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Exploration of the structural 
requirements of Aurora Kinase 
B inhibitors by a combined 
QSAR, modelling and molecular 
simulation approach
Sajda Ashraf1,2, Kara E. Ranaghan2, Christopher J. Woods2, Adrian J. Mulholland2* & 
Zaheer Ul‑Haq1*

Aurora kinase B plays an important role in the cell cycle to orchestrate the mitotic process. The 
amplification and overexpression of this kinase have been implicated in several human malignancies. 
Therefore, Aurora kinase B is a potential drug target for anticancer therapies. Here, we combine 
atom‑based 3D‑QSAR analysis and pharmacophore model generation to identify the principal 
structural features of acylureidoindolin derivatives that could potentially be responsible for the 
inhibition of Aurora kinase B. The selected CoMFA and CoMSIA model showed significant results 
with cross‑validation values  (q2) of 0.68, 0.641 and linear regression values  (r2) of 0.971, 0.933 
respectively. These values support the statistical reliability of our model. A pharmacophore model 
was also generated, incorporating features of reported crystal complex structures of Aurora kinase 
B. The pharmacophore model was used to screen commercial databases to retrieve potential lead 
candidates. The resulting hits were analyzed at each stage for diversity based on the pharmacophore 
model, followed by molecular docking and filtering based on their interaction with active site residues 
and 3D‑QSAR predictions. Subsequently, MD simulations and binding free energy calculations were 
performed to test the predictions and to characterize interactions at the molecular level. The results 
suggested that the identified compounds retained the interactions with binding residues. Binding 
energy decomposition identified residues Glu155, Trp156 and Ala157 of site B and Leu83 and Leu207 
of site C as major contributors to binding affinity, complementary to 3D‑QSAR results. To best of 
our knowledge, this is the first comparison of WaterSwap field and 3D‑QSAR maps. Overall, this 
integrated strategy provides a basis for the development of new and potential AK‑B inhibitors and is 
applicable to other protein targets.

The Aurora kinase family is a group of serine/threonine kinases that regulate various aspects of mitosis including 
centrosome duplication, chromosomal rearrangement spindle formation, activation of mitotic checkpoint and 
 cytokinesis1,2. Any kind of disturbance in these processes eventually leads to cell death or aneuploidy. Human 
aurora kinases are functionally and structurally categorized into three subtypes, aurora A, B and C. All three 
isoforms contain a conserved catalytic domain, a variable N-terminal domain, and a short C-terminal extension. 
Despite significant similarity among these kinases, the location and functions are different from one  another3–7.

Aurora A is found on chromosome 20q13.2 (a region amplified in various cancers) and expressed in initial 
mitosis at G2/M phase. Ajuba, BRCA-1, CDC25B, Eg5, TPX2 and p53 are reported as substrates for Aurora A 
kinase It is necessary for multiple key events in cell division including maturation of centrosome, segregation 
and assembly of  spindles8,9. It acts as an oncogene and its over expression is found in several tumours such as 
colon, breast, pancreatic, ovarian and bladder  cancers10–12. Aurora B is located on 17p13 chromosome and acts 
as a chromosomal passenger  protein13 along with its two substrates, INCENP and  Survivin14–16. Each of these 
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proteins is required for AK-B to correct chromosome location in mitosis process. Similar to AK-A, it regulates 
different processes in mitosis. AK-B activity is based on the phosphorylation of its residue Thr232 and Ser10 of 
its substrate Histone  H315,16. necessary for accurate completion of mitosis Inhibition of AK-B activity can lower 
the H3 phosphorylation, as a result of which improper condensation of chromosome and in-complete cytoki-
nesis occurs, ultimately leading to cell apoptosis. Its over-expression is found in multiple human cancers such as 
mesothelioma, malignant endometrium, glioblastoma, non-small cell lung carcinoma, hepatocellular carcinoma, 
testicular germ cell tumours, oral cancer, thyroid, ovarian, colorectal and prostate  cancer17–20.

Aurora kinase C particularly is found in the testes and plays an important role in spermatogenesis and regu-
lates the movement of flagella and  cilia21.

Structurally, Aurora kinases are comprised of three domains: the N-terminal domain, followed by a conserved 
kinase domain, and a C–terminal domain. The N-terminal domain exhibits sequence dissimilarity thus providing 
selectivity for protein–protein interactions. The kinase domain constitutes a β-stranded lobe and an α-helical lobe 
on the N-terminal and C-terminal respectively connected by a hinge region. The autophosphorylation of Thr 
288 (AurA), Thr232 (AurB) and Thr195 (AurC) in the catalytic T-loop region of the kinase domain’s C-terminal 
lobe results in conformational changes thereby activating the kinase  domain22,23. Aurora kinases are considered 
as potential drug targets for tumour remedy due to their strong association with  tumorigenesis24.

A number of small molecules inhibitors against AK-B have been reported to date. A classification for such 
compounds has been reported by Yan and colleagues who utilized a machine learning algorithm (Self-Organizing 
Map and Support Vector Machine) to classify Aurora kinase inhibitors into three classes, namely dual Aurora-A 
and Aurora-B inhibitors, Aurora-A selective inhibitors and selective inhibitors of Aurora-B25. Aurora kinases are 
effectively inhibited in numerous preclinical cell line and animal models. Several small molecule inhibitors have 
been developed and are indifferent stages of clinical trials. Uptil now only ten clinical trials have been reported, 
using inhibitors targeting specifically AK-B and most of them are still in phase I  stage26 such as AK-B selective 
inhibitors Barasertib (AZD1152)27–31,  Chiauranib32,33,  BI84732534, PF-0381473535,36,  GSK107091637–39, TAK-90140 
and  hesperidin41 and the pan Aurora A/B inhibitors VX-68019 and  ZM44743917–19,29. Most of these inhibitors are 
ATP-competitive with a planar heterocyclic ring system that can reside in the adenine-binding region and mimic 
adenine–kinase interactions. These inhibitors are derivatives of indole, bis-indole, pyrrolopyrazole, pyrimidine, 
thiazolo-quinazoline, quinazolin, pyrazoloquinazoline, fused tricyclic structures, and some other  structures42. 
In addition, the prospect of designing potent allosteric inhibitors for AK-B appears very promising from the 
clinical perspective, because it may generate selective  inhibitors43. Recently, Colombo and colleagues proposed 
a new possibility in pursuit of designing selective chemical tools by perturbing the intermolecular interaction 
between chaperone and kinases thus, targeting protein folding and rendering it  inactive44. Unfortunately, despite 
intensive efforts, no small molecule inhibitor of AK-B has been approved by the FDA, thus demanding the 
development of new inhibitors.

In the current study, a multiplex computational approach including molecular docking, 3D-QSAR, pharma-
cophore-based screening, MD simulation and binding free energy calculation was performed to investigate the 
binding mechanism of AK-B inhibitors. The 3D-QSAR model was built using CoMFA and CoMSIA approaches 
to explore the structural requirements of inhibitors impacting their inhibitory activities. Furthermore, to inves-
tigate the conformation and contribution of key residues to the potency of compounds, docking, MD simula-
tions and binding free energy calculations were performed. In this study our main focus is to demonstrate a 
combined computational approach: the combination of QSAR with simulation, specifically in combination 
with the  WaterSwap45 method. This is first such combined application according to best of our knowledge. By 
understanding the binding mode of aurora kinase B inhibitors, we can get deeper insights into the structural 
requirements that may produce more selective and potential AK-B inhibitors.

