

95

CHAPTER 6. MEASURING CLASSIFIERS IN CONTINUAL LEARNING BY
β3-IRT MODEL

Table 6.1: Comparison between Ability and other Metrics (MNIST). ↑ indicates the higher the
better and vice versa.

Avg. Resp. ↑ Ability ↑ Accuracy ↑ F1 score ↑ Brier score ↓ Log loss ↓ AUC ↑
DT 0.7398 0.7438 0.7425 0.7297 0.2337 1.1537 0.7776
NB 0.6439 0.7423 0.6425 0.6951 0.3533 10.6097 0.6799

MLP 0.7826 0.8384 0.7825 0.774 0.2086 2.457 0.7951
Ada. 0.5621 0.4887 0.775 0.7656 0.2036 0.5959 0.79
RF 0.7215 0.7395 0.7725 0.7573 0.1926 3.4979 0.8119

LDA 0.7185 0.8052 0.72 0.7098 0.2714 5.1328 0.7276
QDA 0.5948 0.5892 0.595 0.6611 0.405 13.9884 0.5854
LR 0.7699 0.8001 0.7775 0.7688 0.2059 1.4246 0.7939

KNN 0.7645 0.8228 0.7675 0.7572 0.2111 6.3816 0.8011

Table 6.2: Spearman’s Rank Correlation between Ability and other Metrics (MNIST)

Avg. Resp. Ability Accuracy F1 Brier socre Log loss AUC

Avg. Resp. 1.0 0.8333 0.6 0.6 0.2833 0.2 0.6
Ability 0.8333 1.0 0.3333 0.3333 -0.05 -0.05 0.35

Accuracy 0.6 0.3333 1.0 1.0 0.8333 0.7 0.75
F1 0.6 0.3333 1.0 1.0 0.8333 0.7 0.75

Brier 0.2833 -0.05 0.8333 0.8333 1.0 0.6833 0.8333
Log loss 0.2 -0.05 0.7 0.7 0.6833 1.0 0.3667

AUC 0.6 0.35 0.75 0.75 0.8333 0.3667 1.0

Table 6.3: Comparison between Ability and other Metrics (CLUSTERS)

Avg. Resp. ↑ Ability ↑ Accuracy ↑ F1 ↑ Brier score ↓ Log loss ↓ AUC ↑
DT 0.7113 0.7226 0.7175 0.7154 0.2456 1.0114 0.7596
NB 0.7217 0.7388 0.75 0.7487 0.2221 1.0718 0.7682

MLP 0.7195 0.7263 0.7375 0.7342 0.2233 1.0092 0.7652
Ada. 0.5478 0.4623 0.725 0.7277 0.2148 0.6204 0.7571
RF 0.7206 0.7741 0.7275 0.7241 0.2304 5.7305 0.7648

LDA 0.7251 0.7488 0.745 0.745 0.2244 1.1623 0.7683
QDA 0.7255 0.7549 0.7475 0.7469 0.2242 1.1802 0.768
LR 0.7017 0.6848 0.7375 0.7328 0.2141 0.8071 0.7677

KNN 0.7212 0.7899 0.7325 0.7332 0.2389 6.8574 0.7582

6.5 Measuring Classifiers in Continual Learning

We have demonstrated that the ability assessed by β3-IRT provides a new measure for classifiers

which is adaptively weighted by item difficulties. In continual learning, we can consider the

difficulty of a data instance having two extra sources:

1) how much the performance on it will drop if it is from an old task (i.e., the tendency of

forgetting),

2) how much the performance on it will be inhibited if it is from a new task (i.e., the tendency

96

6.5. MEASURING CLASSIFIERS IN CONTINUAL LEARNING

Table 6.4: Spearman’s Rank Correlation between Ability and other Metrics (CLUSTERS)

Avg. Resp. Ability Accuracy F1 Brier score Log loss AUC

Avg. Resp. 1.0 0.75 0.7197 0.7333 -0.3167 -0.7333 0.6667
Ability 0.75 1.0 0.2678 0.2833 -0.6 -0.9833 0.1667

Accuracy 0.7197 0.2678 1.0 0.954 0.3766 -0.1925 0.8619
F1 0.7333 0.2833 0.954 1.0 0.3167 -0.2 0.7333

Brier -0.3167 -0.6 0.3766 0.3167 1.0 0.6833 0.2167
Log loss -0.7333 -0.9833 -0.1925 -0.2 0.6833 1.0 -0.1333

AUC 0.6667 0.1667 0.8619 0.7333 0.2167 -0.1333 1.0

0 10 20 30 40 50
Noise fraction (percentile)

0.3

0.4

0.5

0.6

0.7

0.8

Ab
ilit

y

MLP
Adaboost
Logistic Regression
Decision Tree
Random Forest
Nearest Neighbors
LDA
QDA

Figure 6.8: Ability of classifiers with different noise fractions of validation data, which shows the
ability is robust to noisy validation data.

of intransigence).

In the case of continual learning, the ability can be viewed as an aggregated measure that jointly

evaluates the forgetting and intransigence over all instances. The average intransigence and

forgetting (Chaudhry et al., 2018) are often contradictory to each other as shown in Sec. 5.5 which

is a common phenomenon in continual learning, i.e., a lower forgetting usually accompanies with

a higher intransigence. It is due to the intrinsic resource limitation of continual learning since

we want the model continuously learn more tasks with very limited resource expansion (small

increase of the memory or model parameters). A model with a better trade-off between forgetting

and intransigence often obtains a higher average accuracy. However, the average accuracy

cannot tell the difference between some cases, for instance, a model with high forgetting and low

intransigence may have the same average accuracy with a model with low forgetting and high

intransigence. The ability is capable of giving more insights in such cases by an adaptive manner,

which depends on the difficulties caused by forgetting and intransigence. We will demonstrate it

in the remainder of this section.

97

CHAPTER 6. MEASURING CLASSIFIERS IN CONTINUAL LEARNING BY
β3-IRT MODEL

pt
⌧,ij

Beta

↵t
⌧,ij �t

⌧,ij

✓t
i

�t
⌧,j at

⌧,j

Beta(�t�1
i,1 ,�t�1

i,2) Beta(t
⌧,j,1, t

⌧,j,2) N (1,�2
0)

F↵ F�

i 2 {1, . . . , M} j 2 {1, . . . , N⌧}

7

Figure 6.9: Factor graph of continual β3-IRT. t is the index of the current task, τ is the task index
that satisfies τ≤ t, Nτ is the number of items from the τ-th task. The prior of ability θi in the t-th
task is the posterior of the (t−1)-th task. The prior of difficulty δ in the t-th task is the empirical
prior computed by the number of correct and incorrect predictions given by all classifiers after
learning the t-th task.

The experiments in the previous section are all based on binary classification tasks in static

learning. In this section, we apply β3-IRT to multi-classification tasks in continual learning

using a different way of generating responses. To align with a more general setting across

related work, we train each classifier multiple times (such as with different random seeds)

and collect the predictions on validation sets of each time. The final response is computed as

pi j =∑S
s=1 I(yj = ŷi j,s)/S, where yj is the true class of the j-th instance, ŷi j,s is the predicted class

given by the i-th classifier after s-th training, and S is the total number of training times which is

set to 10 in our experiments. In this way, pi j can be viewed as the probability of the i-th classifier

giving the correct prediction on the j-th item.

We apply the β3-IRT model to evaluate a set of classifiers in continual learning which follows

the conventional settings: at task t, we train M classifiers by the training set of the t-th task

and generate responses by the validation sets of all learned tasks, where t ∈ {1,2, . . . ,T} and T is

the total number of tasks. Analogously, we can also train the β3-IRT model at each task after

the classifiers have been trained in a continuous manner. Since it is a probabilistic model, we

can apply the framework of VCL by simply changing the priors of ability θi at task t to the

inferred posteriors at task t−1, which we call Continual β3-IRT (CBIRT). Since the prior and

initialization of ability is inherited from the previous task, the ability is learned under an implicit

assumption that it is the same variable across tasks. In other words, the ability defined in CBIRT

98

6.5. MEASURING CLASSIFIERS IN CONTINUAL LEARNING

reflects the overall performance on the whole sequence of tasks rather than the performance

on individual tasks. The factor graph of CBIRT is depicted in Fig. 6.9, where τ is index of a

learned task and t is the index of the latest task, hence τ≤ t. Nτ is the number of instances of

the τ-th task. pt
τ,i j denotes the response from classifier i to j-th instance of the τ-th task after

learning t-th task . θt
i denotes the ability of classifier i at task t. δt

τ, j, at
τ, j denote the difficulty

and discrimination of the j-th item of the τ-th task evaluated at task t, respectively. We set the

prior of difficulty (Beta(ψt
τ, j,1,ψt

τ, j,2)) by an empirical estimation, where ψt
τ, j,1 and ψt

τ, j,2 is the

number of classifiers that have incorrectly and correctly classify this instance, respectively. We

configure the prior of difficulty in this way because the difficulty of an instance is often linearly

correlated to the average response of it (Fig. 6.5). We do not set the previous posterior as the

prior of item parameters (difficulty and discrimination) because such parameters can change

significantly in continual learning due to catastrophic forgetting. The model inference can be

done as the same as Eqs. (6.6) and (6.6). When t = 1 the priors are as the same as in Fig. 6.1.

We apply the same experimental settings as in Sec. 5.5 with Split MNIST and Split Fashion-

MNIST tasks, i.e., all experiments comply with the online training with a single-headed model.

The training set has 1000 samples and all methods have the access to a memory buffer with

300 samples. We have tested CBIRT on 14 classifiers including 10 approaches of continual

learning: OEWC (Schwarz et al., 2018), A-GEM (Chaudhry et al., 2019a), iCaRL (Rebuffi et al.,

2017), MER (Riemer et al., 2019), ER (Chaudhry et al., 2019b), GSS-greedy (Aljundi et al.,

2019b), Multisimilarity (Wang et al., 2019), R-Margin (Roth et al., 2020), BER (Sec. 5.2), DRL

(Sec. 5.2). As OEWC performs very poorly in the single-headed setting, we enhance it by adding

the replay loss of ER to it so that it can make the usage of the memory buffer as well. In addition,

we deploy 4 simulated classifiers to obtain better insights on the assessed ability: Calibrated

Constant Classifier (the response pt
τ,i j = 1/K t where K t is the number of classes at task t), Perfect

Classifier (the response pt
τ,i j = 1), Perfect First Task Classifier (which has perfect responses on

the first task but random guesses on other tasks pt
1,i j = 1, pt

τ,i j = 1/K t,∀τ 6= 1), Perfect Latest Task

Classifier (which has perfect responses on the latest task but random guesses on other tasks

pt
t,i j = 1, pt

τ,i j = 1/K t,∀τ 6= t). The results are shown in Tabs. 6.5 and 6.6.

We compare the assessed ability of all classifiers with the usual measurements of continual

learning (Sec. 3.2): average accuracy, average forgetting, and average intransigence. We rescale

the ability by min-max normalization:

θ̃i = (θi −min
i′
θi′)/(max

i′
θi′ −min

i′
θi′)

Thus, the Calibrated Constant Classifier gets 0 ability and the Perfect Classifier gets 1 ability on

both benchmarks. The learned ability of the Perfect Classifier is not 1 because not all items push

it’s ability to 1 as we explained in the previous section, and the final result also depends on the

learning rate and iteration numbers. And the Calibrated Constant Classifier gets an analogous

situation. Nonetheless, the Perfect Classifier and the Calibrated Constant Classifier always get

the highest and lowest ability, respectively. Hence, the min-max normalization can rescale the

99

CHAPTER 6. MEASURING CLASSIFIERS IN CONTINUAL LEARNING BY
β3-IRT MODEL

Table 6.5: Comparing ability with other measurements on Split MNIST tasks, the numbers in
the parentheses are rankings under each measurement. ↑ indicates the higher the better and
vice versa.

Ability ↑ Avg. Acc.↑ Avg. Forget. ↓ Avg. Intrans. ↓
A-GEM 0.908 (6) 0.846 (7) 0.124 (6) 0.055 (10)
DRL 0.927 (2) 0.882 (2) 0.088 (3) 0.048 (9)
iCaRL 0.764 (11) 0.676 (11) 0.129 (8) 0.222 (12)
ER 0.904 (8) 0.834 (8) 0.170 (12) 0.030 (3)
OEWC 0.884 (10) 0.797 (10) 0.203 (13) 0.041 (5)
Multisim 0.921 (3) 0.866 (3) 0.117 (5) 0.041 (6)
BER 0.912 (5) 0.850 (5) 0.133 (9) 0.044 (8)
GSS 0.900 (9) 0.830 (9) 0.169 (11) 0.034 (4)
R-Margin 0.916 (4) 0.857 (4) 0.127 (7) 0.042 (7)
MER 0.906 (7) 0.849 (6) 0.109 (4) 0.064 (11)
Constant 0.000 (14) 0.100 (14) 0.160 (10) 0.772 (14)
Perfect 1.000 (1) 1.000 (1) 0.000 (1) 0.000 (1)
Perfect First 0.338 (12) 0.280 (12) 0.060 (2) 0.672 (13)
Perfect Latest 0.281 (13) 0.280 (12) 0.900 (14) 0.000 (1)

Table 6.6: Comparing ability with other measurements on Split Fashion-MNIST tasks, the
numbers in the parentheses are rankings under each measurement.

Ability Avg. Acc. Avg. Forget. Avg. Intrans.

A-GEM 0.738 (10) 0.666 (10) 0.368 (13) 0.039 (3)
DRL 0.824 (2) 0.778 (2) 0.170 (4) 0.086 (9)
iCaRL 0.717 (11) 0.631 (11) 0.178 (7) 0.227 (12)
ER 0.809 (7) 0.757 (7) 0.241 (10) 0.051 (4)
OEWC 0.745 (9) 0.692 (9) 0.298 (12) 0.072 (6)
Multisim 0.823 (3) 0.769 (3) 0.191 (8) 0.078 (7)
BER 0.819 (4) 0.765 (5) 0.192 (9) 0.084 (8)
GSS 0.785 (8) 0.718 (8) 0.274 (11) 0.063 (5)
R-Margin 0.817 (6) 0.765 (6) 0.170 (5) 0.099 (11)
MER 0.819 (4) 0.767 (4) 0.171 (6) 0.096 (10)
Constant 0.000 (14) 0.100 (14) 0.160 (3) 0.772 (14)
Perfect 1.000 (1) 1.000 (1) 0.000 (1) 0.000 (1)
Perfect First 0.398 (12) 0.280 (12) 0.060 (2) 0.672 (13)
Perfect Latest 0.399 (13) 0.280 (12) 0.900 (14) 0.000 (1)

100

6.5. MEASURING CLASSIFIERS IN CONTINUAL LEARNING

0.1 0.2 0.3 0.4 0.5
Avg. Forgetting

0

5

10

15

20

25

30

35

Pr
ob

ab
ilit

y
De

ns
ity

Split MNIST
Split Fashion-MNIST

(a) Distributions of average forgetting

0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Avg. Intransigence

0

5

10

15

20

25

30

35

Pr
ob

ab
ilit

y
De

ns
ity

Split MNIST
Split Fashion-MNIST

(b) Distributions of average intransigence

Figure 6.10: The empirical distribution of average forgetting (a) and intransigence (b) of 10
continual learning methods on both benchmarks. The two benchmarks have very different
distributions of the average forgetting but similar distributions of the average intransigence.

values to match our understanding of the classifiers’ ability. The 10 approaches of continual

learning have lower abilities on split Fashion-MNIST than on split MNIST, which is consistent

with the average accuracy. We can see that the ability gives very similar rankings with the

average accuracy, but there exist a few cases having different rankings, such as A-GEM and MER

in split-MNIST, BER and MER in split Fashion-MNIST. These cases have a common property:

one classifier shows better performance on forgetting but worse performance on intransigence

than the other.

