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A B S T R A C T

Recent extreme weather across the globe highlights the need to understand the potential for more extreme
events in the present-day, and how such events may change with global warming. We present a methodology
for more efficiently sampling extremes in future climate projections. As a proof-of-concept, we examine the
UK’s most recent set of national Climate Projections (UKCP18). UKCP18 includes a 15-member perturbed
parameter ensemble (PPE) of coupled global simulations, providing a range of climate projections incorporating
uncertainty in both internal variability and forced response. However, this ensemble is too small to adequately
sample extremes with very high return periods, which are of interest to policy-makers and adaptation
planners. To better understand the statistics of these events, we use distributed computing to run three
1000-member initial-condition ensembles with the atmosphere-only HadAM4 model at 60km resolution on
volunteers’ computers, taking boundary conditions from three distinct future extreme winters within the
UKCP18 ensemble. We find that the magnitude of each winter extreme is captured within our ensembles,
and that two of the three ensembles are conditioned towards producing extremes by the boundary conditions.
Our ensembles contain several extremes that would only be expected to be sampled by a UKCP18 PPE of
over 500 members, which would be prohibitively expensive with current supercomputing resource. The most
extreme winters we simulate exceed those within UKCP18 by 0.85 K and 37% of the present-day average
for UK winter means of daily maximum temperature and precipitation respectively. As such, our ensembles
contain a rich set of multivariate, spatio-temporally and physically coherent samples of extreme winters with
wide-ranging potential applications.
1. Introduction

Weather extremes are one of the most damaging hazards that soci-
ety faces at the present-day (WEF, 2021). Many studies have now found
that anthropogenic climate change is increasing the frequency and/or
magnitude of certain types of extreme weather, including heatwaves,
extreme rainfall and droughts (Seneviratne et al., 2021). This has
therefore resulted in a need to plan how society can adapt to the
more frequent or severe weather extremes projected to occur under
continued greenhouse gas emissions (Allen et al., 2009; Diffenbaugh
et al., 2017; Rahmstorf and Coumou, 2011). In order to plan effectively,
we must first understand and quantify how extreme weather events are
projected to change into the future.

In the United Kingdom (UK), a key part of this understanding has
been informed by the UK Climate Projections (UKCP) project. The most
recent iteration of UKCP (UKCP18) was released in 2018 (Lowe et al.,

∗ Corresponding author.
E-mail address: nicholas.leach@stx.ox.ac.uk (N.J. Leach).

2018; Murphy et al., 2018) and included a number of novel climate
model ensembles: a set of transient global simulations from coupled
climate models, with 15 simulations from a single-model perturbed
parameter ensemble (PPE) and 13 additional simulations from CMIP5
models; a set of 12 regional climate model simulations; and a set of 12
convection permitting model projections. In this study, we focus on the
PPE of 15 global simulations, and our analysis and results build upon
the information provided by these runs.

In particular, we are interested in how effectively the UKCP18 PPE
has sampled extreme weather during the UK winter, and in exploring
methods for improving the sampling of extremes that could inform the
design of future projections. To this end, we aim to provide proof-of-
concept of a methodology for generating large ensembles of extreme
winters. The key advantage is that our ensembles provide multivariate
vailable online 25 February 2022
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spatially and physically coherent scenarios of extreme weather with
high return periods for use in impacts assessment.

We first select three exceptional UK winters from the UKCP18 PPE
that occurred between 2061 and 2080 (henceforth the ‘‘study winters’’).
We then use the sea surface temperature (SST) and sea ice (SIC)
fields from these winters to force very large perturbed initial-condition
ensembles using the HadAM4 model, which has been implemented
to run in the distributed computing system climateprediction.net at
the same horizontal resolution as the UKCP18 global simulations. This
allows very large ensembles to be produced and is possible because
HadAM4 requires less computational resources. These ensembles are
intended to provide numerous extreme samples, hence are called the
‘‘ExSamples’’ ensembles.

This provision of many samples of extremes is similar to the UN-
SEEN method for quantifying weather extremes (Kelder et al., 2020;
Thompson et al., 2017). UNSEEN uses seasonal hindcast ensembles to
estimate the likelihood of ‘‘unprecedented’’ extreme events with consid-
erably more confidence than possible from the observational record in
isolation. The key similarity between UNSEEN and the approach taken
here is that both are methods that aim to drill into the uncertainty
surrounding the most extreme events by providing very large ensembles
of such extremes using a dynamical model. However, there are key
differences: UNSEEN uses coupled simulations that are conditioned
solely on the predictable component of the weather at the time the
model was initialised by observations, while in ExSamples, the model is
atmosphere-only and conditioned both on perturbed initial conditions
and lower boundary forcing from a climate projection. Another differ-
ence lies in the distributed computing system used here, which enables
1000+ member ensembles of a single winter to be produced; compared
to the O(100) members produced by operational seasonal forecasting
centres.

We compare the statistics of weather extremes in these ExSamples
ensembles to both the corresponding extreme study winter, and to the
whole UKCP18 PPE 2061–2080 climate distribution in order to answer
several science questions:

• Is the atmosphere-only model able to produce equal magnitude
extremes to those within the study winters from the UKCP18 PPE?
If the study winter lies outside the atmosphere-only model dis-
tribution, this suggests the importance of coupling to a dynamic
ocean and other differences between the models for producing
extremes.

• Were the study winters truly exceptional, or could they have been
even more extreme?

• To what extent did the SSTs and SIC during the study winters
condition the extreme response?

• Is carrying out this type of experiment using a computation-
ally cheaper, but less modern, atmosphere-only model a better
methodology for sampling extremes than increasing the size of
the UKCP18 PPE?

n this paper, we first describe the models used, experiment design
nd statistical methodologies performed within the study. We then
resent the results of our experiments, first comparing the climate
istributions of the two models over a present-day baseline period to
ssess whether there are any significant biases between them. Taking
ny biases into account, we compare the projections from our three
uture ensembles to the UKCP18 PPE, focusing on how the extreme
ail of the climate distribution is sampled. This comparison allows us
o explore the sampling advantage given by, and influence of, the SST
nd SIC. The very large ensembles created also allow us to examine the
nfluence of the large scale dynamics present during the study winters
sing a circulation analog approach. We then use a single ensemble
ember case study to highlight the importance of large ensembles

or sampling unprecedented extreme events that cannot always be
tatistically extrapolated from smaller ensembles (Fischer et al., 2021;
2

essner et al., 2021). Finally, we discuss the insights provided by
these experiments, and how they might inform the design of future
projections; also suggesting directions for future research that could
further improve our approach.