Materials and methods
Data set. A structurally diverse dataset of 57 compounds was collected from literature to perform 3D-QSAR 
studies probing the effect of inhibition against AK-B46,47. On the basis of structural diversity and activity, 45 out 
of 57 compounds were randomly selected as the training set however, the remaining 12 compounds were used 
as the test set. The training set was used to build the 3D-QSAR model while the test set compounds were used 
for the verification of the developed models. The test compounds evenly covered the range of biological activity 
and structural diversity of the dataset. Observed biological activities  (IC50) were changed to negative logarithm 
 (pIC50) before 3D-QSAR model generation. The chemical structures and the experimental activities of com-
pounds are presented in Table S1 (supplementary material).

Structure preparation. The crystal structures of Aurora kinase B crystallized with inhibitors were taken 
from the protein data bank (Table 1). The structure preparation was performed in  MOE48 and the missing loops, 
steric clashes and missing atom names were corrected. The hydrogen atoms were added, water molecules were 
removed, and the energy minimization was performed using Amber99 force field. The protonation state of every 
titratable residue within the complexes was assigned at physiological conditions using the Protonate-3D module 
of  MOE48 and their conformations were produced with default parameters by using the Conformation Search 
option. Finally, the protein complex was minimized (giving a RMSD of 0.3 Å by selecting heavy atoms) using 
the force field  AMBER9949,50.

Pharmacophore modeling. The MOE option in  LigandScout56 was used to build the pharmacophore 
models on the basis of available crystal structures of AK-B complex (Table 1). Hydrophobic (HY), hydrogen-
bond donor (HBD), hydrogen-bond acceptor (HBA) and exclusion volume features were considered for the gen-
eration of pharmacophore model. Numerous pharmacophore models were generated with significant statistical 
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parameters. The best model was designated on the basis of a good correlation coefficient (r) and rmsd values. 
Moreover, the developed model was further validated by actives, decoys and random sets of molecules.

Molecular docking. The MOE software package (Molecular Operating Environment, 2015.01) was used to 
perform docking. The crystal structure of human AK-B complex (PDB ID: 4AF3) was retrieved from the Protein 
Data  Bank51 and used for docking studies as it is the only available crystal structure of human Aurora kinase B. 
The generated conformations were minimized using the MMFF94 × force field (Merck Molecular Force Field 
94 × gradient: 0.05 kcal/mol). The Triangle Matcher placement method was used for molecular docking with 
London dG and Generalized-Born Volume Integral/Weighted Surface area (GBVI/WSA) scoring  function48. 
All compounds presented in Table  S1 were docked successively in the binding cavity of AK-B using default 
parameters. The lowest score docked pose of every compound was considered for protein–ligand interactions 
and QSAR modeling.

CoMFA and CoMSIA analysis. The  CoMFA57 potential fields (steric and electrostatic) were calculated at 
every point of regular grid spacing lattice of 2.0 Å. A probe of  sp3 carbon atom was used to calculate the electro-
static and steric field energies with contributions trimmed to 30 kcal/mol and the remaining default parameters 
were used. For  CoMSIA58 studies, five different descriptor fields such as electrostatic (E), steric (S), hydrophobic 
(H), hydrogen bond donor (HBD) and acceptor (HBA) were calculated. Descriptors used for CoMSIA were 
obtained by the same lattice box as used for CoMFA method. Both CoMFA and CoMSIA methods use the 
same function depicted by Gaussian function and raises the hydrogen bond donor, acceptor and hydrophobic 
fields. CoMSIA results illustrate a comparatively small effect from molecule corresponding rules and can more 
instinctively clarify a compound’s SAR relationship. The intrinsic defects of CoMFA method can be overcome 
by CoMSIA method but this does not essentially obtain better  results59. Thus, in the current study, CoMFA and 
CoMSIA methods can validate and complement each other to achieve consistent predicted models.

Partial least square analyses (PLS). To associate the CoMFA or CoMSIA fields of 3D-QSAR utilizing 
AK-B inhibitors and their biological activities, partial least square (PLS) analysis (regression analysis) was per-
formed. The optimal number of components that produces most promising extrapolative models was recognized 
by using cross-validation leave-one-out (LOO) method. The column filtering value was set at 2.0 kcal/mol to 
make better signal to noise ratio, by removing some lattice points, with less difference in energy than threshold 
value. The PLS analysis was performed using no column filtering with non-cross-validation method. The mean 
values for cross-validation correlation coefficient  q2 and the resultant standard error of prediction (SEP) values 
were achieved by reiterating every random run of cross-validation.

Validation of CoMFA and CoMSIA models. The robustness and internal prediction power of the gen-
erated models was assessed by cross-validation leave one out (LOO) method. The  q2 and  r2 values showed the 
internal prediction power and sturdiness of the model respectively. The average values of  r2  (rboot

2) and SEE (SEE 
boot)) were calculated, a bootstrapping analysis of 60 runs was also performed to measure the biasness of the 
calculation. It has been reported that only  q2 value is not enough to assess the predictive quality of 3D-QSAR 
model thus external validation must be applied. For this purpose, a total of eleven test set compounds that were 
not utilized previously to build the QSAR model were used for the external validation. The external test set 
validation is considered as the most reliable validation method to evaluate the extrapolative capability of the 
developed model. The predictive ability of CoMFA and CoMSIA models was assessed externally by forecasting 
the biological activity of independent set of test compounds. The model prediction power was expressed by  r2 
 (rpred2 > 0. 6), variance in prediction  (Qext2 > 0. 5), standard error of prediction (SEP) and external standard 
deviation error of prediction (SDEPext).

The given equation was used to calculate R2
pred

.

(1)R2
pred =

1− PRES

SD

Table 1.  X-ray crystal complex structures of AK-B51–55.

Structure no. PDB ID Resolution

1 4AF3 2.75 Å

2 2BFY 1.8 Å

3 2VGO 1.7 Å

4 2VGP 1.7 Å

5 4B8M 1.85 Å

6 4C2V 1.49 Å

7 4C2W 1.7 Å

8 3ZTX 1.95 Å
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where PRES indicates the sum of squared deviations between biological and predicted activity values while SD 
indicate the sum of squared deviations between average biological activity of compounds in the training set and 
experimental activity of the test set compounds.

The cross-validated coefficient  (q2) was calculated by the following given formula:

where yi and ỹi are the experimental and the predicted values, respectively; and y is the averaged value for the 
variables of the training set.

