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6 ABSTRACT7

8

This paper proposes a deep learning framework for artefact identification and suppression in9

the context of non-destructive evaluation. The model, based on the concept of autoencoders, is10

developed for enhancing ultrasound inspection and defect identification through images obtained11

from full matrix capture data and the total focusing method. An experimental case study is used12

to prove the effectiveness of the method while exploring its practical limitations. A comparison13

with a state-of-the-art methodology based on image analysis is addressed for the identification14

and suppression of artefacts. In general, the proposed method efficiently provides accurate15

suppression of artefacts in complex scenarios, even when the defect is located below the footprint16

of the ultrasonic probe, and also yields the physical parameters needed for imaging as a by-17

product.18

19

1. Introduction20

Defect characterisation and damage identification are of utmost importance for safety critical industries such as21

the oil & gas and nuclear industry. To this end, intense structural maintenance and inspection campaigns are typically22

carried out periodically as a part of scheduled-basedmaintenance plans. These typically include the use of different non-23

destructive testing (NDT) techniques, e.g. ultrasound, eddy currents, and radiography [1–3]. However, the identification24

and characterisation of defects are limited in most non-destructive evaluation (NDE) modalities by a combination of25

two factors: (1) noise, which may be random if it is aleatory or coherent if it stems from the material microstructure;26

and (2) artefacts that originate from structural features, e.g. ultrasonic echoes from structural features. The presence27

of artefacts in NDT data may lead to costly false positives or potentially catastrophic consequences if they obscure the28

presence of a defect. Distinguishing between defects and artefacts is one of the big challenges for operators. Therefore,29

there is a compelling need for artefacts to be removed from the raw NDT data in an efficient and accurate manner given30

that artefacts restrict the inspection range, hence raising costs.31

Amongst the available NDT techniques, ultrasonic testing and imaging is widely employed and may be heavily32

impacted by artefacts stemming from structural features such as specimen boundaries. Ultrasonic testing can be carried33

out using a single element or an array probe. Themultiple elements of the latter can be simultaneously actuated by using34

a relative time-delay to steer a beam in the desired direction of inspection (i.e. classical beamforming). Alternatively,35

the elements can be excited individually while the data is recorded by all the receivers in multiple A-scans, which36

leads to a larger and more useful amount of information for post-processing (e.g. using synthetic beamforming). This37

technique is also known as full matrix capture (FMC) [4]. Furthermore, ultrasonic images with defect information38

can be produced from the FMC data using different algorithms, e.g. the sector B-scan or the total focusing method39

(TFM) [5–7] using the linear delay-and-sum algorithm. Note that the TFM can focus in both transmission and reception40

at any point within the image, which makes it flexible and useful for NDE. To obtain even more information out of a41

single FMC, themulti-viewTFM [8] can also be adopted, wherebymultiple views from the same region can be obtained42

by considering multimodal ray paths. However, because structural artefacts are unavoidable in FMC data, these may43

lead to imaging artefacts at non-physical locations when multi-view images are formed using more complex ray paths.44

In this context, the structural artefacts recorded in the time-traces of the FMC are unavoidable and reconstruct in the45

ultrasonic images at locations where defects may be present. Note that the area below the footprint of the array probe46
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is particularly challenging to assess as it is where the largest imaging artefacts are formed from the largest structural47

feature echoes. A human operator could be trained to identify such artefacts so they are not wrongly identified as48

defects, but at the cost of lower detection sensitivity in the vicinity of artefacts and greater susceptibility to error.49

Removing the artefacts has previously been addressed by masking parts of the image where artefacts are expected50

to arise based on spatial noise distributions [9]. This suppression is achieved at the cost of masking out areas where the51

defect may lie within the region of interest (ROI), hence reducing the ROI and potentially hiding defects. Alternatively,52

the suppression of artefacts can be addressed in the time-domain by identifying and removing the echoes stemming53

from structural boundaries. This alternative method has the potential to remove the artefacts from the images, while54

avoiding completely masking parts of the image. Therefore, to effectively increase the ROI and make the images easier55

to interpret, an artefact removal approach based on the time-domain is desirable. This could be done by adopting56

the inversion of a physics-based forward model based on parameters inferred from data, whereby the artefacts can be57

suppressed using their arrival times. However, despite the rigorousness and potential accuracy of inversion approaches,58

they are computationally expensive, requiring thousands of forward model evaluations [10–12]. Note that a forward59

model that reproduces the FMC data for a certain set of geometry and material related parameters is an essential part60

of such an inversion scheme.61

Machine and deep learning (DL) approaches [13] can be effective tools to alleviate the computational burden of62

artefact identification using physics-basedmodels. The applicablemethods depend on the amount and complexity of the63