2. Study design and methods

2.1. Models

2.1.1. HadGEM3-GC3.05 global climate model
In addition to the novel ExSamples ensembles, we also analyse

UKCP18 global PPE simulations of the RCP8.5 emission scenario (Riahi
et al., 2011). This PPE is based on the global HadGEM3-GC3.05 coupled
ocean atmosphere model (Murphy et al., 2018; Williams et al., 2018).
This combines an 85 vertical level atmosphere model at 5/6 ◦ zonal and
5/9 ◦ meridional resolution (N216, 60 km at mid-latitudes) with a 75
level ocean model at ORCA025 (1/4 ◦) horizontal resolution. The aim of
this PPE is to explore a range of plausible model responses to climate
change. The parameters were selected on the basis of the credibility
of the model response on both weather and climate timescales (Kar-
malkar et al., 2019; Sexton et al., 2019, 2021; Yamazaki et al., 2021).
In this study we use both the final product 15-member PPE and a
10-member subsample. The 10-member subsample consists of the 12
members that compose the accompanying UKCP18 regional climate
model projections (Murphy et al., 2018), minus two members that dis-
played a significant weakening of the Atlantic Meridional Overturning
Circulation (Sexton et al., 2020). Henceforth, we shall refer to the
HadGEM3-GC3.05 simulations analysed here as the ‘‘UKCP18 PPE’’.
Unless stated otherwise, this refers to the 15-member PPE.

2.1.2. HadAM4 N216 atmospheric model
The novel simulations presented here are performed by the global

HadAM4 atmosphere and land surface model (Webb et al., 2001;
Williams et al., 2003). Like its predecessor, HadAM3 (Pope et al.,
2000), it includes prognostic cloud, convection and gravity-wave drag
parameterisation schemes, a radiation scheme that treats water vapour
and ice crystals separately, and a land surface scheme. The updates in
HadAM4 include a mixed-phase precipitation scheme, parameterisation
of ice cloud particle size and the radiative effects of non-spherical ice
particles, and a revised boundary layer scheme. The version used here
incorporates an upgrade to the spatial resolution (Bevacqua et al., 2021;
Watson et al., 2020), which matches the horizontal resolution of the
HadGEM3-GC3.05 simulations analysed here. HadAM4 has 38 vertical
levels; and here the sea surface temperature (SST) and sea ice fraction
(SIC) boundary conditions are taken from specific years and members
of the HadGEM3-GC3.05 UKCP18 PPE simulations.

A key aspect of the HadAM4 simulations described here are that
they are performed on the personal computers of volunteers using
the climateprediction.net distributed computing system (Allen, 1999;
Anderson, 2004; Stainforth et al., 2002). This system has been used pre-
viously to run a range of Hadley Center Unified Model variants (Brown
et al., 2012), including a coupled atmosphere-slab ocean model (Stain-
forth et al., 2005), a fully coupled model (Frame et al., 2009) and an
atmosphere-only model (Pall et al., 2011) similar to HadAM4. The near
thousand member ensembles presented here would be prohibitively
expensive to run using a standard supercomputer, and so we are only
able to run the bespoke experiments presented in this study because
of this distributed computing system, and the volunteers involved.
However, the constraints of this system strongly motivate the choice of
HadAM4: it is sufficiently memory-efficient that it can be run on per-
sonal computers at the same horizontal resolution as the state-of-the-art
HadGEM3-GC3.05 model.

Henceforth, we shall refer to the HadAM4 simulations presented
here as the ‘‘ExSamples’’ ensembles. A complete description of the
ExSamples ensembles, including the selection of the prescribed SST/SIC,

is given below in ‘‘Experiment design’’.
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2.2. Exsamples experiment design

ExSamples covers six distinct sets of simulations: three future winter
and three baseline period ensembles. The process behind generating
each future and corresponding baseline ensemble is as follows:

• Select a single winter from within the UKCP18 PPE over the
2061–2080 period. This winter is chosen on the basis of being
particularly ‘‘extreme’’; more detail on how we selected the three
future winters is given below in ‘‘Selecting the three ‘extreme’
study winters’’. The 2061-80 period is used as we wanted to
test this proof-of-concept with a large underlying climate change
signal; and this is the period for which there is additional UKCP18
data available: 12 km regional and 2.2 km convection-permitting
model projections (Kendon et al., 2019; Murphy et al., 2018).

• Use the SSTs and SICs from this winter to force HadAM4 over
the November–March period (the November of each simulation is
used to spin-up the simulation and is discarded prior to analysis).
An ensemble is created from the boundary conditions for this
single winter through initial-condition perturbations. Due to the
nature of the (ongoing) distributed computing system used to run
the model (Allen, 1999; Stainforth et al., 2005), our target final
ensemble size is 1500 members conditioned on the SST/SIC from
a single winter, and in this study we analyse all the members
that are complete at the time of writing and pass our quality
control checks, which ranges from 883 to 1036 over the three
ensembles (Sparrow et al., 2021).

• Create a corresponding HadAM4 baseline ensemble by using win-
ter SSTs and SICs from the same UKCP18 member as the selected
winter over the period 2007–2016. For each of the ten years,
an ensemble of 50 members is generated using initial-condition
perturbations. This results in a target baseline ensemble size
of 500 members per future winter ensemble, conditioned on
SST/SICs from 10 present-day winters. Although the difference
in size between the future and baseline ExSamples ensembles is
not relevant in this study, it may be for specific user applications.