To obtain better insights on the difference between ability and average accuracy, we provide

further analysis based on the results of the Perfect First Classifier and Perfect Latest Classifier

in the following. As we can see, the Perfect First Classifier and Perfect Latest Classifier have

the same average accuracy in both cases, and their average forgetting and intransigence remain

unchanged on different benchmarks due to their definitions. However, the Perfect First Classifier

gets much higher ability than the Perfect Latest Classifier on split MNIST tasks. This is because

the ability assessed by β3-IRT is actually the relative ability among all classifiers which depends

on the relative difficulty of each items as we analyzed in the previous section. We see that most

classifiers show lower average forgetting on split MNIST than on split Fashion-MNIST tasks

which gives the Perfect Latest Classifier a larger ability gap with other classifiers on split MNIST.

We demonstrate this by the empirical distributions of the average forgetting and intransigence of

the 10 continual learning methods in Fig. 6.10. Most classifiers have average forgetting below

0.15 on split MNIST but exhibit much higher forgetting on split Fashion-MNIST, whereas the

Perfect Latest Classifier has 0.9 forgetting on both benchmarks. This indicates that on split

MNIST more easy items of old tasks receiving low responses from the Perfect Latest Classifier,

which pushes its ability towards 0 in a larger extent. On the other hand, the distributions of

average intransigence on both benchmarks are similar and hence the Perfect Latest Classifier

101

CHAPTER 6. MEASURING CLASSIFIERS IN CONTINUAL LEARNING BY
β3-IRT MODEL

has not obtained enough gains by its low intransigence to outperform the Perfect First Classifier

on either benchmark. The results demonstrate that the ability is able to evaluate classifiers

in a more sensitive way than average accuracy. It combines the performance on forgetting and

intransigence in an instance-wise weighted manner which makes it a more informative criterion

in continual learning.

6.6 Summary

In this chapter we introduce the β3-IRT model that can produce a new family of ICCs including

logistic and anti-logistic curves by adopting a new formulation of IRT. This model enables more

expressive class of response patterns and provides a new measurement for assessing performance

of classifiers in both static and continual learning.

The experimental results showed that item parameters inferred by the β3-IRT model can pro-

vide useful insights for difficult or noisy instances, and the inferred latent ability variable serves

to evaluate classifiers on an instance-wise basis regarding the difficult levels of each instance.

And in continual learning, the difficulty can also be caused by forgetting and intransigence, which

makes the ability evaluate classifiers in a more flexible and informative way than the average

accuracy. Note that the assessed ability depends on the context of the evaluation, i.e., the group

of classifiers, which indicates it could be incompatible to the ability assessed over other groups.

Adding the Calibrated Constant Classifier and Perfect Classifier to rescale the abilities could be a

solution to this issue as we have done it for experiments in continual learning (Tabs. 6.5 and 6.6).

Besides classification tasks in continual learning, generative tasks in continual learning have

different training process and evaluation criteria. In the next chapter, we will introduce a new

method for evaluating generative models under the restrictive setting of continual learning, i.e.,

there is no access to the training data of learned tasks.

102

C
H

A
P

T
E

R

7
MEASURING GENERATIVE MODELS IN CONTINUAL LEARNING BY

CONTINUAL DENSITY RATIO ESTIMATION

In this chapter we introduce a novel method, Continual Density Ratio Estimation (CDRE), which

can be used for evaluating generative models in continual learning. CDRE approximates density

ratios between the initial and current distributions (p/qt) of a data stream in an iterative fashion

without the need of storing past samples, where qt is shifting away from p over time t. CDRE

can be applied in scenarios of online learning, such as importance weighted covariate shift,

tracing dataset changes for better decision making. Particularly, CDRE enables the evaluation of

generative models under the rigorous setting of continual learning. To the best of our knowledge,

there is no existing method that can evaluate generative models in continual learning without

storing samples from the original distribution. This chapter is structured as follows. Sec. 7.1

introduces the problem background of our method and compares several related works. In

Sec. 7.2 we firstly provides technique details of preliminaries of CDRE, including the formal

problem setting of CDRE, and a brief review of KLIEP which is a basic method for direct density

ratio estimation. We secondly elaborate the technique details of CDRE and demonstrate the

instantiation of CDRE by KLIEP. We finally provide the theoretical analysis of asymptotic

normality of this method. In Sec. 7.3 we demonstrate several online applications of CDRE and

Sec. 7.4 shows experimental results of evaluating generative models by CDRE in continual

learning. Finally, we give some further discussion about CDRE and its applications Sec. 7.5.

7.1 Introduction

Online applications are ubiquitous in practice since large amounts of data are generated and

processed in a streaming manner. There are two types of machine learning scenarios commonly

103

CHAPTER 7. MEASURING GENERATIVE MODELS IN CONTINUAL LEARNING BY
CONTINUAL DENSITY RATIO ESTIMATION

deployed for such streaming data:

1) train a model online on the streaming data (e.g. online learning (Shalev-Shwartz et al.,

2012) and continual learning (Parisi et al., 2019)) – in this case the training set may be

shifting over time;

2) train a model offline and deploy it online – in this case the test set may be shifting over

time.

In both cases, the main problem is dataset shift, i.e. the data distribution changes gradu-

ally over time. Awareness of how far the training or test set has shifted can be crucial to the

performance of the model. For example, when the training set is shifting, the latest model may

become less accurate on test samples from earlier data distributions. In this case, we can apply

‘backward’ covariate shift (Shimodaira, 2000) (i.e. swapping the training and testing distributions

in covariate shift) and ‘rollback’ the model by adding important weights to the loss function:

Ep1(x)[L (x)] = Ept(x)[
p1(x)
pt(x) L (x)], where the importance weights are density ratios pt−1(x)

pt(x) . In the

other case, the performance of a pre-trained model may gradually degrade when the test set

shifts away from the training set over time. It will be beneficial to trace the distribution difference

caused by dataset shift so that we can decide when to update the model for preventing the

performance from degradation.

Density Ratio Estimation (DRE) (Sugiyama et al., 2012) is a method for estimating the ratio

between two probability distributions which can reflect the difference between the two distribu-

tions. In particular, it can be applied to settings in which only samples of the two distributions

are available, which is usually the case in practice. However, under certain restrictive conditions

in online applications – e.g., unavailability of historical samples in an online data stream –

existing DRE methods are no longer applicable. Moreover, DRE exhibits difficulties for accurate

estimations when there exists significant differences between the two distributions (Sugiyama

et al., 2012; McAllester & Stratos, 2020; Rhodes et al., 2020). In this chapter, we propose a new

framework of density ratio estimation called Continual Density Ratio Estimation (CDRE) which

is capable of coping with the online scenarios and gives better estimation than standard DRE

when the two distributions are less similar.

Moreover, CDRE can trace the differences between distributions by estimating their f -

divergences and thus it provides a new option for evaluating generative models in continual

learning. The scenario of the training set shifting over time matches the problem setting of

continual learning (Parisi et al., 2019) in which a single model is trained by a set of tasks

sequentially with no (or very limited) access to the data from past tasks, and yet is able to

perform on all learned tasks. The existing methods of evaluating generative models are to

estimate the difference between the original data distribution and the distribution of model

samples (Heusel et al., 2017; Bińkowski et al., 2018). All those methods require the samples

from the original data distribution which may not be possible in some applications of continual

104

7.2. CONTINUAL DENSITY RATIO ESTIMATION

learning. For instance, when we train a generative model to simulate the residents’ activities in a

smart house by camera data and due to privacy regulations, we can only access to the data of

the latest 7 days. It may be difficult to evaluate longer periodic activities generated by the model

with the existing methods, yet CDRE can fit in such a situation.

7.2 Continual Density Ratio Estimation

In this section we first formally introduce the problem setting of CDRE, then we briefly review

the formulation of KLIEP which we use for instantiating CDRE. After that we describe the

basic formulation of CDRE and demonstrate instantiating it by KLIEP which we call CKLIEP.

We further provide theoretical analysis about the asymptotic normality of CKLIEP. Finally, we

discuss some techniques for dimensionality reduction in applications of CDRE.

7.2.1 The problem setting of CDRE

Suppose we want to estimate density ratios between two distributions rτ,t(x)= pτ(x)/qτ,t(x), t ≥ τ,

where τ is the initial time index of starting tracing the distribution pτ(x), t denotes the current

time index. We refer to pτ(x) as the original distribution and qτ,t(x) as the dynamic distribution

of pτ(x). The dynamic distribution is assumed to be shifting away from its original distribution

gradually over time. When t > τ the samples of pτ(x) are not available any longer. For example,

let τ= 1, at t = 1 we have access to samples of both pτ and qτ,t, we can directly estimate rτ,t by

standard DRE; and when t > 1, we no longer have access to samples of pτ, instead, we only have

access to samples of qτ,t−1 and qτ,t. CDRE is proposed to estimate rτ,t in such a situation.

Note that CDRE is able to estimate ratios of multiple pairs of the original and dynamic

distributions by a single estimator. It avoids building separated estimators for tracing different

original distributions in an application (e.g. seasonal data), which also fits the common setting

of continual learning that we will introduce in the latter sections. For convenience, we initially

introduce the formulation with a single pair of original and dynamic distributions. We then give

a more general formulation for multiple pairs of original and dynamic distributions.

7.2.2 Kullback–Leibler Importance Estimation Procedure (KLIEP)

KLIEP is a basic method for density ratio estimation introduced in Sugiyama et al. (2008). We

will deploy it as an example of the basic estimator of CDRE in Sec. 7.2.4.

Let r∗(x) = p(x)/q(x) be the (unknown) true density ratio, then p(x) can be estimated by

p̃(x)= r(x)q(x), where r(x) is an estimation of r∗(x). Hence, we can optimize r(x) by minimizing

the KL-divergence between p(x) and p̃(x) with respect to r:

DKL (p(x)|| p̃(x))=
∫

p(x) log
p(x)
p̃(x)

dx =
∫

p(x) log r∗(x)dx−
∫

p(x) log r(x)dx,

s.t. r(x)> 0,
∫

r(x)q(x)dx =
∫

p̃(x)dx = 1
(7.1)

105

CHAPTER 7. MEASURING GENERATIVE MODELS IN CONTINUAL LEARNING BY
CONTINUAL DENSITY RATIO ESTIMATION

As the first term of the right-hand side in Eq. (7.1) is constant w.r.t. r(x), the empirical objective

of optimizing r(x) is as follows:

Jr =max
r

1
N

N∑
i=1

log r(xi), xi ∼ p(x), s.t.
1
M

M∑
j=1

r(x j)= 1, x j ∼ q(x), r(x)≥ 0.(7.2)

The expectations are estimated by Monte Carlo integration so the convergence of this method

is highly related to the number of samples. It results in a drawback of such method that the

estimation may have large variance with a small number of samples. Unlike importance sampling

in which the denominator distribution can be chosen with interests and the density function of

the nominator distribution is often available, in DRE both distributions are pre-decided and only

samples of them are available. It is also the reason that DRE becomes more difficult when the

two distributions are less similar.

One convenient way of parameterizing r(x) is by using a log-linear model with normalization,

which then automatically satisfies the constraints in Eq. (7.2):

r(x;β)= exp(ψβ(x))
1
M

∑M
j=1 exp(ψβ(x j))

, x j ∼ q(x), ψβ :RD →R,(7.3)

where ψβ can be any deterministic function: we use a neural network as ψβ in our implementa-

tions, β then representing parameters of the neural network.

7.2.3 The basic form of CDRE

For simplicity of notation, we assume τ= 1 in the case of estimating density ratios between a

single pair of original and dynamic distributions, and then omit τ in the basic formulations. Thus,

the density function of the original distribution is denoted as p(x) and its samples are unavailable

when t > 1. Similarly, qt(x) denotes the density function of the dynamic distribution at time t.

The true density ratio r∗t (x), p(x)/qt(x) can be decomposed as follows:

r∗t (x)= qt−1(x)
qt(x)

p(x)
qt−1(x)

= r∗st
(x)r∗t−1(x), t > 1,(7.4)

where r∗st
(x), qt−1(x)/qt(x) represents the true density ratio between the two latest dynamic

distributions. Using this decomposition we can estimate p(x)/qt(x) in an iterative manner without

the need of storing samples from p(x) when t increases. The key point is that we can estimate

r∗t (x) by estimating r∗st
(x) when the estimation of r∗t−1(x) is known. In particular, it introduces

one extra constraint: ∫
r∗st

(x)qt(x)dx =
∫ r∗t (x)

r∗t−1(x)
qt(x)dx = 1(7.5)

Existing methods of DRE can be applied to estimating the initial ratio r∗1(x) = p(x)/q1(x) and

the latest ratio r∗st
(x),∀t > 1, as the basic ratio estimator of CDRE. Let r t(x) be the estimation of

106

7.2. CONTINUAL DENSITY RATIO ESTIMATION

r∗t (x), where r t−1 is already obtained, then the objective of CDRE can be expressed as:

JCDRE(r t)= JDRE

(
r t

r t−1

)
, s.t.

1
N

N∑
n=1

r t(xn)
r t−1(xn)

= 1, xn ∼ qt(x).(7.6)

where JDRE can be the objective of any method used for standard DRE, such as KLIEP (Sugiyama

et al., 2008).

7.2.4 An instantiation of CDRE: CKLIEP

We now demonstrate how to instantiate CDRE by KLIEP, which we call Continual KLIEP

(CKLIEP). Define r t(x), r t−1(x) by the log-linear form as in Eq. (7.3), let Nt = Nt−1 = N as the

sample size of each distribution, then rst is as follows:

rst (x)= r t(x)
r t−1(x)

= exp{ψβt (x)−ψβt−1(x)}×
1
N

∑N
j=1 exp{ψβt−1(xt−1, j)}

1
N

∑N
i=1 exp{ψβt (xt,i)}

,

xt,i ∼ qt (x), xt−1, j ∼ qt−1(x).

(7.7)

where βt,βt−1 represent parameters of r t(x), r t−1(x), respectively. When the constraint in Eq. (7.6)

is satisfied, we have the following equality by substituting Eq. (7.7) into the constraint:∑N
i=1 exp{ψβt (xt,i)}∑N

j=1 exp{ψβt−1(xt−1, j)}
= 1

N

N∑
i=1

exp{ψβt (xt,i)−ψβt−1(xt,i)}(7.8)

rst can then be rewritten in the same log-linear form of Eq. (7.3) by substituting Eq. (7.8) into

Eq. (7.7):

rst =
exp{ψβt (x)−ψβt−1(x)}

1
N

∑N
i=1 exp{ψβt (xt,i)−ψβt−1(xt,i)}

= exp{φβt (x)}
1
N

∑N
i=1 exp{φβt (xi)}

, φβt (x),ψβt (x)−ψβt−1(x).(7.9)

Now we can instantiate JDRE in Eq. (7.6) by the objective of KLIEP (Eq. (7.2)) and adding the

equality constraint (Eq. (7.8)) into the objective with a hyperparameter λc, which gives the

objective of CKLIEP as follows:

L ∗
t (βt)=max

βt

1
N

N∑
j=1

log rst (xt−1, j)+λc

(
Ψt(xt)

Φt(xt)Ψt−1(xt−1)
−1

)2
,

Φt(xt),
1
N

N∑
i=1

exp{φβt (xt,i)}, Ψt(xt),
1
N

N∑
i=1

exp{ψβt (xt,i)}

where t > 1, xt,i ∼ qt(x), xt−1, j ∼ qt−1(x),

(7.10)

Here βt−1 is the estimated parameter of r t−1(x) and hence a constant in the objective.

7.2.5 Asymptotic normality of CKLIEP

Define β̂t as the estimated parameter that satisfies:

(7.11) L
′
t (β̂t),∇βtLt(βt)

∣∣
βt=β̂t

= 0

107

CHAPTER 7. MEASURING GENERATIVE MODELS IN CONTINUAL LEARNING BY
CONTINUAL DENSITY RATIO ESTIMATION

Assume φβt (x) (Eq. (7.9)) includes the correct function that there exists β∗
t recovers the true

ratio over the population:

r∗st
(x)= qt−1(x)

qt(x)
= exp{φβ∗

t
(x)}

Eqt [exp{φβ∗
t
(x)}]

, where φβ∗
t
(x)=ψβ∗

t
(x)−ψβt−1(x),(7.12)

Notations: and P−→ mean convergence in distribution and convergence in probability,

respectively.

