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Abstract: The chemistry of the nitrate radical and its contribution to organo-nitrate formation in
the troposphere has been investigated using a mesoscale 3-D chemistry and transport model, WRF-
Chem-CRI. The model-measurement comparisons of NO2, ozone and night-time N2O5 mixing
ratios show good agreement supporting the model’s ability to represent nitrate (NO3) chemistry
reasonably. Thirty-nine organo-nitrates in the model are formed exclusively either from the reaction
of RO2 with NO or by the reaction of NO3 with alkenes. Temporal analysis highlighted a significant
contribution of NO3-derived organo-nitrates, even during daylight hours. Night-time NO3-derived
organo-nitrates were found to be 3-fold higher than that in the daytime. The reactivity of daytime
NO3 could be more competitive than previously thought, with losses due to reaction with VOCs
(and subsequent organo-nitrate formation) likely to be just as important as photolysis. This has
highlighted the significance of NO3 in daytime organo-nitrate formation, with potential implications
for air quality, climate and human health. Estimated atmospheric lifetimes of organo-nitrates showed
that the organo-nitrates act as NOx reservoirs, with particularly short-lived species impacting on air
quality as contributors to downwind ozone formation.

Keywords: organo-nitrates; atmospheric lifetime; ozone; secondary organic aerosol; air quality

1. Introduction

The nitrate radical (NO3) dominates night-time oxidation in urban areas in particular,
where NO2 and O3 levels are elevated [1–4]. However, many studies have also highlighted
the significance of NO3 in oxidation chemistry over extensive regions of the atmosphere,
with high concentrations being reported over a range of atmospheric conditions [1,5,6] and
a suggestion that the highest levels exist in the residual boundary layer [7].

Generated from the relatively slow oxidation of NO2 by O3 (Reaction (1)), NO3 only
exists in significant concentrations during the night, reaching mixing ratios of 1 ppt or less
in remote regions and 10–400 ppt in polluted urban regions [8–12]. Rapid photolysis rates
and efficient reaction with NO result in suppressing NO3 mixing ratios with lifetimes of
approximately 5 s [13] during daytime hours, but elevated levels have been predicted in
winter for example [3,4].

NO2 + O3 → NO3 + O2 (1)
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NO3 can react with NO2 to establish a thermal equilibrium with nitrogen pentoxide
(N2O5) on a timescale of minutes in the boundary layer (Reaction (2)).

NO2 + NO3 + M � N2O5 + M (2)

The NO3 radical has a significant impact on atmospheric composition at night-time
due to its reaction with numerous unsaturated hydrocarbons [14], thereby influencing
the budgets of these species and their degradation products. The reactions of NO3 with
unsaturated hydrocarbons, both biogenic and anthropogenic, lead to the formation of
multifunctional organo-nitrates [15–17].

Organo-nitrates (RONO2) are mainly formed in the atmosphere through photochemi-
cal and nocturnal oxidation of anthropogenic and biogenic volatile organic compounds
(VOCs); this process is initiated by the OH and NO3 radicals, respectively [18]. During the
day, peroxy radicals (RO2) are mainly produced via reaction of VOCs with the OH radical,
Cl radical and ozone. These radicals then go on to react with NO by two different pathways:
one leads to NO-to-NO2 conversion and hence produces ozone (Reactions (3)–(5)) and
the other produces organo-nitrates (Reaction (6)). The branching ratios of Reaction (6)
are highly variable with the chain length of the alkyl group, e.g., ≤1% for C2H5ONO2
and ~33% for n-C8H17ONO2 [19]. During the night, the formation of organo-nitrates is
dominated by NO3. It is highly reactive towards unsaturated hydrocarbons [14,20], adding
to the double bond and generating organo-nitrates via this route (Reaction (7)).

RO2 + NO→ RO + NO2 (3)

NO2 + hν→ NO + O(3P) (4)

O(3P) + O2 + M→ O3 + M (M=N2,O2) (5)

RO2 + NO→ RONO2 (6)
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Organic nitrate destruction occurs via photolysis and reaction with OH.

RONO2 + hν→ RO + NO2 (8)

RONO2 + OH→ Products (9)

The relative importance of these two destruction pathways depends on the net UV
light intensity, the size of the nitrate and the substitution pattern [21]. For the alkyl nitrates
with shorter chain length (≤C4), photolysis is the dominant loss process, whereas for
the alkyl nitrates with longer carbon chain (≥C4), oxidation by OH is the dominant loss
process [22–24]. The alkyl nitrates act as NOx reservoirs, releasing their sequestered NOx by
these destruction processes (Reactionss (8) and (9)), which can contribute to photochemical
production of O3 in areas far remote from NOx sources.