.2.1. Motivation of the experiment design
In this section we outline the motivation behind our experimen-

al design, with a particular focus on the differences between the
nternal variability sampled by a coupled model, and sampled by an
tmosphere-only model. The coupled PPE in UKCP18 samples a series
f events including the most extreme ones, that arise from the response
o anthropogenic forcing plus coupled internal variability. The latter is
ue to a combination of internal variability in the ocean, the impact
his has on the atmosphere, and internal variability generated within
he atmosphere itself (Sexton et al., 2001). So an extreme deviation
bout the long-term forced trend in a coupled simulation might have
ccurred solely due to atmospheric internal variability but it is rea-
onable to expect that it is more likely than other years to have had
contribution from ocean internal variability. Therefore, by picking

hree winters with the largest deviations from the long-term climate
rend, we hope to capture more winters where the ocean has strongly
nfluenced the extreme. In years where there is an appreciable influence
rom ocean internal variability, which will be manifest in the simulated
ST and SIC patterns along with the long term forced response of
he ocean to anthropogenic forcing, then there is more potential for
here to be an additional effect from atmospheric internal variability
o produce greater extremes. Therefore an initial-condition ensemble
f atmosphere-only simulations forced by SSTs, SIC and anthropogenic
orcing from a study winter, where members differ only by atmospheric
nternal variability, can be used to distinguish winters where the ocean
nternal variability has played an important role from ones where the
cean has played little role. In the former case, we would expect to
ample extremes beyond the UKCP18 extreme more often than we
ould by chance from atmospheric internal variability around the long
3

erm forced response.
2.2.2. Definitions of key terms
There are several technical definitions we use throughout this study,

which we will define in this section.
Firstly, a ‘‘raw value’’ is the simulated value straight from the model,

as found within the relevant data product.
‘‘Anomalies’’ are these raw values set relative to the average abso-

lute value over some reference period, in order to remove any mean
model biases. For the ExSamples simulations, we define anomalies
as the raw values minus the average over the corresponding 2007–
2016 baseline ensemble members. For the UKCP simulations, we define
anomalies as the raw values minus the 1997–2026 reference period
mean for each PPE member. This longer 30-year period is used to
reduce the impact of inter-decadal variability that may be present in
the time series of each member. For precipitation, we show results in
terms of the ‘‘percent change’’ to compensate for differences in average
rainfall intensity between the two models used. Percent changes are
calculated as anomalies divided by the average raw value over the
reference period (times 100%).

Finally, we use ‘‘deviations’’ in the context of the UKCP PPE to
refer to the raw values relative to a long-term trend. Deviations are
calculated as the residual of a simple linear regression computed over
time for each PPE member (i.e. over the 2061–2080 period). Deviations
therefore represent a basic estimate of the variability about a long-
term forced trend. Hence we use deviations to measure how unusual
a particular simulated winter within the UKCP18 PPE is compared to
others when a forced trend that may vary across ensemble members
is present; and also to generate time series that can be fitted using
statistical models that assume the underlying process is stationary
(though we note that non-stationary statistical models could also be
used). Deviations of the UKCP18 PPE also provide the closest simple
comparison to the atmosphere-only ExSamples ensembles which only
sample atmospheric internal variability.

2.2.3. Selecting the three ‘‘extreme’’ study winters
To generate our future ExSamples ensembles, we needed to se-

lect three ‘‘extreme’’ winters from the UKCP18 PPE projections. We
considered winters from the 10-member subsample over the period
2061–2080, giving a total of 200 candidate winters for selection. The
10-member subsample was used such that the ExSamples ensembles
generated here would be able to be directly compared to the UKCP18
regional climate and convection permitting model projections if desired
in the future.

The variables we used to compare how ‘‘extreme’’ each candidate
winter was were the winter (DJF) mean of daily maximum tempera-
tures, and winter mean precipitation, each averaged over the UK land
region. Since the UKCP18 PPE displays significant forced trends in
climate over the 2061–2080 period and based on the thinking behind
the experimental design, we used the deviations of each candidate
winter as the basis for our selection; if we used anomalies we would
naturally bias our selection towards the end of the period.

Motivated by the recent winter extremes of the record hottest UK
winter day of February 26th 2019 and the record wet winter month of
February 2020, we aimed to select two ‘‘hot’’ winters and one ‘‘wet’’
winter. However, the method could be applied to the winters with
the coldest or driest deviations. As shown in Fig. 1, there is one clear
candidate for each type of extreme: UKCP18 PPE member 02868 (ID
numbers as Sexton et al., 2021) year 2066 as a hot winter; and member
02242 year 2068 for the wet winter. The next most extreme hot winters
shown in Fig. 1 A all had similar deviations, so we distinguished
between them on the basis of their anomalies, choosing member 01554
year 2072, which has the highest anomaly of any of the candidate
winters.

Table 1 provides a summary of the study winters selected. For
clarity, we refer to the ExSamples ensembles by the abbreviations given
in the final column of Table 1 followed by ‘‘ensemble’’ (so the ensemble

that uses the SST/SIC from UKCP18 member 02868 year 2066 is
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Fig. 1. UKCP PPE 2061–2080 deviations. A, DJF mean of daily maximum temperatures averaged over the UK region. Coloured lines indicate the three UKCP runs from which
the study winters were chosen. The study winters are circled and dotted horizontal lines indicate the deviation of each study winter. The ensemble member id of the three runs
is given in the legend. B, as A, but for DJF mean precipitation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
Table 1
Summary of experiments performed for ExSamples project.

Boundary condition (study winter) detail Abbreviation
usedUKCP18 member Year Extreme type

Future
projections

02868 2066 HOT HOT1
01554 2072 HOT HOT2
02242 2068 WET WET

Baseline
ensembles

02868 2007–2016 – HOT1-B
01554 2007–2016 – HOT2-B
02242 2007–2016 – WET-B

‘‘HOT1 ensemble’’, and the corresponding baseline ensemble is ‘‘HOT1-
B ensemble’’). We use ‘‘aggregate baseline ensemble’’ to denote the
aggregate of all three baseline ensembles. We refer to the corresponding
winters as the ensemble abbreviation followed by ‘‘ winter’’. Finally, we
refer to the UKCP18 PPE ensembles as ‘‘UKCP’’ followed by the period
the samples are taken from.

2.2.4. Synoptic characterisation of the study winters
Here, we briefly describe the broad synoptic characteristics of each

of the three future winters selected. Fig. 2 shows three key charac-
teristics: mean sea level pressure (MSLP) anomalies over the UK; SST
deviations; and Arctic SICs. They display a wide range of meteorolog-
ical and climatological features: none of the extreme winters selected
are caused by very similar large-scale features.

