
 Das Chowdhury, P., Hallett, J., Patnaik, N., Tahaei, M., & Rashid, A.
(2021). Developers are Neither Enemies Nor Users: They are
Collaborators. In 2021 IEEE Secure Development Conference
(SecDev): SecDev 2021 (pp. 47-55). Institute of Electrical and
Electronics Engineers (IEEE).
https://doi.org/10.1109/SecDev51306.2021.00023

Peer reviewed version
License (if available):
Unspecified
Link to published version (if available):
10.1109/SecDev51306.2021.00023

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at https://ieeexplore.ieee.org/document/9652651 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1109/SecDev51306.2021.00023
https://doi.org/10.1109/SecDev51306.2021.00023
https://research-information.bris.ac.uk/en/publications/c1469ea9-6fd9-4492-86b5-645dab2e5a10
https://research-information.bris.ac.uk/en/publications/c1469ea9-6fd9-4492-86b5-645dab2e5a10

Developers Are Neither Enemies Nor Users:
They Are Collaborators

Partha Das Chowdhury, Joseph Hallett, Nikhil Patnaik, Mohammad Tahaei and Awais Rashid
Bristol Cyber Security Group

University of Bristol, UK
{partha.daschowdhury, joseph.hallett, nikhil.patnaik, mohammad.tahaei, awais.rashid}@bristol.ac.uk

Abstract—Developers struggle to program securely. Prior
works have reviewed the methods used to run user-studies with
developers, systematized the ancestry of security API usabil-
ity recommendations, and proposed research agendas to help
understand developers’ knowledge, attitudes towards security
and priorities. In contrast we study the research to date and
abstract out categories of challenges, behaviors and interventions
from the results of developer-centered studies. We analyze the
abstractions and identify five misplaced beliefs or tropes about
developers embedded in the core design of APIs and tools.
These tropes hamper the effectiveness of interventions to help
developers program securely. Increased collaboration between
developers, security experts and API designers to help developers
understand the security assumptions of APIs alongside creating
new useful abstractions—derived from such collaborations—will
lead to systems with better security.

Index Terms—secure software development, interventions,
challenges, beliefs

I. INTRODUCTION

Developers’ security expertise depends on varying factors
such as the quality of security training they have had and
their security beliefs [1]. Securing applications may, at times,
be considered an afterthought: a task separate from developing
the application itself. When security is considered, developers
use off-the-shelf components designed with a range of secu-
rity policies and assumptions that may not be effective [2]–
[4]. Applications are secured using cryptographic APIs, but
developers find them hard to use [2], [4], [5]. These technical
challenges may push developers into unknowingly adopting
potentially dangerous behaviors to deal with the difficulty of
secure programming.

Three notable studies in developer-centered security in-
clude the works of Patnaik et al. [6], Tahaei et al. [2] and
Acar et al. [4]. Patnaik et al. trace 45 years of recommenda-
tions from 65 papers to support API developers to improve
the usability of their libraries. They find a strong focus on
helping developers with constructing and structuring their
code with the intention of making the code more usable
and easier to understand; but less focus on documentation,
writing requirements and code quality assessment. They also
find weak levels of empirical validation among papers [6].
Tahaei et al. review 49 Developer-Centered Security (DCS)
papers to understand different methodologies used to run

This research is supported in part by EPSRC Grant EP/P011799/2 and the
National Cyber Security Centre.

the studies and find the emerging research themes in DCS.
They find that it is difficult to study developers in a lab
environment because of factors that are difficult to replicate
such as the long periods of time developers spend working
on a code including refactoring, code-reviews, and decision
making processes that involve multiple stakeholders. It is also
hard to study developers under limited time constraints—as
experiments can range from 15 minutes to 3 days but this isn’t
always enough. Tahaei et al. compare the methodologies used
to that of research in Human-Computer Interaction (HCI), and
note that they are implemented poorly [2]. Acar et al. argues
for a better understanding of the motivations and priorities of
developers rather than blaming them for not being mindful of
security. They stress the need for developer-centered studies
to understand the challenges that developers face when using
security APIs, and the resources available to improve the us-
ability of these APIs. They propose taking the developer out of
the loop whenever possible while recommending usable APIs
in other instances along with secure and usable information
sources and tools [4]. Our study complements these prior
works. We analyze 72 papers written over 13 years in order to
identify overarching challenges faced by developers and their
consequent behavior. We study how interventions intersect
with the developer behavior in response to the challenges.
We create a categorization for the challenges, behaviors and
interventions; and answer the following questions:

RQ1. What challenges do developers face and what be-
haviors do they display in the existing developer-centered
research on secure software development?
RQ2. How do the interventions deal with the behaviors
of developers and the challenges they face?
RQ3. How can we address the limitations revealed from
the analyses of the challenges and interventions?

We find five technical and five behavioral challenges that
developers face and four categories of interventions. Many
developers address the challenges with behavioral solutions
while the interventions come with human-centered, as well
as technical solutions. Our analysis reveals tropes: misplaced
beliefs about how developers behave embedded in the core

design of APIs, tools and secure programming approaches.1

Such tropes hamper the effectiveness of interventions to sup-
port developers in overcoming the technical challenges they
face and promoting more secure behaviors, thus adversely af-
fecting secure software development. For example, many APIs
assume that developers are experts and that they understand
security: the challenges we identify suggest that the opposite
is true. A correct understanding of the developers’ skills is
critical for designing appropriate interventions. We posit that
collaboration between developers, security experts and library
developers is key to unravelling these tropes and their adverse
impacts on interventions.

