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ABSTRACT. The group testing problem is concerned with identifying a small set of infected individuals in a
large population. At our disposal is a testing procedure that allows us to test several individuals together. In
an idealized setting, a test is positive if and only if at least one infected individual is included and negative
otherwise. Significant progress was made in recent years towards understanding the information-theoretic
and algorithmic properties in this noiseless setting. In this paper, we consider a noisy variant of group test-
ing where test results are flipped with certain probability, including the realistic scenario where sensitivity
and specificity can take arbitrary values. Using a test design where each individual is assigned to a fixed
number of tests, we derive explicit algorithmic bounds for two commonly considered inference algorithms
and thereby improve on results by Scarlett & Cevher (SODA 2016) and Scarlett & Johnson (2020) and pro-
viding the strongest performance guarantees currently proved for efficient algorithms in these noisy group
testing models.
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1. INTRODUCTION

1.1. Motivation and background. Suppose we have a large collection of n people, a small number k of
whom are infected by some disease, and where only m ¿ n tests are available.

In a landmark paper [15] from 1943, Dorfman introduced the idea of group testing. The basic idea is
as follows: rather than screen one person using one test, we could mix samples from individuals in one
pool, and use a single test for this whole pool. The task is to recover the infection status of all individuals
using the pooled test results.

Dorfman’s original work was motivated by a biological application, namely identifying individuals
with syphilis. Subsequently, group testing has found a number of related applications, including detec-
tion of HIV [51], DNA sequencing [30, 37] and protein interaction experiments [35, 49]. More recently, it
has been recognised as an essential tool to moderate pandemic spread [12], where identifiying infected
individuals fast and at a low cost is indispensable [33]. In particular, group testing has been identified as
a testing scheme for the detection of COVID-19 [16, 19].

From a mathematical perspective, group testing is a prime example of an inference problem where
one wants to learn a ground truth from (possibly noisy) measurements [1, 2, 9, 21, 22, 28, 42]. Over the
last decade, it has regained popularity and today is a field of active research. Results on its information-
theoretic and algorithmic properties were recently presented by Scarlett et al. at SODA’16, ISIT’16, ISIT’19
[44, 46, 45], and Baldassini et al. at ISIT’13 [8] and Coja-Oghlan et al. at ICALP’19, COLT’20 [13, 14]. In this
paper, we provide improved upper bounds on the number of tests that guarantee successful inference
for the noisy variant of group testing.

1.2. Related Work. In the simplest version of group testing, we suppose that a test is positive if and only
if the pool contains at least one infected individual. We refer to this as the noiseless case. In this setting,
each negative test guarantees that every member of the corresponding pool is not infected, so they can
be removed from further consideration. However, a positive test only tells us that at least one item in the
test is defective (but not which one), and so requires further investigation.

Dorfman’s original work [15] proposed a simple adaptive strategy where a small pool of individuals is
tested, and where each positive test is followed up by testing every individual in the corresponding pool
individually. Since then it has been an important problem to find the optimal way to recover the popu-
lation’s infection status in the noiseless case. A simple counting argument (see for example [7, Section
1.4]) shows that to ensure recovery with zero error probability, since every possible defective set must
give different test outcomes, the following must hold in the noiseless setting:

2m ≥
(

n

k

)
⇒ m ≥ m0

inf := 1

log2
k log(n/k)(1.1)

Hwang [24] provided an algorithm based on repeated binary search, which is essentially optimal in terms
of the number of tests required in that it requires m0

inf +O(k) tests, but may require many stages of test-
ing. As described for example in pandemic plans developed by the EU, US and WHO [18, 38, 39], and in
COVID-specific work [36], adaptive strategies may not be suitable for pandemic prevention. For exam-
ple, if a test takes one day to prepare and for the results to be known, then each stage will require an extra
day to perform, meaning that adaptive group testing information can be received too late to be useful.

Hence the need to perform large-scale testing to identify infected individuals fast relative to the dou-
bling time [12, 33, 36] can make adaptive group testing unsuitable to prevent an infectious disease from
spreading. Furthermore the preservation of uncharted viruses in a large scale may be challenging due to
structural and chemical differences [20]. Due to its automation potential and the fact that tests can be
completed in parallel (for example by the use of 96-well PCR plates [17]), the main application of group
testing such as DNA screening [11, 30, 37], HIV testing [51] and protein interaction analysis [35, 49] are
non-adaptive where all tests are specified upfront and performed in parallel.
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The question of whether non-adaptive algorithms (or even adaptive algorithms with a limited num-
ber of stages) can attain the bound (1.1) remained open until recently. [4, 14] showed that the answer
depends on the prevalence of the disease, for example on the value of θ ∈ (0,1) in a parameterisation
where the number of infected individuals k ∼ nθ. Non-adaptive testing schemes can be represented
through a binary (m ×n)-matrix that represents which individual participates in which test. Significant
research was dedicated to see which design attains the optimal performance. Since deterministic de-
signs were shown to not attain the optimal order [7], research focused on randomized designs. Initial
research focused on the case where the matrix entries are iid [3, 5, 45]. Later work considered a constant
column design where each individual is assigned to a (near-)constant number of tests [6, 14, 13, 26]. In-
deed [14] showed that such a design is information-theoretically optimal in the noiseless setting and it is
to be expected that this remains true for the noisy case.

To recover the ground truth from the test results and the pooling scheme, this paper focuses on two
non-adaptive algorithms, COMP and DD, which are relatively simple to perform and interpret in the noise-
less case. We describe them in more detail below, but in brief COMP [10] simply builds a list of all the
individuals who ever appear in a negative test and are hence certainly healthy, and assumes that the
other individuals are infected. DD [5] uses COMP as a first stage and builds on it by looking for individuals
who appear in a positive test that only otherwise contains individuals known to be healthy.

While the noiseless case provides an interesting mathematical abstraction, it is clear that it may not be
realistic in practice [40]. In medical applications the two occurring types of noise in a testing procedure
are related to sensitivity (positive correct) and specificity (negative correct), and in that language we
cannot assume the gold standard of tests with unit specificity and sensitivity. Thus, research attention
in recent years has shifted towards the noisy version of group testing [10, 43, 44, 45, 47, 48]. On the
one hand, adaptive noisy case was considered in [43, 44]. On the other hand [10, 27, 29, 34, 45, 47, 48]
looked at the non-adaptive noise case from different angles (for instance linear programming, belief
propagation, Bernoulli-pooling, Markov-Chain Monte Carlo).

In this paper we focus on the COMP and DD algorithms, since it is possible to deduce explicit perfor-
mance guarantees for them. The deductions made by the original COMP and DD algorithms are designed
for the noiseless case and do not hold in general. However, recent work of Scarlett and Johnson [48]
has shown that noisy versions of these algorithms can perform well under certain noise models using
Bernoulli i.i.d. test designs, particularly focusing on Z channel and reverse Z channel noise.

As common medical tests have different values for sensitivity and specificity [32] the analysis of a gen-
eralized noise model beyond the Z and reverse Z channel is warranted. For example, while group testing
strategies appear to be useful to identify individuals infected with COVID-19 (see for example [16, 19]),
testing for the presence of the SARS-CoV-19 virus is not perfect [52], and so we need to understand the ef-
fect of both false positive and false negative errors in this context, with non-identical error probabilities.
For this reason, we consider a general p − q noise model in this paper. Under this model, a truly nega-
tive test is flipped with probability p to display a positive test result, while a truly positive test is flipped
to negative with probability q (Figure 1). Its formulation is sufficiently general to accommodate the re-
covery of the noiseless results (p = q = 0), Z channel (p = 0), reverse Z channel (q = 0) and the Binary
Symmetric Channel (p = q). However, our results include the case of non-zero p and q without having
to make the somewhat artificial assumption that false negative and false positive errors are equally likely.

1.3. Contribution. This paper provides a simultaneous extension of [13] and [26, 48], by analysing noisy
versions of COMP and DD under more general noise models for constant-column weight designs. We pro-
vide explicit bounds on the performance of these algorithms in a generalized noise model. For all typical
noise channels (Z, reverse Z and BSC) we compare the constant-column and Bernoulli design and find
for all such instances that the former meaningfully outperforms the latter thereby improving on results
from [26] and providing the strongest performance guarantees currently proved for efficient algorithms
in noisy group testing. As group testing offers an essential tool for pandemic prevention [33] and as the
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FIGURE 1. The p-q-noise model: the result of each standard noiseless group test is trans-
mitted independently through the given noisy communication channel.

the accuracy of medical testing is limited [32, 40] this paper provides the natural next step in the group
testing literature.