The HOT1 winter displays a strong positive NAO pattern. Over
the UK the flow is even more zonal, and has a weaker gradient; the
positive NAO pattern is also weaker. In terms of the 30 weather patterns
derived by (Neal et al., 2016), this winter shares similarities with
several weather patterns, including those they numbered 20 and 23.
These two patterns have been shown to be conducive to producing
record temperatures on daily timescales (Kendon et al., 2020). During
this winter, the El Nino Southern Oscillation (ENSO) pattern of global
SST variability was in a strong positive phase, alongside moderately
positive Atlantic Multidecadal Variability and negative phase Pacific
Decadal Oscillation (Deser et al., 2010). This extreme winter shows
some loss of Arctic sea ice compared to the present day, though it is
still mostly intact — the mean Arctic sea ice fraction is approximately
70%.

The HOT2 winter displays a similar MSLP pattern to the first hot
winter. The mean large scale flow over the whole winter is closest
4

to weather pattern 20 of Neal et al. (2016): a strong positive NAO
with associated pressure high off the west coast of Spain. This weather
pattern is associated with warm and wet weather over the UK (Huang
et al., 2020; Richardson et al., 2020, 2018; Kendon et al., 2020). There
is a weak La Nina (negative) ENSO phase ; which has previously been
linked to an increased likelihood of positive NAO (Deser et al., 2017;
King et al., 2020, 2018; López-Parages et al., 2016). No other modes
of SST variability are present. With regards to SIC, this particular
PPE member has virtually lost all winter Arctic sea ice by 2072. It
has been suggested that Arctic sea ice loss may be linked with more
persistent mid-latitude weather patterns (Francis and Vavrus, 2012;
Pedersen et al., 2016), though this is still a subject of active scientific
interest (Kretschmer et al., 2020; Screen and Simmonds, 2013; Screen,
2017).

The WET winter displays a strong cyclonic south westerly flow with
a low west of Ireland; classified as weather pattern 29. This pattern
is associated with generally warm and wet weather. ENSO is in a
neutral phase during this winter; and there are no other modes of SST
variability in significantly positive or negative phases. Of the three
study winters, this one has the smallest change in sea ice relative to
the present-day; Arctic sea ice is almost entirely intact over the winter.

2.3. Statistical methods

2.3.1. Estimating distributions of extremes
We estimate distributions using the method of L-moments (Hosking

et al., 1985; Hosking, 1990; Hosking and Wallis, 1997). We use L-
moments for their computational efficiency and stability. Uncertainties
in the fit distributions, their CDFs and corresponding return periods
are calculated using a 10,000 resample nonparametric bootstrap. The
specific distributions used for each variable analysed are described in
the following paragraphs.

For mean DJF daily maximum temperatures (TXm) and mean
DJF precipitation rate (PRm), we use a generalised pareto distribu-
tion (Coles, 2001; Hosking and Wallis, 1987) fit to the upper quartile
of the sample population. When estimating CDFs and corresponding
return periods from the fit, if the value in question lies below the upper
quantile, we use the empirical CDF. For maximum DJF daily maximum
temperatures (TXx), we use a generalised extreme value distribution fit
to the sample population. For maximum DJF daily mean precipitation
rate (PRx), we use a generalised logistic distribution (Hosking, 1990)
fit to the sample population. A generalised logistic distribution is
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Fig. 2. Synoptic features of the study winters within the UKCP simulations. The row titles indicate the study winter. a, DJF mean MSLP anomalies for each winter. b, DJF mean
SST deviations for each winter. Deviations are calculated for each gridpoint timeseries over 2061–2080. c, DJF mean Arctic sea ice fraction for each winter. The blue dashed line
in Aa indicates the area used for analog subsampling described in 2.3.2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
used since the tail of the UKCP18 PPE 2061–2080 deviations popula-
tion is clearly heavier than estimated by best-fit generalised extreme
or generalised pareto distributions; we note that this approach to
modelling block maxima of daily rainfall has some precedent in the
literature (Kysely and Picek, 2007; Wan Zin et al., 2009). This issue is
not a feature of the L-Moments estimator used: a maximum likelihood
estimator yields near-identical results. It is possible that the apparent
discrepancy with the generalised extreme value distribution arises from
the number of independent precipitation events per season not being
near enough to the asymptotic limit (independent event count → ∞) for
classical extreme value theory to be appropriate, as noted previously
for annual daily rainfall maxima (Marani and Ignaccolo, 2015), though
further work is needed to determine this conclusively.

2.3.2. Analog construction
In order to assess the dynamical contributions to the extreme

weather simulated during the study winters, we use an MSLP analog
approach (Cattiaux et al., 2010; Vautard et al., 2016; Yiou et al.,
2017). For each future ExSamples ensemble (and each corresponding
baseline ensemble), we create a subsample of analogs composed of
ensemble members that have a root mean square error (Euclidean
distance) of less than 3 hPa from the UKCP18 PPE study winter average
MSLP over the domain enclosed by the dashed blue lines in Fig. 2Aa
(−30:20◦E; 35:70◦N). This domain was the best for explaining variance
in UK temperatures and close to best for UK precipitation of those
investigated by Neal et al. (2016). We used a 3hPa threshold as this
was the tightest constraint that resulted in analog ensembles large
5

enough to infer statistics from with any degree of certainty (> 20
members in each case). The MSLP distance based subsampling results
in an ensemble of analogs in which the mean large scale flow during
the winter very closely matches the study winter. We can then use
these ensembles of analogs to estimate the dynamical contribution and
associated uncertainty to the extreme weather.