Organo-nitrates can contribute to regional ozone formation and subsequently affect
air quality [25–30]. Several studies highlight the formation of organo-nitrates through the
reaction of NO3 and unsaturated hydrocarbons such as isoprene and monoterpenes, which
have low vapor pressures, allowing them to condense to generate a significant amount of
SOA [18,31–35]. A study by Ng et al. [36] reported an SOA yield of between approximately
4 and 24% (in terms of organic mass) when considering the reaction between isoprene and
NO3, thus highlighting the significance of these species as SOA precursors. These aerosols
are known to have a major impact on the climate and human health [37–42].
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The complexity of nitrate chemistry and the associated atmospheric and epidemio-
logical implications due to the formation of organo-nitrates drive the need for continued
research into the atmospheric processes, which govern NO3 and organo-nitrates in general.
An important aspect of this research is the assessment of how models represent nitrate
chemistry, as these are useful tools for simulating the processes governing the composition
of the atmosphere during both the day- and night-time hours. We used a regional air
quality model, WRF-Chem-CRI, to investigate the nitrate chemistry by comparing the
model N2O5, NO2 and ozone mixing ratios with measured N2O5, NO2 and ozone mixing
ratios collected during the summer months of the ClearfLo project [43], along with the
processes which govern organo-nitrate formation.

2. Methodology
2.1. Measurement Site and Measurement Technique

There were no measurements of NO3 during the ClearfLo campaign; instead, we
used measured N2O5, NO2 and ozone to compare modelled N2O5, NO2 and ozone, which
provide an indication of the model’s ability to represent nitrate chemistry, particularly
in terms of NO3. The measurements were made at an urban background site in North
Kensington during the summer of the ClearfLo project using a CIMS instrument for N2O5,
a chemiluminescence instrument (Air Quality Inc., Oregon City, OR, USA) for NO2 and a
UV absorption TEI 49C and 49i (Thermo Scientific, Waltham, MA, USA) for ozone. The
details of the instrument and the inlet configuration are described elsewhere [44,45]. The
site is located within the grounds of Sion Manning School at 51.521055◦ N, 0.213432◦ W. The
school is situated within a residential area approximately 7 km west of central London. The
road is in close proximity to the site (10 m away) and is a minor road that only experiences
high traffic volumes during school drop-off and pick-up times and rush-hour periods.
There is also a major road approximately 100 m from the site, which experiences sustained
high traffic volumes over the course of the day. The instrument inlet on-site was deployed
at a height of ~4 m from the ground.

The N2O5 measurement was performed using a quadrupole chemical ionisation mass
spectrometer (CIMS) using iodide ions (I) to detect N2O5 as NO3

− (m/z = 62) at a frequency
of 1 Hz. Calibration and backgrounding procedures are presented in Bannan et al. [46].
Studies such as Wang et al. [47] have noted that measurements of N2O5 at m/z 62 are not
interference-free, with HNO3 and HO2NO2 being identified as key species that could cause
interferences at this m/z. Measurements of N2O5 are now routinely made at m/z 235 with
iodide CIMS. Nevertheless, Le Breton et al. [48] and Bannan et al. [46] measured N2O5
at m/z 62 concurrently with the Broadband Cavity Enhanced Absorption Spectrometer
(BBCEAS) on both ground and airborne measurement campaigns where very good agree-
ment was seen, albeit in more remote locations. Measurements presented here are therefore
upper limits of night-time N2O5 as interferences in this measurement location are more
likely in comparison to previously reported inter-comparison studies with this instrument.

2.2. WRF-Chem-CRI Model

WRF-Chem-CRI is a regional-scale, three-dimensional meteorological model with on-
line chemistry. The model is fully coupled, whereby the chemistry and aerosol components
along with the prognostic meteorological parameters are integrated over the same timestep
as the transport processes, using the same advection and physical parameterisations [49].
Meteorological boundary conditions were taken from the European Centre for Medium-
Range Forecasts (ECMWF) ERA-Interim reanalysis data [50]. The Model for Ozone And
Related chemical Tracers (MOZART) model is an offline global transport model [51] that is
used to account for the long-range transport of chemical species from outside the model
domain. Biogenic emissions were estimated using an online canopy-scale model, the
Model of Emissions of Gases and Aerosols from Nature (MEGAN) [52,53]. The anthro-
pogenic emission for the UK is used in WRF-Chem-CRI from the National Atmospheric
Emissions Inventory (NAEI), with a resolution of 1 km by 1 km (http://naei.beis.gov.uk;