II. METHOD

We reviewed the papers covered in the systematic literature
reviews and research agendas related to DCS [2], [4], [8]. We
then selected papers that provided an insight into developer
challenges, behaviors shown by developers, and interventions
suggested. We performed snowballing [9] as well to find and
add new papers to our dataset until we reached saturation and
did not observe any new papers in our search. This resulted
in an initial set of 292 papers, including papers from the
bibliographies of our seed papers and a further manual search
of the repositories for additional papers. We then read the
title and abstract of these papers, and shortlisted papers that
explicitly included a study involving at least one developer.
Our final set includes 72 papers. To develop our categories of
challenges, behaviors and interventions, multiple authors dis-
cussed and constructed themes over multiple sessions, based
on the contents of the papers.

III. CHALLENGES AND CONSEQUENT BEHAVIORS

Table I describes the technical challenges developers face
when attempting to program securely. These do not cover
specific challenges (e.g. OpenSSL is hard to use) but rather
higher level challenges. In contrast, Table II describes the
broad categories of behaviors developers adopt to address
these challenges. The split between technical challenges and
behaviors comes from how developers try and deal with the
difficulty of programming securely. If a developer struggles to
understand how to use an API correctly (the miscommunica-
tion challenge in Table I), they may search Stack Overflow for
solutions. The answers to Stack Overflow questions are voted
and this may create herding behaviors (Table II), regardless
of whether the answer they follow is correct or not [42]. The
intangibility challenge represents a challenge with security as a
whole, rather than being specific to any particular development
practice. Figure 1 shows which technical issues lead to an
instant behavior.

Miscommunication describes when API providers do not
give adequate clarity of what API to use and their security
assumptions, resulting in confused mental models. Acar et al.
conducted an experiment where 256 python developers were
asked to perform a series of cryptographic tasks using 5

1The notion of tropes has been previously used to study how insecurities
manifest in internet of things environments [7].

Python based cryptographic libraries. They found some APIs
are designed for simplicity, reducing the decision space and the
chance of it being misused, but simplicity is not enough [11],
[13], [59], [60]. One study reports that for 20% of the
functionally correct tasks, the developers believed their code
was secure, when in fact it was not [11]. Naikashina et al.
found that, when storing passwords, while developers might
hash or salt them, they still often end up stored insecurely [40],
[46], [48]. Patnaik et al. perform a thematic analysis over
2400 StackOverflow posts seeking help with 7 cryptographic
libraries. They report 4 usability smells against Green &
Smith’s 10 principles [5]. The usability smells result due to
missing or hidden information [8]. Van der Linden et al.
conduct an experiment with developers to find their coding
considerations. They report that developers depict security
thinking with their own code but not in testing, seeking help
from Stack Overflow for incorporation of APIs [43]. The
questions surrounding how to use a particular API or respond
in cases of bugs have been reported in [8], [11], [61] as well.

Take-away. Collaboration between API providers and
developers to help explain and understand APIs and their
security assumptions can lead to security as well as
functional correctness.

Narrow Scope and miscommunication lead to shifting re-
sponsibility among developers where the actions of the API
provider lead to developers having to make tedious code up-
dates. Narrow scope can result in herding behavior. Acar et al.
report the hardships faced by developers when libraries do
not support auxiliary tasks, e.g. secure key exchange [11].
Fahl et al. found that a significant reason behind insecure use
of TLS was the insufficient capabilities of the API. Developers
improvised to fulfill their requirements and ended up using
APIs incorrectly [59]. Balebako et al. studies app developers
to understand their security and privacy decisions in their
development activities. It was reported that less than one-third
of app developers understood that data were being collected by
third parties [54], a strongly supported finding [39], [45], [49],
[62]. Derr et al. conduct a study with 203 app developers and
a concerning conclusion is that API providers contribute to
the poor use of updated libraries. Among the reasons cited are
overload of updates, confusing version control and conflicts
with the preferences of the developers [4], [28].

Take-away. A participatory model of development,
where developers and API designers collaborate, will lead
to more comprehensible APIs and an improved under-
standing of their data flow and security requirements.

Hidden Information is a challenge seen across many em-
pirical studies where usability information does not exist or
are not accessible. They include safe uses of a particular
library or bug fixing capabilities. Balebako et al. found that

Miscommunication

Mental modelsShifting responsibility

Hidden Information

Bias Herding

Conflicting goals

Incentives

Intangibility Narrow Scope

Fig. 1. Relationships between technical challenges (top) developers face and the behaviors (bottom) they adopt to mitigate them.

TABLE I
TECHNICAL CHALLENGES DEVELOPERS FACE, AND THEIR CATEGORIZATION.

Theme Description Examples

Miscommunication Situations where the
API developers’ beliefs
and knowledge isn’t
communicated to the
end-developers.

“Should I Use a particular API for this particular threat model”?
• Measure - What works and what doesn’t in an overload of libraries
• Closed - What are the security assumptions of a particular library?

[2], [8], [10]–[20]

Hidden information Access to the data is not
easy; where it either does
not exist, or the data is ob-
scured existing in a form
that is nearly impossible to
comprehend and use.

“How do I Use this”
• Safety - What are the safe uses of access points for security and privacy?
• Incident Response - Lack of clear documentation on debugging and fixing.

[2], [4], [8], [10], [11], [13], [17]–[19], [21]–[27]

Conflicting goals Conflicting security goals
from organizations, security
experts and system and li-
brary developers create ten-
sions.

“May I Use a particular patch without affecting the existing functionalities”?
• Incompatible updates - where a changing API can break developer’s code.
• Power plays - Lack of communication between Security Experts and Developers

[2], [4], [5], [10], [28], [28]–[33]

Intangibility (Metrics) Security is difficult to quan-
tify, and it is hard for de-
velopers to be sure whether
their actions are harming
or hindering the security of
their code.