Molecular dynamics simulations. To test the stability of the docked complexes, and for insight into 
the binding interactions in the inhibitor complexes, molecular dynamic simulations were performed with the 
AMBER 12 simulation software  package49 using the  ff14SB60 and ff99SB force  field61. The Acyl-54 (most active), 
Acyl-24 (inactive), ZINC11253730, ZINC42019540, ZINC65618522 and ZINC07046484 compounds bound in 
target structures were obtained from molecular docking, as described above. The atomic charges of the com-
pounds were calculated based on the electrostatic potential from single point HF/6-31G* calculations using 
Gaussian 03 and fitted using RESP in the Antechamber  module62. The GAFF force  field63 was used to para-
metrize the compounds. LEaP module was used to assign Hydrogen atoms by setting default protonation states 
of ionizable residues at a neutral pH. The systems were solvated using the TIP3P water model and a minimum 
of 10  Å solute-wall distance was used to cover every complex. Each complex was neutralized with chloride 
counter ions. The solvated systems were energy minimized by following two stages of steepest descent algorithm 
and conjugate gradient algorithm. The molecular dynamic simulations were performed using heating, density 
equilibration and production run in Berendsen isothermal isobaric ensemble MD. The systems were gradually 
heated up to 300 K in 500 ps at constant volume and constant pressure (1 atm) with a Langevin thermostat that 
was used to maintain a temperature of 300 K. While an isotropic pressure scaling algorithm was used to maintain 
the pressure of 1 bar, using a pressure relaxation time of 1 ps. Then every system underwent production run of 
200 ns. The particle mesh Ewald method was used for calculating long-range electrostatic interactions, with a 
10 Å cutoff. The SHAKE algorithm was used to constrain bonds involving hydrogen atoms to their equilibrium 
length. After equilibration, coordinates were saved every 50 ps. These collected trajectories were used for struc-
tural and energetic analysis of each system.

Binding free energy calculations. Binding free energy of all systems was calculated by two different 
methods:  WaterSwap45,64 and MM(PB/GB)SA65. WaterSwap is an absolute binding free energy method that 
avoids the cavitation and some other issues of double-decoupling  methods45. WaterSwap calculates the free 
energy for exchanging a bound ligand with a flexible water cluster of similar shape and size. The free energy 
difference is calculated by Monte Carlo replica exchange simulations along the Water Swap Reaction Coordi-
nate. It uses an explicit treatment of water, so includes the detail of protein–water, protein–water–ligand and 
ligand–water interactions that are missing in continuum solvent  methods64. WaterSwap uses a reaction coordi-
nate which swaps the bound ligand with an equivalent volume and shape of water, moving the ligand from the 
protein into bulk solvent, with simulations at points along this WaterSwap Reaction Coordinate, using a dual 
topology algorithm. It uses an identity  constraint66 to define the water cluster: this identity constraint places 
identity points in space instead of labelling water molecules to define water molecules in the binding site. The 
absolute binding free energy is calculated by replica exchange thermodynamic integration  method67. The end 
points are a pair of simulation boxes (coupled to the same thermostat), one being a water box (box of water 
molecules) and the other is protein box contain protein–ligand complex solvated in periodic boundary box of 
explicit water molecules.

With the identified cluster, the total energy of the system is assessed using the following equation,

where Eproteinbox is the energy of all the molecules in the protein box except the ligand, Ewaterbox is the energy of all 
the molecules except the water cluster identified in the water box, Eligand represents the intramolecular energy 
of the ligand, Ecluster is the intermolecular energy between all the water molecules present in the water cluster, 
Eligand:protein box is the energy of interaction between the ligand and all atoms of the protein box, Ecluter:water box is 
the resultant energy of interactions between all water molecules and water clusters of the water box, λ is the 
WaterSwap Reaction Coordinates, used to scale Ecluster:water box by 1 − λ.

The decoupling of the ligand from the protein box is associated with decoupling of water cluster from water 
box. Simultaneously, cluster of water coupled to the protein box and ligand is coupled to the water box. This 
energy calculation between water molecules and the ligand in the protein box is represented by Eligand:water box, 
and the molecules and water cluster in the box is presented as Ecluster:protein box and scaling by λ. The λ is a single 
coordinate reaction that is changed from λ = 0 (ligand bound to the protein in protein box) to λ = 1 (unbound 
ligand and is in bulk water). Moreover, it corresponds to a transferred of water cluster to the protein box for 
filling the resulting cavity.

The absolute binding free energy is calculated by thermodynamic integration (TI) using the gradient of energy 
calculations with respect to λ,

(2)Q2
= 1−

∑
(

yi − ỹi
)

�
(

yi − y
)2

(3)
E (�) = Eproteinbox + Ewaterbox + Eligand + Ecluster + (1− �)

(

Eligand:proteinbox + Ecluster:waterbox
)

+ (�)
(

Ecluster:proteinbox + Eligand:waterbox
)
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The ensemble average is calculated at different values of λ to obtain free energy gradient across λ,

To get average free energy gradients, Monte Carlo (MC) sampling for each λ must be achieved. The binding 
free energy is finally obtained by integrating the gradient across λ,

WaterSwap calculations of absolute binding free energy were performed with the Sire package using the 
WSRC  module45, these calculations used the same forcefield and solvent model as in the molecular dynamics 
 simulations67. For each system, five WaterSwap calculations were performed of absolute binding free energies. 
The starting structures for WaterSwap calculation taken from clustering of the 100 ns trajectories. Errors were 
calculated from standard errors on these averages. The WaterSwap binding free energies were calculated by 
replica-exchange thermodynamic integration over 16 λ windows (0.005, 0.071, 0.137, 0.203, 0.269, 0.335, 0.401, 
0.467, 0.533, 0.599, 0.665, 0.731, 0.797, 0.863, 0.929, 0.995) across the WaterSwap Reaction Coordinate. For each 
window, 50 million Monte Carlo steps were performed, and absolute free energies calculated by Free Energy 
Perturbation (FEP), Thermodynamic Integration (TI), and Bennetts algorithm, from the free energy gradient 
calculated over the last 30 million steps. The “Set A” soft-core parameters are used in the simulations with 15 Å 
Lennard–Jones and coulomb non-bonded cutoff, the shifted force field used to account long range electrostatics 
and reflection sphere used to restrict sampling within 15 Å radius of compound. VMD 1.9.168 used to visualize 
the trajectories. Analysis and visualization were carried out with alignment of protein backbone using RMSD 
tool in VMD.

The binding free energy of the system was also calculated separately by a completely different approach, 
namely the MM(PB/GB)SA method implemented in AMBER  1669. This is an implicit solvent approach, which 
can give useful results in some cases. 1000 frames were extracted from the simulation trajectories and MMPBSA.
py module of AMBER was used for calculation analysis. In the MM(PB/GB)SA approach, the binding free energy 
is calcualted as the difference between the free energy of complex, and that of the ligand and receptor.

Furthermore, the binding free energy was decomposed into residue contributions to identify amino acids 
that contribute to binding  affinity70,71. The binding interaction of each inhibitor–residue pair includes four terms:

where the van der Waals contribution (ΔGvdw) and the electrostatic contribution (ΔGele) are calculated using 
the Pmemd.cuda  program72 in Amber 16. The nonpolar solvation contribution (ΔGnonpol) is the contribution of 
nonpolar to the solvation free energy and calculated from the solvent accessible surface area (SASA) model by 
the LCPO method: (ΔGSA = 0.0072 × ΔSASA). The polar solvation contribution (ΔGpol) was computed using the 
generalized Born module in Amber16.