http://naei.beis.gov.uk
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accessed on 30 September 2021). A coarser emissions database is used for Europe, e.g.,
TNO emission inventory [54], with a resolution of 0.125◦ longitude by 0.0625◦ latitude.
The gas-phase scheme used in this study was a reduced chemical scheme, CRI-MECH,
which was developed using the Master Chemical Mechanism version 3.1 (MCM 3.1), re-
ducing the number of species and reactions by 90%, with ozone production by a given
species equivalent to the number of NO to NO2 conversions that take place during its
complete degradation being the primary criterion [55,56]. The CRI-MECH scheme contains
229 species, 529 gas-phase reactions and 96 photolytic reactions. The rate coefficients for
the reactions in CRI-MECH specified as a function of temperature were taken from either
the MCM (http://mcm.york.ac.uk/; accessed on 30 September 2021) and/or the Jet Propul-
sion Laboratory kinetic evaluation reports (http://jpldataeval.jpl.nasa.gov/, accessed on
30 September 2021). The model calculates photolysis using the Fast-J scheme [57] and
links it to the chemical mechanism in the model. Photolysis rates in and below clouds
are modulated by the Fast-J scheme using the aerosol population extinction and phase
function to account for the influence of clouds and aerosols. A domain was run using a
horizontal grid spacing of 15 km and a size of 134 (E-W) by 146 (N-S) grid points, covering
the UK and NW Europe using a Lambert conformal map projection [58,59]. The simulation
was run from 00:00 UTC on 30 July 2012 to 00:00 UTC 18 August 2012. The meteorological
field was re-initialized every 3 days to ensure that the divergence of the WRF-Chem-CRI
meteorology from the driving ECMWF operational/reanalysis meteorology is minimized.

3. Results and Discussion
3.1. Model Validation

The model performance of NO3 has been examined by comparing the model-measure-
ments of NO2, O3 and N2O5 mixing ratios because of their strong dependency on the
steady-state concentration of NO3. As shown in the midday and midnight ozone data, the
trends in the model predictions are generally very similar to the observations (Figure 1).
The modelled O3 data have strong correlations with measurements, having the coefficient
of determination (r2) of 0.84 and 0.57 for midday and midnight, respectively. The difference
between modelled and measured ozone data referred to as ‘bias’ are found to be −1.4 ppb
for midday and −3.4 ppb for midnight. The modelled under-predictions of ozone in
North Kensington are most notable at night, which could be due to the capping of the
boundary layer in the model being too strong, preventing the replenishment of ground-
level ozone with that from the free troposphere. The predicted midday and midnight NO2
data also show similar trends to the observations (Figure 1), with a reasonable correlation
(r2 = 0.29 for midday and 0.34 for midnight) and a reasonable bias (−4.5 ppb for midday
and −0.4 ppb for midnight). The model underestimation of NO2 is found to be higher
during daytime compared with night-time, which can be explained by the coarse resolution
of WRF-Chem-CRI, meaning that the processing of sub-grid scale emissions and fast
NOx photochemistry is not captured in the simulations, thus acting as a source of model
uncertainty. The measured data of N2O5 are only for night-time, which is considered as an
upper-limit measurement. We compared the modelled and the measured night-time N2O5
at the surface level and found a similar trend (Figure 1) with a good correlation (r2 = 0.52),
but with a sustained underestimation of model N2O5 mixing ratios (bias = −116 ppt). The
model did not apply surface dynamics, assuming a uniform, flat surface, thus resulting
in an underestimation of the model surface night-time N2O5 levels. The upper limits of
measured night-time N2O5 because of the interferences in this urban background location
are more likely responsible for the large disagreement between model-measurement of
N2O5. A recent study [60] showed that HNO3 would account for >70% of the signal at
m/z = 62. Considering this interference in the measurement data of N2O5 could reduce
the bias to −16 ppt (~85%). Overall, the WRF-Chem-CRI model performs well in terms
of predicting, NO2, O3, and night-time N2O5 levels at the North Kensington site during
the ClearfLo project. Therefore, it can be assumed that the NO3 in the model provides a
reasonable representation of levels present in the atmosphere.

http://mcm.york.ac.uk/
http://jpldataeval.jpl.nasa.gov/
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Figure 1. Comparison of (a) midnight ozone, (b) midday ozone, (c) midnight NO2, (d) midday NO2 and (e) midnight N2O5

mixing ratios modelled by WRF-Chem-CRI with those measured during the summer months of the ClearfLo project.

3.2. Contribution of NO3 Sources Organo-Nitrates

We investigated the formation of 39 organo-nitrates in WRF-Chem-CRI from the pro-
duction pathways (Table 1) and found that the organo-nitrates are formed solely from the
reaction of RO2 with NO (61%) and the reaction of NO3 with alkenes (39%). Modelled mixing
ratios of all 39 organo-nitrates from midnight and midday were extracted for each day for
the urban background site in North Kensington, which were used for the calculation of the
proportion of organo-nitrates formed from NO3. The modelled organo-nitrate mixing ratio
for midday (118 ± 103 ppt) is found to be ~2-fold higher than that for midnight (71 ± 47 ppt).
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Table 1. Organo-nitrate species (shown in CRI names) and their respective production pathways and precursors, as
represented in the CRI-v2 mechanism of WRF-Chem-CRI.