“Will a particular use of a API make the application secure”?
• Perceptions - People put less emphasis on outcomes difficult to quantify
• Gains - Developers cannot ascertain benefits of their use of an API

[2], [11], [34]–[38]

Narrow scope APIs are overly focused on
a single task.

“How do I integrate non crypto yet security requirements with a particular API”?
• Unusable - where APIs do not support auxiliary functions
• Limited - APIs are not defined broadly to include non security requirements

[5], [22], [25], [28]

developers do not have enough correct information to use
security tools [54]. Consequently, developers adopt insecure
practices based on their mental models, their own biases and
prior beliefs or display herding behaviors where they follow
what others do. Van der Linden et al. conduct an observation
of developer’s use of Stack Overflow with 1,188 participants.
They found developers go by surface features of Stack Over-
flow posts (such as answer length) over correctness [42].
Hidden information has a bearing on our characterization of
shifting responsibility. Braz et al. conduct an observation based
study among developers to detect the extent to which they
can detect improper input validation. They do highlight that
lack of security knowledge is an important reason behind poor
detection of vulnerabilities [63].

Take-away. Closer collaboration between API providers
and developer may help the both find and fix bugs,

and ease the bias, herding and shifting responsibility
behaviors, though encouraging open source collaboration
is an ongoing problem [64].

Intangibility comes from a lack of visible benefit of
security—problematic if security is not a functional require-
ment [4]. This leads to herding, bias and developers are unable
to perceive the incentives of security. The pattern of herding
as well as bias in adoption of security tools is reported in [32].
App developers tend to adhere to social groups and bring
in their privacy beliefs into their development process [27],
[53]. Braz et al. notes that security is not a primary goal [63].
The concerns on incentives, learning support and usability are
found across developer-centered studies [2], [35]. Sometimes
implementing security and privacy is not in a developer’s
interest: developers might choose libraries for financial rea-
sons [45], [62], or for usability reasons [29], [36], [55].

TABLE II
BEHAVIORS DEVELOPERS EXHIBIT WHEN TRYING TO PROGRAM SECURELY AND THEIR CATEGORIZATION.

Theme Description Examples

Confused mental models It is difficult for developers
to process the complexities
of security concepts and/or
libraries

“Should we hash and salt even when we use TLS”?
• Mental models - Developers understanding of the inner workings of the API are often

inconsistent with the complex crypto concepts
• Adversarial Thinking - Developers are not trained in real world failures and adversarial

models; thus not driven by objective security considerations.
[2], [4], [19], [24], [35], [39]–[50]

Shifting Responsibility Cost of actions of one entity
is borne by another entity

“How do I update without affecting functionalities”?
• API providers - Negative impact of poor or missing documentation, cumbersome

library update processes.
• Security experts - Insecure end products due to lack of communication between

security experts and developers.
[2], [8], [10]–[12], [28], [51]

Bias Use of information sources
based on subjective consid-
erations rather objective se-
curity considerations

“How to distinguish a correct answer from a wrong answer on Stack Overflow”?
• Correspondence bias - Completeness of answers or explained code snippets and other

surface features appeal more to developers than accuracy.
• Prior Beliefs - Developers exhibit a tendency to bring their own privacy and security

beliefs into their development process.
[2], [4], [10], [27], [28], [42], [43], [45], [46], [49], [52], [53]

Herding Following the group behav-
ior

“How many other developers are using this particular solution”?
• Social Groups - Use of social circles for various activities like testing or choosing

security parameters that others in the social group use.
• Network Effect - Choosing solutions based on the number of their users. Group

behavior is also observed in case of assurance mechanisms
[30]–[32], [43], [54]

Incentives Misalignment of the returns
with the efforts of expected
behavior

“Will I be paid for the extra work to add security”?
• Financial - Security prevents mass market developers from doing things that might

earn more revenue.
• Organizational Goals - Software development methods rush for functionality. Devel-

opers need regular motivation and organization push
[2]–[4], [28], [30], [33], [36], [40], [55]–[58]

Take-away. The API providers are ideally placed to
collaborate with developers and link the security benefits
and pitfalls of how their APIs are used.

Conflicting goals signifies concentration of security knowl-
edge within experts (power play) [29], [30], [33] leading
to shifting responsibility and incentives. Derr et al. and
Vaniea et al. find that security is not a priority when picking a
library by app developers [28], [51]. Off-the-shelf components
are built with different security policies and expectations
from the developers’ commitments and expectations from the
system. Georgiev et al. identified man-in-the-middle (MITM)
vulnerabilities in various applications and SDK. The study
finds that these MITM vulnerabilities were due to poorly
designed cryptographic APIs [20].

Take-away. Consideration of revenue is a rational and
legitimate behavior—a reasonable approach might be to
explain to developers the reason behind the restrictions,
and work with them rather than blaming them.

IV. INTERVENTIONS AND TROPES THAT HAMPER THEIR
EFFECTIVENESS

Table III describes four classes of interventions proposed to
help developers produce secure code. This includes research
on developer-centered usable security developers as users; as
well as various technical platform security initiatives such as
patching and sandboxing techniques, and assurance mecha-
nisms such as testing, code review, and training. Some inter-
ventions try to find human solutions to human problems, e.g.,
workshops, incentivization sessions and on-the-job training.
Others aim to find technical solutions to human problems.