1.4. Test design and notation. To formalise our notation, we write n for the number of individuals in the
population, σ for a binary vector representing the infection status of each individual, k (the Hamming
weight ofσ) for the number of infected individuals and m for the number of tests performed. We assume
that k is known for purposes of matrix design, though in practice (see [7, Remark 2.3]) it is generally
enough to know k up to a constant factor to design a matrix with good properties. In this paper, in line
with other work such as [5], we consider a scaling k ∼ nθ for some fixed θ ∈ (0,1), referred to in [7, Remark
1.1] as the sparse regime. We believe a similar analysis should be possible in the very sparse regime (k =
O(1)) and linear regime (k ∼ βn for a fixed β). In addition to the interesting phase transitions observed
using this scaling, this sparse regime is particularly relevant as it is the parametrisation to model the early
state of a pandemic [50].

Let us next introduce the test design. With V = (xi )i∈[n]
1 denoting the set of n individuals and F =

(ai )i∈[m] the set of m tests, the test design can be envisioned as a bipartite factor graph with n variable
nodes "on the left" and m factor nodes "on the right". We draw a configuration σ ∈ {0,1}V , encoding the
infection status of each individual, uniformly at random from vectors of Hamming weight k. The set of
healthy individuals will be denoted by V0 and the set of infected individuals by V1. In symbols,

V0 = {x ∈V :σx = 0} and V1 =V \V0 = {x ∈V :σx = 1}

The lower bound from (1.1) suggests that in the noisy group testing setting it is natural to compare the
performance of algorithms and matrix designs in terms of the prefactor of k log(n/k) in the number of
tests required. To be precise, we carry out m tests, and each item is assigned to exactly ∆ tests chosen
uniformly at random without replacement. We parameterise m and ∆ as

m = ck log(n/k) and ∆= cd log(n/k)(1.2)

for some suitably chosen constants c,d ≥ 0.
Let ∂x denote the set of tests that individual x appears in and ∂a the set of individuals assigned to test

a. The resulting (non-constant) collection of test degrees will be denoted by the vector Γ = (Γa)a∈[m].
Further, let

Γmin = min
a∈[m]

Γa and Γmax = max
a∈[m]

Γa .(1.3)

Throughout, G =G(n,m,∆) describes the random bipartite factor graph from this construction.
Now consider the outcome of the tests. Recall from above that a standard noiseless group test a gives

a positive result if and only if there is at least one defective item contained in the pool, or equivalently if∑
x∈∂aσ(x) > 0. Even in the noisy case, this sum is a useful object to consider. Writing 1 for the indicator

1[n] will be used as an abbreviated notation for the set {1, . . . ,n}.
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function, we define

(1.4) σ∗(a) = 1

{ ∑
x∈∂a

σ(x) > 0

}

to be the outcome we would observe in the noiseless case using the test matrix corresponding to G . We
will say that test a is truly positive if σ∗(a) = 1 and truly negative otherwise.

However, we do not observe the values of σ∗(a) directly, but rather see what we will refer to as the
displayed test outcomes σ̂(a) – the outcomes of sending the true outcomesσ∗(a) independently through
the p − q channel of Figure 1. Since in this model a truly positive test remains positive with probability
1−q and a truly negative test is displayed as positive with probability p we can write

σ̂(a) = 1
{
Be(p) = 1

}(
1−σ∗(a)

)+1
{
Be(1−q) = 1

}
σ∗(a)(1.5)

where Be(r ) denotes a Bernoulli random variable with parameter r . For models with binary outputs, this
is the most general channel satisfying the noisy defective channel property of [7, Definition 3.3], though
more general models are possible under the only defects matter property [7, Definition 3.2], where the
probability of a test being positive depends on the number of contained infected individuals.

Note that if p +q > 1, we can preprocess the outputs from (1.5) by flipping them, i.e. setting p̃ = 1−p
and q̃ = 1−q , where p̃+ q̃ < 1. Hence without loss of generality we will assume throughout that p+q < 1.
In the case p + q = 1, the test outcomes are independent of the inputs, and we cannot hope to find the
infected individuals – see Theorem 2.3.

With m0 being the number of truly negative tests, let m f
0 be the number of truly negative tests that are

flipped to display a positive test result and mu
0 be the number of truly negative tests that are unflipped.

Similarly, define m1 as the number of truly positive tests, of which m f
1 are flipped to a negative test result

and of which mu
1 are unflipped. For reference, for t ∈ {0,1} we write

mt =
∣∣{a :σ∗(a) = t

}∣∣
m f

t = ∣∣{a :σ∗(a) = t ,σ̂(a) 6= t
}∣∣ and mu

t = ∣∣{a :σ∗(a) = t ,σ̂(a) = t
}∣∣

Throughout the paper, we use the standard Landau notation o(·),O(·),Θ(·),Ω(·),ω(·) and define 0log0 =
0. In order to quantify the performance of our algorithms, for any 0 < r 6= s < 1, we write

DKL (r‖s) := r log
(r

s

)
+ (1− r ) log

(
1− r

1− s

)
,

for the relative entropy of a Bernoulli random variable with parameter r to a Bernoulli random variable
with parameter s, commonly referred to as the Kullback–Leibler divergence. Here and throughout the
paper we use log to denote the natural logarithm. For r or s equal to 0 or 1 we define the value of DKL (·‖·)
(possibly infinite) on grounds of continuity, so for example DKL (0‖s) =− log(1− s).

2. MAIN RESULTS

With the test design and notation in place, we are now in a position to state our main results. The-
orems 2.1, 2.2 and 2.3 are the centerpiece of this paper featuring improved bounds for the noisy group
testing problem for the general p − q model. We follow up with a discussion of the combinatorics un-
derlying both algorithms. Subsequently, we show how the bounds simplify when we consider the special
cases of the Z, the reverse Z and Binary Symmetric Channel. Finally, we derive sufficient conditions un-
der which DDprovably outperforms the COMP algorithm and compare the bounds of our constant-column
design against the Bernoulli design employed in prior literature.
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2.1. Bounds for Noisy Group Testing. We will consider two well-known algorithms from the noiseless
setting to identify infected individuals in this paper. First, we study a noisy variant of the COMP algorithm,
originally introduced in [10].

1 Declare every individual that appears in α∆ or more displayed negative tests as healthy.
2 Declare all remaining individuals as infected.

Algorithm 1: The noisy COMP algorithm

Note that for α = 1/∆ we recover the standard COMP algorithm where an individual is classified as
healthy if it appears in at least one displayed negative test which constitutes a sufficient condition in the
noiseless case. We now state the first main result of this paper.

Theorem 2.1 (Noisy COMP). Let p, q ≥ 0, p+q < 1,d ∈ (0,∞),α ∈ (q,e−d (1−p)+(
1−e−d

)
q). Suppose that

0 < θ < 1 and let

mCOMP = mCOMP(n,θ, p, q) = min
α,d

max
{
b1(α,d),b2(β,d)

}
k log(n/k)

where b1(α,d) = θ

1−θ
1

dDKL
(
α‖q

)
and b2(α,d) = 1

1−θ
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
)

If m ≥ (1+ε)mCOMP for some ε> 0, noisy COMP will recover σw.h.p. given test design G and test results σ̂.

The noisy variant of the DD algorithm of [5] was introduced in [48] and reads as follows:

1 Declare every individual that appears in α∆ or more displayed negative tests as healthy and remove
such individual from every assigned test.

2 Declare every yet unclassified individual who is now the only unclassified individual in β∆ or more
displayed positive tests as infected.

3 Declare all remaining individuals as healthy.

Algorithm 2: The noisy DD algorithm [48]

This reduces to the noiseless version of DD introduced in [5] by taking α = β = 1/∆. We now state the
second main result of the paper.

Theorem 2.2 (Noisy DD). Let p, q ≥ 0, p+q < 1,d ∈ (0,∞),α ∈ (q,e−d (1−p)+(
1−e−d

)
q) andβ ∈ (0,e−d (1−

q)) and define w = e−d p + (1−e−d )(1−q). Suppose that 0 < θ < 1 and let

mDD = mDD(n,θ, p, q) = min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(α,β,d)

}
k log(n/k)

where c1(α,d) = θ

1−θ
1

dDKL
(
α‖q

)
and c2(α,d) = 1

dDKL (α‖1−w)

and c3(β,d) = θ

1−θ
1

dDKL
(
β‖(1−q)e−d

)
and c4(α,β,d) = max

1−α≤z≤1

 1

1−θ
1

d
(
DKL (z‖w)+1

{
β> ze−d p

w

}
zDKL

(
β
z ‖

e−d p
w

))


If m ≥ (1+ε)mDD for some ε> 0, then noisy DD will recover σw.h.p. given test design G and test results σ̂.
6



While the bounds appear cumbersome at first glance due to the numerous optimizations, the opti-
mizations are of finite dimensions and for every specific value of p and q can be efficiently solved to
arbitrary precision yielding explicit values for mCOMP and mDD. For illustration purposes, we will cal-
culate those bounds for several values of p, q and θ. Motivated by (1.1), we can describe the bounds
in terms of rate, in a Shannon-theoretic sense. That is, we define the rate (bits learned per test) of an
algorithm in this setting to be

R := log
(n

k

)
m log2

∼ k log(n/k)

m log2
.