training data and range from Principal Component Analysis [14], for dimensionality reduction, to neural networks [15]64

that are able to capture highly non-linear patterns in the data. In the context of ultrasonic NDE, multiple DL methods65

have been recently adopted to improve the characterisation and identification of defects. For instance, in [16], the66

authors presented a hybrid temporal and spatial DLmodel for defect detection using thermography applying previously67

developed DL networks, such as U-net [17] and Segnet [18]. Convolutional neural networks (CNNs) were used in [19]68

for defect classification using the eddy current testing technique with high accuracy. Pyle et al. [20] provided a DL69

model based on CNN layers to accurately characterise the length and angle of cracks using data from ultrasonic70

inspections. These approaches aim at providing direct detection and classification of defects without explicitly dealing71

with artefacts that may partially obscure them, hence reducing the accuracy of such methods. To identify and suppress72

artefacts, the candidate DL model should have the ability to learn a reduced artefact-related representation of the73

input data and reconstruct from the reduced representation an output similar to the original input, but only with74

artefact-related information. In this context, autoencoder models [13] can be adopted due to their inherent structure,75

which is comprised of two sub-models: (1) an encoder that reduces the dimensionality of the input data into a latent76

representation, which could be forced to include the physical parameters of interest; and (2) a decoder that increases77

the latent dimensions up to the desired output dimensions, which typically are the same as those of the input data.78

These models have typically been used for denoising applications [21–23], for instance, to further increase the defect79

classification accuracy of a CNN network using ultrasonic NDT data [24]. Note that artefact removal is particularly80

attractive for NDE based on ultrasonic images, whereby structural artefacts will always be present and can hide81

information about defects.82

This paper presents a newly developed DL approach based on the fundamentals of autoencoder models for artefact83

identification and suppression in NDE. The proposedmethodology is generic and could be used for anyNDT technique;84

here it is applied to ultrasonic array immersion inspection. A schematic of the generic artefact suppression framework is85

depicted in Figure 1. The proposed method is comprised of two parts: (1) an encoder that acts as an efficient surrogate86

inverse problem solver whereby physical parameters (e.g. specimen thickness or probe position) are obtained from87

the FMC data; and (2) a decoder that receives as input the encoder derived parameters and provides the times of88

arrival (ToAs) of the structural artefacts, hence acting as a surrogate forwardmodel. Note that this method uses physics-89

based data and models to train data-based models, which confer the latter with a certain degree of transparency and90

understanding as opposed to unsupervised learning used for traditional autoencoders. Therefore, we refer to our DL91

model also as a grey-box model in contrast to fully data-driven, black-box, models. In the implementation presented92

in the current paper, the ToA information is used to suppress artefacts by applying masking windows in the original93

FMC data. Then, the masked FMC data, along with the inferred encoder generated parameters, are used for ultrasonic94

multi-view imaging obtaining (1) an effectively larger ROI due to the suppression of large and highly intense artefacts95

and (2) images that are easier to interpret for the NDE end-user. It is worth highlighting that the proposed DL-based96

framework is aimed at enhancing existing NDE procedures (through more accurate and easier data interpretation)97

rather than replacing them. This means that there is less disruption in the actual NDE procedures and regulations,98
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Figure 1: Generic DL-based artefact suppression process.

which could make the proposed approach attractive for near-term industrial implementation. Note also that the DL99

models are trained using defect-free data alone from simulations using a physics-based forward model.100

This paper is organised as follows: Section 2 describes the physics- and data-based models along with the data101

sampling strategy and metrics used for quantifying the effectiveness of the proposed method; Section 3 illustrates102

the methodology through an experimental case study; a discussion is provided in Section 4 to assess the methodology103

against alternative techniques and to analyse the importance of the inference of the physical parameters by the encoder;104

finally, Section 5 provides concluding remarks.105

2. Methodology106

The proposed framework relies on model-based defect-free data for the training and validation of the encoder-107

decoder DL models. Therefore, the applied ultrasonic model and the multi-view TFM imaging are introduced below108

before describing the proposed models and their associated performance metrics.109