Several studies [15], [70], [74], [75] report assumptions
about developers’ expertise and training. The issues caused by
a lack of, or outdated training is exacerbated when developers
are not provided with well-documented APIs and tools [11],
[23], [76]. A related issue is of abstractions [34], [37]: they are
used to make the APIs more usable, but high-abstraction levels
can also lead to restricted flexibility [26]. The incentives for
inducing developers to spend the effort to program securely
are also not aligned with expected returns from doing so [28],
[48]. The challenges result in bias and group behavior [42],
[52]. The improvisations to which developers resort are aided
by online sources which can be insecure [43], [52], [59].
Adhering to social groups and choosing answers based on

Developers as users Platform initiativesAssurance mechanismsEducation

Developers are experts Security is a universal prioritySecurity is easy Maintenance is funEveryone has same
security & privacy needs

Fig. 2. The tropes we identify (top) and which interventions (bottom) they adversely impact.

TABLE III
INTERVENTIONS TO HELP DEVELOPERS PROGRAM SECURELY.

Theme Description Examples

Developers as users Developers as users of APIs and
code, as much as non-developers
are users of their end-products.
Developers need considerations
for usability just like everyone
else.

“How to empower developers without knowledge of security”?
• Abstraction - Include non security components, safe defaults.
• Interactions - Incentivization sessions, Security reminders, assist developers through

compile time alerts, IDEs.
[4], [5], [14], [21], [24], [29], [31]–[33], [57], [65]–[69]

Platform initiatives Developers build code on top of
platforms and within organiza-
tions. The developers and are not
wholly responsible for a systems
security and code can be con-
strained and updated externally.

“How to propagate updates to the apps”?
• Sandboxing - Google application security program, Gradle, iOS app wrapping
• Patching - Minimal updates without additional functionalities pushed by an API or

system provider
[10], [70], [71]

Assurance
mechanisms

The findings of observation based
studies on organized assurance
mechanisms.

“How to ease the cognitive load of developers?”
• Testing - Intervention mechanisms based testing the developers’ outputs, for example:

Red team exercises, penetration testing; program analysis, and fuzzing
• Organizational culture - secure programming training and incentivization, code and

architecture review, organizational focus on security.
[14], [29]–[33], [57], [58], [66]–[69], [72]

Education Not all developers are security ex-
perts and API providers should not
assume they know how developers
will use their code.

“What is the security maturity of developers”?
• Experience - Developers with knowledge performed better with the interventions

[11], [15], [16], [18], [26], [30]–[32], [40], [43], [57], [70], [73]–[75]

surface features are examples of finding human solutions to
technical problems without solving the rooted beliefs or tropes
in the larger environment.

A. Tropes

Tropes represent misplaced beliefs about developers and
programming that adversely affect the secure use of APIs and
the adoption of mitigating interventions (Figure 2).

The trope that developers are experts comes from studies
where developers are expected to understand details about how
to use an API without guidance from the API provider them-
selves [8], [11], e.g., the PyCrypto library requires developers
to understand how certificate stores work [11].

The trope that maintenance is fun comes from studies that
mistakenly assume that developers actively seek out and enjoy
dealing with breaking changes in libraries. Derr et al. showed
that the libraries in many apps could be trivially updated [28],
yet were not. Vaniea and Rashidi found that API providers
routinely misunderstood how hard it was for developers to
adopt changes to their APIs [51].

The security is easy trope arises from a belief that devel-
opers are aware of the extent to which their code is insecure.
Two studies found that developers are overconfident in the
security of their code [29], [41]. Oltrogge et al. found that
app generators routinely generated insecure apps [1]. Despite
several studies highlighting that developers need more training
in security [29], [42], a trope that secure programming is an
easy task for developers still remains.

Similarly, there appears to be another trope that assumes
that security is a universal priority and security is desired in
applications for its own sake; while prior work highlighted that
developers do not always value security as a feature [43], [77],
[78]. The work of Naiakshina et al. showed that developers
would only implement password storage securely if explicitly
asked to [40]. This suggests that there is a mismatch between
what security experts think developers value and what they do
in practice.

Even if security were easy and a universal priority, it
is a mistaken trope to assume that everyone has the same
security needs. Sane defaults for security APIs [5] assume

that everyone needs a similar default level of security, and
that their use of the API is identical. Different applications
have different threat models and it is a mistake to assume that
there are universal security choices.

B. Effect of Tropes on Interventions

Security is a universal priority inhibits [30], [32], [79]
the assurance mechanisms, education and platform initia-
tives. The role of assurance mechanisms have been discussed
as effective for secure software development. Testing has
been identified to aid in secure development [67] while
other work highlights the importance organizational culture
through incentivization sessions, on the job training and other
lightweight interventions [29], [30], [57]. An experiment with
over eighty developers across eight organizations reports that
interventions can be successful without security specialists
but needs organizational push [80]. Another study observes
that smaller organizations need adequate support for secure
coding [54]. When we evaluate these interventions from two
perspective of security is not a universal priority [2], [4] and
it contributes to poor use of updated libraries [51], we see
the adverse affect on the platform initiatives. Developers on
their own may not make use of the assurance mechanisms,
education and platform initiatives unless externally nudged by
regular organizational motivations [3], [30], [31], [80].

Take-away. A shared ownership of the security and func-
tionalities of the systems is the way forward even if the
underlying reasons for achieving that is different for each
of the stakeholders. This can make systems development
as much about diplomacy as it is engineering [81].

Developers are experts risks the appropriation of the benefits
of assurance mechanisms [16], [30] as well as education. Solo
developers would need to understand and adopt interventions
like, penetration testing, threat modeling; skills which need
extensive training even within organized institutional software
development teams [30]. Braz et al. empirically observes
the interactions between the developer and improper inputs.
Developers with adequate experience and support are able
to detect improper inputs with proper priming [63]. The
importance of priming has also been observed in [29], [41].
The empirical studies report that developers with education
performs better be it for secure uses of APIs or to detect
insecure uses through the interventions [15], [48], [73].