Organo-Nitrate Species * Production Pathway

CH3NO3 (CH3NO3) CH3O2 + NO
C2H5NO3 (C2H5NO3) C2H5O2 + NO

IC3H7NO3 (IC3H7NO3) IC3H7O2 + NO
HOC2H4NO3 (HOC2H4NO3) HOCH2CH2O2+ NO
NRU12O2 (C510O2, NC4CO3) C5H8 + NO3

NRU12OOH (C510OOH, NC4CO3H) C5H8 + NO3
NRN6O2 (ETHENO3O2) C2H4 + NO3

NRN6OOH (ETHO2HNO3) C2H4 + NO3
NRN9O2 (PRONO3AO2, PRONO3BO2) C3H6 + NO3

NRN9OOH (PR1O2HNO3, PR2O2HNO3) C3H6 + NO3
NRN12O2 (C42NO33O2) TBUT2ENE + NO3

NRN12OOH (C42NO33OOH) TBUT2ENE + NO3
NOA (NOA) C5H8 + NO3

RN10NO3 (NC3H7NO3) RN10O2 (NC3H7O2) + NO
RN13NO3 (NC4H9NO3, SC4H9NO3) RN13O2 (NC4H9O2, SC4H9O2) + NO

RN19NO3 (HEXCNO3, M2PEDNO3, M3PECNO3) RN19O2 (HEXCO2, M2PEDO2, M3PECO2) + NO
RN9NO3 (PROPOLNO3, PROLNO3) RN9O2 (HYPROPO2, IPROPOLO2) + NO

RN12NO3 (HO1C4NO3, BUT2OLNO3) RN12O2 (HO1C4O2, BUT2OLO2) + NO
RN15NO3 (PE1ENEANO3, PE2ENEANO3, HO2C5NO3) RN15O2 (PE1ENEAO2, PE2ENEAO2, HO2C5O2) + NO

RN18NO3 (C65OH4NO3, C6OH5NO3, HO2C6NO3) RN18O2 (C65OH4O2, C6OH5O2, HO2C6O2) + NO
RN16NO3 (PEANO3, PEBNO3, PECNO3) RN16O2 (PEAO2, PEBO2, PECO2) + NO

RU14NO3 (ISOPANO3, ISOPBNO3, ISOPCNO3, ISOPDNO3) RU14O2 (ISOPAO2, ISOPBO2, ISOPCO2, ISOPDO2) + NO
RA13NO3 (BZBIPERNO3) RA13O2 (BZBIPERO2) + NO
RA16NO3 (TLBIPERNO3) RA16O2 (TLBIPERO2) + NO
RA19NO3 (OXYBIPENO3) RA19AO2 (OXYBIPERO2) + NO
RA25NO3 (DM35EBNO3) RA25O2 (DM35EBO2) + NO
RA22NO3 (TM123BNO3) RA22AO2 (TM123BO2) + NO

RTN28NO3 (APINANO3, APINBNO3, APINCNO3) RTN28O2 (APINAO2, APINBO2, APINCO2) + NO
NRTN28O2 (NAPINAO2, NAPINBO2) APINENE + NO3

NRTN28OOH (NAPINAOOH, NAPINBOOH) APINENE + NO3
RTN25NO3 (C96NO3) RTN25O2 (C96O2) + NO
RTN23NO3 (C98NO3) RTN23O2 (C98O2) + NO

RTX24NO3 (NOPINANO3, NOPINBNO3, NOPINCNO3) RTX24O2 (NOPINAO2, NOPINBO2, NOPINCO2) + NO
RTX22NO3 (C915NO3, C917NO3, C918NO3) RTX22O2 (C915O2, C917O2, C918O2) + NO

RTX28NO3 (BPINANO3, BPINBNO3, BPINCNO3) RTX28O2 (BPINAO2, BPINBO2, BPINCO2) + NO
NRTX28O2 (NBPINAO2, NBPINBO2) BPINENE + NO3

NRTX28OOH (NBPINAOOH, NBPINBOOH) BPINENE + NO3
NRU14O2 (NISOPO2) C5H8 + NO3

NRU14OOH (NISOPOOH) C5H8 + NO3

Note: MCM v3.3.1 analogues of the species are shown in parentheses. * Structures can be obtained using species name and search facility
on MCM website (http://mcm.leeds.ac.uk/MCM/; accessed on 30 September 2021).