2.1. Array imaging and ultrasonic modelling110

The generation of one or more ultrasonic images is needed to visually interpret ultrasonic FMC data and to identify111

whether or not there is a defect in a specimen. To this end, the FMC data is firstly filtered in the frequency domain112

using a Hilbert transform and a Gaussian function centred at the excitation frequency. TFM images are then obtained113

as the summation of the time-delayed time-traces, as follows [8]:114

Ii(r) =
|

|

|

|

|

|

N
∑

T

N
∑

R
a(i)TR(r)x̃

(i)
TR

(

�TR(r)
)

|

|

|

|

|

|

(1)

where Ii(r) is the image intensity of the i-th view at the position r; a(i)TR is an apodisation term, which is not considered115

in this work, and hence a(i)TR = 1; x̃(i)TR = 
(

x(i)TR
) is the Hilbert-transformed FMC data [25]; andN denotes the number116

of elements in the array. The subscripts T and R refers to the transmitter and receiver elements, respectively. The time117

delay �TR is obtained as a function of the travel time between the transmitter T , the point in the image r, and the118

receiver R. A Lanczos interpolation is used to interpolate the discrete FMC values to the delays given in Equation (1).119

Different views are generated by considering different transmit and receive ray paths.120

The amount of information available in the multi-views for a single FMC dataset is considerable, potentially121

enabling better defect detection and characterisation. However, the multiple internal reflections also lead to structural122

echoes that are reconstructed as image artefacts in the TFM views. In this context, removing these artefacts from the123

FMC data could potentially enable improved performance. Note that the different ray paths are also differentiated124

between longitudinal (L) and transverse (T) wave modes [9, 26]. The combination of the transmitting and receiving125

paths associated with these modes will provide the terminology used hereinafter for the different TFM views. For126

example, LT-T denotes a half skip view with the transmitting path containing two segments (LT) inside the specimen,127

the first is a L mode from the frontwall to the backwall and the second is the T mode from the backwall to the focus128

point. The returning path contains only one segment of T mode. Note that the chosen notation does not include any129

water paths, given that only longitudinal mode is possible within water and it is assumed to be implicit.130

The identification of artefacts from the FMC data is addressed using defect-free modelled data. To this end, a131

multi-frequency ray-based model [26] for ultrasonic array immersion, named here as ARIM1, is used to obtain the132

1The ARIM model is publicly available to download from https://github.com/ndtatbristol/arim.
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FMC time-trace data along with its associated ToAs for each echo (or ray-path) under the assumption of different input133

parameters (e.g. probe locations and the specimen’s material properties). The model considers directivity, transmission134

and reflection coefficients, and beamspread along with attenuation.135

2.2. Deep learning models for artefact identification and suppression136

DL models are powerful and computationally efficient tools [13] that offer a high degree of flexibility when137

addressing complex data. Out of the many available DL models, autoencoders hold a unique structure whereby138

some information is firstly encoded in an intermediate latent representation of the input data, hence reducing139

its dimensionality. This information is then decoded into a similar structure to the input data. Autoencoders are140

typically used for segmentation or denoising purposes given that the latent variables are trained to extract only141

adequate information from the input data for the ultimate objective of segmenting or denoising. The proposed model142

architecture was arrived at after comparing multiple model architectures, including overcomplete and undercomplete143

autoencoders [27].144

2.2.1. Grey-box model: encoder-decoder145

A grey-box model consists of a blended approach that uses data-driven models which incorporate physics-based146

information, which provides a certain degree of transparency to the DL model. The ultimate goal of this method is to147

mask out the regions of the time-traces that correspond to the structural echoes of the specimen under inspection. Based148

on the autoencoders’ structure, the proposed grey-box model for artefact identification and suppression for ultrasonic149

inspections is comprised of two hierarchical parts: (1) an encoder that provides physical parameters from the FMC150

data; and (2) a decoder that uses the physical parameters from the encoder to provide the ToAs of the frontwall and151

backwall echoes. Note that the masking windows are created around the ToA of each echo.152

A subset of time-traces ∈ ℝN ′×N ′×N� is chosen in the form of a smaller sub-array withN ′ < N elements of the153

larger ultrasonic probe instead of the complete FMC dataset in order to train the encoder model. This simplification154

is done: (1) because the artefact ToAs are smoothly-varying functions across the FMC data; and (2) to avoid memory155

issues with the available GPUs given that each time-trace contains thousands of individual points,N� , and the memory156

consumption scales up relatively quickly with larger databases. The smaller array is set to 8 transmit-receive elements,157

which are selected so as to be evenly spaced within the larger array of the ultrasonic probe. This is equivalent to having158

a probe with a longer pitch between these 8 elements. The training and validation data, which contain the envelopes159

of the time-traces, the physical parameters, and the ToA of the boundary echoes, are linearly normalised so that the160

values of the envelopes stay between [0, 1], while the physical parameters and ToA stay within the interval [0, 1].161

The encoder model f () is then defined as a relationship between envelopes of the time-traces in the reduced162