Developers are not all the same: in particular solo develop-
ers have different levels of expertise and mental models [11],
[41] than those who work in large corporate teams. The ex-
pectation that solo developers are experts and fully understand
the need for penetration testing, threat modeling, and identify
correct security parameters may be misplaced; no matter what
education or assurance mechanisms are available to them.

Take-away. These interventions can only be effective if
they are aligned according to the security abilities of the
developers. This requires collaboration.

Furthermore, Security is easy limits the approach of treating
developers as users and makes education less effective. Not
all developers are equally able and have differing levels of
experience [63], [69]. Braz et al. reports the developers with
experience and knowledge detected vulnerabilities better [63],
a result echoed in case of empirical observation of IDE based
interventions reported in [3]. Security is not easy [1] and this
cannot be remedied by just attempting to educate developers
on how to do it right [82]. Instead they need to be able to
understand the design choices underlying an API, rather than
just be shown the right way of using it.

Take-away. If API providers help explain the APIs to the
developers that will remove several obstacles, including
those reported in [10], [52].

Maintenance is fun adversely affects platform initiatives.
Platform initiatives can include mechanisms to help ensure
that applications use updated libraries; but these mechanisms
can lead to complex version control systems for updates, and
interference with app functionalities by the API providers.
Developers must overcome a steep learning curve to properly
patch their libraries. Research in [28] looks into the adoption
of library updates and argues for mediated patching of core
functionalities to prevent conflict of interests between devel-
opers and API providers. These platform initiatives can make
maintenance not fun for developers.

Take-away. Library developers have it tough [83]. Updat-
ing and potentially breaking APIs can be problematic. API
providers and developers need to collaborate in the update
process rather than developers sticking with outdated
libraries or API providers breaking developers code.

Everyone has same security needs adversely affects the
intervention developers as users. Research in [4], [21] make a
case for learning from the advances in HCI and treat develop-
ers as users. Green et al. makes 10 specific recommendations
including moving the level of abstraction to include non secu-
rity components and having safe defaults [5]. Acar et al. makes
the case for safe defaults [11]. Minderman et al. argues along
similar lines of [4], [5] where the authors propose putting a
wrapper around the APIs [61]. These interventions will in-
effect assume a uniform threat model, but threat models are not
universal. The assumption everyone has same security needs
made by the intervention developers as users is misplaced.

Challenges

 Behavior

lead to arises from

Interventions

to address

Tropes

arises from

arises from

Fig. 3. Relationships between challenges, behaviors, interventions, and tropes.

Take-away. Increasing the level of abstraction can lead
to an API becoming focused on a single threat model. We
recommend threat assessments incorporating the concerns
of both the API provider and the developers who use them
to ensure the threat model is as true to life as possible.

V. DISCUSSION AND CONCLUSION

The challenges lead to revealed behavior and the interven-
tions were designed to address the challenges and behavior
(Figure 3). However, the tropes about developers lead to the
failure of the interventions to adequately address all the devel-
opers’ challenges and behaviors. This means that tropes about
what we think developers need may confuse API designers
and security experts, and lead to interventions which address
the challenges we think developers have, rather than the ones
they actually face.

How then can we encourage collaboration between API
providers, security experts and developers? Communication
can play a key role as to how knowledge is transferred to
practitioners [84]. Perhaps approaches such as of Computer-
Supported Collaborative Work can be adapted for secure
software development and establish effective communication
channels. Whilst forums can be an asynchronous platform
for developers, they sometimes lead to bias and herding
behaviors [42]; perhaps by combining them with tools such as
CryptoGuard [85] to detect misuses of cryptographic APIs can
help spot when advice is awry and mitigate these behaviors.

Close collaboration between all three parties may offer a
solution and align the assumptions with reality. If API design-
ers and security experts keep the developers out of the loop
by not requiring them to understand security, then developers
will have less flexibility. Developers need help understanding
which APIs to use, when to use them and how to use them
safely. They need to understand how to debug the security
aspects of their own applications. API designers and security
experts need to help developers have this autonomy by helping
developers understand security details (e.g. modes, algorithms,

iterations in cryptography) and by offering them matching
incentives in terms of usability [3], [30], [86]. Broadly, it
will build an understanding of the abilities, expectations, goals
and preferences of the developers and API providers. The
understanding will help developers say clearly what they want
the system to do (functionalities) in the terms of the API
designers, and understand the things the system should not
do (security) in their own terms.

The API providers are also developers. Their contexts,
priorities and perceptions of security will influence what is
possible from a library. Realistic tropes about developers will
enable the realization of effective interventions sitting at the
intersection of developers and API providers. The effective
interventions can be technical, human or a combination of
both. Collaboration will lead to a more dynamic approach to
securing systems; the usability problems would be easy to
identify and can be continually addressed.2 By collaborating
with developers, and not treating them as enemies nor users,
we can create secure software that works for all.

REFERENCES

[1] M. Oltrogge, E. Derr, C. Stransky, Y. Acar, S. Fahl, C. Rossow,
G. Pellegrino, S. Bugiel, and M. Backes, “The Rise of the Citizen
Developer: Assessing the Security Impact of Online App Generators,”
in 2018 IEEE Symposium on Security and Privacy (SP), 2018.

[2] M. Tahaei and K. Vaniea, “A Survey on Developer-Centred Security,”
in 2019 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), 2019.

[3] J. Xie, H. Lipford, and B.-T. Chu, “Evaluating Interactive Support for
Secure Programming,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2012.

[4] Y. Acar, S. Fahl, and M. L. Mazurek, “You are Not Your Developer,
Either: A Research Agenda for Usable Security and Privacy Research
Beyond End Users,” in 2016 IEEE Cybersecurity Development (SecDev),
2016.