Assumptions: We assume qt(x) and qt−1(x) are independent, nt = nt−1 = n, where nt is the

sample size of qt(x). Let St be the support of qt, we assume St−1 ⊆ St in all cases.

Lemma 7.1. Let `
′
r(β∗

t), 1
n

∑n
j=1∇βt log rst (xt−1, j)|βt=β∗

t
, we have

p
n`

′
r(β∗

t) N (0,σ2), where

σ2 = Covqt−1[∇βtφβ∗
t
(x)]+ Covqt [∇βt exp{φβ∗

t
(x)}]

Eqt [exp{φβ∗
t
(x)}]2

Proof. Because

∇βt log rst (x)=∇βtφβt (x)−
∑n

i ∇βt exp{φβt (xt,i)}∑n
i exp{φβt (xt,i)}

(7.13)

then

p
n`

′
r(βt)=

p
n

n

n∑
j=1

∇βtφβt (xt−1, j)−
p

n
1
n

∑n
i ∇βt exp{φβt (xt,i)}

1
n

∑n
i exp{φβt (xt,i)}

(7.14)

By the central limit theorem we have:

1
n

n∑
j=1

∇βtφβt (xt−1, j) N

(
Eqt−1[∇βtφβt (x)],

Covqt−1[∇βtφβt (x)]
n

)
,

1
n

n∑
i
∇βt exp{φβt (xt,i)} N

(
Eqt [∇βt exp{φβt (x)}],

Covqt [∇βt exp{φβt (x)}]
n

]
)
,

(7.15)

and by the weak law of large numbers:

1
n

n∑
i

exp{φβt (xt,i)}
P−→ Eqt [exp{φβt (x)}](7.16)

Because qt(x) and qt−1(x) are assumed independent, combine the above results we get:

p
n`

′
r(β∗

t) N (µ,σ2),

µ=p
n

(
Eqt−1[∇βtφβ∗

t
(x)]− Eqt [∇βt exp{φβ∗

t
(x)}]

Eqt [exp{φβ∗
t
(x)}]

)
,

σ2 = Covqt−1[∇βtφβ∗
t
(x)]+ Covqt (∇βt exp{φβ∗

t
(x)})

Eqt [exp{φβ∗
t
(x)}]2

(7.17)

108

7.2. CONTINUAL DENSITY RATIO ESTIMATION

Taking derivatives from both sides of 1= ∫
r∗st

(x)qt(x)dx:

0=∇βtEqt [r
∗
st

(x)]=
∫

∇βt r
∗
st

(x)qt(x)dx =
∫ ∇βt r

∗
st

(x)

r∗st (x)
r∗st

(x)qt(x)dx

=
∫

∇βt log r∗st
(x)qt−1(x)dx = Eqt−1[∇βt log r∗st

(x)]

= Eqt−1[∇βtφβ∗
t
(x)]− Eqt [∇βt exp{φβ∗

t
(x)}]

Eqt [exp{φβ∗
t
(x)}]

(7.18)

which gives µ= 0. This completes the proof.

Lemma 7.2. Let `
′′
r(β∗

t), 1
n

∑n
j=1∇2

βt
log rst (xt−1, j)|βt=β∗

t
, then `

′′
r(β∗

t) P−→−Iβ∗
t
, where

Iβ∗
t
,Covqt−1[∇βtφβ∗

t
(x)].

Proof. According to Eq. (7.13)

(∇βt log rst (x))2 =
(∑n

i ∇βt exp{φβt (xt,i)}∑n
i exp{φβt (xt,i)}

)2

− 2∇βtφβt (x)
∑n

i ∇βt exp{φβt (xt,i)}∑n
i exp{φβt (xt,i)}

+ (∇βtφβt (x))2

(7.19)

By the law of large numbers,

1
n

n∑
j=1

(∇βt log rst (xt−1, j))2 P−→
(
Eqt [∇βt exp{φβt (xt,i)}]
Eqt [exp{φβt (xt,i)}]

)2

−2Eqt−1[∇βtφβt (x)]
Eqt [∇βt exp{φβt (xt,i)}]
Eqt [exp{φβt (xt,i)}]

+Eqt−1[(∇βtφβt (x))2]

(7.20)

Substituting Eq. (7.18) to the right side of the above equation, we can get:

1
n

n∑
j=1

(∇βt log rst (xt−1, j))2|βt=β∗
t

P−→Eqt−1[(∇βtφβ∗
t
(x))2]−Eqt−1[∇βtφβ∗

t
(x)]2

= Covqt−1[∇βtφβ∗
t
(x)]= Iβ∗

t

(7.21)

Because

∇2
βt

log rst (x)=
∇2
βt

rst (x)

rst (x)
− (∇βt log rst (x))2,(7.22)

then according to Eq. (7.21)

`
′′
r(β∗

t) P−→ Eqt−1

[∇2
βt

r∗st
(x)

r∗st (x)

]
− Iβ∗

t
=

∫
∇2
βt

r∗st
(x)qt(x)dx− Iβ∗

t
(7.23)

Under mild assumptions we can interchange the integral and derivative operators:∫
∇2
βt

r∗st
(x)qt(x)dx =∇2

βt

∫
r∗st

(x)qt(x)dx =∇2
βt

∫
qt−1(x)
qt(x)

qt(x)dx = 0(7.24)

which completes the proof.

109

CHAPTER 7. MEASURING GENERATIVE MODELS IN CONTINUAL LEARNING BY
CONTINUAL DENSITY RATIO ESTIMATION

Lemma 7.3. 3 Let `c(βt),λc

(
Ψt(xt)

Φt(xt)Ψt−1(xt−1) −1
)2

, and `
′
c(β∗

t),∇βt`c(βt)|βt=β∗
t
, if we set λc = Ap

n ,

where A is a positive constant, then
p

n`
′
c(β∗

t) P−→ 0.

Proof.

p
nt−1`

′
c(βt)= 2A

(
Ψt(xt)

Φt(xt)Ψt−1(xt−1)
−1

)
×

(
∇βt

Ψt(xt)
Φt(xt)Ψt−1(xt−1)

)
By the law of large numbers,

Ψt(xt)
Φt(xt)Ψt−1(xt−1)

∣∣∣
βt=β∗

t

P−→ Eqt [exp{ψβ∗
t
(x)}]

Eqt [exp{φβ∗
t
(x)}]Eqt−1[exp{ψβt−1(x)}]

Define r̃ t−1(x),
exp{ψβt−1 (x)}

Eqt−1 [exp{ψβt−1 (x)}] , by the definition of r∗st
(x) (Eq. (7.12)):∫

r̃ t−1(x)r∗st
(x)qt(x)dx =

∫
r̃ t−1(x)

qt−1(x)
qt(x)

qt(x)dx =
∫

r̃ t−1(x)qt−1(x)dx = 1

Substituting the right side of Eq. (7.12) into the left side of the above equation, we can get:

Eqt [exp{ψβ∗
t
(x)}]

Eqt [exp{φβ∗
t
(x)}]Eqt−1[exp{ψβt−1(x)}]

= 1(7.25)

which completes the proof.

Theorem 7.4. Suppose λc = Ap
n , where A is a positive constant, assume `

′′
c(β∗

t)= op(1), β̂t −β∗
t =

op(1), L
′′′
t (β̃t) = Op(1), where β̃t is a point between β̂t and β∗

t that satisfies the Taylor series

approximation, then
p

n(β̂t −β∗
t) N (0,ν2), where

ν2 = I−1
β∗

t
+Eqt [exp{φβ∗

t
(x)}]−2 × I−1

β∗
t
Covqt [∇βt exp{φβ∗

t
(x)}]I−1

β∗
t

(7.26)

Proof. Applying Taylor expansion to Eq. (7.11) around β∗
t :

0=L
′
t (β̂t)=L

′
t (β

∗
t)+ (β̂t −β∗

t)L
′′
t (β∗

t)+ 1
2

(β̂t −β∗
t)2L

′′′
t (β̃t),

p
n(β̂t −β∗

t)= −pnL
′
t (β

∗
t)

L
′′
t (β∗

t)+ 1
2 (β̂t −β∗

t)L ′′′
t (β̃t)

(7.27)

where

(7.28) Lt(βt)= `r(βt)+`c(βt)

As we assume `
′′
c(β

∗
t) = op(1), according to Lemma 7.2, we get L

′′
t (β∗

t) P−→−Iβ∗
t
. Combining the

results of Lemma 7.1 to 7.3 proves the theorem.

Theorem 7.5. Suppose p(x) and qt(x) (∀t) are from the exponential family, define r∗st
(x) =

exp{φβ∗
t
(x)}, φβ∗

t
(x) = β∗

t T(x)+C, T(x) is a sufficient statistic of x, C is a constant, then
p

n(β̂t −
β∗

t) N (0,ν2
e), where T(x) is a column vector, T(x)2 = T(x)T(x)T , Iβ∗

t
= Covqt−1[T(x)]:

ν2
e = I−1

β∗
t
+ I−1

β∗
t
(Eqt−1[r∗st

(x)T(x)2]−Eqt−1[T(x)]2)I−1
β∗

t
(7.29)

110

7.2. CONTINUAL DENSITY RATIO ESTIMATION

Proof. Because φ∗
t (x),ψβ∗

t
(x)−ψβ∗

t−1
(x), then ∇βtφ

∗
βt

(x)= T(x), we have

Iβ∗
t
= Covqt−1[∇βtφ

∗
βt

(x)]= Covqt−1[T(x)],(7.30)

Because r∗st
(x)= exp{φ∗

t (x)},

Eqt [exp{φ∗
βt

(x)}]= Eqt [r
∗
st

(x)]= 1,

In addition,

Covqt [∇βt exp{φ∗
βt

(x)}]= Covqt [r
∗
st

(x)T(x)]= Eqt [(r
∗
st

(x)T(x))2]−Eqt [r
∗
st

(x)T(x)]2(7.31)

where

Eqt [(r
∗
st

(x)T(x))2]=
∫

qt(x)(r∗st
(x)T(x))2dx =

∫
qt−1(x)r∗st

(x)T(x)2dx = Eqt−1[r∗st
(x)T(x)2],

Eqt [r
∗
st

(x)T(x)]=
∫

qt(x)r∗st
(x)T(x)dx =

∫
qt−1(x)T(x)dx = Eqt−1[T(x)]

(7.32)

Substitute above results into Theorem 7.4, this proves the theorem.

Theorem 7.5 shows how the covariance matrix ν2
e depends on the latest density ratio (r∗st

)

when the distributions are from the exponential family. Since a smaller variance is better for

convergence, we would prefer r∗st
(x) = qt−1(x)/qt(x) is not large, which means when qt−1(x) is

large qt(x) should be also large. In this case, r∗st
is less likely to explode and thus the variance

of the estimated parameter would be likely confined. We demonstrate this by experiments with

1-D Gaussian distributions. We fix qt−1(x) = N (0,1), testing different qt(x) = N (µt,1), where

µt = δk,δ= 0.1,k ∈ {0,1, . . . ,20}. When µt is larger, qt is farther to qt−1. In this case, T(x)= {x, x2},

βt = {βt,1,βt,2}. We display the diagonal of ν2
e (variance of βt,1,βt,2) in Fig. 7.1. It is clear that the

variance of βt is getting larger when qt is farther to qt−1.

When βt = β∗
t ,n → ∞, we have r t(x) = r∗st

(x)r t−1(x), then log r∗t (x)− log r t(x) = log r∗t−1(x)−
log r t−1(x), which means the error inherited from r t−1(x) will be the intrinsic error for estimating

r∗t (x) due to the objective of CDRE is iterative. It indicates that smaller difference between each

intermediate qτ and qτ−1 (∀1< τ≤ t) leads to a better estimation. We demonstrate in Sec. 7.3.2

that it is often the case in practice even when ψβ∗
t
(x) is approximated by a non-linear model.

Moreover, Fig. 7.1 shows the variance of the estimation may grow rapidly when the difference

between the two distributions exceeds a certain value. CKLIEP could prevent such an issue by

ensuring the difference between any intermediate pairs of distributions is relatively small, e.g.,

when the data distribution changes fast we could set smaller time intervals for collecting samples

to give smaller changes at each step. We will demonstrate this in Sec. 7.3.2 as well.

7.2.6 Multiple original distributions in CDRE

Now we consider tracing multiple original distributions in CDRE, in which case a new pair of

original and dynamic distributions will be added into the training process of the estimator at

111

CHAPTER 7. MEASURING GENERATIVE MODELS IN CONTINUAL LEARNING BY
CONTINUAL DENSITY RATIO ESTIMATION

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
μt

0

100

200

300

400

500

va
ria

nc
e

βt, 1
βt, 2

Figure 7.1: Demonstration of the variance of estimated parameters in Theorem 7.5 by 1-D
Gaussian distributions: fix qt−1(x) = N (0,1) and vary qt(x) = N (µt,1) by setting µt = δk,δ =
0.1,k ∈ {0,1, . . . ,20}. When µt is larger the two distributions are less similar and the variance is
larger, which aligns with Theorem 7.5.

some time point. As introduced in sec. 7.2.1 we refer to an original distribution as pτ(x), where

τ is the time index of starting tracing the original distribution. And samples of pτ(x) are not

available when t > τ. Similarly, qτ,t(x) denotes the dynamic distribution that corresponding to

pτ(x) at time t:

r∗τ,t(x)= pτ(x)
qτ,t(x)

= qτ,t−1(x)
qτ,t(x)

pτ(x)
qτ,t−1(x)

= r∗sτ,t
(x)r∗τ,t−1(x),

Where r∗sτ,t
(x)= qτ,t−1(x)/qτ,t(x). In this case, we optimize the estimator at time t by an averaged

objective:

max
βt

L̄t(βt)=max
βt

1
|T|

∑
τ∈T

Lt(βt;τ)(7.33)

where T is the set of time indices of adding original distributions, |T| is the size of T. Lt(βt;τ) is

as the same as the loss function of a single original distribution (Eq. (7.10)) for a given τ. Further,

rsτ,t (x) is also defined by the same form of Eq. (7.9), the difference is that ψβt (x) becomes ψβt (x;τ):

rsτ,t =
exp{φβt (x;τ)}

1
N

∑N
i=1 exp{φβt (xi;τ)}

, where φβt (x;τ),ψβt (x;τ)−ψβt−1(x;τ).(7.34)

In our implementation, we concatenate the time index τ to each data sample as the input of the ra-

tio estimator. In addition, we set the output of ψβt (·) as a |T|-dimensional vector {o1, . . . , oi, . . . , o|T|}
where oi corresponds to the output of ψβt (x;τ=Ti). Thus, we can avoid learning separate ratio

estimators for multiple original distributions. Note that with CDRE we have the flexibility to

extend the model architecture since the latest estimator function φβt only needs the output of

the previous estimator function ψβt−1 . This can be beneficial when the model capacity becomes a

bottleneck of the performance.

112

7.2. CONTINUAL DENSITY RATIO ESTIMATION

7.2.7 Dimensionality reduction in applications of CDRE

The main concern of estimating density ratios stems from high-dimensional data. Several meth-

ods for dimensionality reduction in DRE have been introduced in (Sugiyama et al., 2012). A

fundamental assumption of these methods is that the difference between two distributions can

be confined to a subspace, which means p(z)/q(z) = p(x)/q(x) where z is a lower-dimensional

representation of x. This aims for exact density ratio estimation in a subspace but incurs a

high computational cost. In most applications, a model (e.g. classifiers) is often trained upon a

representation extractor, indicating a surrogate feature space of high-dimensional data can be

used for the density ratio estimation in practice. For instance, most measurements of generative

models estimate the difference between two distributions in a surrogate feature space, e.g., the

inception feature defined for the Inception Score (Salimans et al., 2016) is extracted by a neural

network, and this method is also applied in many other measurements of generative models, e.g.