FMC dataset  and a set of unknown physical parameters � ∈ ℝN� , which is assumed to be comprised of N� = 3163

parameters, i.e. the specimen thickness (� ∈ ℝ), the probe angle (� ∈ ℝ), and the probe stand-off (Zs ∈ ℝ), so164

f () ∶ ℝN ′×N ′×N� → ℝN� . The model structure, which is summarised in Figure 2, is loosely based on volumetric165

segmentation architectures such as the 3D U-net [28] and is comprised of 3D convolutional layers that extract166

information from the time-traces. Note that 2D convolutional layers could have been used after the third layer instead167

of 3D ones, but for the sake of generality and simplicity, 3D layers have been used throughout with negligible impact168

on the computational efficiency. Then, dense layers are used to predict the physical parameters �. Note also that for169

training purposes of this encoder model, and to make it more robust and realistic, the input time-traces not only contain170

structural artefacts, but also Gaussian noise. This is to account for further variability in experimental scenarios. The171

activation function used throughout the internal layers is the rectified linear unit (ReLu) [13], while the output layers172

have linear activation functions. As the encoder model is effectively a regression model, the mean squared error (MSE)173

is used as loss function [13] for each of the three parameters obtained as output.174

The decoder model g(�) is defined as a relationship between the physical parameters � and the set of ToAs for each175

of the frontwall and backwall echoes  , so g(�) ∶ ℝN� → ℝN ′×N ′×N . Note that this DL model is a metamodel (or176

surrogate model) of the physics-based one described in Section 2.1. In this case, the model is conceived to scale up177

the dimensionality of the input. Three layers are used: a dense layer to create a larger number of internal data, a 3D178

convolutional layer, and a dense layer in the output layer to give the prediction of the ToAs. The model is summarised179

in Figure 3. Note also that the training data is not altered by any type of further variability such as noise, given that the180

input data are the physical parameters �. Again, the loss function is calculated using the MSE.181

Once both models are independently trained using a scheduled-based learning rate adopted from [29] and the182

ADAM optimiser [30], they are assembled to work sequentially: firstly encoding the time-traces to the physical183
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Figure 2: Schematic diagram of the encoder model structure. The number of �lters used in each convolutional layer is
written before the �@� symbol below each data structure. Orange structures are associated with convolutional layers, while
green structures are associated with dense layers.

Figure 3: Schematic diagram of the decoder model structure.

parameters and secondly decoding the physical parameters to obtain the ToAs corresponding to the artefacts. Note,184

however, that the output data is for a reduced set of the time-traces of the larger FMC dataset, so they need to be185

up-scaled. To this end, the remaining ToAs related to each of the transmit-receive elements other than the 8 used for186

training are linearly interpolated (for the elements between the 8 chosen for training) and linearly extrapolated if needed187

(for elements that may be lying outside the reduced set). It is worth highlighting, that this interpolation will introduce188

a small error between the true and predicted ToA for the intermediate transmit-receive elements of the probe, but it is189

assumed to be negligible compared to other sources of variability when processing experimental data. Most sources190

of uncertainty or variability in experimental data are accommodated in the masking stage described below.191

The ToA information output by the autoencoder for the complete FMC dataset is then used to produce masking192

windows in the time-domain. Around each predicted ToA, a masking window with a fixed length Lw, which is193

related to the number of cycles Ncyc and the period of the excitation signal Ts = 1∕f , is defined as follows:194
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Lw = B ⋅Ncyc ⋅ Ts, where B is a constant that is used to accommodate experimental variability and potential model195

errors. It is worth highlighting that the mask around the frontwall echo needs an additional width ΔLw to consider the196

echo’s tail stemming from near-field interactions that create additional artefacts in experimental scenarios. A figure197

of an experimental frontwall echo is provided in the supplemental material to support this assumption. The complete198

workflow of the proposed artefact suppression method from training to application stages is depicted in Figure 4.199

Figure 4: Flowchart explaining the work�ow of the encoder-decoder approach.

2.2.2. Training and validation database200

The training and validation databases used to create the DL models are generated using the ARIMmodel described201

in Section 2.1. To this end, the upper and lower bounds of the training space of the set of unknown physical parameters202

� = {�, �,Zs} are defined for the desired inspection ranges. Then, a structured 3D grid is created with a step size of203

Δ� = {Δ�,Δ�,ΔZs}. A random perturbation is added to the grid in order to create a more generic training space that204

eliminates any bias that the structured grid may produce. The uniformly distributed random perturbation is added to205

each grid point as follows:206

�(k)rand = �(k) + Ξ(k) with Ξ(k) ∼ 
(

�(k) − Δ�∕2, �(k) + Δ�∕2
)