[5] M. Green and M. Smith, “Developers are Not the Enemy!: The Need
for Usable Security APIs,” IEEE Security Privacy, vol. 14, 2016.

[6] N. Patnaik, A. C. Dwyer, J. Hallett, and A. Rashid, “Don’t forget your
classics: Systematizing 45 years of Ancestry for Security API Usability
Recommendations,” 2021.

[7] A. Michalec, D. Van Der Linden, S. Milyaeva, and A. Rashid, “In-
dustry Responses to the European Directive on Security of Network
and Information Systems (NIS): Understanding policy implementation
practices across critical infrastructures,” in Proceedings of the Sixteenth
Symposium on Usable Privacy and Security, Aug. 2020.

[8] N. Patnaik, J. Hallett, and A. Rashid, “Usability Smells: An Analysis
of Developers’ Struggle With Crypto Libraries,” in Proceedings of the
Fifteenth Symposium on Usable Privacy and Security, Aug. 2019.

[9] C. Wohlin, “Guidelines for Snowballing in Systematic Literature Studies
and a Replication in Software Engineering,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering, 2014.

[10] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “”Jumping Through
Hoops”: Why do Java Developers Struggle with Cryptography APIs?”
in 2016 IEEE/ACM 38th International Conference on Software Engi-
neering (ICSE), 2016.

[11] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and
C. Stransky, “Comparing the Usability of Cryptographic APIs,” in 2017
IEEE Symposium on Security and Privacy (SP), 2017.

[12] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. Arango-Argoty, “Secure
Coding Practices in Java: Challenges and Vulnerabilities,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE), 2018.

2David Deutsch’s book “The Beginning of Infinity” in the chapter “Unsus-
tainable” reflects on the spirit of collaboration about science.

[13] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford,
“Questions Developers Ask While Diagnosing Potential Security Vul-
nerabilities with Static Analysis,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, 2015.

[14] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl, “A
Stitch in Time: Supporting Android Developers in Writing Secure Code,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017.

[15] J. Zhu, J. Xie, H. R. Lipford, and B. Chu, “Supporting secure program-
ming in web applications through interactive static analysis,” Journal of
Advanced Research, vol. 5, 2014.

[16] H. Assal, S. Chiasson, and R. Biddle, “Cesar: Visual representation of
source code vulnerabilities,” in 2016 IEEE Symposium on Visualization
for Cyber Security (VizSec), 2016.

[17] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
SSL Development in an Appified World,” in Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security,
2013.

[18] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl, “To Pin or
Not to Pin—App Developers Bullet Proof Their TLS Connections,” in
24th USENIX Security Symposium (USENIX Security 15), Aug. 2015.

[19] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford, “How
Developers Diagnose Potential Security Vulnerabilities with a Static
Analysis Tool,” IEEE Transactions on Software Engineering, vol. 45,
2019.

[20] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The Most Dangerous Code in the World: Validating SSL
Certificates in Non-Browser Software,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, 2012.

[21] A. Rashid, Developer-Centred Security, 2019.
[22] G. Wurster and P. C. van Oorschot, “The Developer is the Enemy,” in

Proceedings of the 2008 New Security Paradigms Workshop, 2008.
[23] D. S. Oliveira, T. Lin, M. S. Rahman, R. Akefirad, D. Ellis, E. Perez,

R. Bobhate, L. A. DeLong, J. Cappos, Y. Brun, and N. C. Ebner, “API
Blindspots: Why Experienced Developers Write Vulnerable Code,” in
Proceedings of the USENIX Symposium on Usable Privacy and Security
(SOUPS), August 2018.

[24] K. Yskout, R. Scandariato, and W. Joosen, “Does Organizing Security
Patterns Focus Architectural Choices?” in Proceedings of the 34th
International Conference on Software Engineering, 2012.

[25] M. Christakis and C. Bird, “What Developers Want and Need from
Program Analysis: An Empirical Study,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2016.

[26] L. Lo Iacono and P. L. Gorski, “I Do and I Understand. Not Yet True
for Security APIs. So Sad,” in European Workshop on Usable Security,
4 2017.

[27] A. Senarath and N. A. G. Arachchilage, “Why Developers Cannot
Embed Privacy into Software Systems? An Empirical Investigation,” in
Proceedings of the 22nd International Conference on Evaluation and
Assessment in Software Engineering 2018, 2018.

[28] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep Me Updated:
An Empirical Study of Third-Party Library Updatability on Android,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017.

[29] T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford, “Security During
Application Development: An Application Security Expert Perspective,”
in Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, 2018.

[30] C. Weir, I. Becker, J. Noble, L. Blair, A. Sasse, and A. Rashid,
“Interventions for Software Security: Creating a Lightweight Program
of Assurance Techniques for Developers,” in 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP), 2019.

[31] S. Xiao, J. Witschey, and E. Murphy-Hill, “Social Influences on Secure
Development Tool Adoption: Why Security Tools Spread,” in Proceed-
ings of the 17th ACM Conference on Computer Supported Cooperative
Work & Social Computing, 2014.

[32] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill, C. Mayhorn, and
T. Zimmermann, “Quantifying Developers’ Adoption of Security Tools,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, 2015.

[33] A. Poller, L. Kocksch, S. Türpe, F. A. Epp, and K. Kinder-Kurlanda,
“Can Security Become a Routine? A Study of Organizational Change

in an Agile Software Development Group,” in Proceedings of the 2017
ACM Conference on Computer Supported Cooperative Work and Social
Computing, 2017.

[34] D. Harborth, S. Pape, and K. Rannenberg, “Explaining the Technology
Use Behavior of Privacy-Enhancing Technologies: The Case of Tor and
Jondonym,” Proceedings on Privacy Enhancing Technologies, vol. 2020,
2020.