Results and discussion
Molecular docking. Before starting the docking, all available crystal structures of AK-B protein were 
assessed to evaluate the degree of similarity in their binding sites. The results indicate that most of the bind-
ing site residues are conserved within the binding site (Figure S1). After evaluating the degree of similarity, all 
compounds were docked to the binding site of 4AF3 protein. The docking produced 30 conformations for each 
compound. The clusters were examined, and the final docked conformation was selected on the basis of scores. 
The binding pocket of AK-B is composed of residues Leu83, Phe88, Val91, Ala157 and Leu207. The docked 
conformation of VX-680, which is a cognate ligand of aurora kinase B, is shown in the Fig. 1. It was observed 
that compound acyl-54 was well located within the binding pocket of AK-B and showed similar type of interac-
tion with the active site residues of AK-B as presented by cognate ligand. The amino group of Ala157 forms two 
hydrogen bonds with pyrazolidine and linker nitrogen of VX-680 at a distance of 1.92 and 2.39 Å. Additionally 
Leu83, Val91 and Phe88 are involved in hydrophobic interaction while Phe88 forms pi–pi interaction with the 
benzene ring of VX-680. In case of acyl-54, a hydrogen bonding interaction is found between amino group of 
Ala157 and carbonyl group of acyl-54 at a distance of 1.85 Å. Another hydrogen bond is found between Glu155 
and NH group of Acyl-54 at a distance of 3.05 Å. These hydrophilic interactions have been already reported in 
the  literature73. As well as docking with the  4AF351 structure, the selected compounds were also docked to the 
active site of other AK-B crystal structures (Table 1). Further, these docked conformations were used in receptor-
guided 3D-QSAR studies.

Molecular alignment. In CoMFA and CoMSIA studies, 3D structures of the molecules are required to 
be aligned based on a suitable conformational template and its substructure, which taken as a “bioactive” con-
formation. Molecular alignment based on the common scaffold has been extensively  used74,75; conversely it is 
thought to be more reasonable if the model is developed and evaluated on the active conformations. Moreover, 
the alignment based on docked conformations will help in the contour map analysis of the models in a structure-

(4)dE/D � =
(

Ecluster:proteinbox + Eligand:waterbox
)

−
(

Eligand:waterbox + Ecluster:waterbox
)

(5)dG/d� = dE/d�

(6)Gbind =

∫ 1

0
(dG/d�) d�

(7)�Gbinding = Gcomplex−Gprotein− Gligand

(8)�Ginhibitor−residue = �Gvdw + �Gele + �Gpol + �Gnonpol
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based manner. In the present study, molecular alignment was achieved via molecular docking (Fig. 2). As a 
result, all the compounds were aligned in the active site for building 3D-QSAR models.

CoMFA and CoMSIA statistics. The CoMFA and CoMSIA models were built using Sybyl7.3 to assess 
the changes in three-dimension structural features of chemical substitution affects the anticancer activity of 
acylureidoindolin derivatives. The statistical values of these models are summarized in Table 2. These statistics 
obtained after omitting three outliers Acyl-43, Indoline-24B and Indoline-25H. The cross-validation coefficient 
value of 0.68 was achieved for CoMFA model with optimum number of component 6 having standard error of 
prediction 0.021 while non-cross validation coefficient analysis was done with 6 number of optimal component 
in conventional  r2 of 0.971, a standard error of estimation (SEE) value of 0.203 and F value of 253.86. The result-
ant field contributions were 63.6% and 36.4% for steric and electrostatic field respectively, displaying a higher 
effect of the steric field. As compared to CoMFA, CoMSIA model based on five different fields (steric, electro-
static, hydrophobic, hydrogen bond donor and acceptor fields) gave a  q2 (cross validation coefficient) value of 
0.641 and  r2 value of 0.933 with 6 optimum number of components, standard error of estimation (SEE) of 0.2110 
and F value of 122.544. The field contributions of electrostatic, steric, hydrophobic, donor and acceptor fields 
were 0.252, 0.160, 0.189, 0.101 and 0.298, respectively. These values indicate that hydrophobic field made greater 
contribution in ligand–protein binding and inhibitory activity of AK-B. Our developed models predicted the 

Figure 1.  Docking of compounds into the binding site of Aurora kinase B. (A) Compound VX-680, (B) Acyl-
54. Compounds and active site residues for Ligands and the important residues for binding interaction are 
represented by stick and line models 1 (A), while in 1 (B) non-polar and polar residues are presented in green 
and pink circles; hydrogen bond interaction is indicated by green dotted arrows; the shape of the binding site 
indicated by the proximity contour (dotted lines) surrounding the ligand.

Figure 2.  The alignment of all acylureidoindolin derivatives.
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correlation coefficients  r2
pred values 0.733 and 0.947, respectively. Relatively, the CoMSIA model presented better 

competency in predicting the biological activity of external test set compounds (Fig. 3). The statistical results 
indicate that these developed models are robust enough to design novel and potent inhibitors. Observed and 
predicted pIC50 values of CoMFA and CoMSIA model was shown in Table 3.

CoMFA and CoMSIA model analysis based on predicted  pIC50 of AK‑B inhibitors. The CoMFA 
and CoMSIA model results are summarized in Table 2. The generated 3D-QSAR models were found to be reli-
able and satisfactory if  q2 value is greater than 0.50 and  r2 value is greater than 0.90, These statistical keys, rep-

Table 2.  Statistical parameters of 3D-QSAR model for internal validation.

PLS statistical parameters CoMFA CoMSIA

q2cv (LOO) 0.624 0.577

ONC 6 6

r2ncv 0.924 0.95

F-value 311.64 265.37

Fraction of field contribution

Steric 0.406 0.118

Electrostatic 0.594 0.335

Hydrophobic 0.219

Hydrogen bond donor 0.168

Hydrogen bond acceptor 0.16

Figure 3.  Scatter plots of experimental versus predicted  pIC50 for the optimal (A) CoMFA and (B) CoMSIA 
model of training and test set.
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Table 3.  Compounds with their reported  pIC50 and predicted  pIC50 by CoMFA and CoMSIA Model along 
with their residuals.