(2)

where �(k)rand and �(k) denote the k-th randomly perturbed and structured grid points, respectively; and Ξ(k) is a207

perturbation sample extracted from the uniform distribution denoted as (⋅). Two entirely separate subsets are created208

from the randomly perturbed grid, a training set and a validation one with a relation 70:30. The ARIM model is then209

evaluated at each grid point and two entities are obtained as output: the FMC time-traces and the ToAs for each of the210

artefacts.211

2.3. Performance metrics212

The effectiveness of the proposed masking method is quantified through a series of metrics both in the time and213

image domains. In the case of the time domain, the relative amplitudes of the signals that pass through the masks (with214

respect to the total amplitudes) are calculated by using an integral over the time-traces in all three dimensions of the215

FMC dataset, i.e. the time axis and the rows and columns from the number of emit-receive elements. Mathematically,216

this time-domain based metric is defined in a decibel scale, as follows:217

Et = 20 log10

(

EMt
Eot

)

(3)

where Eot and EMt are the integrals of the amplitudes of the original and masked time-traces, respectively. These218

integrals are defined as:219

Eot =
N
∑

T

N
∑

R
∫

te

ti

|

|

|


(

xTR,o(t, e, r)
)

|

|

|

dt dr de (4)
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EMt =
N
∑

T

N
∑

R
∫

te

ti

|

|

|


(

xTR,M (t, e, r)
)

|

|

|

dt dr de (5)

where xTR,o(⋅) and xTR,M (⋅) are the original and masked time-traces, which are dependent on the time point t, the220

receiver r, and the emitter e. The envelopes of the signals are calculated by using the Hilbert transform, as follows:221

|x(t)+i⋅(x(t))|. The minimisation of the time-domain amplitude metricEt (Eq. (3)) is adopted herein for establishing222

the optimal width factor B of the masking windows described in Section 2.2.1.223

3. Case study224

The proposed framework for artefact identification and suppression is tested and demonstrated in an experimental225

case study on ultrasonic array imaging.226

3.1. Experimental results227

The experimental results are obtained using a 5MHz, linear, 1D array withN = 64 elements and pitch of 0.63 mm.228

The density and longitudinal velocity of the immersed medium (water) are assumed to be known and with values229

�w = 1000 kg/m3 and vw = 1480 m/s. The material under inspection is plain aluminium with a 0.5mm sawcut made230

perpendicular to the backwall to represent a surface-breaking crack, density � = 2700 kg/m3 and longitudinal and231

transverse velocities are vL = 6300 m/s and vT = 3130 m/s, respectively. The measured thickness is � = 30 mm,232

while the ultrasonic probe is setup at a standoff of Zs = 35 mm (measured from the centre of the array) and an angle233

of � = 15◦. A generic immersion test configuration is illustrated in Figure 5.234

❋r♦♥t✇❛❧❧

❇❛❝❦✇❛❧❧

�Specimen
vL✱ vT

❳

❩

❨

Zs

Pr♦
❜❡

Water
vw

�

❉❡❢❡❝t

Xd , Zd

Figure 5: Set-up con�guration for immersed ultrasonic inspection.

The proposed DL models have been trained over the following parameter space: � ∈ [27, 32]mm ⊂ ℝ, � ∈235

[12, 19]◦ ⊂ ℝ, andZs ∈ [32, 37]mm ⊂ ℝ. Note that the parameters intervals are chosen so that the expected variability236

in the specimen thickness and probe configuration is fully covered. The models could be trained over a larger parameter237

space, but in this case the limits are selected to be optimised for a specific inspection. The number of samples used238

for the training space is 4913 (corresponding to a 3D grid of 17 × 17 × 17). The ARIM forward model is evaluated239

using the set of 4913 input parameters to estimate both the FMC data along with the 43 ToAs of the chosen ray paths.240

The training and validation losses for each of the models are given in the supplemental material. The encoder model241

shows overfitting after around 20 epochs, whereby the training losses start diverging from the validation ones and only242

training data fit gets better while the network accuracy does not improve on unseen data. The network parameters at243

the point of minimum validation losses are taken as the optimum ones for subsequent application. On the other hand,244

the decoder appears to still be learning from the data at 1000 epochs, but at a relatively low rate. Additionally, the245

level of MSE loss is very small (10−8), which makes it sufficiently accurate for the purpose of the artefacts’ ToAs ( )246

prediction.247
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3.1.1. Artefact suppression results248