(Recall that we take logarithms to base e throughout this paper). For example the fact that Theorems 2.1
and 2.2 show that noisy COMP and DD respectively can succeed w.h.p. with m ≥ (1+ε)ck log(n/k) tests for
some c is equivalent to the fact that R = 1/(c log2) is an achievable rate in a Shannon-theoretic sense.

We now give a counterpart to these two theorems by stating a universal converse for the p−q channel
below, improving on the universal counting bound from (1.1). The starting observation (see [7, Theorem
3.1]) is that no group testing algorithm can succeed w.h.p. with rate greater than CChan – the Shannon
capacity of the corresponding noisy communication channel. Thus, we cannot hope to succeed w.h.p.
with m < (1−ε)ck log(n/k) tests where c = 1/(CChan log2). Hence as a direct consequence of the value of
the channel capacity of the p −q channel given in Lemma F.1 below, we deduce the following theorem.

Theorem 2.3. Let p, q ≥ 0, p +q < 1 and ε> 0, write h(·) for the binary entropy in nats (logarithms taken
to base e) and φ=φ(p, q) = (h(p)−h(q))/(1−p −q). If we define

mCOUNT =
(

1

DKL
(
q‖1/(1+eφ)

))
k log(n/k),

then for m ≤ (1−ε)mCOUNT no algorithm can recover σw.h.p. for any matrix design.

Remark 2.4. Note that the derivation of this result in Lemma 2.3 suggests a choice of density for the matrix:

d = d∗
ch = log(1−p −q)− log

(
1

1+eφ
−q

)
.

While this is not optimal, it may be regarded as a sensible heuristic that provides good rates for a range of
p and q values.

2.2. The combinatorics of the noisy group testing algorithms. In the following, we outline the combi-
natorial structures that Algorithm 1 and 2 take advantage of.

2.2.1. The noisy COMP algorithm. To get started, let us shed light on the combinatorics of noisy COMP
(Algorithm 1). For the noiseless case, the COMP algorithm classifies each individual that appears in at least
one negative test as healthy and all other individuals as infected, since the participation in a negative test
is a sufficient condition for the individual to be healthy.

For the noisy case, the situation is not as straightforward, since an infected individual might appear in
displayed negative tests that were flipped when sent through the noisy channel. Thus, a single negative
test is not definitive evidence that an individual is healthy. Yet, we can use the number of negative tests
to tell the infected individuals apart from the healthy individuals.

Clearly, noisy COMP (Algorithm 1) using a thresholdα∆ succeeds if no healthy individual appears in less
thanα∆ displayed negative tests and no infected individual appears in more thanα∆ displayed negative
tests. To this end, we define

N x = |{a ∈ ∂x : σ̂(a) = 0}|(2.1)

for the number of displayed negative tests that item x appears in. In terms of Figure 2, the algorithm
determines the infection status by counting the number of tests of type I.

7
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FIGURE 2. Rectangles represent tests (displayed positive in red, displayed negative in
blue). Blue circles represent individuals that have been classified as healthy in the first
step of DD (or by COMP). White circles represent individuals that are yet unclassified. On
the one hand (Type II and III) this can happen before the first round of DD (or by COMP).On
the other hand (Type I) it is the case before the algorithms start

2.2.2. The noisy DD algorithm. As in the prior section, let us first consider the noiseless DD algorithm. The
first step is identical to COMP classifying all individuals that are contained in at least one negative test as
healthy. In a second step, the algorithm checks each individual to see if they are contained in a positive
test as the only yet unclassified individual and thus must be infected.

Again, the situation is more intricate when we add noise, since neither a single negative test gives us
confidence that an individual is healthy nor does a positive test where the individual is the single yet
unclassified individual inform us that this individual must be infected. Instead we count and compare
the number of such tests. The first step of the noisy DD algorithm is identical to noisy COMP, but we are
not required to identify all healthy individuals in the first step. Thus, after the first step, we are left with
all infected individuals V1 and a set of yet unclassified healthy individuals which we will denote by V0,PD.
These are healthy individuals who did not appear in sufficiently many displayed negative tests to be
declared healthy with confidence in the first step. In symbols, for some α ∈ (0,1)

V0,PD = {x ∈V0 : N x <α∆}

To tell V1 and V0,PD apart, we consider the number of displayed positive tests P x where the individual x
appears on its own after removing the definitely healthy individuals V0 \V0,PD from the first step, i.e.

P x = ∣∣{a ∈ ∂x : σ̂(a) = 1 and ∂a \ {x} ⊂V0 \V0,PD
}∣∣(2.2)

Referring to Figure 2, the second step of the algorithm is based on counting tests of type II. Tests of type
III contain another yet unclassified individual from V0,PD ∪V1. The noisy DD algorithm takes advantage
of the fact that it is less likely for an individual x ∈V0,PD to appear as the only yet unclassified individual
in a displayed positive test than it is for an individual in x ∈ V1. For x ∈ V0,PD such a test would be truly
negative and would have been flipped (which occurs with probability p) to display a positive test result.
Conversely, an individual x ∈ V1 renders any of its tests truly positive and thus the only requirement is
that the test otherwise contains only definitely healthy individuals and is not flipped (which occurs with
probability 1− q). For this reason, we will see that the distribution of P x differs between x ∈ V1 and
x ∈V0,PD, and the difference (1−q)−p > 0 helps determine the size of this difference.

2.3. Applying the results to standard channels. With Theorem 2.1 and Theorem 2.2 we derived achiev-
able rates for the generalized p-q-model (see Figure 1). prior research considered the Z channel where
p = 0 and q > 0, the Reverse Z channel where p > 0 and q = 0 and the Binary Symmetric Channel with
p = q > 0. These channels are the common models in coding theory [41], but are also often considered in
medical applications [31, 32] concerned with taking sensitivity (q > 0), specificity (p > 0) or both (p > 0
and q > 0) into account. In the following section we will demonstrate how performance guarantees on
these channels can directly be obtained from our main theorems.

8



2.3.1. Recovery of the noiseless model. First, we show the noiseless bounds can be simply recovered by
setting p = q = 0. In the noiseless setting, it is optimal to set both α and β to 1/∆. To see why, observe
that in the absence of noise a single negative test is sufficient evidence that an individual is healthy. Con-
versely, a single positive test where the individual only appears with definitely healthy individuals implies
that particular individual must surely be infected. As shown in [13] the optimal parameter choice for d
in the constant-column design in the noiseless setting is log(2). Applying these values to Theorem 2.1 we
recover the noiseless bound for COMP.

Corollary 2.5 (COMP in the noiseless setting). Let p = q = 0, 0 < θ < 1 and ε> 0. Further, let

mCOMP,noiseless =
1

(1−θ) log2 2
k log(n/k).

If m > (1+ε)mCOMP,noiseless, COMP will recover σw.h.p.given G ,σ̂.

We also recover the noiseless bounds for the DD algorithm as stated in [26].

Corollary 2.6 (DD in the noiseless setting). Let p = q = 0,0 < θ < 1 and ε> 0. Further, let

mDD,noiseless = max

{
1,

θ

1−θ
}

1

log2 2
k log(n/k).

If m > (1+ε)mDD,noiseless, DD will recover σw.h.p.given G ,σ̂.

2.3.2. The Z channel. In the Z channel, we have p = 0 and q > 0, i.e. no truly negative test displays a
positive test result. Thus, we set β= 1/∆ and remain agnostic about α and d . The bounds for COMP and
DD thus read.

Corollary 2.7 (Noisy COMP for the Z channel). Let p = 0,0 < q < 1,0 < θ < 1 and ε> 0. Further, let

mCOMP,Z = min
α,d

max{b1(α,d),b2(α,d)}k log(n/k)

with b1(α,d) = θ

1−θ
1

dDKL
(
α‖q

) and b2(α,d) = 1

1−θ
1

dDKL
(
α‖e−d + (

1−e−d
)

q
) .

If m > (1+ε)mCOMP,Z , noisy COMP will recover σw.h.p.given G ,σ̂.

Corollary 2.8 (Noisy DD for the Z channel). Let p = 0,0 < q < 1,0 < θ < 1 and ε> 0. Further, let

mDD,Z = min
α,d

max{c1(α,d),c2(α,d),c3(d)}k log(n/k)

with c1(α,d) = θ

1−θ
1

dDKL
(
α‖q

) and c2(α,d) = 1

dDKL
(
α‖e−d + (

1−e−d
)

q
)

and c3(d) = θ

1−θ
1

−d log
(
1−e−d (1−q)

) .

If m > (1+ε)mDD,Z , noisy DD will recover σw.h.p.given G ,σ̂.