Compound no. pIC50 CoMFA predicted Residual CoMSIA predicted Residual

Training set of the best model

Indoline11A 7.6 7.26 0.34 7.196 0.4

Indoline11B 7.53 7.651 − 0.12 7.501 0.03

Indoline12 8.23 8.211 0.02 8.436 − 0.21

Indoline13 7.03 7.027 0 7.07 − 0.04

Indoline14 6.6 6.506 0.09 6.653 − 0.05

Indoline14B 6.46 6.381 0.08 6.561 − 0.1

Indoline24A 3.1 3.331 − 0.23 2.876 0.22

Indoline24C 4.06 3.644 0.42 3.826 0.23

Indoline24D 3.68 3.792 − 0.11 3.778 − 0.1

Indoline24G 3.6 4.164 − 0.56 4.091 − 0.49

Indoline24H 3.99 4.115 − 0.12 4.102 − 0.11

Indoline24I 4.49 4.463 0.03 4.574 − 0.08

Indoline25A 4.97 4.816 0.15 4.858 0.11

Indoline31A 6.89 6.874 0.02 6.824 0.07

Indoline31B 7.99 8.163 − 0.17 8.185 − 0.19

Indoline31C 7.48 7.668 − 0.19 7.695 − 0.22

Indoline31D 7.2 6.987 0.21 7.037 0.16

Indoline31F 6.46 6.171 0.29 6.265 0.2

Indoline31G 6.79 7.045 − 0.25 7.05 − 0.26

Indoline31H 7.59 7.533 0.06 7.137 0.45

Indoline32 8.35 8.407 − 0.06 8.393 − 0.04

Indoline33 7.15 7.184 − 0.03 7.141 0.01

Indoline34 7.04 7.045 − 0.01 7.095 − 0.06

Acyl-32C 8.19 8.215 − 0.03 8.139 0.05

Acyl-32F 7.39 7.487 − 0.1 7.623 − 0.23

Acyl-32G 7.82 7.647 0.17 7.826 − 0.01

Acyl-32H 7.74 7.513 0.23 7.673 0.07

Acyl-32I 7.53 7.336 0.19 7.463 0.07

Acyl-32J 6.8 6.665 0.13 6.974 − 0.17

Acyl-35 7.26 7.365 − 0.11 7.424 − 0.16

Acyl-38 8.74 8.769 − 0.03 8.781 − 0.04

Acyl-39 8.92 8.991 − 0.07 8.808 0.11

Acyl-40 8.82 8.798 0.02 8.757 0.06

Acyl-41 8.52 8.614 − 0.09 8.427 0.09

Acyl-42 8.64 8.78 − 0.14 8.724 − 0.08

Acyl-44 8.52 8.528 − 0.01 8.385 0.14

Acyl-45 8.82 8.866 − 0.05 8.836 − 0.02

Acyl-48 7.51 7.454 0.06 7.447 0.06

Acyl-49 7.74 7.572 0.17 7.833 − 0.09

Acyl-51 7.79 7.86 − 0.07 7.638 0.15

Acyl-52 7.98 8.052 − 0.07 7.895 0.09

Acyl-53 8.12 8.129 − 0.01 8.065 0.05

Acyl-54 9.4 9.45 − 0.05 9.467 − 0.07

Test set compounds

Indoline31E 7.27 7.228 0.04 6.304 0.97

Indoline31I 7.53 7.413 0.12 6.554 0.98

Indoline35 8.54 8.358 0.18 7.953 0.59

Indoline36 7.13 7.208 − 0.08 7.864 − 0.73

Acyl-32A 7.83 7.902 − 0.07 7.997 − 0.17

Acyl-32B 8.28 7.65 0.63 7.944 0.34

Acyl-32D 8.11 8.366 − 0.26 7.934 0.18

Acyl-32E 8.19 7.616 0.57 7.915 0.27

Acyl-34 8.72 8.412 0.31 8.741 − 0.02

Acyl-47 6.66 6.907 − 0.25 5.896 0.76

Acyl-50 7.77 7.456 0.31 6.5 1.27
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resenting that both models have a robust extrapolative power by demonstrating a good correlation between the 
predicted and experimental log  IC50 values. The stability and robustness of the model is further confirmed by 
bootstrapping technique for 60 runs. The average  r2  (r2

boot) and SEE (SEE boot) of these analyses of CoMFA and 
CoMSIA model are 0.9649, 0.013 and 0.941, 0.021 respectively. The greater value of  r2

boot and lowest value of SEE 
describe the robustness of generated CoMFA and CoMSIA model. Further robustness of these model was tested 
by shuffling the log  IC50 values. The resulting  q2 and  r2 values were in the range of − 0.059 to 0.085 and − 0.006 
to 0.030 respectively. The predicted  pIC50 values of acyl and indoline derivatives are listed in Table 3. The cor-
relations between calculated and predicted  pIC50 values for the training and the test sets are depicted in Fig. 3. 
External validation (using a test set) was also carried out to evaluate the stabilities and the predictive capability of 
the generated QSAR model. These statistical calculations validated the good ability of our CoMFA and CoMSIA 
model to predict the external dataset.

CoMFA and CoMSIA contour map analysis. To visualize the effects of CoMFA and CoMSIA fields on 
acyl and indoline derivatives in three dimensional spaces, the contour plots for the final model of CoMFA and 
CoMSIA are shown in Fig. 4. The contour analysis might be effective in recognizing the significant areas where 
changes in all five fields around the molecule describe the differences in  IC50 values. The field type “standard 
deviation and coefficient” (stdev*-coeff) was used for building the contour maps. The compound acyl-54 (most 
active compound) was overlaid on contour plots for visualization.

In CoMFA model, the sterically favorable and unfavorable areas are highlighted by green and yellow colors 
respectively. While electrostatic map of CoMFA model shows blue and red color for electron donating and 
withdrawing group respectively. The CoMFA contour map is shown in Fig. 4(A–D).

It is shown that the sterically favorable contour is present near the linker which is adjacent to the core 
structure of biologically most active compound (acyl-54) indicating that the bulky substitution at that position 
is favorable (Fig. 4A). This is observed for two compounds, acyl-52 and acyl-53. Another green contour found 
near the carbonyl group of linker region also explains the sterically favorable substitution at this position. One 
of the green contours found near the methoxy group of flouro-benzoyl around Phe88 indicates that the methoxy 
group at this position is favorable for the activity of indoline derivatives, while in the case of indoline-14, 24a, 
24c, 24g, 25a, 25h many fold decrease in inhibition is observed due to absence of methoxy group as compared 
to most active compound. A yellow contour is present near the CH2 of NH(CH2)2pyrrolidin-1-yl methyl group 
which indicates that the less bulky substitution is suitable for this position.

The CoMFA electrostatic maps displayed in Fig. 4(C,D), represented by red and blue color contours, indicate 
electron withdrawing and donating groups respectively. Two red contours found near the carbonyl oxygen of 
the ureido moiety and the side chain the of pyrrole ring indicate that electron withdrawing group around these 
areas is responsible for increasing the AK-B inhibitory activity. This is verified experimentally by the compounds 
indoline 24a–24i and 25h where decreased in activity is observed in the absence of these carbonyl oxygens. A 
blue contour is found near the NH which is adjacent to 2-floro-4-methoxybenzoyl group which indicates that 
electron donating group at this position is favorable for increasing inhibitory activity. Presence of another red 
contour indicating that 2-fluoro substituent on 4-methoxy benzoyl was required for optimum activity of aurora 
kinase B. Similar results can be observed in case of compound acyl-32a, 32b, 32c, 34 and 35 that do not contain 
fluorine atom at the aforementioned position which is might be responsible for their reduced activity in com-
parison to acyl-54.

The steric and electrostatic contour map analysis of CoMSIA model showed similar results to CoMFA. 
Therefore, the remaining three fields of CoMSIA model (hydrophobic, hydrogen bond donor and acceptor) are 
discussed in this section. The hydrophobic contour analysis of CoMSIA model is represented in Fig. 4(E,F), in 
which white contour is favorable for hydrophilic character while yellow areas were favorable for hydrophobic 
features. A white contour was found near the NH of pyrrole ring demonstrating that the hydrophilic substitution 
at this position was favorable for enhancing its inhibitory activity. At the same time, another large white region 
was observed near ureido moiety which is complementary to the pocket requirement. A yellow contour was 
observed near methyl of pyrrole ring suggesting the significance of non-hydrophobic character at pyrrole ring 
for AK-B inhibition activity as shown in Fig. 4(E,F).

The hydrogen bond donor and acceptor analysis represented in Fig. 4(G,H), the cyan and purple contour 
represent the maps where hydrogen bond donor groups favored and disfavored the activity respectively. Two 
medium sized cyan contours were observed near NH of pyrrole ring and indoline scaffold indicating that it fulfils 
the pocket requirement and responsible for inhibitory activity of indoline derivatives. A purple contour was found 
around the methoxy group of 2-floro-4-methoxybenzoyl indicating that the hydrogen bond donor substituent 
is not favorable in this zone. The structure of compound 32a  (pIC50 = 7.8) and 32b  (pIC50 = 8.2) presented the 
similar results, the only difference in their structure is the replacement of methoxy group by hydrogen in 32b, 
which shows better activity than 32a.