The contribution of organo-nitrate formation shows that a significant fraction of organo-
nitrates at the urban North Kensington site is produced from NO3 in summer (see Figure 2).
During summer months, the midnight NO3-sourced organo-nitrate (~62%) is found to be
3-fold higher than that at midday (~21%), which can be explained by the lower abundances
of NO3 due to its strong photolysis and OH losses during midday. However, there are still
substantial contributions to organo-nitrate formation through VOCs + NO3 during daytime
for summer months suggesting that the reaction with VOCs in the environment with high
levels of VOCs can significantly contribute to the loss of NO3. Previous studies have reported
similar findings with regard to the reactivity of NO3, with losses of NO3 from reactions with
organic trace gases being large enough to compete with its photolysis and reaction with
NO [3,61,62]. These findings highlight the fact that the NO3 radical could be having a more
dominant role in daytime oxidation than previously thought.

http://mcm.leeds.ac.uk/MCM/
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3.3. Atmospheric Implications of NO3-Sourced Organo-Nitrates

The impacts of the organo-nitrates on the atmosphere, both in terms of SOA formation
and their potential contribution to O3 formation, are governed by their lifetimes, i.e., how
quickly they degrade within the atmosphere. Thus, the lifetimes of these NO3-derived
organo-nitrates were estimated in order to gain insight into their implications for air quality.

The eight longest-lived organo-nitrates derived from NO3 in the WRF-Chem-CRI
model are: NRU12OOH (MCM analogues: C510OOH, NC4CO3H), NRN6OOH (MCM
analogue: ETHO2HNO3), NRN9OOH (MCM analogues: PR1O2HNO3, PR2O2HNO3),
NRN12OOH (MCM analogue: C42NO33OOH), NRTN28OOH (MCM analogues: NAP-
INAOOH, NAPINBOOH), NOA (MCM analogue: NOA), NRTX28OOH (MCM analogues:
NBPINAOOH, NBPINBOOH) and NRU14OOH (MCM analogue: NISOPOOH).

In the model, each of these eight organo-nitrates is either lost by photolysis or by
reaction with the OH radical, and the deposition loss of these organo-nitrates is not con-
sidered because of their low Henry’s law constants [63]. Model fluxes associated with
these reactions, along with global modelled concentrations, were used to derive estimated
lifetimes for each organo-nitrate with respect to each loss process. The lifetimes were
calculated for the months of July and August. The losses of seven NO3-sourced nitrates
(except NOA) in WRF-Chem-CRI are controlled by reaction with the OH radical, with
shorter lifetimes often seen in July and August months, due to higher OH abundances and
photolysis rates (see Table 2). For example, NRN12OOH has a shorter lifetime of around
1.0 day in July and August months (Table 2). It is likely that these seven nitrates will act
as short- or long-term NOx reservoirs, thus having implications for O3 formation and air
quality in and around London urban areas. However, NOA is an exception to this, with
photolysis dominating its atmospheric loss.
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Table 2. The estimated atmospheric lifetimes of 8 selected organo-nitrates (derived from NO3) with
respect to OH and photolysis loss.

Organo-Nitrates
Lifetime (July–August) (Days)

OH Photolysis

NRN12OOH 1.0 10.7

NRN9OOH 1.3 11.1

NRN6OOH 1.7 10.9

NRU12OOH 0.3 5.1

NRU14OOH 0.4 36.5

NRTN28OOH 0.8 9.0

NRTX28OOH 0.7 7.4

NOA 42.1 17.1

As highlighted previously, the lifetime of these species dictates the impact that they
will have on surrounding air quality. For example, in the case of NOA, its lifetime stays
relatively constant at approximately 16 days. Based on the assumption that it takes approx-
imately 1 day for an air mass to cross the U.K., organo-nitrates with these longer lifetimes
will act as long-term reservoirs of NOx, persisting in the atmosphere and being essentially
inert in terms of impacts on atmospheric composition or air quality in the U.K. However,
the remaining seven are shorter-lived organo-nitrates, with lifetimes of less than 3 days
and will start to have an impact locally, the extent of which will have a dependence on
wind speed.

Two isoprene-derived organo-nitrates in WRF-Chem-CRI which are particularly short-
lived are NRU12OOH and NRU14OOH. These only persist on a timescale of a few hours,
thus making them short-term NOx reservoirs with definite impacts on local and regional air
quality. In order to understand the atmospheric implications of these organo-nitrates, one
must consider their chemistry and the impacts associated with their degradation products.
NRU12OOH reacts with the OH radical to produce another organo-nitrate, NOA, which
in turn degrades to produce NO2 and the acetyl peroxy radical (CH3C(O)O2). With a
lifetime of between 6 and 7 h, an air mass containing NRU12OOH would have enough
time to travel away from where it was generated. This means that this organo-nitrate
would contribute to O3 production downwind the following day (based on the assumption
that it is predominantly generated during the night), thus acting as a potential source of
O3 downwind. NRU14OOH reacts with the OH radical to generate multigenerational
organo-nitrates. This ultimately results in the formation of NOA, which decomposes to
release NO2. As with NRU12OOH, the lifetime of NRU14OOH (approximately 9 h) allows
the air to travel away from where it was generated, thus contributing to O3 formation
downwind. However, its slightly longer lifetime and the less direct route of producing
NOA means that NRU14OOH is able to transport the NOx further from the source, thus
contributing to O3 formation and impacting air quality over a wider area.