Proof. The bounds c1 and c2 follow directly from Theorem 2.2 by setting p = 0. For c3 we use the fact that
DKL

(
1/∆‖e−d (1−q)

)=− log
(
1−e−d (1−q)

)+o(1). An immediate consequence of p = 0 is c4 = 0. �

An illustration of the bounds from Corollary 2.7 and 2.8 for sample values of q is shown in Figure 5.

2.3.3. Reverse Z channel. In the reverse Z channel, we have q = 0 and p > 0, i.e. no truly positive test
displays a negative test result. thus, we set α= 1/∆ and remain agnostic about β and d . The bounds for
the noisy COMP and DD thus read as follows.
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Corollary 2.9 (Noisy COMP for the Reverse Z channel). Let 0 < p < 1, q = 0,0 < θ < 1 and ε> 0. Further, let

mCOMP,rev Z = 1

1−θ min
d

{
1

−d log
(
1−e−d (1−p)

)}
k log(n/k).

If m > (1+ε)mCOMP,rev Z, noisy COMP will recover σw.h.p.given G ,σ̂.

Proof. The corollary follows from Theorem 2.1 and the fact that DKL (1/∆‖0) diverges and DKL
(
1/∆‖e−d (1−p)

)=
− log

(
1−e−d (1−p)

)
. �

Note that the optimal d arising from Corollary 2.9 cannot be expressed in terms of standard functions.

Corollary 2.10 (Noisy DD in the Reverse Z channel). Let 0 < p < 1, q = 0,0 < θ < 1 and ε> 0. Further, let

mDD,rev Z = min
β,d

max
{
c2(d),c3(β,d),c4(β,d)

}
k log(n/k)

with c2(d) = 1

−d log
(
1−e−d (1−p)

) and c3(β,d) = θ

1−θ
1

dDKL
(
β‖e−d

)
and c4(β,d) = 1

1−θ
1

d
(
− log

(
1−e−d (1−p)

)+DKL

(
β‖ e−d p

e−d p+(1−e−d )

))
If m > (1+ε)mDD,rev Z, noisy DD will recover σw.h.p.given G ,σ̂.

Proof. The bounds c1 = 0,c2,c3 follow from Theorem 2.2 and the same manipulations as above. For c4,
note that z needs to take the value 1 since 1−α= 1−1/∆, whence the simplification follows immediately.

�

An illustration of the bounds of Corollary 2.9 and 2.10 for sample values of p is shown in Figure 6.

2.3.4. Binary Symmetric Channel. In the Binary Symmetric Channel (BSC), we set p = q > 0. Even
though information-theoretic arguments would suggest setting d = log2, we formulate the expression
below with general d . We also keep the threshold parameters α and β. The bounds for the noisy DD and
COMP only simplify slightly.

Corollary 2.11 (Noisy COMP in the Binary Symmetric Channel). Let 0 < p = q < 1/2,0 < θ < 1 and ε > 0.
Further, let

mCOMP,BSC = min
α,d

max{b1(α,d),b2(α,d)}k log(n/k)

with b1(α,d) = θ

1−θ
1

dDKL
(
α‖p

) and b2(α,d) = 1

1−θ
1

dDKL
(
α‖e−d +p −2e−d p

) .

If m > (1+ε)mCOMP,BSC, noisy COMP will recover σw.h.p.given G ,σ̂.

Corollary 2.12 (Noisy DD in the Binary Symmetric Channel). Let 0 < p = q < 1/2,0 < θ < 1 and ε> 0 and
define v = 1−e−d −p +2e−d p. Further, let

mDD,BSC = min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(α,β,d)

}
k log(n/k)

with c1(α,d) = θ

1−θ
1

dDKL
(
α‖p

) and c2(α,d) = 1

dDKL
(
α‖e−d +p −2e−d p

)
and c3(β,d) = θ

1−θ
1

dDKL
(
β‖(1−p)e−d

)
and c4(α,β,d) = max

1−α≤z≤1

 1

1−θ
1

d
(
DKL (z‖v)+1

{
β> ze−d p

v

}
zDKL

(
β
z ‖

e−d p
v

))
 .

If m > (1+ε)mDD,BSC, noisy DD will recover σw.h.p.given G ,σ̂.
10
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FIGURE 3. Comparison of the bound for noisy DD and noisy COMP in the Z-channel and
the Binary Symmetric Channel for different noise level.

An illustration of the bounds of Corollary 2.11 and 2.12 is shown in Figure 7.

2.4. Comparison of noisy COMP and DD. An obvious next question is to find conditions under which
the noisy DD algorithm outperforms noisy COMP. For the noiseless setting, it can be easily shown that DD
provably outperforms COMP for all θ ∈ (0,1). For the noisy case, matters are slightly more complicated.

Recall that noisy COMP classifies all individuals appearing in less than α∆ displayed negative tests as
infected while noisy DD additionally requires such individuals to appear in more than β∆ displayed pos-
itive tests as the only yet unclassified individual. Thus, it might well be that an infected individual is
classified correctly by noisy COMP, while it is missed by the noisy DD algorithm.

That being said, our simulations indicate that noisy DD generally outperforms noisy COMP, but for the
reason mentioned above we can only prove that noisy DD outperforms noisy COMP for the reverse Z chan-
nel while remaining agnostic about the Z channel and the Binary Symmetric Channel, as the next propo-
sition evinces.

Proposition 2.13. For all p, q ≥ 0 with p +q < 1 there exists a d∗ ∈ (0,∞) such that mCOMP ≥ mDD as long
as e−d∗

p ≥ q.

In terms of the common noise channels Proposition 2.13 gives the following corollary.

Corollary 2.14. In the reverse Z channel, mCOMP ≥ mDD.

Our simulations suggest that this superior performance of noisy DD holds as well for the Z channel and
Binary Symmetric Channel. Please refer to Figure 3 for an illustration.

2.5. Relation to Bernoulli testing. [26] derived sufficient bounds for noisy group testing and a Bernoulli
test design where each individual joins every test with some fixed probability. Thus, the variable degrees
fluctuate and we end up with some individuals assigned only to few tests. In contrast, we work under a
model in this paper where each individual joins an equal number of tests∆ chosen uniformly at random
without replacement. For the noiseless case, it is by now clear that the constant-column design better
facilitates inference than the Bernoulli test design [13, 26]. We find that the same holds true for the noisy
variant of the COMP algorithm. Let us denote by mBer

COMP the number of tests required for the noisy COMP
to succeed under a Bernoulli test design.

Proposition 2.15. For all p +q < 1, we have

mBer
COMP ≥ mCOMP

We see the same effect for the noisy variant of the DD algorithm for all simulations, but for technical
reasons only prove it for the Z channel.
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Proposition 2.16. For the Z channel where p = 0 and 0 < q < 1, we have

mBer
DD > mDD

For an illustration on the magnitude of the difference, we refer to Figure 4 and Figure 8.
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FIGURE 4. Comparison of DD bounds under a Bernoulli test design ([48]) and constant
column test design (present paper) for the reverse Z and Binary Symmetric Channel
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APPENDIX

The core of the technical sections is the proof of Theorems 2.1 and Theorem 2.2. Some groundwork
with standard concentration bounds and group testing properties can be found in Section A. We con-
tinue with the proof of Theorems 2.1 and 2.2 in Sections B and C, respectively. The structure of the
proofs follows a similar logic. First, we derive the distributions for the number of displayed positive and
negative tests for infected and healthy individuals. Second, we threshold these distributions using sharp
Chernoff concentration bounds to deduce the bounds stated in Theorem 2.1 and Theorem 2.2. There-
after, we proceed to the proof of Proposition 2.13 in Section D, while the proofs of Propositions 2.15 and
2.16 follow in Section E. We conclude with the proof of the converse result from Theorem 2.3 in Section F.

APPENDIX A. GROUNDWORK

For starters, let us recall the Chernoff bound for binomial and hypergeometric distributions.

Lemma A.1 (Chernoff bound for the binomial distribution [25]). Let p < q < r ∈ (0,1) and X ∼ Bin(n, q)
be a binomially distributed random variable. Then

P
(

X ≤ dpne)= exp
(−(

1+n−Ω(1))nDKL
(
p‖q

))
P (X ≥ dr ne) = exp

(−(
1+n−Ω(1))nDKL

(
r‖q

))
Lemma A.2 (Chernoff bound for the hypergeometric distribution [23]). Let p < q < r ∈ (0,1) and Y ∼
H(N ,Q,n) be a hypergeometrically distributed random variable. Further, let q =Q/N . Then

P
(
H(N ,Q,n) ≤ dpne)= exp

(−(
1+n−Ω(1))nDKL

(
p‖q

))
P (H(N ,Q,n) ≥ dr ne) = exp

(−(
1+n−Ω(1))nDKL

(
r‖q

))
The next lemma provides that the test degrees, as defined in (1.3) above, are tightly concentrated.