Fréchet Inception Distance (Heusel et al., 2017) and Kernel Inception Distance (Bińkowski et al.,

2018).

In prior work, a pre-trained classifier is often used to generate surrogate features of high-

dimensional image data (such as inception features (Salimans et al., 2016)). However, it may be

difficult to train such a classifier in online applications because: a) a homogeneous dataset for all

unseen data or tasks may not be available in advance; b) labeled data may not be available in

generative tasks. In order to cope with such circumstances, we introduce Continual Variational

Auto Encoder (CVAE) in a pipeline with CDRE. The loss function of CVAE is defined as follows:

LCV AE(θt,ϑt)= NLL+DKL(qt(z)||qt−1(z)),

NLL =−1
t

[t−1∑
τ=1

Eqτ,t−1(x)[Eqt(z)[log p(x|z;ϑt)]]+Ept(x)[Eqt(z)[log p(x|z;ϑt)]]
](7.35)

where qt(z)=N (µθt (x),σθt (x)), θt and ϑt denote parameters of the encoder and decoder of CVAE,

respectively. NLL is the negative log likelihood term as the same as in vanilla VAE (Kingma

& Welling, 2013), the training data set includes samples of all dynamic distributions at the

previous step (qτ,t−1(x),∀τ< t) and the samples of the current original distribution (pt(x)). The

KL-divergence term in the loss function serves a regularization term: the current encoder is

expected to give similar z for a similar x comparing with the previous encoder. This term forces

the consistency between inputs of the previous and current ratio estimators (i.e. inputs of ψβt−1

and ψβt in Eq. (7.10)). It is different from VAEs proposed with VCL in Nguyen et al. (2018)

because the posterior and prior are defined w.r.t. parameters in Nguyen et al. (2018) whereas they

are w.r.t. latent variables of the encoder in CVAE. CVAE can generate effective features without

requiring labels or pre-training, nevertheless, other commonly used methods (e.g. pre-trained

classifiers) are also applicable to CDRE.

There are existing methods for detecting changing points online by direct DRE (Kawahara &

Sugiyama, 2009; Liu et al., 2013; Bouchikhi et al., 2018), which estimate density ratios between

113

CHAPTER 7. MEASURING GENERATIVE MODELS IN CONTINUAL LEARNING BY
CONTINUAL DENSITY RATIO ESTIMATION

distributions of two consecutive time intervals. In contrast, CDRE estimates density ratios

between distributions of the initial and latest time intervals without storing historical samples.

A concurrent work (Rhodes et al., 2020) has developed Telescoping Density Ratio Estimation

(TRE) by a consecutive decomposition that is similar with our method (Eq. (7.4)) but with the

following main differences:

1) TRE simultaneously optimizes m ratio estimators as below:

LTRE(r)= 1
m

m∑
k=1

L (rk), r = p0

pm
= p0

p1

p1

p2
· · · pm−1

pm
, rk =

pk−1

pk
, k ∈ {1, . . . ,m}

where m is the number of decomposed ratios of the target ratio (p0/pm). The intermediate

distributions ({p1, . . . , pm−1}) are designed by gradually changing from p0 to pm. L (rk) is

the loss function of estimating the k-th ratio rk = pk/pk+1. Estimating the intermediate

ratios would be easier than directly estimating p0/pm because the two adjacent distributions

are more similar to each other. TRE attempts to estimate the m ratios at the same time. In

comparison, CDRE estimates p0/pm in an iterative fashion (Eq. (7.4)) as pm is changing

over time and at each time step (∀m ≥ 1) CDRE only optimizes the latest ratio estimator

rm = pm−1/pm ;

2) According to the optimization objective, TRE requires samples of all intermediate distribu-

tions as well as the original distribution, in contrast CDRE only requires samples of the

two latest distributions.

Note that CDRE can also be applied to applications of TRE by deploying the sampling methods

suggested in Rhodes et al. (2020) to generate samples of the intermediate distributions. However,

TRE cannot be applied to online applications of CDRE due to the off-line nature of its algorithm.

Another related work (Stojanov et al., 2019) is in the scope of dimensionality reduction for

estimating density ratios in covariate shift. It aims to find a low dimensional representation

space according to the relevance of features X to the predicted target Y , which supposes the

representation mapping function h(X) : RD → Rd can satisfy X |=Y |h(X) and D À d. This method

relies on the target variable Y in supervised learning whereas the proposed CVAE does not need

Y . Furthermore, we will show that CDRE can be applied to backward covariate shift in the next

section and this method can be an option for dimensionality reduction in such a case as well.

7.3 Online Applications

In this section we illustrate several online applications of CDRE, including: 1) backwards covari-

ate shift; 2) tracing distribution shifts by KL-divergence; and 3) monitoring real stock data for a

regression model. We demonstrate that CDRE can provide reliable estimations by synthetic data

as we can compare the results with true ratios. To show the effectiveness of CDRE in real-world

applications, we make an example by real stock data as well. In all of our experiments, ψ(·) is a

114

7.3. ONLINE APPLICATIONS

−1 0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 D1
Dt

(a) the data distribution at τ = 1 (D1) and
τ= t (Dt)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

2

0

2

4

6

8

10

12

14

y

LR + IW : Dt

LR : Dt

D1
Dt

(b) linear regression trained by Dt for predict-
ing test samples from D1

Figure 7.2: Demo experiment of backward covariate shift. (a) shows the data distribution of
training set at τ= 1 and τ= t. (b) displays the regression lines learned by the model at τ= t, the
cyan and red lines are fitted by Dt with and without importance weights, respectively.

neural network with two and three dense layers for a single and multiple original distributions

respectively, each layer having 256 hidden units and ReLU activations. λc (the hyperparameter

used for controlling the strength of the constraint in the objective in Eq. (7.10)) is set to 10 for

experiments with a single original distribution, and set to 100k for experiments with the multiple

original distributions, where k is the number of joined original distributions at each time step.

We apply CKLIEP to instantiate CDRE in all of our experiments.

7.3.1 Backwards covariate shift

We demonstrate that CDRE can be applied in backward covariate shift, where the training set

shifts and the test set is from a previous distribution. It just swaps the situation of training and

test set in the scenario of common covariate shift (Sugiyama et al., 2008; Shimodaira, 2000). We

assume a linear regression model defined as ŷ= wx+b+ε0, where the noise ε0 ∼N (0,0.01). At

time τ, the training data x ∈ Dτ and Dτ shifts away from D1 gradually, where τ ∈ {1,2, . . . , t} and

t = 10 is the latest time index. Fig. 7.2a displays the data distribution at time τ= 1 and τ= t in

which we can see there exists notable difference between the two distributions. When the model

is trained by Dt, it will not be able to accurately predict on test samples from D1 unless we adjust

the loss function by importance weights (i.e. density ratios) as in handling covariate shift:

L = Ex∼qt(x)

[
q1(x)
qt(x)

(y− ŷ)2
]

Fig. 7.2b shows the regression lines learned by the model at τ= t with and without the importance

weights, where the weights q1(x)/qt(x) are estimated by CKLIEP. We can see that the line learned

with importance weights fits D1 more accurately than the one without the weights. This enables

115

CHAPTER 7. MEASURING GENERATIVE MODELS IN CONTINUAL LEARNING BY
CONTINUAL DENSITY RATIO ESTIMATION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
t

0

2

4

6

8

10

12

14

M
AE

 o
f l

og
 ra

tio

KLIEP
CKLIEP-d1
CKLIEP-d4

(a) Comparing MAE of log ratios
estimated by CKLIEP and KLIEP
in the scenario of a single original
distribution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

KL
 d

iv
er

ge
nc

e

true
KLIPE
CKLIEP-d1
CKLIEP-d4

(b) Comparing KL-divergence es-
timated by CKLIEP and KLIEP
in the scenario of a single original
distribution

0 1 2 3 4 5 6 7 8 9 10
t

0.0

0.1

0.2

0.3

0.4

0.5

Av
g.

 K
L

di
ve

rg
en

ce

true
KLIPE
CKLIEP

(c) Comparing average KL-
divergence estimated by CKLIEP
and KLIEP in the scenario of
multiple original distributions

Figure 7.3: Comparing the performance of CKLIEP and KLIEP by synthetic data in the scenarios
of the single and multiple original distributions. (a) & (b) compare the Mean Absolute Error (MAE)
of log ratios and estimated KL-divergences for a single original distribution, (c) compares the
average KL-divergences for multiple original distributions. The true values of KL-divergences
are computed by true ratios. The error bar is the standard deviation of 10 runs.

the model to make reasonable predictions on test samples from D1 when the training set of D1 is

not available.

7.3.2 Tracing distribution shifts via KL-divergence

By estimating density ratios, we can approximate f -divergences between two distributions:

(7.36) D f (p||q)= Eq

[
f
(

p(x)
q(x)

)]
≈ 1

N

N∑
i=1

f (r(xi))

where xi ∼ q(x), f (·) is a convex function and f (1) = 0. Thus, we can trace the distribution

shifts by using CDRE to approximate the f -divergences between pτ(x) and qτ,t(x) in the online

setting described in Sec. 7.2. Estimating f -divergences using density ratios has been well studied

(Kanamori et al., 2011; Nguyen et al., 2010). In our implementations, we choose the KL-divergence

(i.e. setting f (r)=− log(r)) to instantiate f -divergences. We compare the performance of CKLIEP

with KLIEP and true values using synthetic Gaussian data, where KLIEP has access to samples

of all original distributions at all time. The sample size of each distribution in these experiments

is 50,000.

We first simulate the scenario of a single original distribution which is a 64-D Gaussian

distribution p(x)=N (µ0,σ2
0I), where µ0 = 0,σ0 = 1. At each time step, we shift the distribution

by a constant change on its mean and variance: qt(x) = N (µt,σ2
t I),µt = µ0 +∆µ∗ k,σt = σ0 −

∆σ∗ k,∆µ = ∆σ = 0.02, k is the number of time steps within one estimation interval. We set

the total number of time steps to 20. We estimate p(x)/qt(x) by applying CKLIEP with two

different time intervals: (1). CKLIEP-d1 is to estimate p(x)/qt(x) at each time step, i.e. k = 1; (2).

CKLIEP-d4 is to estimate p(x)/qt(x) at every four time steps, i.e. k = 4. We compare the Mean

Absolute Error (MAE) of log ratios (LMAE = 1
N

∑N
n=1 |log r∗(xn)− log r̂(xn)|) estimated by CKLIEP

116

7.3. ONLINE APPLICATIONS

�p(x)
�q1(x)

�q2(x)

9:30 11:30 13:30 16:00

�q3(x)

Figure 7.4: Sliding time windows of sampling the stock transaction data. We estimate p(x)/qt(x)
every half an hour and sampling the transaction data from a two-hour window.

and KLIEP in Fig. 7.3a. We also compare the estimated KL-divergence with the true value in

Fig. 7.3b. According to Theorem 7.5, the difference between qt−1(x) and qt(x) plays an important

role in the estimation convergence, which explains why CKLIEP-d4 gets worse performance than

CKLIEP-d1 since qt−1(x) and qt(x) are less similar in the case of CKLIEP-d4. KLIEP can be

viewed as a special case of CKLIEP when qt−1(x)= p(x), so the difference between p(x) and qt(x)

is critical to its convergence as well. We can see that in Figs. 7.3a and 7.3b KLIEP has become

much worse at the last two steps due to the two distributions are too far away from each other

and thus causes serious difficulties in its convergence with a fixed sample size.

We also simulate the scenario of multiple original distributions by 64-D Gaussian data: pτ(x)=
N (µτ,σ2

τI), τ ∈ {1,2, . . . , t},µτ = 2τ,στ = 1, in which cases we add a new original distribution (pt(x))

at each time step. We shift each joined original distribution (pτ(x),∀τ< t) by a constant change

as the same as the single pair scenario and set k = 1,∆µ=∆σ= 0.01. In Fig. 7.3c, we compare the

averaged KL-divergences (D̄ = 1
t
∑t
τ=1 DKL(qτ,t||pτ)) estimated by CKLIEP and KLIEP with the

true value. CKLIEP outperforms KLIEP when the dynamic distributions getting farther away

from the original distributions, which aligns with the scenario of a single original distribution.

7.3.3 Monitoring real stock data for a regression model

We demonstrate the effectiveness of CDRE in practice by real stock data. The dataset consists

of one-day transactions of the Microsoft stock 1. It includes the transaction time, price, volume

and direction (initiated by selling or buying). We augment each transaction by concatenating

it with its five previous transactions (excluding timestamps) and then treat it as an i.i.d. data

sample. We draw samples from a two-hour time window of the data and slide the window with a

30-minute step size. We first train a Gaussian process regression model to predict the price of a

transaction by samples from the initial two-hour time window, then we apply CKLIEP to monitor

1The data can be downloaded from https://lobsterdata.com/info/DataSamples.php, which is sample data
for free. We only used the one level data.

117

https://lobsterdata.com/info/DataSamples.php

CHAPTER 7. MEASURING GENERATIVE MODELS IN CONTINUAL LEARNING BY
CONTINUAL DENSITY RATIO ESTIMATION

0 1 2 3 4 5 6 7 8 9
time index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

KL
 d

iv
er

ge
nc

e

without restart
with restart

(a) Monitored KL divergence

0 1 2 3 4 5 6 7 8 9
time index

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
AP

E

without CDRE
with CDRE

(b) MAPE of the regression model

Figure 7.5: Monitoring stock data shift by CDRE for updating a regression model of transaction
price prediction. (a) shows KL divergence between the training set of the regression model and
samples from the latest two hours monitored by CDRE. The blue line is without restart during
the progress of CDRE (the regression model has not been updated), the orange line is with restart
(the regression model has been retrained by latest samples when the KL divergence larger than
a threshold δ= 0.1), the shaded area is plotted by the standard deviation of 5 runs. (b) shows the
MAPE of the regression model without and with update by using CDRE.

the data shift at each time step (Fig. 7.4). When the KL divergence between the training set

(p(x)) and the data from the latest two-hour window (qt(x)) is larger than a threshold δ (δ= 0.5

in our experiment), we retrain the regression model by samples from the latest two hours. We

also restart the progress of CKLIEP as replacing the original distribution p(x) by qt(x) when we

retrain the regression model at time t.

We use the last 500 transactions of each two-hour window as the test set of each time

step, which are excluded from the training set. And the training sample size is 6000 for each

distribution. We evaluate the performance of the regression model by Mean Absolute Percentage

Error (LMAPE = 1
N

∑N
n=1 100×|yn− ŷn|/yn) and provide the experiment results in Fig. 7.5. Fig. 7.5b

shows that using CDRE to monitor the training data shift can enable retraining the regression

model when it is necessary. It effectively prevents large degradation of the performance. The

restart strategy of CDRE also helps with reducing the estimation variance in latter steps as

shown in Fig. 7.5a because the new original distribution is much closer to the latest dynamic

distribution after the restart.

7.4 Evaluating generative models in continual learning

In this section we demonstrate evaluating generative models in continual learning by CDRE,

which can be viewed as an application of tracing multiple original distributions by estimating

the f -divergences between them and their dynamic distributions. We first discuss the difference

between f -divergences and other measures for generative models in static learning in sec. 7.4.1,

118

7.4. EVALUATING GENERATIVE MODELS IN CONTINUAL LEARNING

and further show the effectiveness of f -divergences in continual learning in sec. 7.4.2.

In Fig. 3.5 we demonstrated a simplified scenario of generative models in continual learning:

the model needs to learn multiple generative tasks sequentially and perform on all seen tasks.