To quantify the extent of ozone formation from organo-nitrates, another simulation
was performed that involved WRF-Chem-CRI being integrated with the exclusion of the
chemistry of organo-nitrates in CRI referred to as ‘WRF-Chem-CRI-WON’. Comparing the
ozone midday and midnight mixing ratios from WRF-Chem-CRI to WRF-Chem-CRI-WON in
North Kensington during July-August shows that up to 1.5 ppb (4%) and 0.8 ppb (2.5%) ozone
can be increased during daytime and night-time, respectively, suggesting that organo-nitrates
can make a non-negligible contribution to the formation of O3. During midday, the peaks of
ozone increase are seen on 12 August 2012 (1.5 ppb; 4%) and 15 August 2012 (1.2 ppb; 3%)
(Figure 3a) when the total organo-nitrates and NO3-derived organo-nitrates are the highest
among the whole data series (see Figure 2b). The trend of increase in ozone and NO2 for
midday is very similar (Pearson correlation, R = 0.7; Figure 3a,b), suggesting that the increase
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in ozone downwind from North Kensington is associated with maximum NO2 change (e.g.,
an episode of 12 August 2012; see Figure 4). The ozone increases during midnight are found
to be high on 6–7 August 2012, 10–12 August and 14–15 August 2012; however, the ozone
increases do not correlate very well (Pearson correlation, R = 0.3) with the increases of NO2
(see Figure 3c,d). This suggests that the ozone formed from organo-nitrates are transported
from Europe to North Kensington rather than locally formed (e.g., an episode of 11 August
2012; see Figure 4).
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Figure 3. The percent and absolute increase in ozone and NO2 from WRF-Chem-CRI to WRF-Chem-CRI-WON for
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At present, the CRI (Common Representative Intermediates) mechanism traceable to
the MCM (Master Chemical Mechanism) used in the WRF-Chem model does not contain
organo-nitrates-derived SOA and is focused on optimising the representation of NO–
NO2 conversions rather than SOA formation. This consequently means that the model
is currently underestimating the SOA contribution from organo-nitrates. The previous
study showed that the organo-nitrates (e.g., RTX28NO3, RTN28NO3) in the global model,
STOCHEM-CRI, have an impact on SOA formation with a non-negligible contribution
(~5%) to the total simulated global SOA [64]. The model, STOCHEM-CRI output [65]
shows 0.026 µg m−3 SOA formed from the organo-nitrates, which is ~20% of the total
simulated SOA (0.16 µg m−3) formed in the North Kensington in July–August. This
therefore highlights the importance of organo-nitrates in the atmosphere and has scope for
improving the representation of SOA in the WRF-Chem-CRI model, as the organo-nitrates
represented in the chemical mechanism are likely to play an important role in this area.
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4. Conclusions

NO3 has long been recognised as the dominant oxidising species in the night-time pol-
luted troposphere, having a significant impact on the degradation chemistry and budgets
of numerous VOCs. In the study, the measured night-time N2O5, NO2 and ozone during
the summer were used to assess the model’s ability to represent nitrate chemistry (NO3).
Extraction of midday and midnight mixing ratios of organo-nitrates gave insight into how
the fraction of NO3-derived organo-nitrate varies according to time of day. The temporal
and day-night analysis showed that a significant fraction of organo-nitrates are formed
from NO3, even during daylight hours, attesting to a more dominant role in daytime
organo-nitrate formation than previously thought. The lifetimes of selected long-lived
organo-nitrates with respect to the OH radical and photolysis were then estimated, with
analysis finding that most organo-nitrates were dominated by OH oxidation. Lifetimes
varied on a timescale of days, highlighting their roles as short- and long-term NOx reser-
voirs and resultant implications for O3 production, air quality and human health. Two
isoprene-derived organo-nitrates in particular, NRU12OOH and NRU14OOH were found
to persist on a timescale of hours, thus making them likely to contribute to O3 formation
and impact on local air quality. The analysis showed that the organo-nitrates can contribute
ozone formation up to ~1.6 ppb (midday) and ~0.8 ppb (midnight) at North Kensington
during the summer months. This analysis also showed that the organo-nitrates currently
represented in WRF-Chem-CRI do not readily condense and therefore do not contribute to
SOA. These results highlight the need to consider and improve the SOA representation in
the model in the future.