The magenta and red contour of Fig. 4(G,H) revealed the areas where hydrogen bond acceptor groups increase 
and decrease activity, respectively. A red contour near NH of indoline core structure suggested that hydrogen 
bond acceptor group is unfavorable at this position which is also proved experimentally. Another red contour 
appeared near NH of ureido moiety, suggesting that the hydrogen bond donor groups are favorable at this posi-
tion. Two magenta contours were found near the carbonyl oxygen of ureido moiety indicating the importance 
of a hydrogen bond acceptor group at this position for better activity. Here, compounds acyl-32a-32j, 34, 38–53 
with ureido moiety show better activity than those which do not contain ureido moiety such as indol-14-14b, 
24a, 25h. The biological activities of these compounds are lower, consistent with the contour analysis, showing 
that our model is robust enough and can be used for future predictions.
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Figure 4.  CoMFA and CoMSIA contour maps with combination of active and least active compounds. The 
active site residues, most active and inactive compound are presented for the comparison of their position with 
respect to contour maps position. The steric contour depicted in green and yellow contour indicates sterically 
favour and disfavour group (A,B). Electrostatic maps depicted in red and blue color shows favoured level for 
electron withdrawing and donating group respectively (C,D). Similarly, Hydrophobic contour depicted in 
Yellow and white maps indicate favoured and disfavoured regions for hydrophobicity (E,F). Hydrogen bond 
donor field presented in cyan and purple maps indicates the favoured and disfavoured areas for donating 
substituents. Hydrogen bond acceptor field presented in magenta and red contour indicates the favoured and 
disfavoured areas for hydrogen bond acceptor group (G,H).
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Identification of hits via structure‑based pharmacophore. A pharmacophore can be defined as “a 
collection of electronic and steric features which is required for optimum molecular interaction with a spe-
cific biological target, to block its biological  response76.” For successful structure-based pharmacophore virtual 
screening one should know the maximum information about target of interest. To meet this point, we developed 
a robust pharmacophore model by using eight crystal structures of AK-B to identify novel compounds that 
may inhibit AK-B activity. For this purpose, eight basic pharmacophore models were generated, then aligned to 
produce number of shared and merged pharmacophore models to identify the best model with true and high 
active hit rate. The selected model was produced by combination of  4AF351,  2VGO53 and  2VGP55 features i.e. 
two hydrophobic (yellow color), one donor (green), one acceptor (red) and three exclusion volume (grey). The 
selected pharmacophore model with desired features is represented in Fig. 5. The generated pharmacophore 
model was then assessed for its capability to discriminate between true positive and true negative by actives, 
random and decoys dataset. The hit rate of the best model with these three datasets is 70%, 3% and 10% respec-
tively. Compound libraries from  ChemBridge77,  MayBridge78,  NCI79 and  ZINC80 databases (> 30 million) were 
first filtered via drug-like and lead-like parameters to give 17.4 million molecules that were further decreased 
in number (16.9) by removing duplicates. The selected model was used to screen filtered databases and ~ 23,000 
hits were obtained. The 70% of active lie in top 25% of the dataset which shows the reliability of pharmacophore 
model, these results were also supported by statistical techniques i.e., AUC and enrichment factor. ROC curve 
was calculated to measure the sensitivity and specificity between active and decoys in order to avoid false posi-
tive prediction on the basis of pharmacophore fitness score and the value of AUC was found to be 0.73. Fur-
ther dataset was reduced by similarity signature technique via ROC software with 0.6 cut-off. After similarity 
search, > 2000 compounds were used for biological activity prediction by previous developed 3D-QSAR model. 
Finally, 17 compounds were considered as hits on the basis of pharmacophore fit score, docking interaction and 
3D-QSAR predictions.

Binding mode prediction for active compounds by docking. Molecular docking was performed 
using the Dock suite in  MOE48 to predict the most plausible binding conformation of the compounds. Docking 
is a computational technique that aims to predict the binding position poses of small molecules in protein bind-
ing sites, with scoring functions used to evaluate which poses are best matches to the protein binding site. In this 
study, two aspects are analysed to measure the quality of docking method: first is docking program should be 
able to reproduce the experimentally determined crystal pose and second the scoring function should be able to 
discriminate between true binders and non-binders (active and inactive).

Primarily acylureidoindolin derivatives as potential Aurora-B inhibitors are docked in the active site, to 
investigate the binding site of AK-B.

After prediction of hit compounds by the 3D-QSAR model, seventeen compounds were selected based on 
pharmacophore fit score, docking scores (London dG and GBVI/WSA dG) and prediction by 3D-QSAR models. 
As the most representative sample, the binding mode of AK-B (PDB ID:  4AF351) was selected to continue with 
further docking analysis. This analysis included assessing the compounds position inside the binding cavity and 
their hydrogen bond formation pattern. It is evident that these compounds bind in the catalytic pocket of AK-B. 
The interactions specifically with Lys106, Glu155 and Ala157 in the hinge region and Leu83, Val91 and Leu207 
in the conserved hydrophobic region are consider for the binding affinity. Only four compounds from the ZINC 
database showed hydrogen bond interactions with Lys106, Glu155 and Ala157 as shown in the Fig. 6. The pro-
posed binding modes of the compounds ZINC11253730, ZINC42019540, ZINC65618522 and ZINC7046484 
are shown in Fig. 6. Analysis of the binding mode of compound ZINC11253730 showed that it interacted via 

Figure 5.  Selected structure-based pharmacophoric map is the combination of shared pharmacophores 
generated by 2BFY, 2VGP and 4AF3. The model comprised of seven features included two hydrophobic (yellow 
color), one donor (green vector), one acceptor (red vector) and three exclusion volume (grey color).
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Figure 6.  2D Ligand interaction diagrams for the top scored pose of selected compounds for docking into the 
binding site of the AK-B using MOE software; non-polar and polar residues are presented in green and pink 
circles; hydrogen bond interaction is indicated by green dotted arrows; Shape of the binding site indicated by the 
proximity contour (dotted lines) surrounding the ligand and available space to the more outward-facing parts of 
the ligand.
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hydrogen bond between the carbonyl oxygen of the carbamoyl acetamide and the NH of Ala157 with the dis-
tance of 2.64 Å. Another hydrogen bond was observed between the side chain of Glu155 and carbonyl oxygen of 
ZINC11253730 at a distance of 2.36 Å. Asn206 also attached via hydrogen bond that radiated from its side chain 
oxygen and targeted the CN of compound with the distance of 3.5 Å. Besides hydrogen bonds, the molecule also 
interacted to the target protein via hydrophobic interaction through its benzonitrile ring to the phenyl ring of 
Lys106. Similarly, compounds with zinc identification code ZINC65618522 and ZINC7046484 interacted effi-
ciently with Ala157 and Glu155 through hydrogen bond of ~ 3.0 and ~ 2.5 Å respectively. These compounds also 
bound through hydrophobic interaction via their phenyl ring with the five-membered ring of Pro158. Another 
compound, ZINC42019540 (which is similar to ZINC11253730) interacted through two hydrogen bonds with 
the backbone NH of Ala157 and carbonyl oxygen of compound mentioned in the Fig. 6, however, Leu83, Phe88, 
Pro158 and Leu207 residues formed CH-π and π-π interactions with all these compounds.