Specifically, the training dataset of task t consists of real samples of task t and samples of task

1 · · · t−1 generated by the previous model. The task index can be treated as the time index, the

data distribution of the task τ can be viewed as a new original distribution pτ(x) that added at

time τ, and its corresponding dynamic distribution qτ,t(x) is the sample distribution generated

by the model after trained on task t. The goal of generative models in continual learning is to

make qτ,t(x) as close to pτ(x) as possible. In the sense of measuring the difference between qτ,t(x)

and pτ(x), we can evaluate a generative model in continual learning by estimating the averaged

f -divergences over all learned tasks:

D̄t = 1
t

t∑
τ=1

Eqτ,t [f (rτ,t(x))]≈ 1
t

t∑
τ=1

Nτ∑
n=1

f (rτ,t(xn))

7.4.1 Related measures for generative models in static learning

Since the existing measures for generative models applied in continual learning are usual

measures applied in static learning, we discuss the difference between several existing measures

and f -divergences in static learning first.

We here briefly review the definition of Fréchet Inception Distance (FID) (Heusel et al.,

2017), Kernel Inception Distance (KID) (Bińkowski et al., 2018), and Precision and Recall for

Distributions (PRD) (Sajjadi et al., 2018), which are popular measures for generative models. FID

fits a Gaussian distribution to the representations computed by original data or generated data,

and then computes the Fréchet distance (also known as the Wasserstein-2 distance) between the

two Gaussian distributions:

(7.37) FID = ||µr −µg||2 +Tr(Σr +Σg −2(ΣrΣg)1/2).

KID is the squared Maximum Mean Discrepancy (MMD) between representations. Bińkowski

et al. (2018) suggested a 3rd-degree polynomial kernel k(x, y)= (1
d xT y+1)3 which can compare

three moments of two distributions:

(7.38) K ID = 1
m(m−1)

m∑
i 6= j

k(xi, x j)+ 1
n(n−1)

n∑
i 6= j

k(x̂i, x̂ j)− 2
mn

m∑
i=1

n∑
j=1

k(xi, x̂ j).

PRD decomposes two distributions P and Q as follows, where µ,νP ,νQ are three distributions:

(7.39) P =βµ+ (1−β)νP , Q =αµ+ (1−α)νQ , α,β ∈ (0,1].

The component νP denotes the part of P that is “missed” by Q, νQ denotes the noise part of

Q. The set of attainable pairs of precision and recall of a distribution Q w.r.t. a distribution P

consists of all (α,β) satisfying Eq. (7.39) and the tuple (0, 0).

119

CHAPTER 7. MEASURING GENERATIVE MODELS IN CONTINUAL LEARNING BY
CONTINUAL DENSITY RATIO ESTIMATION

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Q= P1/2
P=Q1/2

(a) PRD of the first experiment in
Tab. 7.1

FID KID (×103) KL rv_KL
0.0

0.5

1.0

1.5

2.0

2.5

3.0
50%-1dim-noise
10%-50dim-noise

(b) The experiments with different types of noise in-
jected into MNIST (error bars from 5 runs).

Figure 7.6: Visualized results of experiments on MNIST dataset.

In the absence of prior work on evaluating generative models by f -divergences, we provide

experimental results for demonstrating differences between f -divergences, FID, KID, and PRD.

Through these experiments, we show that f -divergences can be alternative measures of generative

models and one may obtain richer criteria by them.

We first present several experiments on MNIST dataset and demonstrate the experiment

results through two popular members of f -divergences: KL-divergence and reverse KL-divergence.

In the first experiment we have two cases: (i) the compared distribution P contains half of the

classes of MNIST, and the evaluated distribution Q includes all classes of MNIST; (ii) the reverse

of (i). We obtain density ratios with KLIEP and then estimate f -divergences by the ratios. The

results are shown in Tab. 7.1, with PRD curves displayed in Fig. 7.6a. Since the objective of

KLIEP is not symmetric, the estimated KL divergences are not symmetric when switching

the two sets of samples. As we can see, DKL(P||Q) prefers Q with larger recall (case (i)) and

DKL(Q||P) prefers the inverse case. Neither FID nor KID are able to discriminate between these

two scenarios.

Table 7.1: Results of the first experiment on MNIST. P =Q1/2 implies case (i) P contains half of the
classes of MNIST, and the Q includes all classes of MNIST, Q = P1/2 implies case (ii) Q contains
half of the classes of MNIST, and the P includes all classes of MNIST. Standard deviations are
from 5 runs.

FID KID DKL(P||Q) DKL(Q||P)

P =Q1/2 50.39 ± 0.00 2.04 ± 0.01 0.67 ± 0.00 3.78 ± 1.22
Q = P1/2 50.39 ± 0.00 2.03 ± 0.02 2.49 ± 0.30 2.38 ± 1.78

In the second experiment, we further show that f -divergences may provide different opinions

with FID and KID in certain circumstances because FID and KID are based on Integral Probabil-

120

7.4. EVALUATING GENERATIVE MODELS IN CONTINUAL LEARNING

ity Metrics (IPM) (Sriperumbudur et al., 2012) which focus on parts with the most probability

mass whereas f -divergences are based on density ratios which may give more attention on

parts with less probability mass (due to the ratio of two small values can be very large). To

show this, we simulate two sets of noisy samples by injecting two different types of noise into

MNIST data and evaluate them as the model samples on the pixel feature space (which is 784

dimensions). Regarding the first type of noise, we randomly choose 50% samples and 1 dimension

to be corrupted (set the pixel value to 0.5); for the second one, we randomly choose 10% samples

and 50 dimensions to be corrupted. The results are shown in Fig. 7.6b, in which KL-divergence

and reverse KL-divergence disagree with FID and KID regarding which set of samples is better

than the other. The results illustrate measures based on density ratios could be more sensitive to

subtle differences than measures based on IPM.

In order to show that f -divergences can work with high dimensional data as the same as

FID and KID, we also conducted an experiment with samples of StyleGAN2 trained by FFHQ

dataset (Karras et al., 2019). We estimate f -divergences on the inception feature space with

2048 dimensions as well. The sample size is 50,000 and we compare the model samples with real

samples. We see that the f -divergences give reasonable results with small variance (Tab. 7.2),

indicating it is capable of evaluating with high dimensional data.

Table 7.2: Evaluating StyleGAN on FFHQ dataset using f -divergences

KL rv_KL JS Hellinger

StyleGAN 2.47±0.02 3.29±0.18 0.86±0.01 1.04±0.02
Real samples 0.02±9.1e−4 0.02±9.3e−4 0.01±4.5e−4 0.01±4.6e−4

7.4.2 Experimental results in continual learning

Now we provide experimental results of evaluating generative models in continual learning. In our

experiments, the evaluated GANs include WGAN (Arjovsky et al., 2017), WGAN-GP (Gulrajani

et al., 2017), and two members of f -GANs (Nowozin et al., 2016): f -GAN-rvKL and f -GAN-JS,

which instantiate the f -GAN by reverse KL and Jesen-Shannon divergences respectively. All

GANs are tested as conditional GANs (Mirza & Osindero, 2014) using task indices as conditioners,

and one task includes a single class of the data. We trained the GANs on Fashion-MNIST (Xiao

et al., 2017). The sample size used in CDRE is 6,000 for each distribution. We evaluate these

GANs in continual learning by a few members of f -divergences, and compare the results with

common measures FID, KID as used in static learning.

We deployed two feature generators in the experiments: 1) A classifier pre-trained on real

samples of all classes, which is a Convolutional Neural Network (CNN) and the extracted features

are the activations of the last hidden layer (similar with inception feature); 2) A CVAE trained

2https://github.com/NVlabs/stylegan

121

https://github.com/NVlabs/stylegan

CHAPTER 7. MEASURING GENERATIVE MODELS IN CONTINUAL LEARNING BY
CONTINUAL DENSITY RATIO ESTIMATION

along with the procedure of continual learning, and the features are the output of the encoder.

The number of features is 64 for both classifier and CVAE. We deployed the pre-trained classifier

as the feature generator for FID,KID, and deployed the CVAE as the feature generator for

CKLIEP in all experiments. Fig. 7.7 compares the evaluations on Fashion-MNIST for the GANs

by FID, KID, and four members of f -divergences (which are estimated by CKLIEP): KL, reverse

KL, Jensen-Shannon, Hellinger. All these measures are the lower the better. We also display

randomly chosen samples generated by those GANs in Fig. 7.9 for a better understanding of the

evaluations.

In general, all measurements give similar evaluations. For example, f -GAN-rvKL has the

worst performance on all measures during the whole task sequence, whereas WGAN and

WGAN-GP have similar performance on all measures. One main disagreement is that f -GAN-JS

shows a decreasing trend on FID and KID but shows a slightly increasing trend on members

of f -divergences. According to displayed samples of f -GAN-JS (Fig. 7.9c), there is no notable

improvement observed while f -GAN-JS learning more tasks, the evaluations given by FID and

KID seem doubtful in this case. In principle, f -divergences may exhibit different preferences

because the mass with lower density could contribute more to them than to the other measures

as we demonstrated in Fig. 7.6b. To verify if this is the reason of the disagreement between

f -divergences and FID, KID, we split the generated samples of an evaluated distribution into

two parts and each part contains approximately 50% of the total mass (which is approximated by

the histogram). We set one part including bins with higher probability densities and the other

part with lower ones, then we plot PRD curves of both parts in Fig. 7.8 for all GANs. We have

done such analysis on the last two tasks since the disagreement among the measures is obvious

at this stage. As shown in Figs. 7.8a and 7.8b, the PRD of the part with lower-density of the

WGAN is better than f -GAN-JS in terms of Recall at both tasks, which could be the reason why

f -divergences do not prefer f -GAN-JS over WGAN like FID and KID as the part with lower

density could contribute more to them. Overall, these experimental results demonstrate that

f -divergences estimated by CKLIEP can provide meaningful evaluations for generative models

in continual learning, which could be an alternative when other measures are not applicable or

incapable of telling a difference.

7.5 Summary

In this chapter we proposed a novel method CDRE for estimating density ratios in an iterative

fashion, which does not require storing historical samples and can obtain better estimation than

standard DRE. We demonstrate the efficacy of our method in a range of online applications and

as a new measurement of generative models in continual learning. The experiments showed

that it is able to accurately approximate density ratios by testing with synthetic Gaussian

distributions. We also showed that it can be an effective method in practice as well by testing with

122

7.5. SUMMARY

1 2 3 4 5 6 7 8 9 10
t

20

40

60

80

100

120

140

160

FI
D WGAN

WGAN-GP
f-GAN-JS
f-GAN-rvKL

(a) FID

1 2 3 4 5 6 7 8 9 10
t

0

5

10

15

20

25

30

KI
D

WGAN
WGAN-GP
f-GAN-JS

10

30

50

70

90

110

130

f-GAN-rvKL

(b) KID

1 2 3 4 5 6 7 8 9 10
t

0

1

2

3

4

re
ve

rs
e

KL

WGAN
WGAN-GP
f-GAN-JS
f-GAN-rvKL

(c) CKLIEP (reverse KL)

1 2 3 4 5 6 7 8 9 10
t

0

2

4

6

8

KL

WGAN
WGAN-GP
f-GAN-JS
f-GAN-rvKL

(d) CKLIEP (KL)

1 2 3 4 5 6 7 8 9 10
t

0.0

0.2

0.4

0.6

0.8

1.0

Je
ns
en

-S
ha

nn
on

WGAN
WGAN-GP
f-GAN-JS
f-GAN-rvKL

(e) CKLIEP (JS)

1 2 3 4 5 6 7 8 9 10
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

He
llin

ge
r

WGAN
WGAN-GP
f-GAN-JS
f-GAN-rvKL

(f) CKLIEP (Hellinger)

Figure 7.7: Evaluating GANs in continual learning on Fashion-MNIST. The shaded area are
plotted by standard deviation of 10 runs. The x-axis is task index and y-axis is the specified
measurement as in each sub-caption. The y-axis in the right side of Fig. 7.7b is the y-axis of the
red line (f -GAN-rvKL), which is in a much larger scale than others. All the measures are the
lower the better.

real stock transaction data. Besides the online applications, we demonstrated that CDRE can

provide additional insights for model selection in continual learning. In addition, we proposed a

simple approach CVAE for feature generation in continual learning when a pre-trained classifier

is not available. Our experiments showed that CDRE combined with CVAE can work well on

high-dimensional data with low fidelity, which is a rather difficult scenario for density ratio

123

CHAPTER 7. MEASURING GENERATIVE MODELS IN CONTINUAL LEARNING BY
CONTINUAL DENSITY RATIO ESTIMATION

0.0 0.2 0.4 0.6 0.8
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

WGAN: high
WGAN: low
WGAN-GP: high
WGAN-GP: low
fGAN-rv_KL: high
fGAN-rv_KL: low
fGAN-JS: high
fGAN-JS: low

(a) PRD curves of two parts of samples at task 9

0.0 0.2 0.4 0.6 0.8
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

WGAN: high
WGAN: low
WGAN-GP: high
WGAN-GP: low
fGAN-rv_KL: high
fGAN-rv_KL: low
fGAN-JS: high
fGAN-JS: low

(b) PRD curves of two parts of samples at task 10

Figure 7.8: PRD curves evaluated at the last two tasks for all GANs, which is plotted by two
parts of generated samples and each part contains 50% density mass, one part includes samples
with higher probability densities and the other part includes samples with lower probability
densities. The PRD of the part with lower-density of samples generated by WGAN (red dotted
lines) is better than f -GAN-JS (blue dotted lines) at both tasks, which could be the reason why
f -divergences do not prefer f -GAN-JS over WGAN like FID and KID.

estimation.

124

(a) WGAN (b) WGAN-GP

(c) f -GAN-JS (d) f -GAN-rvKL

Figure 7.9: Fashion-MNIST samples generated by several GANs in continual learning. In each
sub-figure, each row displays images generated by the model at each task, the order is from the
top to bottom (task 1 to 10). The generated samples are from all learned classes at task i. The
displayed samples are uniformly randomly chosen from generated samples of each class.

C
H

A
P

T
E

R

8
CONCLUSIONS AND FUTURE WORK

8.1 Summary and Conclusions

In this thesis we introduced three main categories of solutions for continual learning, including

regularization-based, architecture-based, and replay-based solutions. Among all these categories,

replay-based methods are the most practical ones as they can work without task identifiers

during training and testing time. In other words, they are feasible to single-headed models under

online training without the awareness of task boundaries. In contrast, regularization-based

and architecture-based methods are not applicable in such scenarios. The regularization-based

methods can work without task identifiers during testing time but they need to know task

boundaries during training for the consolidation of parameters’ information of learned tasks, for

example, update the prior of parameters to the posterior learned in the previous task in VCL. And

architecture-based methods are the most demanding ones which often require task identifiers

during training and testing time for the consolidation of task-shared components and selection

of task-specific components. In addition, architecture-based methods are often computationally

expensive because model compression and/or expansion are usually involved during the training

progress. Due to these reasons, we explored our ideas outside the scope of architecture-based

methods in this thesis.

We first made attempts to improve Bayesian continual learning based on Variational Contin-

ual Learning (VCL) by a regularization-based and a replay-based method. The regularization-

based method Gaussian Natural Gradient (GNG) updates parameters of a Bayesian Neural

Network (BNN) by natural gradients with Adam optimizer which gives a more efficient trajec-

tory of moving towards the optimum of the new task while keeping close to the optimum of

the previous task. The replay-based method Stein Gradient-based Episodic Memories (SGEM)

127

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

composes the episodic memory by Stein Variational Gradient Descent (SVGD) along with the

posterior approximation which can retain information of the posteriors in the memorized samples.

Both methods have shown notable improvements on VCL, especially in the Permuted MNIST

tasks. We consider they are less effective on split tasks because split tasks are less homogeneous

and the optimum of each task is farther to each other. Since both methods aim to preserve the

performance on old tasks by preserving more information of the previous posteriors, they may

have less flexibility to search in a broader space where the optimum of multiple tasks lies when

the tasks are less similar. It particularly degrades the performance on single-headed models

due to the output layer tend to change mostly in split tasks. This is also a general issue of other

regularization-based methods which makes us lean to replay-based methods in our following

work.