3. Results

3.1. Comparison of HadAM4 and HadGEM3-GC3.05 baseline ensembles

Before we can robustly compare the projections within the UKCP18
PPE and ExSamples ensembles, we must first quantify any differences
between the representations of UK climate within the HadAM4 and
HadGEM3-GC3.05 models. We do this by comparing the 15-member
UKCP18 PPE over 2007–2016 (15 * 10y = 150 samples total) with
each of the three 2007–2016 ExSamples baseline ensembles (∼ 50 *
10y = 500 samples each) in turn, and their aggregate ensemble. Here
we quantify whether the simulated climates differ using a two-sample
Kolmogorov–Smirnoff (K–S) test (Hodges, 1958; Kolmogorov, 1933;
Smirnoff, 1939a,b) at the 5% significance level on the anomalies of
the variable in question unless stated otherwise. We use anomalies
here since our main results are presented using anomalies to account
for any model mean biases (and biases between different UKCP18
PPE members), but note if there are significant differences between
the two model climate means. Verifying the accuracy of these models
against reality lies outside of the scope of this paper, but has already
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been studied for both the UKCP18 PPE (Murphy et al., 2018) and
HadAM4 (Bevacqua et al., 2021; Watson et al., 2020).

For both mean and maximum DJF daily maximum temperatures
over the UK (TXm and TXx respectively), the UKCP 2007–2016 and
ExSamples baseline distributions are highly comparable (Figs. 3, 4, S4,
S7, S8, S9). None of the three (nor their aggregate) ExSamples baseline
ensemble distributions are statistically significantly different from the
corresponding UKCP baseline ensemble distributions for either TXm
or TXx anomalies. The ExSamples aggregate baseline ensemble mean
biases are +0.06 K and +0.18 K compared to the UKCP18 PPE for TXm
nd TXx respectively. We note that this lack of a statistically significant
ifference does not imply that the two model ensembles are drawn from
dentical underlying distributions.

For mean DJF precipitation rate over the UK (PRm), we do find clear
ifferences in the behaviour of the models. The ExSamples baseline
nsembles have a reduced winter average rainfall intensity compared to
he UKCP18 PPE: a 16% (0.61 mm day−1) lower ensemble mean. They
lso have a slightly increased spread in winter rainfall. We note that
hese differences in simulated UK climate do not appear to be the result
f differences in the large-scale dynamics of the two models over the
uro-Atlantic sector; as investigated using a Principal Component (PC)
nalysis in the Supplementary Information. Summarising this analysis:
e find three DJF mean MSLP PCs dominate the variance of UK rainfall
xplained by the PCs in the UKCP18 PPE; the distributions of these PCs
s near-identical in the ExSamples baseline ensembles and the UKCP18
PE. Despite the difference in spread, none of three ExSamples baseline
nsemble distributions are statistically significantly different from the
KCP18 baseline ensemble distribution for absolute PRm anomalies;
or is their aggregate. However, due to this discrepancy in mean
ainfall intensity between the two models, we measure projected PRm
n percent changes rather than anomalies, both in the figures presented
nd analysis carried out. After converting to percent changes, the
ifferences in the spread of the distributions becomes relatively larger
Fig. 5) and the distributions of percentage anomalies are statistically
ignificantly different. This does not appear to arise from the specific
ets of lower boundary conditions used in ExSamples: there are no
tatistically significant differences between any of the three ExSamples
aseline ensembles.

Despite the differences in PRm, the two models show little differ-
nce in their simulated distributions of the DJF maximum of daily mean
recipitation averaged over the UK (PRx). The difference in mean PRx
etween all the ExSamples baseline ensembles and the UKCP18 PPE
s only 4% (0.99 mm day−1). None of the three (nor their aggregate)
xSamples baseline ensembles are statistically significantly different
rom the UKCP 2007–2016 distribution for PRx anomalies.

.2. Projections of future extremes

In this section we examine the future ExSamples ensembles and
ompare them to the UKCP18 PPE projections. Since we are largely
oncerned with winters that are extreme as a whole, rather than
solated extreme weather events within the winters (consistent with our
ethodology for selecting the three study winters), we analyse ‘‘hot’’
inters through DJF-mean temperatures and ‘‘wet’’ winters through
JF-mean precipitation.

.2.1. HOT1
We first address the primary question: was the atmosphere-only

adAM4 model able to capture the magnitude of the extreme simulated
n the study winter by the coupled HadGEM3-GC3.05 model? Yes —
here are four within the HOT1 ensemble that exceed the TXm value
f the study winter, as shown in Fig. 3.

However, the prescribed SST/SIC within the HOT1 simulations do
ot appear to have conditioned this ensemble towards producing more
xtremes than would be expected from an (unconditioned by construc-
ion) UKCP18 PPE of the same (increased) size. This is clearly seen in
6

Table 2
Ratio of exceedance likelihood of three extreme thresholds between the ExSamples
future ensembles and the UKCP18 PPE 2061–2080 deviations. Square brackets indicate
a 90% CI.

Study
winter

Variable UKCP18 quantile (return period)

0.9 (1-in-10 year) 0.95 (1-in-20) 0.99 (1-in-100)

HOT1 TXm 0.9 [0.86 , 0.96] 0.84 [0.77 , 0.97] 0.97 [0.75 , 2.32]
PRm 1.02 [0.95 , 1.08] 0.98 [0.85 , 1.03] 2.03 [1.0 , 3.78]

HOT2 TXm 4.25 [3.95 , 4.64] 5.71 [4.97 , 6.05] 9.97 [7.34 , 24.8]
PRm 2.93 [2.5 , 3.22] 3.6 [3.17 , 3.81] 10.08 [4.5 , 16.19]

WET TXm 3.75 [3.61 , 4.06] 4.3 [3.67 , 4.7] 5.02 [3.53 , 10.14]
PRm 3.96 [3.42 , 4.22] 4.7 [4.22 , 4.94] 11.75 [6.17 , 17.14]

Fig. 3: the distributions of the HOT1 and UKCP 2061–2080 ensembles
are very similar in the PDF subplot; and the ExSamples return period
sample histogram follows the ‘‘1000 member’’ expectation line closely.
We can conclude that despite the HOT1 winter being an exceptional
extreme within the context of the UKCP18 PPE, the associated SST and
SICs did not pre-condition the winter towards (nor away from) such an
extreme.