Stability of complexes and binding mode analysis. Initially, replicates of 200  ns MD simulations 
were performed with both forcefields to explore the binding of the reported inhibitors to AK-B protein. In this 
regard a total of eight simulations were performed using crystal complex (4AF3) and the reported most active 
inhibitor (Acyl-54) of acyl ureido indoline derivative. The results indicate that ff14SB force field is more suitable 
for AK-B system than ff99SB due to excessive structural drift in the activation loop of AK-B. Detailed results 
for both forcefields are provided in the SI (Figure S2–S3). After analyzing the results with both force fields, the 
ff14SB force field was finally used to run the 200 ns MD simulations of remaining complexes with Acyl-24, 
ZINC11253730, ZINC42019540, ZINC65618522 and ZINC07046484. Simulation convergence and system sta-
bility were monitored by computing root mean square deviation (RMSD) of backbone atoms C, Cα, N and O 
with respect to the starting structure (Fig. 7). The RMSD plot showed stability of all systems at around 5 ns. The 
RMSD values of all systems initially increased during equilibration phase and indicate convergence after 10 ns. 
The active site residues show stability with less deviation. The RMSF plot was also analyzed from 0 to 200 ns for 
the regions which show higher flexibility (Fig. 8). The largest fluctuations were observed in the loop region. The 
binding of compounds did not affect the proteins overall conformational diversity. The interaction analysis in 
terms of hydrogen bonding and hydrophobic interactions and their occupancy were calculated during simula-
tion (Figure S4–S5).

The reference compound VX-680 binds deeply within the active site of AK-B via a number of hydrophilic 
and hydrophobic interactions with the residues Lys106, Glu155 and Ala157 (hinge region) and Leu83, Val91 
and Leu207 of hydrophobic region respectively. The amino group linking the pyrazole and pyrimidine ring show 
hydrogen bonding to the carbonyl oxygen atom of Ala157 throughout simulation with 99% occupancy. Another 
hydrogen bond which is not found during docking is observed between the Ala157 and N atom of pyrazole 
ring. The rest of the hydrophobic interactions observed in docking remain stable during the MD simulation. 
The benzene ring of VX-680 forms a pi–pi interaction with residue Phe88. Initially the cyclopropyl ring formed 
hydrophobic interaction with Leu207 but after 2 ns simulation it projected out towards the solvent. The piperazine 
ring is placed in a solvent-exposed region of the cavity and encircled by Arg81, Leu83, and Gly160. In case of the 
most active compound acyl-54, most of the hydrophobic interactions found by docking were conserved during 
MD simulation, while changes were observed for a number of hydrogen bonds. The NH of Ala157 formed hydro-
gen bond with double bonded oxygen of indoline-2-one moiety with 100% occupancy. Another new hydrogen 
bond was observed during MD simulation between the linker oxygen of acyl-54 and the sidechain of Arg82. 

Figure 7.  The CαRMSD of the MD runs of the six selected AK-B inhibitor complexes (Acyl-54(active), 
Acyl-24(inactive), ZINC11253730, ZINC42019540, ZINC65618522, ZINC07046484) along with the reference 
complex VX-680 during the 200 ns MD simulations.



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18707  | https://doi.org/10.1038/s41598-021-97368-3

www.nature.com/scientificreports/

The strong interaction of important residues with acyl-54 suggested its contribution to their inhibitory activity. 
Similarly, for compounds ZINC65618522 and ZINC7046484, hydrophobic interactions are conserved during MD 
simulation while hydrogen bonds with Glu155 and Ala157 remain unstable throughout the MD simulation. The 
phenyl ring of both compounds undergoes hydrophobic interaction with the side chain residues Phe88, Leu83, 
Lys106, Pro158 and Leu207. ZINC11253730 and ZINC42019540 showed similar interactions with the active site 
of AK-B. The carbonyl oxygen of benzamide is found in the vicinity of hinge region and forms hydrogen bond 
with the backbone and side chain of Ala157 and Glu155 respectively. The benzonitrile ring of ZINC42019540 
shows CH- π and T-shaped π–π stacking interaction with Phe219. In the case of ZINC11253730, this CH–π 
interaction was found between benzonitrile ring and Lys106.

Binding free energy calculations. The interactions were also analyzed by calculation of absolute bind-
ing free energies using the  WaterSwap45,64,81–87 and MM(GB/PB)SA65 methods. Generally, the MM(GB/PB)SA 
method is used to compute the binding free energy by selecting snapshots at regular intervals from the trajec-
tory of entire MD simulation. This method does not consider the protein: solvent and ligand: solvent interaction 
details as it uses an implicit water model. Information concerning bridging interactions of solvent molecule 
between protein and ligand is of great importance. This problem can be avoided by using advanced and more 
convenient assay of WaterSwap, which uses explicit water model, so does not suffer with such limitations. The 
WaterSwap and MMGBSA calculations produce binding free energies in the range of − 20 to − 35.3 and − 36.2 
to − 14 kcal/mol, respectively indicating that all inhibitors bind strongly to the AK-B protein (Table 4). For the 
selected AK-B inhibitor complexes, the range of  IC50 is very narrow which is challenging for computational 
methods. If VX-680 is ignored as an outlier, then the docking score show good correlation coefficient with 
MMGBSA and WaterSwap with correlation value 0.58 and 0.68 respectively. A good correlation (R = 0.662) is 

Figure 8.  The CαRMSF of the MD runs of the six selected AK-B inhibitor complexes (Acyl-54(active), 
Acyl-24(inactive), ZINC11253730, ZINC42019540, ZINC65618522, ZINC07046484) along with the reference 
complex VX-680 during the 200 ns MD simulations.

Table 4.  Binding free energies of the selected inhibitor-bound complexes (VX-680, ZINC11253730, 
ZINC42019540, ZINC65618522, ZINC07046484, Acyl54 and Acyl24) from WaterSwap and MM/(GB/PB)SA 
calculations.