Besides the practicality, some of the replay-based methods also have shown greater efficiency

than regularization-based methods. For instance, the simple Experience Replay can outperform

EWC, OEWC with a small episodic memory (Chaudhry et al., 2019b, Sec. 6.5). The memory size

is smaller than storing the Fisher information of previous parameters, and the computational

overhead is negligible comparing with computing the importance of parameters (e.g. Fisher

information). The two fundamental problems of replay-based approaches are: (i) how to make the

best use of episodic memories; and (ii) how to construct most representative episodic memories.

Regarding the first problem, a line of work has made attempts to utilize the gradients produced

by samples in the episodic memory as we introduced in Sec. 3.3.3. In general, those methods try

to reduce the diversity of gradients over different tasks. Along this line, we further demonstrated

the diversity of gradients strongly correlates to the discriminativeness of representations and

made theoretical analysis through a linear model.

These findings also connect Deep Metric Learning (DML) to continual learning which opens

a door to more options for continual learning. Moreover, we identified a weak spot in existing

approaches of DML when applying them to continual learning. The essential idea of DML is

to maximize margins between different classes and minimize distances/similarities between

samples within a class. Maximizing margins shares the same interest with continual learning

because it can reduce the diversity of gradients, however, continual learning would prefer less

compact within-class representations as it may lose important information for learning future

tasks by the compression. According to these findings, we proposed a simple yet efficient auxiliary

objective Discriminative Representation Loss (DRL) for classification tasks in continual learning

which have shown outstanding performance on both permuted and split benchmarks in the most

difficult online setting with single-headed models. In addition, it has much lower computational

cost comparing with methods that require computing similarity of gradients.

Our findings also shed light on the second problem: how to construct most representative

episodic memories? A straightforward idea is that it would be better when the memorized samples

can preserve more variance of the data distribution. In most of our experiments, the memory with

128

8.1. SUMMARY AND CONCLUSIONS

randomly chosen samples outperforms those selected by gradient diversity because the memory

size is limited and hence random samples contain more diversity as we demonstrated in Fig. 5.1.

However, the variance is only one factor to represent a data distribution, we also need to consider

how to maintain the most representative information of each task, and how to extract general

information that would be useful for future tasks.

In addition to the approaches mentioned above we have also proposed two methods, β3-

Item Response Theory (β3-IRT) model and Continual Density Ratio Estimation (CDRE), for

evaluating classifiers and generative models in continual learning, respectively. Both can deal

with a situation where the existing measurements are not applicable for model selection in

continual learning. The β3-IRT model infers the latent ability of a classifier which is adaptively

weighted by instance-wise difficulties. The difficulty of each data instance is decided by the

average response over all classifiers. Hence, it can be viewed as the relative difficulty given by

a certain group of classifiers and the ability is also the relative ability among this group. As a

Bayesian probabilistic model, β3-IRT can be easily adapted to continual learning by applying

the framework of VCL, which makes it feasible for evaluating classifiers in continual learning as

well. When the average accuracy cannot tell the difference between two classifiers, the ability

may be able to provide further insights when the two classifiers have different performance on

different levels of instance-wise difficulty. In addition to infer the overall ability of classifiers

simply by prediction performance, it may be beneficial to extend β3-IRT by assuming a hierarchy

of multiple sub-abilities which could include the evaluation on memory cost, computing time,

RAM occupation, etc..

On the other hand, generative models have a different training process in continual learning

as they can generate replay samples and play the role of episodic memories by themselves. In

this sense, the quality of the generated samples is critical to prevent forgetting. The existing

measurements of generative models are in essence measuring the difference between the original

data distribution and the generated data distribution, which requires true samples from the

original distribution. However, it may be impossible in the setting of continual learning. To this

end, we proposed CDRE for evaluating generative models in continual learning which can be

used to approximate f -divergences between the original and generated data distributions without

storing samples of the original distribution. More importantly, CDRE is able to give more accurate

approximation than standard DRE when the two distributions are less similar. We introduced

an instantiation of CDRE by KLIEP which is derived from the form of KL-divergence. When

estimating divergences which are not based on log-ratios it may be preferable to try some other

form of ratio estimators (i.e. replacing KLIEP’s formulation). For instance, it may be preferable to

use Least-Squares Importance Fitting (LSIF) (Kanamori et al., 2009) when estimating Pearson

χ2 divergence, since a small deviation in log-ratio can result in large squared errors. Also, since

LSIF itself is based on Pearson χ2 divergence, it appears to be a more natural choice. On the other

hand, it has been discussed by Mohamed & Lakshminarayanan (2016) that the discriminator of

129

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

some type of GANs can be viewed as a density ratio estimator. For instance, it is feasible to apply

the formulation of the discriminators of f -GAN (Nowozin et al., 2016) to the basic estimator in

CDRE. It is also possible to estimate the Bregman divergence by ratio estimation (Uehara et al.,

2016). These variants could give more options when applying CDRE to different types of data or

scenarios.

8.2 Future Work

Through our experimental results, we see that most regularization-based and replay-based

methods of continual learning suffer from the dilemma of the stability and plasticity of a model.

According to the theoretical analysis in sec. 3.5, the memory is a key to obtain better performance

over all tasks. A better memory that can recover the optimal solution of old tasks more easily

while learning a new task. In existing work the episodic memory is mostly kept static for past

tasks, it could be more sophisticated if we can evolve the memorized information after learning

more tasks, like humans usually aggregate knowledge by developing hierarchical concepts and

representations. For example, it may be worth trying to extract and aggregate attention-like

representations with a hierarchical structure since the attention mechanism (Vaswani et al.,

2017) have shown significant advantages in language models in which aggregating similar

concepts is also important. We believe the construction of a dynamic and hierarchical episodic

memory is an essential part of continual learning and it could be an important direction for

future work.

In the current literature of continual learning, most benchmarks are from Class-IL scenarios

and existing work pay more attention to the problem of Class-IL as well. However, Domain-IL

scenarios are also common scenarios in practice. For instance, a very large dataset can be

divided into several sub-sets and a model can be trained upon these sub-sets sequentially to

avoid expensive computational cost. Another common example could be a model needs to be

continuously trained on training sets that are collected continuously and these training sets

include different domain instances in the same group of classes. These scenarios in continual

learning are similar with the backward covariate shift scenario as introduced in Sec. 7.3. Applying

CDRE to estimate the importance weights on samples of old tasks and combining the re-weighted

loss on old tasks with the loss on the new task could be a solution to such cases. We consider this

as a future work that is also worthy to try.

Architecture-based methods can obtain better performance regarding the trade-off between

stability and plasticity but with a high cost in terms of computation and practicality. Practicality

is mainly affected by task-specific components which require task identifiers during testing time.

Combining episodic memories may be able to remove this cost by inferring the task identifiers

through memorized information. One question is how much more information can be preserved

by task-specific components than by episodic memories? If it is not significant, we can consider to

130

8.2. FUTURE WORK

expand the task-shared components when it is necessary and eliminate the need of task-specific

components by episodic memories, which may combine the strength of architecture-based and

replay-based methods without losing the efficiency and practicality. We believe this is another

promising direction of future work for continual learning.

Overall, we believe further exploring replay-based methods and combining the strength of it

with other types of methods is a promising direction for efficient continual learning.

131

A
P

P
E

N
D

I
X

A
APPENDIX

We provide the key code snippets of each proposed methods in this chapter. The full code

repositories are public in github and we will share the links as well. We implemented

all methods in Python based on Tensorflow 1.x.

A.1 Code for GNG and SVGD

The below code snippet of GNG shows how to apply natural gradients to variables of a Gaussian

distribution, and variables of the Gaussian distribution must be defined as µ, logσ. This function

is embedded in the process of VI and can be found in hsvi.py in the repository of Hierarchical

Stochastic Variational Inference (HSVI) (https://github.com/yc14600/hsvi)

def natural_gradients_gaussian (se l f , loss , scope) :

trans_parm = s e l f . trans_parm [scope]

grads_and_vars = []

for qz_vars in s ix . i tervalues (trans_parm) :

g = t f . gradients (loss , qz_vars)

i f g [0] is not None :

g [0] *= t f . exp (2 . * qz_vars [1])

grads_and_vars . append ((g [0] , qz_vars [0]))

i f g [1] is not None :

g [1] *= 0.5

grads_and_vars . append ((g [1] , qz_vars [1]))

return grads_and_vars

133

https://github.com/yc14600/hsvi

APPENDIX A. APPENDIX

The following function shows how to generate SGEM for a BNN in continual learning, which

is provided in coreset_util.py in the repository https://github.com/yc14600/utils. The class

SVGD() is provided in the repository of HSVI.

def gen_stein_coreset (in i t , core_y_data ,qW, qB, n_samples , ac_fn ,\

conv_W=None ,LR=False , noise_std =0.001 , sess=None) :

ste in_core_x = t f . get_variable (’ ste in_cx ’ ,\

i n i t i a l i z e r = i n i t . astype (np . f loat32) , dtype= t f . f l oat32)

print (’ gen ste in coreset ’)

i f LR: # for l inear regress ion

stein_core_y = Normal (l o c= t f . matmul (stein_core_x ,qW)+qB,\

scale=noise_std)

e l i f conv_W is not None :

to do : change to general function

h = forward_cifar_model (stein_core_x , conv_W)

stein_core_y = forward_nets (qW, qB, h , ac_fn=ac_fn ,\

bayes=True , num_samples=10)[−1]

else :

s te in_core_y = forward_nets (qW, qB, stein_core_x , ac_fn=ac_fn ,\

bayes=True , num_samples=10)[−1]

lnp = t f . reduce_mean (stein_core_y . log_prob (core_y_data) , axis =0)

dlnp = t f . gradients (lnp , ste in_core_x)

svgd = SVGD()

core_sgrad = svgd . gradients (stein_core_x , dlnp [0])

return stein_core_x , stein_core_y , core_sgrad

Both GNG and SGEM are tested on VCL, by setting vi_type = "KLqp_analytic_GNG" and

coreset_type = "stein" in VCL_test.py, respectively. The source code of VCL with these exten-

sions is provided in the repository https://github.com/yc14600/cl_models/tree/master/

cl_models/discriminative/vcl.

A.2 Code for DRL

The following function is the key implementation of DRL which is provided in the repository

https://github.com/yc14600/discriminative-representation-loss/tree/main.

def con f ig_ loss (se l f , x , y , var_ l i s t ,H, discriminant=True ,\

l ike l ihood=True , compact_center=False , * args ,** kargs) :

loss , l l , reg , dis = 0 . , 0 . , 0 . , 0 .

i f l ike l ihood : # add cross entropy los s

134

https://github.com/yc14600/utils
https://github.com/yc14600/cl_models/tree/master/cl_models/discriminative/vcl
https://github.com/yc14600/cl_models/tree/master/cl_models/discriminative/vcl
https://github.com/yc14600/discriminative-representation-loss/tree/main

A.3. CODE FOR β3-IRT

l l = t f . reduce_mean (

t f . nn . softmax_cross_entropy_with_logits_v2 (

l o g i t s =H[−1] , labe ls=y))

l oss += l l

i f discriminant : # add DRL loss

yids = t f . matmul (y , t f . transpose (y))

N = s e l f .B

mask = t f . eye (N)

for h in H[:] :

i f len (h . shape) > 2:

h = t f . reshape (h , [N, −1])

sim = t f . matmul (h , t f . transpose (h))

i f not s e l f . lamb0 : # use both L_bt and L_wi

dis += t f . reduce_mean (sim*(1.− yids)

+ s e l f . alpha*sim *(yids−mask))

else : # use only L_wi

dis += t f . reduce_mean (s e l f . alpha*sim *(yids−mask))

l oss += s e l f . lambda_dis * dis

i f s e l f . reg : # add L1 or L2 regular izat ion los s

print (’ add regular izat ion loss ’)

reg = t f . l osses . get_regular izat ion_ loss ()

l oss += s e l f . lambda_reg *reg

return loss , l l , reg , dis

A.3 Code for β3-IRT

Below is the definition of β3-IRT model and the full source code can be found in the repository

https://github.com/yc14600/beta3_IRT.

class Beta_IRT :

def __ in i t__ (se l f ,M,C, theta_prior , delta_prior , a_prior) :

s e l f .M = M

s e l f .C = C

s e l f . theta_prior = theta_prior # prior o f a b i l i t y

s e l f . de l ta_pr ior = del ta_pr ior # prior o f d i f f i c u l t y

s e l f . a_prior = a_prior # prior o f discrimination

i f isinstance (a_prior , ed . RandomVariable) :

135

https://github.com/yc14600/beta3_IRT

APPENDIX A. APPENDIX

variat ional pos t e r i o r o f discrimination

s e l f . qa = Normal (l o c= t f . Variable (t f . ones ([M])) ,

scale= t f . nn . so f tp lus (t f . Variable (t f . ones ([M]) * . 5)) ,

name= ’ qa ’)

else :

s e l f . qa = a_prior

with t f . variable_scope (’ l o c a l ’) :

variat ional pos t e r i o r o f a b i l i t y

i f isinstance (s e l f . theta_prior , RandomVariable) :

s e l f . qtheta = TransformedDistribution (

d i s t r ibut ion=Normal (

l o c= t f . Variable (t f . random_normal ([C])) ,

scale= t f . nn . so f tp lus (

t f . Variable (t f . random_normal ([C])))) ,

b i j e c t o r =ds . b i j e c t o r s . Sigmoid () ,

sample_shape =[M] ,name= ’ qtheta ’)

else :

s e l f . qtheta = s e l f . theta_prior

variat ional pos t e r i o r o f d i f f i c u l t y

s e l f . qdelta = TransformedDistribution (

d i s t r ibut ion=Normal (

l o c= t f . Variable (t f . random_normal ([M])) ,

scale= t f . nn . so f tp lus (

t f . Variable (t f . random_normal ([M])))) ,

b i j e c t o r =ds . b i j e c t o r s . Sigmoid () ,

sample_shape =[C] ,name= ’ qdelta ’)

alpha = (t f . transpose (s e l f . qtheta) / s e l f . qdelta)** s e l f . qa

beta = ((1 . − t f . transpose (s e l f . qtheta))

/ (1 . − s e l f . qdelta)) * * s e l f . qa

observed variable

s e l f . x = Beta (t f . transpose (alpha) , t f . transpose (beta))

136

A.4. CODE FOR CDRE

A.4 Code for CDRE

The following code snippets show how to define a log-linear density ratio estimator and how

to adapt it to a continual density ratio estimator. The full source code is in the repository

https://github.com/yc14600/cdre.

class LogLinear_Estimator (Estimator) :

def define_estimator_vars (se l f , scope , net_shape , conv ,

ac_fn , batch_norm , reg) :

with t f . variable_scope (scope) :

s e l f .W, s e l f .B, s e l f .nu_H = s e l f . def ine_base_fc (

s e l f . nu_ph , net_shape , conv=conv , ac_fn=ac_fn ,

batch_norm=batch_norm , training= s e l f . i s_training ,

reuse=False , reg=reg)

_ , __ , s e l f . de_H = s e l f . def ine_base_fc (

s e l f . de_ph , net_shape , conv=conv , ac_fn=ac_fn ,

batch_norm=batch_norm , training= s e l f . i s_training ,

reuse=True , reg=reg)

s e l f .nu_H[−1] = t f . c l ip_by_value (s e l f .nu_H[−1] , −60. ,60.)

s e l f . de_H[−1] = t f . c l ip_by_value (s e l f . de_H[−1] , −60. ,60.)

the output o f \phi () f or samples from numerator and

denominator dis tr ibut ion , r e s p e c t i v e l y

s e l f . nu_r , s e l f . de_r = s e l f .nu_H[−1] , s e l f . de_H[−1]

return

def l og_rat i o (se l f , sess , x_nu , x_de ,

nu_r=None , de_r=None , coe f=None ,

correc t ion =1. ,* args ,** kargs) :

nu_r = s e l f . nu_r i f nu_r is None else nu_r

de_r = s e l f . de_r i f de_r is None else de_r

coe f = s e l f . coe f i f coe f is None else coe f

i f coe f is None :

log_r = nu_r − t f . log (t f . reduce_mean (t f . exp (de_r)))

− t f . log (correc t ion)

else :

log_r = t f . matmul (nu_r , coe f) −
t f . log (t f . reduce_mean (t f . exp (t f . matmul (de_r , coe f))))

f eed_dic t ={ s e l f . nu_ph : x_nu , s e l f . de_ph : x_de }

i f s e l f . batch_norm :

137

https://github.com/yc14600/cdre

APPENDIX A. APPENDIX

f eed_dic t . update ({ s e l f . i s_ tra in ing : False })

return sess . run (log_r , feed_dic t)

def rat i o (se l f , sess , x_nu , x_de , nu_r=None , de_r=None ,

coe f=None , correc t ion =1. ,* args ,** kargs) :

log_r = s e l f . l og_ra t i o (sess , x_nu , x_de , nu_r , de_r ,

coef , correc t ion=correc t ion)

return np . exp (log_r)

class Continual_LogLinear_Estimator (Continual_Estimator) :

def update_estimator (se l f , sess , increase_constr=False ,

nu_samples=None , de_samples=None ,

restart=False) :

i f not restart :

s e l f . prev_nu_r , s e l f . prev_de_r =

s e l f . save_prev_estimator (sess)

s e l f . estimator . nu_r = s e l f . estimator .nu_H[−1] −
s e l f . prev_nu_r

s e l f . estimator . de_r = s e l f . estimator . de_H[−1] −
s e l f . prev_de_r

i f increase_constr :

s e l f . lambda_constr += s e l f . lambda_constr

print (’ lambda_c ’ , s e l f . lambda_constr)

i f s e l f . lambda_constr == 0:

s e l f . update_correction (nu_samples , de_samples , sess)

else :

s e l f . prev_nu_r , s e l f . prev_de_r = None , None

s e l f . estimator . nu_r = s e l f . estimator .nu_H[−1]

s e l f . estimator . de_r = s e l f . estimator . de_H[−1]

s e l f . update_train (s e l f . estimator , restart=restart)

return

138

BIBLIOGRAPHY

Cvpr 2020 continual learning in computer vision competition: Approaches, results, current

challenges and future directions. Artificial Intelligence, 303:103635, 2022. ISSN 0004-3702.

doi: https://doi.org/10.1016/j.artint.2021.103635. URL https://www.sciencedirect.com/

science/article/pii/S0004370221001867.