In order to compare the conditioning (effectively the ‘‘sampling
advantage’’) across the three ensembles, we examine the relative ex-
ceedance risk of three different extreme thresholds set by the following
UKCP18 PPE distribution quantiles: 0.9, 0.95 and 0.99; representing 1-
in-10, −20 and −100 year extremes. We do this for both the TXm and
PRm variables. We first calculate the threshold values that correspond
to the given extremes using the UKCP 2061–2080 deviations statistical
fit (i.e. the black line in Fig. 3B). We then calculate the fractions of
the UKCP 2061–2080 and ExSamples ensembles that lie above these
thresholds. We present the results in Table 2 in terms of the relative risk
of the given extreme in the ExSamples ensemble compared to the UKCP
ensemble. This is calculated as the fraction of the ExSamples ensemble
that exceeds the threshold divided by the corresponding fraction of the
UKCP ensemble, analogous to the ‘‘risk ratios’’ often used in extreme
event attribution studies (Stone and Allen, 2005; Stott et al., 2004). This
relative risk provides a measure of how many more samples of extremes
of a particular return period we would expect to see in the ExSamples
ensembles compared to a UKCP18 PPE-style ensemble of equal size.
The quantitative results in Table 2 support the picture provided by
Fig. 3: the HOT1 ensemble was not conditioned towards producing
any more extremes than expected from the unconditioned UKCP 2061–
2080 ensemble (for several thresholds it actually appears to have been
marginally conditioned away from producing extremes).

While the boundary conditions did not have any impact on the like-
lihood of an extreme winter, the large-scale dynamical situation of the
study winter did. According to the analogs within the HOT1 ensemble,
this specific dynamical situation increased the chance of a 1-in-100
year winter (based on the UKCP 2061–2080 statistical fit in Fig. 3B)
by a factor of 6.2 [5.3, 6.9]. A similar level of dynamical conditioning
is seen in the baseline ensemble. The analog-based subsampling also
suggests that the prescribed SST/SIC may actually make the dynamical
situation of the study winter less likely to occur than expected from
the baseline climatological rate: the proportion of analogs in the HOT1
ensemble is 20% lower than in the HOT1-B ensemble. Note that this
change in analog frequency is not significant at the 5% level. This
change is reflected in the HOT1 ensemble mean MSLP anomalies, which
are negative southwest of the UK and positive northwest of the UK (the
opposite pattern to the study winter).

3.2.2. HOT2
Again, the magnitude of the extreme in the study winter was

captured within the HOT2 ensemble.
The HOT2 ensemble produced more extremes than would be ex-

pected from a UKCP18 PPE ensemble of the same size (Fig. 4 A, C,
Table 2), suggesting that it was conditioned towards such extremes
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Fig. 3. Comparing statistics of DJF mean of daily maximum temperatures (TXm) averaged over the UK region for the HOT1 winter. A, PDFs of baseline and future ensembles. The
light orange PDF shows UKCP 2061–2080 deviations, with the distribution mean set to the ensemble mean anomaly between 2007–2016 and 2061–2071. The dark orange PDF
shows HOT1 ensemble anomalies. The light grey PDF shows UKCP 2007–2016 anomalies. The black PDF shows HOT1-B ensemble anomalies. The dashed vertical light orange line
indicates the HOT1 winter deviation. The dark orange and black dotted bars indicate the mean and likely range (16%–84%) of corresponding analog subsamples. The bracketed
values in the legend indicate the number of ensemble members that exceed the HOT1 winter threshold over the total number of ensemble members. B, return period diagram. The
light orange dots show the empirical CDF of UKCP PPE 2061–2080 deviations. The solid black line shows the median generalised pareto distribution fit. The dotted black lines
indicate a 5%–95% credible interval of the distribution fit. The dark orange dashes along left 𝑦 axis indicate positions of HOT1 ensemble anomalies. C, histograms of sampled
return periods. The light orange line indicates the UKCP 2061–2080 deviations histogram, and the dark orange line the HOT1 ensemble anomalies. The dashed light orange line
indicates the best-estimate return period of the HOT1 winter deviation. Grey contours indicate the expected histogram curve arising from a sample of size given by the contour
labels.
We note that the sampled return periods are calculated using the best-estimate fit distribution shown in the return period diagram; hence the curves in C and A are related by
the transfer function indicated by the solid black line in B. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
by the prescribed SST/SIC. We can see from Fig. 4C that the HOT2
ensemble samples extremes that we would only expect to see within an
unconditional UKCP18 PPE-type ensemble of total sample size 10,000
(for the period 2061–2080, this would be 500 members * 20 years =
10,000 samples). Table 2 supports the picture that the HOT2 ensemble
was significantly primed towards producing extremes: the relative risk
of a 1-in-100 year event was 10 times greater in the HOT2 ensemble
than the UKCP18 PPE for both hot (TXm) and wet (PRm) extremes.

In addition to the SST conditioning, the dynamical situation of
the study winter also made an extreme season more likely, as shown
by the horizontal lines representing the likely range of the analog
subsamples in Fig. 4 A. Based on the number of analogs sampled, the
7

frequency of this particular large-scale flow was increased by a factor
of 3.6 [2.6, 5.4] relative to the climatological frequency estimated
using the ExSamples baseline ensemble, which may be due to the
prescribed boundary conditions. This would fit within the canoni-
cal picture that the negative La Nina ENSO phase is associated with
positive NAO (Brönnimann, 2007; Deser et al., 2017).

3.2.3. WET
Finally, we examine the WET winter extreme. As in both hot win-

ters, the magnitude of the extreme within the study winter lies within
the range of the WET ensemble.
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Fig. 4. As Fig. 3, but for the HOT2 winter.
As in the HOT2 ensemble, the prescribed SST/SIC have conditioned
the WET ensemble towards producing more wet extremes than would
be expected from an unconditioned ensemble, as shown by the his-
togram of sampled return periods and shifted PDF compared to the
UKCP 2061–2080 PDF in Fig. 5. This is consistent with the quantitative
estimates in Table 2, which suggest that the WET ensemble was 5 times
more likely to produce a 1-in-20 year wet (PRm) extreme, and 12 times
more likely to produce a 1-in-100 year extreme.