Recall from (1.2) that the number of tests m = ck log(n/k) and each item appears in ∆ = cd log(n/k)
tests.

Lemma A.3. With probability 1−o(n−2) we have

dn/k −
p

dn/k logn ≤ Γmin ≤ Γmax ≤ dn/k+
p

dn/k logn

Proof. The probability that an individual x is assigned to test a is given by

P (x ∈ ∂a) = 1−P (x ∉ ∂a) = 1−
(

m −1

∆

)(
m

∆

)−1

=∆/m = d/k(A.1)

Since each individual is assigned to tests independently, the total number of individuals in a given test
follows the binomial distribution Bin(n,d/k). The assertion now follows from the Chernoff bound for
binomial distributions (Lemma A.1). �

Next, we show that the number of truly negative tests m0 (and thus the number of truly positive tests
m1) are tightly concentrated.

Lemma A.4. With probability 1−o(n−2) we have m0 = e−d m +O(
p

m log3 n).

Proof. Recall from (A.1) that

P (x ∈ ∂a) = d/k

Since infected individuals are assigned to tests mutually independently, we find for a test a that

P (V1 ∩∂a =;) =P (Bin(k,d/k) = 0) = (1−d/k)k = (
1+n−Ω(1))e−d .
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Consequently, E [m0] = (
1+n−Ω(1)

)
e−d m. Finally, changing the set of tests for a specific infected indi-

vidual shifts the total number of negative tests by at most ∆. Therefore, the Azuma-Hoeffding inequality
yields

P (|m0 −E [m0]| ≥ t ) ≤ 2exp

(
− t 2

4k∆2

)
.

The lemma follows from setting t =p
m log3 n. �

With the concentration of m0 and m1 at hand, we readily obtain estimates for m f
0 ,mu

0 ,m f
1 and mu

1 .

Corollary A.5. With probability 1−o(n−2) we have

(i) m f
0 = e−d pm +O

(p
m log4 n

)
(ii) mu

0 = e−d (1−p)m +O
(p

m log4 n
)

(iii) m f
1 = (1−e−d )qm +O

(p
m log4 n

)
(iv) mu

1 = (1−e−d )(1−q)m +O
(p

m log4 n
)

Proof. Since each test is flipped with probability p and q independently, the claims follow from Lemma A.4
and the Chernoff bound for the binomial distribution (Lemma A.1). �

In the following, let E be the event that the bounds from Lemma A.4 and A.5 hold.

APPENDIX B. PROOF OF COMP BOUND, THEOREM 2.1

Recall from (2.1) that we write N x for the number of displayed negative tests that item x appears in
(as illustrated by the right branch of Fig. 2). The proof of Theorem 2.1 is based on two pillars. First,
Lemmas B.1 and B.2 provide the distribution of N x for healthy and infected individuals, respectively.
We will see that these distributions differ according to the infection status of the individual. Second,
we will derive a suitable threshold α∆ via Lemma B.3 and B.4 to tell healthy and infected individuals
apart w.h.p. We start by analysing individuals in the infected set V1. Throughout the section, we assume
α ∈ (q,e−d (1−p)+ (

1−e−d
)

q).

Lemma B.1. Given x ∈V1, its number of displayed negative tests N x is distributed as Bin(∆, q).

Proof. Any test containing an infected individual is truly positive because of the presence of the infected
individual. Since an infected individual is assigned to ∆ different tests and each such test is flipped with
probability q independently, the lemma follows immediately. �

Next, we consider the distribution for healthy individuals. Recall that E denotes the event that the
bounds from Lemma A.4 and Corollary A.5 hold.

Lemma B.2. Given x ∈V0 and E , N x is distributed as H
(
m,m

(
e−d (1−p)+ (

1−e−d
)

q +n−Ω(1)
)

,∆
)
.

Proof. Since x is healthy, the outcome of all the tests remains the same if it is removed from consideration
(if we perform group testing with n −1 items and the corresponding reduced matrix).

Thus, given E , we find that with x removed the m f
0 ,mu

0 ,m f
1 ,mu

1 still satisfy the bounds from Corol-
lary A.5. As a result the number of displayed negative tests (which consist of unflipped truly negative
tests and flipped truly positive tests) is given by

(B.1) mu
0 +m f

1 =
(
e−d (1−p)+ (1−e−d )q

)
m +O

(p
m log4 n

)
Now, adding x back into consideration: x ∈ V0 chooses ∆ tests without replacement independently of

this. Hence the number of displayed negative tests it appears in N x is distributed as H(m,mu
0 +m f

1 ,∆)
and the lemma follows. �
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Moving to the second pillar of the proof, we need to demonstrate that no infected individual is as-
signed to more than α∆ displayed negative tests as shown by the following lemma.

Lemma B.3. If c > (1+η) θ
1−θ

1
dDKL(α‖q) for some small η> 0, N x <α∆ for all x ∈V1 w.h.p.

Proof. We have to ensure that P(∃x ∈V1 : N x ≥α∆) = o(1). By Lemma B.1 and the union bound, we thus
need to have

o(1) = k ·P (N x ≥α∆ : x ∈V1) = k ·P(
Bin(∆, q) ≥α∆)= k ·exp

(−(
1+∆−Ω(1))∆DKL

(
α‖q

))
,

by the Chernoff bound for the binomial distribution (Lemma A.1). Since k ∼ nθ and ∆ = cd(1−θ) logn
this implies

θ− cd(1−θ)DKL
(
α‖q

)< 0

The lemma follows from rearranging terms. �

We proceed to show that no healthy individual is assigned to less than α∆ displayed negative tests.

Lemma B.4. If c > (1+η) 1
1−θ

1
dDKL(α‖e−d (1−p)+(1−e−d )q) for some small η> 0, N x >α∆ for all x ∈V0 w.h.p.

Proof. We need to ensure that P(∃x ∈ V0 : N x < α∆) = o(1). Since E occurs w.h.p. by Lemma A.4 and
Corollary A.5, we need to have by Lemma B.2 and the union bound that

(n −k) ·P (N x ≤α∆|x ∈V0,E ) ≤ n ·P
(
H

(
m,m

(
e−d (1−p)+

(
1−e−d

)
q +n−Ω(1)

)
,∆

)
≤α∆

)
= o(1).(B.2)

Together with the Chernoff bound for the hypergeometric distribution (Lemma A.2) this implies

1− cd(1−θ)DKL

(
α‖(1−pe−d + (1−e−d )q

)
< 0

in a similar way to the proof of Lemma B.3. The lemma follows from rearranging terms. �

Proof of Theorem 2.1. The theorem is now an immediate consequence of Lemma B.3 and B.4 which guar-
antee that w.h.p. classifying individuals according to the thresholdα∆ for negative displayed tests recov-
ers σ, and the fact that the choice of α and d is at our disposal. �

APPENDIX C. PROOF OF DD BOUND, THEOREM 2.2

The proof of Theorem 2.2 follows a similar two-step approach as the proof of Theorem 2.1 by first
finding the distribution of P x (the number of displayed positive tests where individual x appears on its
own after removing the definitely healthy individuals V0 \ V0,PD, illustrated by the left branch of Fig. 2).
We then threshold the distributions for healthy and infected individuals. To get started, we revise the
second bound from Theorem 2.1 to allow kn−Ω(1) healthy individuals to not be classified yet after the
first step of DD. Throughout the section, we assume α ∈ (q,e−d (1−p)+(

1−e−d
)

q) and β ∈ (0,e−d (1−q)).

Lemma C.1. If

c > (1+η)
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
)

for some small η> 0, we have
∣∣V0,PD

∣∣= kn−Ω(1) w.h.p.

Proof. The lemma follows immediately by replacing the r.h.s. of (B.2) with kn−δ for some small δ= δ(η),
rearranging terms and applying Markov’s inequality. �

For the next lemmas, we need an auxiliary notation denoting the number of tests m0,nd that only
contain individuals from V0 \V0,PD. In symbols,

m0,nd = ∣∣{a ∈ F : ∂a ⊂V0 \V0,PD
}∣∣ .
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Lemma C.2. If

c > (1+η)
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
)

for some small η> 0, we have m0,nd = (
1−n−Ω(1)

)
e−d m with probability 1−o(n−2).

Proof. As in the proof of Lemma B.2 above, we consider the graph in two rounds: first we consider the
tests containing infected individuals. Since each healthy individual x ∈ V0 does not impact the number
of positive and negative tests, we know by Lemma A.4 that with probability 1− o(n−2) we have m0 =
e−d m +O

(p
m log4 n

)
after the first round.