[35] D. Oliveira, M. Rosenthal, N. Morin, K.-C. Yeh, J. Cappos, and
Y. Zhuang, “It’s the Psychology Stupid: How Heuristics Explain Soft-
ware Vulnerabilities and How Priming Can Illuminate Developer’s
Blind Spots,” in Proceedings of the 30th Annual Computer Security
Applications Conference, 2014.

[36] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-
Offs in Continuous Integration: Assurance, Security, and Flexibility,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017.

[37] R. Anderson, C. Barton, R. Böhme, R. Clayton, M. J. G. van Eeten,
M. Levi, T. Moore, and S. Savage, Measuring the Cost of Cybercrime,
2013.

[38] A. Acquisti, L. Brandimarte, and G. Loewenstein, “Secrets and Likes:
The Drive for Privacy and the Difficulty of Achieving it in the Digital
Age,” Journal of Consumer Psychology, 2021.

[39] K. R. Daniel Votipka, “Understanding security mistakes developers
make: Qualitative analysis from Build It, Break It, Fix It,” USENIX
Security Symposium, 2020.

[40] A. Naiakshina, A. Danilova, E. Gerlitz, E. von Zezschwitz, and
M. Smith, ”If You Want, I Can Store the Encrypted Password”: A
Password-Storage Field Study with Freelance Developers, 2019.

[41] J. Hallett, N. Patnaik, B. Shreeve, and A. Rashid, “”Do this! Do that!,
And nothing will happen” Do specifications lead to securely stored
passwords?” in International Conference on Software Engineering, Jan.
2021.

[42] D. Van Der Linden, E. Williams, J. Hallett, and A. Rashid, “The impact
of surface features on choice of (in)secure answers by Stackoverflow
readers,” IEEE Transactions on Software Engineering, vol. 0, Apr. 2020.

[43] D. Van Der Linden, P. Anthonysamy, B. Nuseibeh, T. Tun, M. Petre,
M. Levine, J. Towse, and A. Rashid, “Schrödinger’s Security: Opening
the Box on App Developers’ Security Rationale,” in ICSE ’20: Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, Jun. 2020.

[44] A. Edmundson, B. Holtkamp, E. Rivera, M. Finifter, A. Mettler, and
D. Wagner, “An Empirical Study on the Effectiveness of Security
Code Review,” in Proceedings of the 5th International Conference on
Engineering Secure Software and Systems, 2013.

[45] S. Jain and J. Lindqvist, “Should I Protect You? Understanding Devel-
opers’ Behavior to Privacy-Preserving APIs,” in NDSS Symposium 2014,
01 2014.

[46] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand,
and M. Smith, “Why Do Developers Get Password Storage Wrong? A
Qualitative Usability Study,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017.

[47] Y. Acar, C. Stransky, D. Wermke, M. L. Mazurek, and S. Fahl, “Security
Developer Studies with Github Users: Exploring a Convenience Sam-
ple,” in Proceedings of the Thirteenth USENIX Conference on Usable
Privacy and Security, 2017.

[48] A. Naiakshina, A. Danilova, C. Tiefenau, and M. Smith, “Deception Task
Design in Developer Password Studies: Exploring a Student Sample,” in
Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018),
Aug. 2018.

[49] I. Hadar, T. Hasson, O. Ayalon, E. Toch, M. Birnhack, S. Sherman,
and A. Balissa, “Privacy by Designers: Software Developers’ Privacy
Mindset,” in Proceedings of the 40th International Conference on
Software Engineering, 2018.

[50] Y. Sawaya, M. Sharif, N. Christin, A. Kubota, A. Nakarai, and A. Ya-
mada, “Self-Confidence Trumps Knowledge: A Cross-Cultural Study
of Security Behavior,” in Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems, 2017.

[51] K. Vaniea and Y. Rashidi, “Tales of Software Updates: The Process of
Updating Software,” in CHI ’16, 2016.

[52] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You Get Where You’re Looking for: The Impact of Information Sources
on Code Security,” in 2016 IEEE Symposium on Security and Privacy
(SP), 2016.

[53] A. R. Senarath and N. A. G. Arachchilage, “Understanding user pri-
vacy expectations: A software developer’s perspective,” Telematics and
Informatics, vol. 35, 2018.

[54] R. Balebako, A. Marsh, J. Lin, J. Hong, and L. F. Cranor, “The Privacy
and Security Behaviors of Smartphone App Developers,” in Workshop
on Usable Security, 2014.

[55] H. Assal and S. Chiasson, “Security in the Software Development
Lifecycle,” in Proceedings of the Fourteenth USENIX Conference on
Usable Privacy and Security, 2018.

[56] D. Ashenden and G. Ollis, “Putting the Sec in DevSecOps: Using Social
Practice Theory to Improve Secure Software Development,” in New
Security Paradigms Workshop 2020, 2020.

[57] J. M. Haney, M. Theofanos, Y. Acar, and S. S. Prettyman, “”We make
it a big deal in the company”: Security Mindsets in Organizations that
Develop Cryptographic Products,” in Fourteenth Symposium on Usable
Privacy and Security (SOUPS 2018), Aug. 2018.

[58] A. A. U. Rahman and L. Williams, “Software Security in DevOps: Syn-
thesizing Practitioners’ Perceptions and Practices,” in 2016 IEEE/ACM
International Workshop on Continuous Software Evolution and Delivery
(CSED), 2016.

[59] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why Eve and Mallory Love Android: An Analysis of
Android SSL (in)Security,” in Proceedings of the 2012 ACM Conference
on Computer and Communications Security, 2012.

[60] M. P. Robillard and R. Deline, “A Field Study of API Learning
Obstacles,” Empirical Softw. Engg., vol. 16, Dec. 2011.