Adel, T., Zhao, H., and Turner, R. E. Continual Learning with Adaptive Weights (CLAW). In

International Conference on Learning Representations, 2020.

Ahn, H., Cha, S., Lee, D., and Moon, T. Uncertainty-based Continual Learning with Adaptive

Regularization. In Advances in Neural Information Processing Systems, pp. 4392–4402, 2019.

Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Caccia, M., Lin, M., and Page-Caccia,

L. Online Continual Learning with Maximal Interfered Retrieval. In Advances in Neural

Information Processing Systems, pp. 11849–11860, 2019a.

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. Gradient-based Sample Selection for Online

Continual Learning. In Advances in Neural Information Processing Systems, pp. 11816–11825,

2019b.

Ans, B. and Rousset, S. Avoiding Catastrophic Forgetting by Coupling Two Reverberating Neural

Networks. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie, 320(12):

989–997, 1997.

Ans, B. and Rousset, S. Neural Networks with A Self-refreshing Memory: Knowledge Transfer in

Sequential Learning Tasks without Catastrophic Forgetting. Connection science, 12(1):1–19,

2000.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein Generative Adversarial Networks. In

International Conference on Machine Learning, pp. 214–223, 2017.

Bińkowski, M., Sutherland, D. J., Arbel, M., and Gretton, A. Demystifying MMD GANs. In

International Conference on Learning Representations (ICLR), 2018.

Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.

139

https://www.sciencedirect.com/science/article/pii/S0004370221001867
https://www.sciencedirect.com/science/article/pii/S0004370221001867

BIBLIOGRAPHY

Blei, D. M., Kucukelbir, A., and McAuliffe, J. Variational Inference: A Review for Statisticians.

Journal of the American Statistical Association, 112(518):859–877, 2017. doi: 10.1080/01621459.

2017.1285773. URL https://doi.org/10.1080/01621459.2017.1285773.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. Weight Uncertainty in Neural

Network. In International Conference on Machine Learning, pp. 1613–1622, 2015.

Bonnabel, S. Stochastic Gradient Descent on Riemannian Manifolds. IEEE Transactions on

Automatic Control, 58(9):2217–2229, 2013.

Bouchikhi, I., Ferrari, A., Richard, C., Bourrier, A., and Bernot, M. Non-parametric Online

Change-point Detection with Kernel LMS by Relative Density Ratio Estimation. In 2018 IEEE

Statistical Signal Processing Workshop (SSP), pp. 538–542. IEEE, 2018.

Breiman, L. Random Forests. Machine learning, 45(1):5–32, 2001.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. Classification and Regression Trees.

CRC press, 1984.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., and Calderara, S. Dark Experience for General

Continual Learning: A Strong, Simple Baseline. In 34th Conference on Neural Information

Processing Systems (NeurIPS 2020), 2020.

Campbell, T. and Broderick, T. Bayesian Coreset Construction via Greedy Iterative Geodesic

Ascent. arXiv preprint arXiv:1802.01737, 2018.

Chaudhry, A., Dokania, P. K., Ajanthan, T., and Torr, P. H. Riemannian Walk for Incremental

Learning: Understanding Forgetting and Intransigence. In Proceedings of the European

Conference on Computer Vision (ECCV), pp. 532–547, 2018.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny, M. Efficient Lifelong Learning with

A-GEM. In International Conference on Learning Representations, 2019a. URL https://

openreview.net/forum?id=Hkf2_sC5FX.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P. K., Torr, P. H., and Ranzato,

M. On Tiny Episodic Memories in Continual Learning. arXiv preprint arXiv:1902.10486,

2019b.

Chaudhry, A., Khan, N., Dokania, P., and Torr, P. Continual Learning in Low-rank Orthogonal

Subspaces. Advances in Neural Information Processing Systems, 33, 2020.

Chen, Y., Diethe, T., and Lawrence, N. Facilitating Bayesian Continual Learning by Natural

Gradients and Stein Gradients. Continual Learning Workshop of 32nd Conference on Neural

Information Processing Systems (NeurIPS 2018), 2018.

140

https://doi.org/10.1080/01621459.2017.1285773
https://openreview.net/forum?id=Hkf2_sC5FX
https://openreview.net/forum?id=Hkf2_sC5FX

BIBLIOGRAPHY

Chen, Y., Silva Filho, T., Prudencio, R. B., Diethe, T., and Flach, P. β3-IRT: A New Item Response

Model and its Applications. In The 22nd International Conference on Artificial Intelligence and

Statistics, pp. 1013–1021. PMLR, 2019.

Chen, Y., Diethe, T., and Flach, P. Discriminative Representation Loss (DRL): A More Efficient

Approach Than Gradient Re-projection in continual learning. arXiv preprint arXiv:2006.11234,

2020.

Chen, Y., Liu, S., Diethe, T., and Flach, P. Continual Density Ratio Estimation in an Online

Setting. arXiv preprint arXiv:2103.05276, 2021.

Chrysakis, A. and Moens, M.-F. Online Continual Learning from Imbalanced Data. In Interna-

tional Conference on Machine Learning, pp. 1952–1961. PMLR, 2020.

Delange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh, G., and

Tuytelaars, T. A continual learning survey: Defying forgetting in classification tasks. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2021.

Deng, J., Guo, J., Xue, N., and Zafeiriou, S. Arcface: Additive Angular Margin Loss for Deep

Face Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 4690–4699, 2019.

Ebrahimi, S., Elhoseiny, M., Darrell, T., and Rohrbach, M. Uncertainty-Guided Continual Learn-

ing with Bayesian Neural Networks. In International Conference on Learning Representations,

2020.

Embretson, S. and Reise, S. Item Response Theory for Psychologists. Taylor & Francis, 2013.

ISBN 9781135681470. URL https://books.google.com.br/books?id=9Xm0AAAAQBAJ.

Farajtabar, M., Azizan, N., Mott, A., and Li, A. Orthogonal Gradient Descent for Continual

Learning. In International Conference on Artificial Intelligence and Statistics, pp. 3762–3773.

PMLR, 2020.

Figurnov, M., Mohamed, S., and Mnih, A. Implicit Reparameterization Gradients. Advances in

Neural Information Processing Systems, 31:441–452, 2018.

Frénay, B. and Verleysen, M. Classification in the Presence of Label Noise: A Survey. IEEE

Transactions on Neural Networks and Learning Systems, 25(5):845–869, 2014.

Friedman, J., Hastie, T., Tibshirani, R., et al. The Elements of Statistical Learning, volume 1.

Springer series in statistics New York, 2001.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. Improved Training of

Wasserstein GANs. In Advances in Neural Information Processing Systems, pp. 5767–5777,

2017.

141

https://books.google.com.br/books?id=9Xm0AAAAQBAJ

BIBLIOGRAPHY

Guo, Y., Liu, M., Yang, T., and Rosing, T. Improved Schemes for Episodic Memory-based Lifelong

Learning. Advances in Neural Information Processing Systems, 33, 2020.

Hastie, T., Rosset, S., Zhu, J., and Zou, H. Multi-Class Adaboost. Statistics and its Interface, 2(3):

349–360, 2009.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learning for Image Recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,

2016.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. GANs Trained by a

Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In Advances in Neural

Information Processing Systems, pp. 6626–6637, 2017.

Hinton, G., Vinyals, O., and Dean, J. Distilling the Knowledge in A Neural Network. arXiv

preprint arXiv:1503.02531, 2015.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. Stochastic Variational Inference. The

Journal of Machine Learning Research, 14(1):1303–1347, 2013.

Honkela, A., Tornio, M., Raiko, T., and Karhunen, J. Natural conjugate gradient in variational

inference. In International Conference on Neural Information Processing, pp. 305–314. Springer,

2007.

Huggins, J., Campbell, T., and Broderick, T. Coresets for Scalable Bayesian Logistic Regression.

In Advances in Neural Information Processing Systems, pp. 4080–4088, 2016.

Jang, E., Gu, S., and Poole, B. Categorical Reparametrization with Gumble-Softmax. In Interna-

tional Conference on Learning Representations (ICLR 2017). OpenReview. net, 2017.

Jung, S., Ahn, H., Cha, S., and Moon, T. Continual Learning with Node-Importance based

Adaptive Group Sparse Regularization. arXiv preprint arXiv:2003.13726, 2020.

Kanamori, T., Hido, S., and Sugiyama, M. Efficient Direct Density Ratio Estimation for Non-

stationarity Adaptation and Outlier Detection. In Advances in neural information processing

systems, pp. 809–816, 2009.

Kanamori, T., Suzuki, T., and Sugiyama, M. f -Divergence Estimation and Two-Sample Homo-

geneity Test Under Semiparametric Density-Ratio Models. IEEE Transactions on Information

Theory, 58(2):708–720, 2011.

Karras, T., Laine, S., and Aila, T. A Style-based Generator Architecture for Generative Adversarial

Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pp. 4401–4410, 2019.

142

BIBLIOGRAPHY

Kawahara, Y. and Sugiyama, M. Change-point Detection in Time-series Data by Direct Density-

Ratio Estimation. In Proceedings of the 2009 SIAM International Conference on Data Mining,

pp. 389–400. SIAM, 2009.

Kaya, M. and Bilge, H. Ş. Deep Metric Learning: A Survey. Symmetry, 11(9):1066, 2019.

Khan, M., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y., and Srivastava, A. Fast and Scalable

Bayesian Deep Learning by Weight-perturbation in Adam. In International Conference on

Machine Learning, pp. 2611–2620. PMLR, 2018.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic Optimization. arXiv preprint

arXiv:1412.6980, 2014.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow with invertible 1x1 convolutions. In

Advances in Neural Information Processing Systems, pp. 10215–10224, 2018.

Kingma, D. P. and Welling, M. Auto-Encoding Variational Bayes. In Proc. of the 2nd Int. Conf. on

Learning Representations (ICLR), 2013.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K.,

Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. Overcoming Catastrophic Forgetting in

Neural Networks. Proceedings of the National Academy of Sciences, pp. 201611835, 2017.

Knoblauch, J., Husain, H., and Diethe, T. Optimal Continual Learning has Perfect Memory and

is NP-hard. In Proceedings of the 37th International Conference on Machine Learning, 2020.

Krizhevsky, A., Hinton, G., et al. Learning Multiple Layers of Features from Tiny Images.

Technical report, Citeseer, 2009.

Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. Factor Graphs and the Sum-Product Algorithm.

IEEE Transactions on Information Theory, 47(2):498–519, 2001.

Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. M. Automatic Differentiation

Variational Inference. Journal of Machine Learning Research, 18(14):1–45, 2017.

Le, Y. and Yang, X. Tiny Imagenet Visual Recognition Challenge. CS 231N, 7, 2015.

LeCun, Y., Cortes, C., and Burges, C. J. MNIST Handwritten Digit Database. AT&T Labs

[Online]. Available: http://yann. lecun. com/exdb/mnist, 2, 2010.

Lesort, T., Caselles-Dupré, H., Garcia-Ortiz, M., Stoian, A., and Filliat, D. Generative Models

from the perspective of Continual Learning. arXiv preprint arXiv:1812.09111, 2018.

Li, J., Li, F., and Todorovic, S. Efficient Riemannian Optimization on the Stiefel Manifold via the

Cayley Transform. In International Conference on Learning Representations, 2020.

143

BIBLIOGRAPHY

Li, X., Zhou, Y., Wu, T., Socher, R., and Xiong, C. Learn to Grow: A Continual Structure Learning

Framework for Overcoming Catastrophic Forgetting. In International Conference on Machine

Learning, pp. 3925–3934, 2019.

Li, Z. and Hoiem, D. Learning without Forgetting. IEEE transactions on pattern analysis and

machine intelligence, 40(12):2935–2947, 2017.

Liu, J., Bai, Y., Jiang, G., Chen, T., and Wang, H. Understanding Why Neural Networks Generalize

Well Through GSNR of Parameters. In International Conference on Learning Representations,

2020. URL https://openreview.net/forum?id=HyevIJStwH.

Liu, Q. and Wang, D. Stein Variational Gradient Descent: A General Purpose Bayesian Inference

Algorithm. In Advances In Neural Information Processing Systems, pp. 2378–2386, 2016.

Liu, Q., Lee, J., and Jordan, M. A Kernelized Stein Discrepancy for Goodness-of-fit Tests. In

Balcan, M. F. and Weinberger, K. Q. (eds.), Proceedings of The 33rd International Conference

on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pp. 276–284,

New York, New York, USA, 20–22 Jun 2016. PMLR.

Liu, S., Yamada, M., Collier, N., and Sugiyama, M. Change-point Detection in Time-series Data

by Relative Density-Ratio Estimation. Neural Networks, 43:72–83, 2013.

Lomonaco, V. and Maltoni, D. CORe50: a New Dataset and Benchmark for Continuous Object

Recognition. In Proceedings of the 1st Annual Conference on Robot Learning (CoRL), volume 78,

pp. 17–26, 2017. URL http://proceedings.mlr.press/v78/lomonaco17a.html.

Lomonaco, V., Pellegrini, L., Rodriguez, P., Caccia, M., She, Q., Chen, Y., Jodelet, Q., Wang, R., Mai,

Z., Vazquez, D., et al. CVPR 2020 Continual Learning in Computer Vision Competition: Ap-

proaches, Results, Current Challenges and Future Directions. arXiv preprint arXiv:2009.09929,

2020.

Lopez-Paz, D. and Ranzato, M. Gradient Episodic Memory for Continual Learning. In Advances

in Neural Information Processing Systems, pp. 6467–6476, 2017.

Louizos, C., Ullrich, K., and Welling, M. Bayesian Compression for Deep Learning. In Advances

in Neural Information Processing Systems, pp. 3288–3298, 2017.