Now consider some particular negative test a. The probability that a healthy individual x is assigned
to this test is d/k by (A.1). By Lemma C.1, we know that

∣∣V0,PD
∣∣ = kn−Ω(1). Since each such individual is

assigned to tests mutually independently, we find for the truly negative test a that

P
(
V0,PD ∩∂a =;)=P(

Bin
(∣∣V0,PD

∣∣ ,d/k
)= 0

)= (1−d/k)kn−Ω(1) = 1−n−Ω(1)

We therefore have E
[
m0,nd

] = (
1−n−Ω(1)

)
e−d m. Finally, changing the set of tests for a specific individ-

ual x ∈ V1 ∪V0,PD shifts m0,nd by at most ∆. The lemma follows by a similar application of the Azuma-
Hoeffding inequality as used in the proof of Lemma A.4. �

Let F be the event that m0,nd = (
1−n−Ω(1)

)
e−d m indeed. By Lemma C.2, P (F ) = 1−o(n−2) if

c > (1+η)
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
)

for some small η> 0. With Lemma C.2 at hand, we are in a position to describe the distribution of P x for
healthy and infected individuals. Let us start with infected individuals.

Lemma C.3. Given an infected individual x ∈V1 and assuming F holds, P x is distributed as
H

(
m,m

(
e−d (1−q)+n−Ω(1)

)
,∆

)
.

Proof. Consider an infected individual x ∈V1. As before, if we remove x from tests, this will change m0,nd

by at most ∆.
Thus, by Lemma C.2 the number of tests that x is assigned to that contain neither infected individuals

nor individuals from V0,PD is distributed as H
(
m,m

(
e−d +n−Ω(1)

)
,∆

)
given F . Since each test featuring

x will truly be positive and will be displayed positive with probability 1− q independently, the lemma
follows immediately. �

To describe the distribution of P x for healthy individuals, let us introduce the random variable P x (P ),
which is P x conditioned on the individual appearing in P displayed positive tests, as follows:

P (P x (P ) = t ) =P (P x = t |N x =∆−P )

Then, we find for healthy individuals the following conditional distribution.

Lemma C.4. Given x ∈V0 and F , P x (P ) is distributed as

H
(
m

(
e−d p + (1−e−d )(1−q)+n−Ω(1)

)
,m

(
e−d p +n−Ω(1)

)
,P

)
.

Proof. We proceed with the same exposition as in the proof of Lemma C.3. Since individual x ∈V0 is as-

signed to exactly P displayed positive, P x (P ) is distributed as H
(
m f

0 +mu
1 ,m0,nd,P

)
. The lemma follows

from Corollary A.5 and Lemma C.2. �

Having derived the distributions for P x for x ∈ V1 and P x (P ) for x ∈ V0 we can now determine a
threshold β∆ of displayed positive tests where the individual appears only with individuals from the
set V0 \ V0,PD such that we can tell V1 and V0,PD apart and thus recover σ. Let us start with infected indi-
viduals.
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Lemma C.5. As long as

c > (1+η)max

{
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
) ,

θ

1−θ
1

dDKL
(
β‖(1−q)e−d

)}
for some small η> 0, we have P x >β∆ for all x ∈V1 w.h.p.

Proof. We need to ensure that P(∃x ∈V1 : P x <β∆) = o(1). For the bound on c from the lemma, we know
that F occurs w.h.p. by Lemma C.2. In combination with Lemma C.3 and the union bound we need to
ensure

k ·P(
P x ≤β∆|x ∈V1,F

)= k ·P
(
H

(
m,m

(
e−d (1−q)+n−Ω(1)

)
,∆

)
≤β∆

)
= o(1)(C.1)

Using the Chernoff bound for the hypergeometric distribution (Lemma A.2), (C.1) holds if

θ− cd(1−θ)DKL

(
β‖(1−q)e−d

)
< 0(C.2)

The lemma follows from rearranging terms in (C.2).
�

We proceed with the set of individuals V0,PD.

Lemma C.6. As long as

c > (1+η)max

{
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
) ,

max
1−α≤z≤1

 1

1−θ
1

d
(
DKL

(
z‖e−d p + (1−e−d )(1−q)

)+ zDKL

(
β
z ‖

e−d p
e−d p+(1−e−d )(1−q)

))


}
for some small η> 0, we have P x <β∆ for all x ∈V0,PD w.h.p.

Proof. We need to ensure that P(∃x ∈ V0,PD : P x > β∆) = o(1). For the bound on c from the lemma, we
know that F occurs w.h.p. by Lemma C.2. Moreover, E occurs w.h.p. by Lemma A.4 and Corollary A.5.
We write w = e−d p +(

1−e−d (1−q)
)

for brevity. Combining this fact with Lemma B.2 and C.4 we need to
ensure

(n −k)
∆∑

P=(1−α)∆
P (N x =∆−P |x ∈V0,E )P

(
P x (P ) ≥β∆|x ∈V0,F

)
(C.3)

= (
1−n−Ω(1))n

∆∑
P=(1−α)∆

P
(
H

(
m,m

(
w +n−Ω(1)) ,∆

)= P
)

P
(
H

(
m

(
w +n−Ω(1)) ,m

(
e−d p +n−Ω(1)

)
,P

)
≥β∆

)
= o(1)(C.4)

By the Chernoff bound for the hypergeometric distribution (Lemma A.2) and setting z = P/∆, we refor-
mulate the left-hand-side of (C.4) to

n
∆∑

P=(1−α)∆
exp

(
−(1+o(1))∆

(
DKL (z‖w)+1

{
β> ze−d p

w

}
zDKL

(
β

z
‖e−d p

w

)))

= (
1+n−Ω(1))n max

1−α≤z≤1

{
exp

(
− (1+o(1))∆

(
DKL (z‖w)+1

{
β> ze−d p

w

}
zDKL

(
β

z
‖e−d p

w

)))}
where the second equality follows since the sum consists of Θ(∆) = Θ(logn) many summands. Since
P (F ) = 1−n−Ω(1) for our choice of c by Lemma C.2 rearranging terms readily yields that the expression
in (C.3) is indeed of order o(1). �

Proof of Theorem 2.2. The theorem is now immediate from Lemma B.3, C.1, C.5 and C.6 and the fact that
the choice of α,β and d is at our disposal. �
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APPENDIX D. COMPARISON OF THE NOISY DD AND COMP BOUNDS

The following section is intended to prove sufficient conditions under which the DD algorithm is guar-
anteed to outperform COMP. However, these conditions are not necessary and DD might (and for all per-
formed simulations does) outperform COMP for even wider settings.

Proof of Proposition 2.13. In order to prove the proposition, we need to find conditions under which

min
α,d

max{b1(α,d),b2(α,d)} ≥ min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(α,β,d)

}
We write α∗ and d∗ for the values that minimise the maximum of the two terms at the LHS, at which
point we know that b1(α∗,d∗) = b2(α∗,d∗). Then it is sufficient to show that there exists β∗ such that

b1(α∗,d∗) = b2(α∗,d∗) ≥ max
{
c1(α∗,d∗),c2(α∗,d∗),c3(β∗,d∗),c4(α∗,β∗,d∗)

}
By inspection for any α and d b1(α,d) = c1(α,d) and b2(α,d) ≥ c2(α,d) since θ ∈ (0,1).

Next, we will show that b2(α,d) ≥ c4(α,β,d) for any α,β in the respective bounds and d ∈ (0,∞). Writ-
ing w = e−d p + (1−e−d )(1−q), and recalling that by assumption that α≤ 1−w (or w ≤ 1−α) we readily
find that

(D.1) DKL (α‖1−w) = min
1−α≤z≤1

(DKL (z‖w)) ≤ min
1−α≤z≤1

(
DKL (z‖w)+ z1

{
β> ze−d p

w

}
DKL

(
β

z
‖e−d p

w

))
where the first equality follows since DKL (α‖1−w) = DKL (1−α‖w) and DKL (z‖w) > DKL (1−a‖w) for
any z > 1 −α. The bound follows. Note that (D.1) indeed holds for any choice of α,β and d in the
respective bounds stated in the theorem.

Finally, we need to demonstrate that c3(β∗,d∗) ≤ b2(α∗,d∗). Since β is not an optimisation parame-
ter in b2(α∗,d∗) and the bound in (D.1) holds for any value of β, we can simply set it to the value that
minimizes c3(β∗,d∗) which is β= 1/∆ and for which we find

c3(β∗,d∗) = θ

1−θ
1

d∗ log
(
1−e−d∗(1−q

) .

Thus, to obtain the desired inequality we need to ensure that for the optimal choice α∗ from COMP

θDKL

(
α∗‖e−d∗

(1−p)+
(
1−e−d∗)

q
)
≤− log

(
1−e−d∗

(1−q)
)

Using the bound

θDKL

(
α‖e−d (1−p)+

(
1−e−d

)
q
)
≤−θ log

(
1−

(
e−d (1−p)+

(
1−e−d

)
q
))

≤− log
(
1−

(
e−d (1−p)+

(
1−e−d

)
q
))

which is obtained by setting α= 1/∆, we find that c3(β∗,d∗) ≤ b2(α∗,d∗) if

− log
(
1−e−d∗

(1−q)
)
≥− log

(
1−e−d∗

(1−p)+
(
1−e−d∗)

q
)
⇔ e−d∗

p ≥ q

�

As mentioned before, due to bounding b2(α∗,d∗) the result is not sharp. However, one immediate
consequence of Proposition 2.13 is that DD is guaranteed to outperform COMP for the reverse Z channel.