The encoder is applied to a subset of 8 time-traces (evenly spaced each 9 elements) of the experimental FMC249

dataset. Note that the time traces are truncated at the time required for the furthest image point, which is 9.9e-05s for250

the point located at X = 80mm and Z = 30mm. Additionally, a tuning parameter affecting the scale of the input251

time-traces is applied to help the encoder infer the physical parameters �. This tuning parameter, which partially252

accounts for normalised amplitude discrepancies between modelled and experimental time-traces, is chosen by solving253

aminimisation problem on themetric of themasked signalsEt with respect to the scaling parameter. The optimal tuning254

parameter value results to be 2.00 for the experimental dataset evaluated. The inferred physical parameters from the255

encoder are: � = 29.642mm, � = 14.899◦, and Zs = 35.048mm. These values have also relatively small deviation256

with respect to the measured values of the simulation of Δ� = 1.19%, Δ� = 0.68%, ΔZs = 0.14%. Note that although257

the thickness shows a larger variation, this may stem partially from measurement errors of the specimen or a biased258

value of the longitudinal and transverse velocities of the aluminium material.259

The width factor of the masking windows (B) is chosen after performing a parametric study on the impact of the260

amplitude suppression of the FMC dataset with respect to B. The results, depicted in Figure 6 for both time and image261

domain metrics, show a strong suppression of amplitudes from B ≥ 1.2. This is also evident from the numerical262

derivatives of the metric, i.e. )Et∕)B and )Ei∕)B, represented by an orange line. The width factor chosen for the263

suppression of artefacts and generation of TFM views is B = 1.6. The additional width (ΔLw) given to the frontwall264

echo’s masking window (LFWw ) is ΔLw = 1.8 �s.265

0.4 1 1.6 2.2 2.8 3.4 4
−15

−10

−5

0

❲✐❞t❤ ❢❛❝t♦r ❇ ❬✲❪

E
t
❬❞
❇
❪

❊①♣❡r✐♠❡♥t❛❧

❉❡r✐✈❛t✐✈❡

✵✳✷✹ ✵✳✻✵ ✵✳✾✻ ✶✳✸✷ ✶✳✻✽ ✷✳✵✹ ✷✳✹

❲✐♥❞♦✇ ❧❡♥❣t❤ ❬�s❪

Figure 6: Time-domain metric with regards to the width of the masking windows along with its numerical derivative.

The time-traces are then masked with the ToAs ( ) predicted by the decoder using, in turn, the parameters provided266

by the encoder and a width factor of B = 1.6. These are represented in Figure 7 for the signals acquired by all receivers267

when the first emitter is actuating. The windows are masking the largest amplitudes of the time-traces (coloured268

regions), which represent both frontwall and backwall echoes. The windows are remarkably well centred around the269

larger amplitudes corresponding to the structural artefacts, highlighting the effectiveness of the ToA interpolation270

between the subset and complete FMC data. Observe that there are four dead elements in the ultrasonic probe out of271

the 64. Nevertheless, these have had a minimal impact on the performance of the grey-box approach given that they272

are not present in the subset of 8 array elements used for training and evaluation of the DL models. Although for a273

specific transmitter, these results are typical.274

The effectiveness of the approach is further illustrated after imaging using the masked FMC dataset, as shown in275

Figure 8. Both L-L and LL-L views show no clear indication of any defect in the original unmasked dataset. However,276

after applying the encoder-decoder models along with the masking windows, the structural artefacts almost disappear,277

making the defect emerge. The suppression levels in the L-L view are 29 dB and 35 dB for the frontwall and backwall278

artefacts, respectively, and in the LL-L view 57 dB on average. This makes the defect easily identifiable, even when279

it overlaps with the structural artefacts. Note also that the physical parameters predicted by the encoder are used to280

produce the images, showing a remarkably good alignment of the artefacts (in unmasked image) to the axes of the281

image considering that the aluminium specimen is flat.282
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Figure 7: Envelopes of the time-traces and masks (coloured regions) predicted by the decoder using a length factor of 1.6
and the input parameters provided by the encoder for the emitter #1. Reference of the dB is the maximum value present
in the unmasked data.

(a)

(b)

Figure 8: TFM views, i.e. L-L in panel (a) and LL-L in panel (b), for the experimental data with defect before and after
applying masks in the left and right columns, respectively. Reference of dB at backwall in the L-L view of the original data
containing artefacts and defect.

To further illustrate the performance of the proposed grey-box approach, the fusion of the TFM views by averaging283

using the masked and complete FMC is addressed, as it includes all 21 views up to TT-TT with many artefacts [31].284

Note that the image fusion by averaging is in general a simplistic and suboptimal way of addressing the data285

fusion in ultrasonic imaging [31]; however, for the purpose of illustrating the effectiveness of the DL-based masking286

methodology it is appropriate. Figure 9 demonstrates that the artefact suppression is capable of almost removing the287

frontwall and backwall artefacts while letting the defect through. As a result, the defect can be very well identified even288

when it is directly below the footprint of the ultrasonic array. Observe also that a significant part of noise present in289

the original fusion image has also been suppressed after applying the masks.290
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Figure 9: Fusion of TFM views by algebraic averaging for experimental data with defect before and after masks in the left
and right panels, respectively. Reference of dB at backwall in the L-L view of the original data containing artefacts and
defect.