Inhibitor-bound complex

WaterSwap

IC50
nM

MOE Score
kcal/mol

MM/PBSA
kcal/mol

MM/GBSA
kcal/mol

BAR
kcal/mol

FEP
kcal/mol

TI
kcal/mol

Average
kcal/mol

VX-680 − 10.3 − 9.6 − 32.4 ± 0.25 − 36.2 ± 0.23 − 35.1 − 34.9 − 35.8 − 35.3 ± 0.3

ZINC11253730 − 11.4 − 10.2 − 26.2 ± 0.31 − 29.1 ± 0.28 − 24.8 − 23.7 − 24.2 − 24.2 ± 0.4

ZINC42019540 − 11.0 − 10.4 − 16.3 ± 0.24 − 20.0 ± 0.31 − 30.6 − 29.9 − 30.9 − 30.5 ± 0.4

ZINC65618522 − 11.2 − 9.7 − 22.6 ± 0.28 − 25.5 ± 0.25 − 25.4 − 24.8 − 25.6 − 25.3 ± 0.3

ZINC07046484 − 10.3 − 9.8 − 15.4 ± 0.34 − 19.9 ± 0.24 − 25.1 − 25.5 − 24.6 − 25.1 ± 0.4

Acyl54 − 11.5 − 10.8 − 31.8 ± 0.32 − 36.0 ± 0.26 − 28.4 − 27.6 − 27.5 − 27.8 ± 0.4

Acyl24 − 4.5 − 6.5 − 8.19 ± 0.27 − 13.9 ± 0.35 − 20.7 − 19.8 − 20.0 − 20.1 ± 0.3
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observed between MMGBSA and WaterSwap, if compound ZINC42019540 is removed as an outlier. Overall, the 
binding free energies obtained from WaterSwap, MMGBSA and MMPBSA do not differ significantly. If VX-680 
is ignored as an outlier then the MM(GB/PB)SA results predict the correct order of the compounds. The most 
potent compound showed results similar to the reference compound in case of MM(GB/PB)SA method. This 
might be because of hydrogen bonding to the hinge region which is necessary for the inhibition of  kinases73. 
WaterSwap absolute binding free energy calculations for all seven compounds were performed on five repre-
senting structures after clustering of 200 ns MD simulation. The resulting binding free energy per compound 
obtained from FEP, Bennett and TI method (which were combined to produce an average value) can be com-
pared with the experimentally derived binding free energy. The average absolute binding free energy of all sys-
tems is presented in Table 4. Further, the binding free energy is decomposed into individual residue contribu-
tions (Figs. 9–10). The decomposition analysis, highlight the major contributing residues for binding of AK-B 
inhibitors. For visualization of this residue decomposition, the  CHEWD88 plugin for Chimera was used.

Here, the WaterSwap residue-based binding energy decompositions were investigated to highlight the resi-
due which significantly contributed to the inhibitor binding throughout the course of MD simulations. The 
time-averaged values of the total (ΔGresidue) components for all crucial residues that display good binding affin-
ity towards the short listed compounds are shown in the Fig. 10. The Residues with positive values from the 
WaterSwap decomposition analysis favour binding of the water cluster, while negative values indicate that the 
residue contributes favourably to ligand binding. This shows that in case of reference compound 4af3, acyl-54 
and acyl-24 charged residues (Lys106 and Glu161) stabilise the water cluster, while these compounds are stabi-
lised by promising hydrophobic contacts with the neighbouring residues Leu83, Phe88, Val91, Pro158, Gly160 
and Leu207 of the binding site, and all these come into direct contact with the large compounds, as some of 
these contacts are missing in case acyl-24 which is the least compound of the series and also smaller in size. This 
is realized that the binding contribution is increasing with ligand size. Similarly, the short-listed compounds 
ZINC11253730, ZINC42019540, ZINC65618522 and ZINC7046484, are stabilized by hydrophobic contact with 
the surrounding residues Leu83, Phe88, Tyr156, Leu207 and Phe219. Besides hydrophobic interactions, these 
compounds also show negative contribution with the charged residues Glu155 and Ala157 because of their 
involvement in hydrogen bond interaction. The interaction between the compound and Lys165 is unfavourable 
in all complexes except 4af3 and acyl-54, where it is slightly favourable due to its participation in van der Waals 
interactions. After computing residue-based binding free energy decomposition, the results of WaterSwap and 
3D-QSAR maps were correlated. For this purpose, the components of ΔGresidue value were visualised by modifying 
them into a score which is used to colour each corresponding residue differently in molecular viewer. Snapshot 
from the resulting movie of acyl-54 (most active compound) are shown in Fig. 9. The trajectory displays that the 
residue based free energy components are fairly stable throughout the simulation. The residues are coloured by 
their total, van der Waals and electrostatic free energy components.

Additionally, Fig. 9 shows that the charged residues Lys106, Glu155 and Ala157 in the hinge region provides 
strong electrostatic stabilization (highlighted in red); this result is consistent with the 3D-QSAR maps in which 
two red contours found near the carbonyl oxygen of the ureido moiety of acyl-54 indicate that electron with-
drawing group around these areas is responsible for increasing the AK-B inhibitory activity. Additionally, the 
compound attains promising van der Waals stabilisation by residues Leu83, Val91 and Leu207 (shown in blue). 
This decomposition reveals the experimental observation that the compound mostly binds via hydrophobic inter-
actions. This observation is also well correlated with 3D-QSAR maps. The decomposition result also indicates 
that binding affinity of compound may be improved by adding a hydrogen bond donor group to get the same 

Figure 9.  Comparison of 3D-QSAR (left) and WaterSwap(right) maps. The WaterSwap map shows the 
contributions to the free energy, with red values indicating preference of that residue for the electrostatic 
interaction, and blue indicating residues that favour binding of the ligand by van der Waals interactions.



16

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18707  | https://doi.org/10.1038/s41598-021-97368-3

www.nature.com/scientificreports/

hydrogen bonding interactions that are observed to stabilise the swapped water cluster. To best of our knowledge, 
this study provides the first comparison of WaterSwap fields and 3D-QSAR maps.

To get further insight into inhibitor binding, MM/GBSA free energy decomposition analysis was used to 
decompose the total binding free energies into per residue components (Fig. 10). Table 4 lists the binding free 
energies for all inhibitor complexes. The residue decomposition approach suggested that major binding contri-
bution comes from Glu155, Trp156 and Ala157 of site B and Leu83 and Leu207 of site C that play an important 
role in the binding. Free energy decomposition also shows favourable electrostatic contributions by Glu155 and 
Ala157 in both the WaterSwap and 3D-QSAR results.

Conclusions
AK-B is a promising target in the field of  oncology7. The current study employed structure-based pharmaco-
phore modelling and an atom-based 3D-QSAR analysis of acylureidoindolin derivatives as AK-B inhibitors, 
followed by MD simulation and free energy calculations. The selected CoMFA and CoMSIA model exhibited 
good extrapolative power and strong correlation between theory and experiment with cross-validation values 
 (q2) of 0.68, 0.641 and linear regression values  (r2) of 0.971, 0.933 respectively. The contour maps of 3D-QSAR 
indicate that electrostatic and hydrophobic fields explain the activity of acylureidoindolin derivatives. Structural 
requirements including the carbonyl group of ureido moiety and the methoxy of the fluorobenzoyl in the vicinity 
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Figure 10.  Upper panel:  WaterSwap45 residue energy contributions. Positive values indicate stabilization of the 
water cluster, while negative values indicate stabilization of the protein–ligand complex. Lower panel indicate 
the MMGBSA decomposition results of total binding free energy per residue.
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of Phe88 are important for activity. Multiple crystal structures (Table 1) of AK-B inhibitor complexes were used 
to generate structure based pharmacophoric hypothesis to facilitate the identification of novel compound from 
commercial database. All compounds that satisfied the structural pharmacophoric features were analyzed with 
our 3D-QSAR model. To remove false positives, and refine the hits, 7 compounds were evaluated by MD simula-
tion and binding free energy analysis. Decomposition of overall binding energy showed that major contributions 
came from Glu155, Trp156 and Ala157 of site B and Leu83 and Leu207 of site C. These results could help in 
understanding AK-B inhibition and in designing more specific and potent inhibitors against AK-B protein to 
treat various malignant disorders.

Data availability
Data created during this research is provided as supplementary information accompanying this paper.
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