[61] K. Mindermann, P. Keck, and S. Wagner, “How Usable Are Rust Cryp-
tography APIs?” in 2018 IEEE International Conference on Software
Quality, Reliability and Security (QRS), 2018.

[62] M. Tahaei, A. Frik, and K. Vaniea, “Deciding on Personalized Ads:
Nudging Developers About User Privacy,” in Seventeenth Symposium
on Usable Privacy and Security (SOUPS ’21), 2021.

[63] L. Braz, E. Fregnan, G. Çalikli, and A. Bacchelli, “Why Don’t De-
velopers Detect Improper Input Validation? ’; DROP TABLE Papers;
–,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), 2021.

[64] D. M. German, “The GNOME project: a case study of open source,
global software development,” Software Process: Improvement and
Practice, vol. 8, 2003.

[65] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix,
“Using Static Analysis to Find Bugs,” IEEE Software, vol. 25, 2008.

[66] C. Weir, A. Rashid, and J. Noble, “How to Improve the Security Skills
of Mobile App Developers? Comparing and Contrasting Expert Views,”
in Twelfth Symposium on Usable Privacy and Security (SOUPS 2016),
Jun. 2016.

[67] J. Such, A. Gouglidis, W. Knowles, G. Misra, and A. Rashid, “Infor-
mation assurance techniques: Perceived cost effectiveness,” Computers
and Security, vol. 60, Jul. 2016.

[68] I. A. Tondel, M. G. Jaatun, and P. H. Meland, “Security Requirements
for the Rest of Us: A Survey,” IEEE Software, vol. 25, 2008.

[69] J. Zhu, H. R. Lipford, and B. Chu, “Interactive Support for Secure
Programming Education,” in Proceeding of the 44th ACM Technical
Symposium on Computer Science Education, 2013.

[70] M. Whitney, H. Lipford-Richter, B. Chu, and J. Zhu, “Embedding Secure
Coding Instruction into the IDE: A Field Study in an Advanced CS

Course,” in Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, 2015.

[71] A. Z. Baset and T. Denning, “IDE Plugins for Detecting Input-Validation
Vulnerabilities,” in 2017 IEEE Security and Privacy Workshops (SPW),
2017.

[72] N. Ayewah and W. Pugh, “A Report on a Survey and Study of Static
Analysis Users,” in Proceedings of the 2008 Workshop on Defects in
Large Software Systems, 2008.

[73] M. Tabassum, S. Watson, and H. Richter Lipford, “Comparing Educa-
tional Approaches to Secure programming: Tool vs. (TA),” in Thirteenth
Symposium on Usable Privacy and Security (SOUPS 2017), Jul. 2017.

[74] T. Thomas, B. Chu, H. Lipford, J. Smith, and E. Murphy-Hill, “A study
of interactive code annotation for access control vulnerabilities,” in 2015
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2015.

[75] T. W. Thomas, H. Lipford, B. Chu, J. Smith, and E. Murphy-Hill, “What
Questions Remain? An Examination of How Developers Understand
an Interactive Static Analysis Tool,” in Twelfth Symposium on Usable
Privacy and Security (SOUPS 2016), Jun. 2016.

[76] J. Smith, L. N. Q. Do, and E. R. Murphy-Hill, “Why Can’t Johnny
Fix Vulnerabilities: A Usability Evaluation of Static Analysis Tools
for Security,” in Sixteenth Symposium on Usable Privacy and Security
(SOUPS 2020), Aug. 2020.

[77] D. van der Linden, I. Hadar, M. Edwards, and A. Rashid, “Data,
data, everywhere: quantifying software developers’ privacy attitudes,”
09 2019.

[78] I. Rauf, D. van der Linden, M. Levine, J. Towse, B. Nuseibeh, and
A. Rashid, “Security but Not for Security’s Sake: The Impact of Social
Considerations on App Developers’ Choices,” in Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering
Workshops, 2020.

[79] L. Williams, G. McGraw, and S. Migues, “Engineering Security Vulner-
ability Prevention, Detection, and Response,” IEEE Software, vol. 35,
sep 2018.

[80] C. Weir, I. Becker, and L. Blair, “A Passion for Security: Intervening
to Help Software Developers,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), may 2021.

[81] B. Christianson, “Living In An Impossible World,” Philosophy and
Technology, vol. 26, January 2013.

[82] M. Tahaei, A. Jenkins, K. Vaniea, and M. K. Wolters, ““I Don’t Know
Too Much About It”: On the Security Mindsets of Computer Science
Students,” in Socio-Technical Aspects in Security and Trust, 2021.

[83] G. Kroah-Hartman, “Non-technical security best-practices for open
source projects,” June 2021.

[84] A.-S. Claeys and W. T. Coombs, “Organizational Crisis Communica-
tion: Suboptimal Crisis Response Selection Decisions and Behavioral
Economics,” Communication Theory, vol. 30, 03 2019.

[85] S. Rahaman, N. Meng, and D. Yao, “Tutorial: Principles and Practices
of Secure Crypto Coding in Java,” in 2018 IEEE Cybersecurity Devel-
opment (SecDev), 2018.

[86] M. Tahaei, K. Vaniea, B. Konstantin, and M. K. Wolters, “Security
Notifications in Static Analysis Tools: Developers’ Attitudes, Compre-
hension, and Ability to Act on Them,” in Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, 2021.

View publication statsView publication stats

https://www.researchgate.net/publication/355735014

	Introduction
	Method
	Challenges and Consequent Behaviors
	Interventions and Tropes that hamper their effectiveness
	Tropes
	Effect of Tropes on Interventions

	Discussion and Conclusion
	References