4. Discussion291

The proposed encoder-decoder approach for artefact identification and suppression in ultrasonic NDE has been292

demonstrated in an experimental case study. The combination of a ray tracing physics-based model and DLmodels has293

resulted in a highly efficient grey-box approach, whereby data-drivenmodels are trained in such amanner so the physics294

of the problem are better understood and controlled than in a purely black-box model. The first part of the proposed295

approach, i.e. the encoder model, is able to provide the physical parameters from the FMC data that drive the imaging296

and identification process: thickness, probe angle, and probe standoff. These parameters are also used as input to the297

second part of the framework, i.e. the decoder model. This model provides a set of ToAs of the artefacts (frontwall and298

backwall echoes) that are used for creating the masking windows. The masked FMC dataset can then be used for defect299

identification purposes providing more useful information below the probe’s footprint, which effectively produces an300

increase of the ROI in an ultrasonic inspection. The larger ROI also allows a reduction in the number of sweeps needed301

to inspect a predefined area. As a key point, the proposed framework enables established techniques to be used for302

defect detection (e.g. thresholding [32]) and characterisation (e.g. -6dB sizing [33]) with enhanced performance over a303

larger ROI, rather than substituting these techniques completely. Additionally, the methodology has successfully dealt304

with experimental data after little manipulation (scaling and choosing the first half). This highlights the accuracy and305

robustness against noise of the proposed grey-box approach in real-world engineering scenarios.306

4.1. On the comparison with other techniques307

The proposed approach is aimed at removing the artefacts in the time-domain, however there are alternative308

masking methods that could work on either time or image domains. To comparatively assess our framework with309

respect to others, the proposed grey-box approach is compared against a recently published method that removes the310

artefacts in the TFM views [9]. Figure 10 shows an example of both techniques applied to the experimental results311

obtained in Section 3.1. It is noticeable that there are no areas with zero contribution from any time-trace in the312

proposed grey-box approach, which makes it possible to identify defects that are coincident with artefacts. This can be313

appreciated in the individual views (Fig. 10a), where the masks in the image-domain significantly reduce the amount314

of information while obscuring the defect. The fusion of the views (Fig. 10b) also shows that a more uniform portion315

of amplitude is let through when removing the artefacts in the time-domain as opposed to the image masking approach,316

which suppresses a significant amount of defect information. Additionally, the amplitudes that the masks let through317

are more homogeneous in the whole region using the proposed grey-box approach than using the image-based one, as318

observed in the amplitude ratio shown in Figure 10c. Overall, the proposed grey-box method provide more usable and319

consistent results throughout the entire view, making it possible to enlarge the ROI from the right side of the probe to320

both directly below and on the right of the ultrasonic array.321

An additional advantage of using the DL-based approach is computational efficiency. The image-based artefact322

removal approach [9] runs in the order of magnitude of minutes as the experimental parameters are obtained step by323

step from the raw data and then ARIM is run. Alternatively, the proposed grey-box approach only takes fractions of a324

second to compute both the encoder and decoder models using the enhanced computational performance provided by325

GPUs.326
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(a) LT-L view (Original - Grey-box approach - Image-based method)

(b) Fusion (Original - Grey-box approach - Image-based method)

(c) Average amplitude ratio that passes through the masks (Image-based approach - Grey-box approach)

Figure 10: Masking comparison between the image-based approach and the time-domain one using the grey-box model.
Panel (a) shows the LT-L view, panel (b) shows the data fusion, and panel (c) shows the amplitude ratio passing through
the masks in the fusion.

4.2. On the parameter inference327

In addition to the identification and suppression of artefacts, the proposed method is capable of dealing with certain328

misalignment or biased parameters used for imaging. This occurs, for instance, if using a set of parameter values329

(thickness, probe angle and/or standoff) for imaging that are incorrectly determined due to experimental errors. Note330

that, in order to do the same with the image-based masking approach discussed above, the masks may need to be dilated331

to accommodate variability in all parameters, hence reducing the ROI. Moreover, images would be poorly focused as332

the parameters cannot be determined on defect data. If the proposed grey-box approach is used, the masking tracks the333

variability in the specified physical parameters, so the information loss is less (in addition to obtaining the parameters).334

To further illustrate this case, Figure 11 represents the L-L view in three additional experimental measurements in335

which the probe angle and standoff slightly vary from the originally measured parameters described in Section 3.1336