APPENDIX E. RELATION TO BERNOULLI TESTING

In the noiseless case [26] shows that the constant column weight design (where each individual joins
exactly ∆ different tests) requires fewer tests to recover σ than the Bernoulli design (where each indi-
vidual is included in each test with a certain probability independently). In this section we show that
in the noisy case, the COMP algorithm requires fewer tests for the constant column weight design than
for the Bernoulli design, and derive sufficient conditions under which the same is true for the noisy DD
algorithm.
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To get started, let us state the relevant bounds for the Bernoulli design. [48] derived these bounds
for the Z channel, reverse Z channel and Binary Symmetric Channel. Building on this work, let us ex-
tend these bounds for the general p −q-model. The test design and notation is identical to the constant
column design employed so far with the key difference that individuals are not assigned to ∆ tests uni-
formly at random without replacement, but that each individual is included in each test with probability

∆/m = d/k independently. Our first observation is the size of m0,m f
0 ,mu

0 ,m f
1 and mu

1 carry over without
further ado.

Lemma E.1. The bounds from Lemma A.4 and Corollary A.5 hold for the Bernoulli test design.

Proof. The crucial observation is that (A.1) now becomes P (x ∈ ∂a) = ∆/m for any individual x ∈ V and
test a ∈ F where we avoid any dependencies between tests that we encountered before. The rest of the
proof follows exactly the proof of Lemma A.4 and Corollary A.5. �

Proposition E.2 (Noisy COMP under Bernoulli). Let p, q ≥ 0, p + q < 1, d ∈ (0,∞), α ∈ (q,e−d (1− p)+(
1−e−d

)
q). Suppose that 0 < θ < 1 and ε> 0 and let

mBer
COMP = mBer

COMP(n,θ, p, q) = min
α,d

max{b1(α,d),b2(α,d)}k log(n/k)

where b1(α,d) = θ

1−θ
1

kDKL
(
αd/k‖qd/k

)
and b2(α,d) = 1

1−θ
1

kDKL
(
αd/k‖(e−d (1−p)+ (1−e−d )q)d/k

)
If m > (1+ε)mBer

COMP, COMP will recover σ under the Bernoulli test design w.h.p. given G ,σ̂.

Proof. Using the same two-round exposition of the graph as in prior proofs and again denoting by N x

the number of displayed negative tests for an individual x, we readily find

N x ∼ Bin
(
m, qd/k

)
for x ∈V1

N x ∼ Bin
(
mu

0 +m f
1 ,d/k

)
for x ∈V0

Using the union bound, we thus have

k ·P (N x >α∆|x ∈V1) = o(1) ⇔ c > b1(α,d)(E.1)

(n −k) ·P (N x <α∆|x ∈V0) = o(1) ⇔ c > b2(α,d)(E.2)

closing the proof of the proposition. �

Along the same lines, we obtain the bounds of the DD algorithm under the Bernoulli design.

Proposition E.3 (Noisy DD under Bernoulli). Let p, q ≥ 0, p + q < 1, d ∈ (0,∞), α ∈ (q,e−d (1 − p) +(
1−e−d

)
q) and β ∈ (e−d p,e−d (1−q)). Suppose that 0 < θ < 1,ζ ∈ (0,θ) and ε> 0 and let

mBer
DD = mBer

DD(n,θ, p, q) = min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(β,d)

}
k log(n/k)

where c1(α,d) = θ

1−θ
1

kDKL
(
αd/k‖qd/k

)
and c2(α,d) = 1−ζ

1−θ
1

kDKL
(
αd/k‖(e−d (1−p)+ (1−e−d )q)d/k

)
and c3(β,d) = θ

1−θ
1

k ·DKL
(
βd/k‖e−d (1−q)d/k

)
and c4(β,d) = ζ

1−θ
1

k ·DKL
(
βd/k‖e−d pd/k

)
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If m > (1+ε)mBer
DD, DD will recover σ under the Bernoulli test design w.h.p. given G ,σ̂.

Proof. The bounds for c1(α,d) and c2(α,d) follow as in the proof of Proposition E.2 by replacing the
right-hand side of (E.2) with nζ for some ζ ∈ (0,θ). Next, we note that the bound for m0,nd of Lemma C.2
still holds as long as ζ ∈ (0,θ). Using the same two-round exposition of the graph as in prior proofs
and denoting by P x the number of displayed positive tests for an individual x such that the remaining
neighbourhood of the test is a subset of V0 \V0,PD, we readily find

k ·P(
P x <β∆|x ∈V1

)= o(1) ⇔ c > c3(β,d)

(n −k) ·P(
P x >β∆|x ∈V0

)= o(1) ⇔ c > c4(β,d)

concluding the proof of the proposition. �

To compare the bounds of the Bernoulli and constant-column test design we employ the following
handy observation.

Lemma E.4. Let 0 < x, y < 1 and d > 0 be constants independent of k. As k →∞

kDKL

(
xd

k
‖ yd

k

)
= d

(
DKL

(
x‖y

)+ v(x, y)
)+o(1/k)

with

v(x, y) = y −x + (1−x) log

(
1− y

1−x

)
≤ 0(E.3)

Proof. Applying the definition of the Kullback-Leibler divergence and Taylor expanding the logarithm
we obtain

k ·DKL

(
xd

k
‖ yd

k

)
=xd · log

(
x

y

)
+ (k −xd)

(
log

(
1− xd

k

)
− log

(
1− yd

k

))
= xd · log

(
x

y

)
+ (k −xd)

(
−xd

k
+ yd

k
+o

(
1

k2

))
= d

(
x · log

(
x

y

)
−x + y

)
+o(1/k)

= d

(
DKL

(
x‖y

)+ y −x − (1−x) log

(
1−x

1− y

))
+o(1/k).

We can bound v(x, y) from above by writing the final term as (1− x) log
(
1+ x−y

1−x

) ≤ (1− x) x−y
1−x = x − y ,

using the standard linearisation of the logarithm. �

We are now in a position to prove Proposition 2.15 and 2.16.

Proof of Proposition 2.15. The lemma follows by comparing the bounds from Theorem 2.1 and Proposi-
tion E.2 and applying Lemma E.4. �

Proof of Proposition 2.16. As evident from Corollary 2.8, the fourth bound c4(α,β,d) vanishes under the
Z channel. Now comparing the bounds from Theorem 2.2 and Proposition E.3, observing that (1−ζ)/(1−
θ) > 1 for ζ< θ and applying Lemma E.4 immediately implies the lemma. �

APPENDIX F. CONVERSE BOUND

We can give some sense of the sharpness of these results by considering the p − q communication
channel. That is, we write X for the channel input and Y for the output of a noisy channel with error
probabilities given exactly by Figure 1. Recall that [7, Theorem 3.1] shows that the capacity of a particular
noisy group testing problem is bounded above by the Shannon capacity of the corresponding channel.
For completeness we derive the capacity and optimal signalling strategy of the p −q channel in terms of
h(·), the binary entropy in nats (logarithms taken to base e):
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Lemma F.1. If p +q < 1 the Shannon capacity of the p −q channel of Figure 1 measured in nats is

(F.1) CChan = DKL

(
q‖ 1

1+eφ

)
= DKL

(
p‖ 1

1+e−φ

)
,

where φ= (h(p)−h(q))/(1−p −q). This is achieved by taking

(F.2) P(X = 0) = 1

1−p −q

(
1

1+eφ
−q

)
.

Proof. Write P(X = 0) = γ and P(Y = 0) = T (γ) := (1−p)γ+q(1−γ). Then since the mutual information

(F.3) I (X ;Y ) = h(Y )−h(Y |X ) = h
(
T (γ)

)− (
γh(p)+ (1−γ)h(q)

)
,

we can find the optimal T by solving

0 = ∂

∂γ
I (X ;Y ) = (1−p −q) log

(
1−T (γ)

T (γ)

)
− (

h(p)−h(q)
)

,

which implies that the optimal T ∗ = 1/(1+ eφ). We can solve for this for γ∗ = (T ∗−q)/(1−p −q) to find
the expression above. As ∂

∂2γ
I (X ;Y ) < 0 it is indeed a maximum. Substituting this in (F.3) we obtain that

the capacity is given by

h(T ∗)− (
γ∗h(p)+ (1−γ∗)h(q)

) = h

(
1

1+eφ

)
− (

(T ∗−q)φ+h(q)
)

= log(1+eφ)−φ(1−q)−h(q)(F.4)

= DKL
(
q‖1/(1+eφ)

)
as claimed in the first expression in (F.1) above. We can see that the second expression in (F.1) matches
the first by writing the corresponding expression as DKL

(
1−p‖1/(1+eφ)

)= log(1+eφ)−φp−h(p), which
is equal to (F.4) by the definition of φ. �

Note that this result suggests a choice of density for the matrix: since each test is negative with proba-
bility e−d , equating this with (F.2) suggests that we take

d = d∗
ch = log(1−p −q)− log

(
1

1+eφ
−q

)
.