MacKay, D. J. A practical bayesian framework for backpropagation networks. Neural computation,

4(3):448–472, 1992.

Mallya, A., Davis, D., and Lazebnik, S. Piggyback: Adapting a Single Network to Multiple Tasks

by Learning to Mask Weights. In Proceedings of the European Conference on Computer Vision

(ECCV), pp. 67–82, 2018.

144

https://openreview.net/forum?id=HyevIJStwH
http://proceedings.mlr.press/v78/lomonaco17a.html

BIBLIOGRAPHY

Martínez-Plumed, F., Prudêncio, R. B., Martínez-Usó, A., and Hernández-Orallo, J. Making

Sense of Item Response Theory in Machine Learning. In European Conference on Artificial

Intelligence, ECAI, pp. 1140–1148, 2016.

McAllester, D. and Stratos, K. Formal Limitations on the Measurement of Mutual Information.

In International Conference on Artificial Intelligence and Statistics, pp. 875–884, 2020.

McCloskey, M. and Cohen, N. J. Catastrophic Interference in Connectionist Networks: The

Sequential Learning Problem. In Psychology of learning and motivation, volume 24, pp.

109–165. Elsevier, 1989.

Mika, S., Ratsch, G., Weston, J., Scholkopf, B., and Mullers, K.-R. Fisher Discriminant Analysis

with Kernels. In Neural networks for signal processing IX: Proceedings of the 1999 IEEE signal

processing society workshop (cat. no. 98th8468), pp. 41–48. Ieee, 1999.

Mirza, M. and Osindero, S. Conditional Generative Adversarial Nets. arXiv preprint

arXiv:1411.1784, 2014.

Mohamed, S. and Lakshminarayanan, B. Learning in Implicit Generative Models. arXiv preprint

arXiv:1610.03483, 2016.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. Variational Continual Learning. In International

Conference on Learning Representations, 2018.

Nguyen, X., Wainwright, M. J., and Jordan, M. I. Estimating Divergence Functionals and the

Likelihood Ratio by Convex Risk Minimization. IEEE Transactions on Information Theory, 56

(11):5847–5861, 2010.

Nichol, A., Achiam, J., and Schulman, J. On First-Order Meta-Learning Algorithms. arXiv

preprint arXiv:1803.02999, 2018.

Nishihara, R., Minka, T., and Tarlow, D. Detecting Parameter Symmetries in Probabilistic Models.

arXiv preprint arXiv:1312.5386, 2013.

Noel, Y. and Dauvier, B. A Beta Item Response Model for Continuous Bounded Responses.

Applied Psychological Measurement, 31(1):47–73, 2007.

Nowozin, S., Cseke, B., and Tomioka, R. f-GAN: Training Generative Neural Samplers Using

Variational Divergence Minimization. In Advances in Neural Information Processing Systems,

pp. 271–279, 2016.

Paisley, J., Blei, D. M., and Jordan, M. I. Variational Bayesian Inference with Stochastic Search.

In Proceedings of the 29th International Conference on Machine Learning, pp. 1363–1370.

Omnipress, 2012.

145

BIBLIOGRAPHY

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. Continual Lifelong Learning

with Neural Networks: A Review. Neural Networks, 2019.

Pascanu, R. and Bengio, Y. Revisiting Natural Gradient for Deep Networks. In International

Conference on Learning Representations 2014 (Conference Track), April 2014. URL http:

//arxiv.org/abs/1301.3584.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,

Perrot, M., and Duchesnay, E. Scikit-learn: Machine Learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.

Pinheiro, J. C. and Bates, D. M. Unconstrained Parametrizations for Variance-Covariance

Matrices. Statistics and Computing, 6(3):289–296, 1996.

Prabhu, A., Torr, P. H., and Dokania, P. K. Gdumb: A simple approach that questions our progress

in continual learning. In Proceedings of the European Conference on Computer Vision, 2020.

Ranganath, R., Gerrish, S., and Blei, D. M. Black Box Variational Inference. In AISTATS, pp.

814–822, 2014.

Rao, D., Visin, F., Rusu, A., Pascanu, R., Teh, Y. W., and Hadsell, R. Continual Unsupervised

Representation Learning. In Advances in Neural Information Processing Systems, pp. 7647–

7657, 2019.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H. iCARL: Incremental Classifier and

Representation Learning. In Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition, pp. 2001–2010, 2017.

Requeima, J., Gordon, J., Bronskill, J., Nowozin, S., and Turner, R. E. Fast and flexible multi-task

classification using conditional neural adaptive processes. Advances in Neural Information

Processing Systems, 32:7959–7970, 2019.

Rezende, D. and Mohamed, S. Variational Inference with Normalizing Flows. In International

Conference on Machine Learning, pp. 1530–1538, 2015.

Rhodes, B., Xu, K., and Gutmann, M. U. Telescoping Density-Ratio Estimation. arXiv preprint

arXiv:2006.12204, 2020.

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., , and Tesauro, G. Learning to Learn

without Forgetting By Maximizing Transfer and Minimizing Interference. In International

Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=

B1gTShAct7.

146

http://arxiv.org/abs/1301.3584
http://arxiv.org/abs/1301.3584
https://openreview.net/forum?id=B1gTShAct7
https://openreview.net/forum?id=B1gTShAct7

BIBLIOGRAPHY

Ritter, H., Botev, A., and Barber, D. Online structured laplace approximations for overcoming

catastrophic forgetting. In Advances in Neural Information Processing Systems, pp. 3738–3748,

2018.

Roth, K., Milbich, T., Sinha, S., Gupta, P., Ommer, B., and Cohen, J. P. Revisiting Training

Strategies and Generalization Performance in Deep Metric Learning. In Proceedings of the

37th International Conference on Machine Learning, 2020.

Ruder, S. An overview of multi-task learning in deep neural networks. arXiv preprint

arXiv:1706.05098, 2017.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,

Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale Visual Recognition

Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi:

10.1007/s11263-015-0816-y.

Sajjadi, M. S., Bachem, O., Lucic, M., Bousquet, O., and Gelly, S. Assessing Generative Models via

Precision and Recall. In Advances in Neural Information Processing Systems, pp. 5228–5237,

2018.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X. Improved

Techniques for Training GANs. In Advances in Neural Information Processing Systems, pp.

2234–2242, 2016.

Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A Unified Embedding for Face Recogni-

tion and Clustering. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 815–823, 2015.

Schwarz, J., Luketina, J., Czarnecki, W. M., Grabska-Barwinska, A., Teh, Y. W., Pascanu, R.,

and Hadsell, R. Progress & Compress: A Scalable Framework for Continual Learning. arXiv

preprint arXiv:1805.06370, 2018.

Serra, J., Suris, D., Miron, M., and Karatzoglou, A. Overcoming Catastrophic Forgetting with

Hard Attention to the Task. In International Conference on Machine Learning, pp. 4548–4557,

2018.

Shalev-Shwartz, S. et al. Online Learning and Online Convex Optimization. Foundations and

trends in Machine Learning, 4(2):107–194, 2011.

Shalev-Shwartz, S. et al. Online Learning and Online Convex Optimization. Foundations and

Trends® in Machine Learning, 4(2):107–194, 2012.

Shimodaira, H. Improving Predictive Inference Under Covariate Shift by Weighting the Log-

Likelihood Function. Journal of statistical planning and inference, 90(2):227–244, 2000.

147

BIBLIOGRAPHY

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual Learning with Deep Generative Replay. In

Advances in Neural Information Processing Systems, pp. 2990–2999, 2017.

Sluban, B. and Lavrač, N. Relating Ensemble Diversity and Performance: A Study in Class Noise

Detection. Neurocomputing, 160:120–131, 2015.

Sriperumbudur, B. K., Fukumizu, K., Gretton, A., Schölkopf, B., Lanckriet, G. R., et al. On

the Empirical Estimation of Integral Probability Metrics. Electronic Journal of Statistics, 6:

1550–1599, 2012.

Stojanov, P., Gong, M., Carbonell, J., and Zhang, K. Low-Dimensional Density Ratio Estimation for

Covariate Shift Correction. In Chaudhuri, K. and Sugiyama, M. (eds.), Proceedings of Machine

Learning Research, volume 89 of Proceedings of Machine Learning Research, pp. 3449–3458.

PMLR, 16–18 Apr 2019. URL http://proceedings.mlr.press/v89/stojanov19a.html.

Sugiyama, M., Suzuki, T., Nakajima, S., Kashima, H., von Bünau, P., and Kawanabe, M. Direct

Importance Estimation for Covariate Shift Adaptation. Annals of the Institute of Statistical

Mathematics, 60(4):699–746, 2008.

Sugiyama, M., Suzuki, T., and Kanamori, T. Density Ratio Estimation in Machine Learning.

Cambridge University Press, 2012.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. Rethinking the Inception Archi-

tecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 2818–2826, 2016.

Tomczak, J. and Welling, M. VAE with a VampPrior. In International Conference on Artificial

Intelligence and Statistics, pp. 1214–1223, 2018.

Tran, D., Kucukelbir, A., Dieng, A. B., Rudolph, M., Liang, D., and Blei, D. M. Edward: A library

for probabilistic modeling, inference, and criticism. arXiv preprint arXiv:1610.09787, 2016.

Tseran, H., Khan, M. E., Harada, T., and Bui, T. D. Natural Variational Continual Learning.

Continual Learning Workshop of 32nd Conference on Neural Information Processing Systems

(NeurIPS 2018), 2018.

Uehara, M., Sato, I., Suzuki, M., Nakayama, K., and Matsuo, Y. Generative Adversarial Nets

from a Density Ratio Estimation Perspective. arXiv preprint arXiv:1610.02920, 2016.

van de Ven, G. M. and Tolias, A. S. Three Scenarios for Continual Learning, 2019.

van den Oord, A., Vinyals, O., et al. Neural Discrete Representation Learning. In Advances in

Neural Information Processing Systems, pp. 6306–6315, 2017.

148

http://proceedings.mlr.press/v89/stojanov19a.html

BIBLIOGRAPHY

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and

Polosukhin, I. Attention is All You Need. In Proceedings of the 31st International Conference

on Neural Information Processing Systems, pp. 6000–6010, 2017.

Vitter, J. S. Random Sampling with a Reservoir. ACM Transactions on Mathematical Software

(TOMS), 11(1):37–57, 1985.

Wang, H. and Yeung, D.-Y. A Survey on Bayesian Deep Learning. ACM Computing Surveys

(CSUR), 53(5):1–37, 2020.

Wang, J., Zhou, F., Wen, S., Liu, X., and Lin, Y. Deep Metric Learning with Angular Loss. In

Proceedings of the IEEE International Conference on Computer Vision, pp. 2593–2601, 2017.

Wang, X., Han, X., Huang, W., Dong, D., and Scott, M. R. Multi-Similarity Loss with General

Pair Weighting for Deep Metric Learning. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 5022–5030, 2019.

Weinberger, K. Q., Blitzer, J., and Saul, L. K. Distance Metric Learning for Large Margin Nearest

Neighbor Classification. In Advances in Neural Information Processing Systems, pp. 1473–1480,

2006.

Wen, Y., Tran, D., and Ba, J. BatchEnsemble: an Alternative Approach to Efficient Ensemble and

Lifelong Learning. In International Conference on Learning Representations, 2020.

Winn, J. and Bishop, C. M. Variational Message Passing. Journal of Machine Learning Research,

6(Apr):661–694, 2005.

Wu, C., Herranz, L., Liu, X., wang, y., van de Weijer, J., and Raducanu, B. Memory Replay GANs:

Learning to Generate New Categories without Forgetting. In Advances in Neural Information

Processing Systems 31, pp. 5962–5972. 2018.

Wu, C.-Y., Manmatha, R., Smola, A. J., and Krahenbuhl, P. Sampling Matters in Deep Embedding

Learning. In Proceedings of the IEEE International Conference on Computer Vision, pp. 2840–

2848, 2017.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a Novel Image Dataset for Benchmarking

Machine Learning Algorithms, 2017.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. Lifelong Learning with Dynamically Expandable

Networks. In International Conference on Learning Representations, 2018.

Yoon, J., Kim, S., Yang, E., and Hwang, S. J. Scalable and Order-robust Continual Learning with

Additive Parameter Decomposition. In International Conference on Learning Representations,

2020.

149

BIBLIOGRAPHY

Zenke, F., Poole, B., and Ganguli, S. Continual Learning Through Synaptic Intelligence. In

International Conference on Machine Learning, pp. 3987–3995, 2017.

Zhang, C., Bütepage, J., Kjellström, H., and Mandt, S. Advances in Variational Inference.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(8):2008–2026, 2019. doi:

10.1109/TPAMI.2018.2889774.

Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Zhang, Z., Lin, H., Sun, Y., He, T., Muller, J., Manmatha, R.,

Li, M., and Smola, A. ResNeSt: Split-Attention Networks. arXiv preprint arXiv:2004.08955,

2020a.

Zhang, J., Zhang, J., Ghosh, S., Li, D., Zhu, J., Zhang, H., and Wang, Y. Regularize, Expand and

Compress: Nonexpansive Continual Learning. In The IEEE Winter Conference on Applications

of Computer Vision, pp. 854–862, 2020b.

150

	List of Tables
	List of Figures
	Introduction
	Problem Setting
	Summary of Contributions
	Other Research Work

	Preliminaries: Variational Inference
	Stochastic Variational Inference
	Reparameterization trick
	Automatic Differentiation Variational Inference
	Black-Box Variational Inference

	Learning Deep Bayesian Models by Stochastic Variational Inference
	Hierarchical Probabilistic Models with Latent Variables
	Variational Auto Encoder
	Bayesian Neural Networks

	Background and Related Work of Continual Learning
	Application Scenarios of Continual Learning
	Measurements of Continual Learning
	Main Categories of Approaches in Continual Learning
	Regularization-based Approaches
	Architecture-based Approaches
	Replay-based Approaches

	Generative Models in Continual Learning
	Theoretical Analysis of Continual Learning
	Summary

	Natural Gradients and Stein Gradients for Bayesian Continual Learning
	Gaussian Natural Gradient for Bayesian continual learning
	Preliminary: Natural Gradient
	Gaussian Natural Gradient and the Adam optimizer
	Related work

	Stein Gradient-based Episodic Memories
	Preliminary: Stein Variational Gradient Descent
	Stein Gradient-based Episodic Memories
	Related work

	Experiments
	Summary

	Discriminative Representation Loss for Continual Learning
	Introduction
	A New Perspective of Reducing Diversity of Gradients
	The relation between gradients and representations
	Connection with Deep Metric Learning

	Discriminative Representation Loss
	Online memory update and Balanced Experience Replay
	Experiments
	Comparing DRL with other baselines
	Ablation study on DRL

	Experiments for CLVision Challenge
	Summary

	Measuring Classifiers in Continual Learning by 3-IRT Model
	Introduction
	Related work
	The 3-Item Response Theory model
	Model description
	Model inference

	Measuring Classifiers in Static Learning
	Experimental setup
	Exploring item parameters
	Assessing the ability of classifiers

	Measuring Classifiers in Continual Learning
	Summary

	Measuring Generative Models in Continual Learning by Continual Density Ratio Estimation
	Introduction
	Continual Density Ratio Estimation
	The problem setting of CDRE
	Kullback–Leibler Importance Estimation Procedure (KLIEP)
	The basic form of CDRE
	An instantiation of CDRE: CKLIEP
	Asymptotic normality of CKLIEP
	Multiple original distributions in CDRE
	Dimensionality reduction in applications of CDRE

	Online Applications
	Backwards covariate shift
	Tracing distribution shifts via KL-divergence
	Monitoring real stock data for a regression model

	Evaluating generative models in continual learning
	Related measures for generative models in static learning
	Experimental results in continual learning

	Summary

	Conclusions and Future Work
	Summary and Conclusions
	Future Work

	Appendix
	Code for GNG and SVGD
	Code for DRL
	Code for 3-IRT
	Code for CDRE

	Bibliography