Author Contributions: A.F. and M.A.H.K. analyzed the data and wrote the paper; D.E.S. conceived
and designed the project; T.J.B. and C.J.P. performed the measurement of N2O5; C.J.P., M.H.L., T.J.B.
and D.E.S. reviewed and edited the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: A.F. thanks EPSRC for her PhD studentship. M.A.H.K. and D.E.S. thank NERC (grant code-
NE/K004905/1), Bristol ChemLabS and the Primary Science Teaching Trust under whose auspices
various aspects of this work was supported. C.J.P.’s work was carried out at Jet Propulsion Labo-
ratory, California Institute of Technology, under contract with the National Aeronautics and Space
Administration (NASA), and was supported by the Upper Atmosphere Research and Tropospheric
Chemistry Programs. © 2021 all rights reserved.

Institutional Review Board Statement: Not applicable.



Atmosphere 2021, 12, 1381 11 of 13

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Acknowledgments: We thank Douglas Lowe for his continuous supports about WRF-Chem mod-
elling throughout the project. We thank the three anonymous reviewers for their insightful reviews
and suggestions which has benefitted this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wayne, R.P.; Barnes, I.; Biggs, P.; Burrows, J.P.; Canosas-Mas, C.E.; Hjorth, J.; Le Bras, G.; Moortgat, G.K.; Perner, D.; Poulet, G.;

et al. The nitrate radical: Physics, chemistry, and the atmosphere. Atmos. Environ. 1991, 25, 1–203. [CrossRef]
2. Platt, U.; Alicke, B.; Dubois, R.; Geyer, A.; Hofzumahaus, A.; Holland, F.; Martinez, M.; Mihelcic, D.; Klüpfel, T.; Lohrmann, B.;

et al. Free radicals and fast photochemistry during BERLIOZ. J. Atmos. Chem. 2002, 42, 359–394. [CrossRef]
3. Khan, M.A.H.; Morris, W.C.; Watson, L.A.; Galloway, M.; Hamer, P.D.; Shallcross, B.M.A.; Percival, C.J.; Shallcross, D.E. Estimation

of daytime NO3 radical levels in the UK urban atmosphere using the steady state approximation method. Adv. Meteorol. 2015,
2015, 294069. [CrossRef]

4. Khan, M.A.H.; Cooke, M.C.; Utembe, S.R.; Archibald, A.T.; Derwent, R.G.; Xiao, P.; Percival, C.J.; Jenkin, M.E.; Morris, W.C.;
Shallcross, D.E. Global modelling of the nitrate radical (NO3) for present and pre-industrial scenarios. Atmos. Res. 2015, 164,
347–357. [CrossRef]

5. Brown, S.S.; Stutz, J. Nighttime radical observations and chemistry. Chem. Soc. Rev. 2012, 41, 6405–6447. [CrossRef]
6. Brown, S.S.; Ryerson, T.B.; Wollny, A.G.; Brock, C.A.; Peltier, R.; Sullivan, A.P.; Weber, R.J.; Dubé, W.P.; Trainer, M.; Meagher, J.F.;

et al. Variability in nocturnal nitrogen oxide processing and its role in regional air quality. Science 2006, 311, 67–70. [CrossRef]
[PubMed]

7. Fish, D.J.; Shallcross, D.E.; Jones, R.L. The vertical distribution of NO3 in the atmospheric boundary layer. Atmos. Environ. 1999,
33, 687–691. [CrossRef]

8. Stone, D.; Evans, M.J.; Walker, H.; Ingham, T.; Vaughan, S.; Ouyang, B.; Kennedy, O.J.; McLeod, M.W.; Jones, R.L.; Hopkins, J.;
et al. Radical chemistry at night: Comparisons between observed and modelled HOx, NO3 and N2O5 during the RONOCO
project. Atmos. Chem. Phys. 2014, 14, 1299–1321. [CrossRef]

9. Aliwell, S.R.; Jones, R.L. Measurements of tropospheric NO3 at midaltitude. J. Geophys. Res. Atmos. 1998, 103, 5719–5727.
[CrossRef]

10. Finlayson-Pitts, B.J.; Pitts, J.N., Jr. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications; Academic
Press: Cambidge, MA, USA, 2000.

11. Asaf, D.; Tas, E.; Pedersen, D.; Peleg, M.; Luria, M. Long-Term Measurements of NO3 Radical at a Semiarid Urban Site: 2. Seasonal
Trends and Loss Mechanisms. Environ. Sci. Technol. 2010, 44, 5901–5907. [CrossRef] [PubMed]

12. Ng, N.L.; Brown, S.S.; Archibald, A.T.; Atlas, E.; Cohen, R.C.; Crowley, J.N.; Day, D.A.; Donahue, N.M.; Fry, J.L.; Fuchs, H.; et al.
Nitrate radicals and biogenic volatile organic compounds: Oxidation, mechanisms, and organic aerosol. Atmos. Chem. Phys. 2017,
17, 2103–2162. [CrossRef] [PubMed]

13. Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics; John Wiley and Sons: Hoboken, NJ, USA, 1998.
14. Atkinson, R. Kinetics and mechanism of the gas-phase reactions of the NO3 radical with organic compounds. J. Phys. Chem. Ref.