This is unlikely to be optimal in a group testing sense, since we make different inferences from positive
and negative tests, but gives a closed form expression that may perform well in practice. For the noiseless
and BSC case observe that φ= 0, and we obtain d∗

ch = log2.

APPENDIX G. ILLUSTRATION OF BOUNDS FOR Z, REVERSE Z CHANNEL AND THE BSC
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FIGURE 5. Illustration of achievability bounds for noisy COMP and DD under the Z chan-
nel. The optimal curve refers to the information-theoretic non-adaptive lower bound in
the noiseless setting
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FIGURE 6. Illustration of achievability bounds for noisy COMP and DD under the reverse
Z channel. The optimal curve refers to the information-theoretic non-adaptive lower
bound in the noiseless setting
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FIGURE 7. Illustration of achievability bounds for noisy COMP and DD under the Binary
Symmetric Channel. The optimal curve refers to the information-theoretic non-adaptive
lower bound in the noiseless setting

0.0 0.2 0.4 0.6 0.8 1.0

Value θ such that k = Θ(nθ)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

e
(b

it
s

/
te

st
)

Noisy DD bounds for the Z channel: CC vs. Bernoulli

q=0.1 CC

q=0.1 Bernoulli

q=0.001 CC

q=0.001 Bernoulli

q = 0.1 Converse

q = 0.001 Converse

FIGURE 8. Comparison of the noisy DD rates under Bernoulli pooling ([48]) with the DD
bounds and converse with constant-column design as provided in the paper at hand
within the Z-Channel

22



REFERENCES

[1] D. Achlioptas, P. Beame, and M. Molloy (2004): Exponential bounds for dpll below the satisfiability threshold. Proceedings
of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA04), 132–133

[2] D. Achlioptas and F. Iliopoulos (2016): Focused stochastic local search and the lovasz local lemma. Proceedings of the 27th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA16), 2024–2038

[3] M. Aldridge (2017): The capacity of Bernoulli non-adaptive group testing. IEEE Transactions on Information Theory,
63:7142–7148

[4] M. Aldridge (2019): Individual testing is optimal for non-adaptive group testing in the linear regime. IEEE Transactions on
Information Theory, 65:2058–2061

[5] M. Aldridge, L. Baldassini, and O. Johnson (2014): Group testing algorithms: bounds and simulations. IEEE Transactions
on Information Theory, 60:3671–3687

[6] M. Aldridge, O. Johnson, and J. Scarlett (2016): Improved group testing rates with constant column weight designs. Pro-
ceedings of 2016 IEEE International Symposium on Information Theory (ISIT16), 1381–1385

[7] M. Aldridge, O. Johnson, and J. Scarlett (2019): Group testing: an information theory perspective. Foundations and Trends
in Communications and Information Theory, 15(3–4):196–392

[8] L. Baldassini, O. Johnson, and M. Aldridge (2013): The capacity of adaptive group testing. Proceedings of 2013 IEEE Inter-
national Symposium on Information Theory (ISIT13), 1:2676–2680

[9] C. Canonne, A. De, and R. Servedio (2020): Learning from satisfying assignments under continuous distributions. Proceed-
ings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms(SODA20), 82–101

[10] C. Chan, P. Che, S. Jaggi, and V. Saligrama (2011): Non-adaptive probabilistic group testing with noisy measurements: near-
optimal bounds with efficient algorithms. Proceedings of 49th Annual Allerton Conference on Communication, Control,and
Computing, 1: 1832–1839

[11] H. Chen and F. Hwang (2008): A survey on non-adaptive group testing algorithms through the angle of decoding. Journal
of Combinatorial Optimization, 15:49–59

[12] I. Cheong (2020): The experience of South Korea with COVID-19. Mitigating the COVID Economic Crisis: Act Fast and Do
Whatever It Takes (CEPR Press), 113–120

[13] A. Coja-Oghlan, O. Gebhard, M. Hahn-Klimroth, and P. Loick (2019): Information-theoretic and algorithmic thresholds
for group testing. Proceedings of 46th International Colloquium on Automata, Languages, and Programming (ICALP19),
132(43):1–14

[14] A. Coja-Oghlan, O. Gebhard, M. Hahn-Klimroth, and P. Loick (2020): Optimal group testing. Proceedings of 33rd Conference
on Learning Theory (COLT20)

[15] R. Dorfman(1943): The detection of defective members of large populations. Annals of Mathematical Statistics, 14:436–440
[16] S. Ciesek E. Seifried (2020): Pool testing of SARS-CoV-02 samples increases worldwide test capacities many times

over. https://www.bionity.com/en/news/1165636/pool-testing-of-sars-cov-02-samples-increases-worldwide-test-capacities-
many-times-over.html, last accessed on 2020-04

[17] Y. Erlich, A. Gilbert, H. Ngo, A. Rudra, N. Thierry-Mieg, M. Wootters, D. Zielinski, and O. Zuk(2015): Biological screens from
linearcodes: theory and tools. bioRxiv, page 035352

[18] European Centre for Disease Prevention and Control (2009): Surveillance and studies in a pandemic in Europe.
https://www.ecdc.europa.eu/en/publications-data/surveillance-and-studies-pandemic-europe (last: 06/30/2020)

[19] Y. Gefen, M. Szwarcwort-Cohen and R. Kishony (2020): Pooling method for accelerated testing of COVID-19.
https://www.technion.ac.il/en/2020/03/pooling-method-for-accelerated-testing-of-covid-19/ (last:06/30/20)

[20] E. Gould (1999) Methods for long-term virus preservation. Mol Biotechnol, 13:57–66
[21] A. Harrow and A. Wei (2020): Adaptive quantum simulated annealing for Bayesian inference and estimating partition

functions. Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms(SODA20), 193–212, 2020
[22] J. Hartline, A. Johnson, D. Nekipelov, and Z. Wang(2020): Inference from auction prices. Proceedings of the 31st Annual

ACM-SIAM Symposium on Discrete Algorithms(SODA20), 2472–2491
[23] W. Hoeffding (1963): Probability inequalities for sums of bounded random variables. Journal of the American Statistical

Association, 58:301:13–30
[24] F. Hwang (1972): A method for detecting all defective members in a population by group testing. Journal of the American

Statistical Association, 67:605–608
[25] S. Janson, T. Luczak, and A. Rucinski (2011): Random graphs John Wiley and Sons
[26] O. Johnson, M. Aldridge, and J. Scarlett (2018): Performance of group testing algorithms with near-constant tests per item.

IEEE Transactions on Information Theory, 65:707–723
[27] O. Johnson and D. Sejdinovic (2010): Note on noisy group testing: Asymptotic bounds and belief propagation reconstruc-

tion. Proceedings of 48th Allerton Conference on Communication, Control, and Computing
[28] G. Kamath and C. Tzamos (2019): Anaconda: A non-adaptive conditional sampling algorithm for distribution testing.

Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms(SODA19), 679–693

23



[29] E. Knill, A. Schliep, and D. Torney (1996): Interpretation of pooling experiments using the markov chain monte carlo
method. Journal of Computational Biology, 3:395–406,

[30] H. Kwang-Ming and D. Ding-Zhu (2006): Pooling designs and nonadaptive group testing: important tools for dna sequenc-
ing. World Scientific

[31] A. Lalkhen (2008): Clinical tests: sensitivity and specificity. Continuing Education in Anaesthesia Critical Care and Pain, 8
[32] S. Long, C. Prober, and M. Fischer (2018): Principles and practice of pediatric infectious diseases. Principles and practice

of pediatric infectious diseases,Elsevier
[33] N. Madhav, B. Oppenheim, M. Gallivan, P. Mulembakani, E. Rubin, and N. Wolfe (2017): Pandemics: Risks, impacts and

mitiga-tion. The World Bank:Disease control priorities, 9:315–345
[34] D. M. Malioutov and M. Malyutov (2012): Boolean compressed sensing: Lp relaxation for group testing. Proceedings of

IEEE Inter-national Conference on Acoustics, Speech and Signal Processing
[35] R. Mourad, Z. Dawy, and F. Morcos (2013): Designing pooling systems for noisy high-throughput protein-protein interac-

tion experiments using boolean compressed sensing. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics,10:1478âĂŞ1490.
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