An analog-based dynamical analysis shows that, once again, the
large-scale circulation pattern present in the study winter was impor-
tant for the development of the extreme rainfall that was simulated,
consistent with previous weather pattern studies (Richardson et al.
2018, 2020). Interestingly, conditioning on the study winter dynamics
appears to have a smaller influence on the WET ensemble than on
the corresponding baseline: the difference between the distributions
implied by the PDF and by the dotted bar is much greater for the
baseline simulations (black) than for the future simulations (dark blue)
in Fig. 5 A. This may be due to the SST/SIC conditioning in the future
ensemble.
8

3.3. Sampling record-shattering subseasonal events

Although this study is largely concerned with extremes that occur
on seasonal timescales, the novel large ensembles created here also
provide a set of extremes occurring on shorter weather timescales.
Such extreme weather events are of particular importance for decisions
surrounding adaptation to climate change. The ‘‘H++’’ scenario concept
has been developed to inform such adaptation decisions by considering
plausible low likelihood but high impact events that might test the
limits to adaptation (King et al., 2015; Lowe et al., 2009; Wade et al.,
2015). Here we consider how the ExSamples methodology could be
used to supplement the UKCP18 PPE with regard to such H++ scenarios
by examining a particular ExSamples ensemble member as a case study.

This case study is an example of extreme DJF maximum of daily
maximum temperatures averaged over the UK (TXx as previously de-
fined). Fig. 6 shows a return period diagram of UKCP 2061–2080 TXx
deviations (centred on the mean anomaly for 2061–2071 over 2007–
2016), plus a fitted generalised extreme value distribution (GEV) and
associated uncertainty. GEVs are often used to statistically model block
maxima of climate variables; and therefore infer information about the
likelihood of such extreme events (Brown et al., 2014). However, this
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Fig. 5. As Fig. 3, but of DJF mean precipitation averaged over the UK region for the WET winter.
statistical approach appears to have inadequately accounted for the risk
of very high impact events, an issue noted previously by Sippel et al.
(2015). The dashed dark orange line in Fig. 6 shows the TXx for HOT1
ensemble member c0qu, which lies considerably above (by 2.3 ◦C)
any UKCP18 PPE samples. This event is roughly 5 standard deviations
above the mean of the UKCP18 deviations distribution shown in Fig. 6.
This is an example of a potential ‘‘record-shattering’’ event as discussed
by Fischer et al. (2021). Since the particular GEV fitted to the UKCP18
deviations is type III (Coles, 2001), it sets an upper bound on TXx,
consistent with previous studies of extreme heat events (Gessner et al.,
2021). However, in a 100,000 member resample bootstrap, the UKCP
inferred GEV upper bound is only above this most extreme member
in 0.3% of resamples. This does not appear to be due to a mean bias
between the two models: they display near-identical climatological
distributions of TXx over the baseline period. However, there are a
number of reasons that may explain why this extreme lies well outside
the confidence intervals from this statistical extreme value analysis of
the UKCP18 PPE. These include: the SST/SIC pattern prescribed being
highly conducive to these kinds of hot weather extremes noting that
the extreme value analysis is not conditioned on SST/SIC patterns;
potential differences in the tails of the TXx distributions simulated
by HadAM4 and HadGEM3-GC3.05; and differences in the response
of those tails to climate change. We note that this exceptional TXx
9

extreme arises from a very similar set of meteorological circumstances
(not shown) to the record-breaking winter temperature extreme that
occurred over Europe in 2019 (Kendon et al., 2020; Young and Galvin,
2020). However, we believe that the key point to take away from this
is not necessarily the specific estimated likelihood of these extreme
weather events, but that the methodology used here could help to
provide multivariate spatially, temporally and physically coherent ex-
amples of the kinds of H++ scenarios used to consider the limits to
adaptation.

4. Discussion

The first science question we aimed to answer through our ex-
periments is also the most straightforward: is the atmosphere-only
HadAM4 model able to simulate the highest extremes observed in the
UKCP18 HadGEM3-GC3.05 PPE, or do the differences between the
models preclude HadAM4 from producing such events? The answer to
this is a confident yes. We have found that HadAM4 is not only able to
closely reproduce the present-day climate statistics of the more complex
model (after correcting the bias in seasonal mean rainfall, which may
be due to model parameterisation), but is able to produce winters just
as extreme as the selected study winters when driven by the SST and
SICs from those winters.
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Fig. 6. As return period diagram of Fig. 3, but of DJF maximum of maximum daily temperatures averaged over the UK region for the HOT1 winter. The statistical model indicated
by the solid and dotted black lines is a generalised extreme value distribution fit over the entire population of UKCP PPE 2061–2080 deviations, which are shown as light orange
dots. Note the dotted lines indicate a 0.1–99.9% CI in this instance. The dashed dark orange line shows the value of the most extreme member within the HOT1 ensemble. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
The question that naturally follows on from this is: were the selected
winters genuinely exceptional events, or could they have been more
extreme? Despite the fact the selected winters were already far into the
tails of the projected climate distribution from UKCP18, the SST/SIC
forced ExSamples experiments show that higher extremes are possible.
In the two winters pre-conditioned by the SST and SIC patterns, there
were more higher extremes than in the winter where the ocean pattern
did not contribute to the extreme. Since the ExSamples ensembles are
forced by the same lower boundary conditions as the study winters,
they cannot be used to determine the unconditional likelihood of
these higher extremes, but they do provide plausible and physically
consistent scenarios in which such higher extremes might be generated.

We suggest that the ExSamples methodology is more efficient at
sampling extremes than the simplest alternative approach of increasing
the UKCP18 PPE size. We have found that overall, for both hot and wet
extremes, on both seasonal and daily timescales, the future ExSamples
ensembles were able to produce many more samples of extreme winters
than would be expected if we simply increased the UKCP18 2061–2080
ensemble to be the same size as the ExSamples ensembles. Across the
three future ExSamples ensembles, for mean temperature we sampled
44 winters above the most extreme winter in UKCP18, and 106 for
mean precipitation (using re-centred deviations to define the UKCP18
maxima as shown in Figs. 3–5, S4-S6). However, there is an important
caveat to bear in mind here: the SST/SICs taken from the selected
study winters clearly ‘‘primed’’ the corresponding ExSamples ensembles
towards producing relatively more extremes in two of the three cases
(HOT2 and WET), but not in the third (HOT1). For the two primed
study winters, the benefits of the ExSamples methodology is clear: we
get many more samples of extreme winters than would be expected
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from an unconditioned ensemble of the same size (like the UKCP18
PPE). In particular, the HOT2 ensemble produces 10 times more sam-
ples of 1-in-100 year TXm and PRm events than would be expected for
an equal-size UKCP18 PPE (from Table 2). For the third study winter
the overall benefits to sampling efficiency are less clear. However, this
winter generated a TXx extreme that far exceeds anything seen in the
UKCP18 PPE (and indeed anything that would be expected to be seen
even if the UKCP18 PPE was considerably larger, based on a statistical
extreme value analysis).