(� = 30 mm, � = 15◦, Zs = 35 mm): (1) for a smaller angle of � = 14◦; (2) for a longer standoff of Zs = 36 mm;337

and (3) for both higher angle and longer standoff of � = 16◦ and Zs = 36 mm respectively. Observe in Figure 11338

that misalignment in the setup (e.g. due to measurement errors) produces a strong deviation of the theoretical position339

of the frontwall and backwall artefacts. The corrected views are generated with the original complete FMC data and340

the encoder-predicted parameters, and therefore the artefacts are visible in the views. This highlights the flexibility341

and greater usability of the proposed approach in comparison with other masking approaches, where no physical342
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information would have been obtained. Besides, the inference of the physical parameters potentially enables the use of343

less precise and probably cheaper physical rigs, further reducing costs.344

Figure 11: Comparison of the L-L view using the originally measured parameters (� = 30 mm, � = 15◦, Zs = 35 mm) in
�rst row and the images using the predicted parameters (shown below the x-labels) by the encoder in the second row.

The robustness of the encoder model in providing consistent and accurate predictions of the model parameters can345

also be found on experimental measurements. Note that additional measurements were made on the same aluminium346

specimen described in Section 3.1 to produce Figure 11. The performance of the encoder in inferring the parameters347

� has been remarkably consistent, with a relatively small variation from the whole set of FMC measurements, as348

can be observed in Table 1. Nonetheless, there are still physical parameters that are assumed, such as the propagation349

velocities, that would be useful to infer along with their associated uncertainties from the FMC along with the thickness350

and relative probe location. Note that this scenario would lead to an ill-posed inverse problem where there could be351

more than one viable solution of distances and velocities. Therefore, a desirable extension of the proposed method is352

to account for more unknown model parameters, e.g., propagation velocities, while quantifying their uncertainty. To353

do this without compromising the computational efficiency, several methods could be adopted, such as probabilistic354

DL models [34] or the adoption of Bayesian inverse problem for inferring the model parameters from the data through355

an approximation, e.g. using the approximate Bayesian computation algorithm [35].356

Table 1

Predicted parameters from multiple experimental FMC measurements.

Measurement No Thickness [mm] Angle [◦] Stand-o� [mm]

#1 29.642 14.898 35.048
#2 29.526 14.976 35.053
#3 29.532 14.930 35.047
#4 29.580 14.909 35.090
#5 29.598 14.886 35.127
#6 29.586 14.909 35.124
#7 29.518 14.886 35.016
#8 29.544 14.907 35.025
#9 29.606 14.886 35.070
#10 29.585 14.911 35.073

Mean 29.572 14.910 35.067
Standard deviation 0.0381 0.0255 0.0357
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The results shown in Table 1 highlight the aforementioned effectiveness and robustness of the proposed method357

in real-world scenarios. The application of this method in industrial environments is a desirable extension of the358

proposed method, whereby additional sources of variability and larger noise can be evaluated in the proposed method.359

Nonetheless, they grey-box approach has proven to be an effective tool to remove artefacts, enlarge the ROI, while360

make it easier to identify defects in challenging scenarios.361

5. Conclusions362

A DL approach based on the fundamentals of autoencoder models have proposed in this paper to tackle the363

artefact identification and suppression in NDT data. The approach, that is general, has been implemented for ultrasonic364

array immersion inspection. The proposed approach consists of three parts: (1) an encoder model that infers physical365

parameters from the FMC data; (2) a decoder model that predicts the arrival time of the artefacts; and (3) the366

application of masking windows to the input FMC data. The resulting data is then used for ultrasonic imaging for367

defect identification. An experimental case study with FMC data has been used to illustrate the methodology. The368

following conclusions can be drawn:369

• The proposed method identifies and suppresses the artefacts contained in NDT data in a very efficient and370

accurate manner.371

• The grey-box approach accurately also provides useful physical parameters which can be used for ultrasonic372

imaging.373

• The encoder demonstrates a remarkable consistency and robustness when dealing with experimental data.374

• The methodology enhances the interpretation of NDT data by making it easier through the suppression of375

artefacts from the raw data.376

• While the grey-box methodology suppresses artefacts and extracts physical parameters from the raw data, the377

subsequent imaging process is standard, and hence established methods may be used for defect detection and378

characterisation; in this sense, the process is anticipated to be more straightforward to certify than a black-box379

approach.380

Future works are under consideration on: (1) the inference of additional physical parameters, e.g. wave velocities,381

using the encoder; (2) the quantification of uncertainty during the inference of physical parameters; and (3) the382

application of the proposed artefact suppression procedure to alternative NDEmodalities (e.g. ultrasonic guided-waves383

or X-ray imaging) and to data collected in industrial environments.384
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