In addition to the methodology presented here, the future ExSam-
ples ensembles explored here represent a dataset that may be of con-
siderable interest to the wider scientific community, since they provide
multivariate spatially coherent information for climate projections of
very high return period extremes. These ensembles, and in particu-
lar the physically plausible simulations of extremes within, could be
used in the context of ‘‘H++ scenarios’’ to explore and understand
the potential impacts of climate change, and the limits to adaptation
planning (Wade et al., 2015). The efficiency with which we have been
able to sample extremes with the ExSamples methodology means that
we can provide a much richer set of future extreme winter events than
exist within the UKCP18 PPE. This rich set of events could be used,
for example, by impact modelling, to more fully explore the space of
impacts that may arise from climate change.

A final topic that this study touches on is the use of atmosphere-
only versus coupled models (Barsugli and Battisti, 1998; Dong et al.,
2017; Fischer et al., 2018; He and Soden, 2016). Here, we have ex-
plored both present-day baseline and projected climates from a coupled
model (HadGEM3-GC3.05) and a comparable atmosphere-only model
(HadAM4). Whilst atmosphere-only simulations have been found to
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have lower variability of ocean surface air temperature (Barsugli and
Battisti, 1998) and could potentially exhibit lower variability in other
quantities, we have not found this to be the case for the mean UK
temperature and precipitation studied here (though definitive proof of
this would require us to repeat the ExSamples exercise with the coupled
model). For the baseline period, the atmosphere-only model did not
systematically underestimate the internal variability of the seasonal (or
daily) timescale extreme variables considered here (Figs. 3–5, S4-S12).
Since we only have ExSamples future ensembles for three different
sets of SST/SIC conditions, it is more difficult to quantify whether the
projected internal variability is significantly different from the cou-
pled model simulations, but the climate distributions of the relatively
unconditioned HOT1 ensemble suggest that this is not the case.

If the ExSamples methodology were to be repeated, for the purpose
of sampling additional extremes, being able to pre-select study winters
(i.e. lower boundary conditions) that condition the resulting ensembles
towards extremes would be of considerable value. Here, we simply
chose three of the most extreme winters within the UKCP18 PPE,
expecting that these would be more likely to produce extremes than
a randomly selected winter. This turned out to be the case for two of
the winters we chose, but not the third. Understanding what features
of the prescribed SST and SIC patterns caused the ensembles to be
conditioned towards extremes would be a very useful direction for
further study to take. If future research were able to provide evidence of
such features, then we could pre-select study winters more intelligently,
and therefore sample extremes even more efficiently. There has been
some previous work done on the subject of how SST patterns affect
seasonal mid-latitude weather that could potentially be used in this
manner (Baker et al. 2019). On a related note, our methodology could
be used to understand real extremes in the present-day by driving
the model with observed rather than simulated SST/SICs. This would
allow some exploration of whether extremes that have already occurred
might have been even more extreme.

Another research direction that could be taken would be to attempt
to extract additional information from the existing set of events pro-
vided by the ExSamples ensembles presented here. Although the 60 km
(N216) resolution of both the ExSamples ensemble and UKCP18 PPE is
very competitive within the context of the current generation of climate
models (source id values, 2022; Eyring et al., 2016), it is still relatively
coarse for providing assessments of weather events on small spatial or
temporal scales. For example, catchment-scale hydrological modelling
would require much higher spatial resolutions (Charlton et al., 2006).
Hence, we suggest that the ExSamples ensembles could be statistically
downscaled (or dynamically downscaled using a regional model if
suitable model output was stored to drive these models) in order to
provide information that is more relevant for localised climate change
adaptation planning. Such downscaling could result in an extensive
set of extreme local scenarios to complement the raw model output
that provides a corresponding set of extreme national scenarios. For
downscaling to be trustworthy, the large-scale dynamical features of
the input simulations must be an accurate representation of reality.
The analysis that we have performed here suggests this is the case:
as demonstrated in the Supplementary Information, the large-scale
dynamics over the Euro-Atlantic sector within HadAM4 very closely
replicates those within HadGEM3-GC3.05.

5. Concluding remarks

In this study we have presented a new set of 1000-member en-
sembles of simulations from the HadAM4 atmosphere-only model, run
on the personal computers of volunteers using a distributed computing
system, to allow the study of extreme weather events. The lower bound-
ary conditions of these ensembles were taken from three of the most
extreme winters within the UKCP18 PPE between 2061–2080, and they
therefore represent a comprehensive sampling of atmospheric internal
variability conditioned on the prescribed SST, SIC and anthropogenic
11
forcings. Corresponding ensembles for a 2007–2016 baseline period
were also run to enable the HadAM4 model to be verified against the
coupled HadGEM3-GC3.05 model used in UKCP18.

We find that the HadAM4 ensembles are able to simulate winters
with temperature and precipitation anomalies that exceed the magni-
tudes of the most extreme examples within the UKCP18 PPE. Condition-
ing from the prescribed SST/SICs present in two of the three ensembles
resulted in significantly more extremes being sampled by these ensem-
bles than would be expected from a UKCP18 PPE-style ensemble of the
same size: around 10 times more 1-in-100 year extremes.

The computational efficiency with which our methodology was able
to sample such extremes provides a compelling argument for how it
could be used to support future climate projection efforts. The ensem-
bles that we have presented here could themselves be used to provide
multivariate spatially, temporally and physically coherent examples of
extreme weather in the context of H++ scenarios and for adaptation
planning. Although we have focused on the UK in this study, our
methodology could be applied to other regions, subject to proper model
validation (Murphy et al., 2018; Watson et al., 2020).
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