Data 1991, 20, 459–507. [CrossRef]
15. Platt, U.; LeBras, G.; Poulet, G.; Burrows, J.P.; Moortgat, G. Peroxy radicals from night-time reaction of NO3 with organic

compounds. Nature 1990, 348, 147–149. [CrossRef]
16. Geyer, A.; Alicke, B.; Ackermann, R.; Martinez, M.; Harder, H.; BRUNE, W.; di Carlo, P.; Williams, E.; Jobson, T.; Hall, S.; et al.

Direct observations of daytime NO3: Implications for urban boundary layer chemistry. J. Geophys. Res. Atmos. 2003, 108, 4368.
[CrossRef]

17. Huang, W.; Saathoff, H.; Shen, X.; Ramisetty, R.; Leisner, T.; Mohr, C. Chemical Characterization of Highly Functionalized
Organonitrates Contribution to Night-Time Organic Aerosol Mass Loadings and Particle Growth. Environ. Sci. Technol. 2019, 53,
1165–1174. [CrossRef] [PubMed]

18. Farmer, D.K.; Matsunaga, A.; Docherty, K.S.; Surratt, J.D.; Seinfeld, J.H.; Ziemann, P.J.; Jimenez, J.L. Response of an aerosol mass
spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. Proc. Natl. Acad. Sci. USA 2010,
107, 6670–6675. [CrossRef]

19. Atkinson, R.; Aschmann, S.M.; Carter, W.P.; Winer, A.M.; Pitts, J.N., Jr. Alkyl nitrate formation from the nitrogen oxide (NOx)-air
photooxidations of C2-C8 n-alkanes. J. Phys. Chem. 1982, 86, 4563–4569. [CrossRef]

20. Geyer, A.; Ackermann, R.; Dubois, R.; Lohrmann, B.; Müller, R.; Platt, U. Long-term observation of nitrate radicals in the
continental boundary layer near Berlin. Atmos. Environ. 2001, 35, 3619–3631. [CrossRef]

21. Roberts, J.M. The atmospheric chemistry of organic nitrates. Atmos. Environ. 1990, 24, 243–287. [CrossRef]

http://doi.org/10.1016/0960-1686(91)90192-A
http://doi.org/10.1023/A:1015707531660
http://doi.org/10.1155/2015/294069
http://doi.org/10.1016/j.atmosres.2015.06.006
http://doi.org/10.1039/c2cs35181a
http://doi.org/10.1126/science.1120120
http://www.ncbi.nlm.nih.gov/pubmed/16400145
http://doi.org/10.1016/S1352-2310(98)00332-X
http://doi.org/10.5194/acp-14-1299-2014
http://doi.org/10.1029/97JD03119
http://doi.org/10.1021/es100967z
http://www.ncbi.nlm.nih.gov/pubmed/20586447
http://doi.org/10.5194/acp-17-2103-2017
http://www.ncbi.nlm.nih.gov/pubmed/30147712
http://doi.org/10.1063/1.555887
http://doi.org/10.1038/348147a0
http://doi.org/10.1029/2002JD002967
http://doi.org/10.1021/acs.est.8b05826
http://www.ncbi.nlm.nih.gov/pubmed/30615422
http://doi.org/10.1073/pnas.0912340107
http://doi.org/10.1021/j100220a022
http://doi.org/10.1016/S1352-2310(00)00549-5
http://doi.org/10.1016/0960-1686(90)90108-Y


Atmosphere 2021, 12, 1381 12 of 13

22. Clemitshaw, K.C.; Williams, J.; Rattigan, O.V.; Shallcross, D.E.; Law, K.S.; Cox, R.A. Gas-phase ultraviolet absorption cross-sections
and atmospheric lifetimes of several C2-C5 alkyl nitrates. J. Photoch. Photobio. A 1997, 102, 117–126. [CrossRef]

23. Flocke, F.; Volz-Thomas, A.; Buers, H.J.; Patz, W.; Garthe, H.J.; Kley, D. Long-term measurements of alkyl nitrates in southern
Germany: 1. General behavior and seasonal and diurnal variation. J. Geophys. Res. 1998, 103, 5729–5746. [CrossRef]

24. Talukdar, R.K.; Burkholder, J.B.; Hunter, M.; Gilles, M.K.; Roberts, J.M.; Ravishankara, A.R. Atmospheric fate of several alkyl
nitrates Part 2 UV absorption cross-sections and photodissociation quantum yields. J. Chem. Soc. Faraday Trans. 1997, 93,
2797–2805. [CrossRef]

25. Von Kuhlmann, R.; Lawrence, M.G.; Pöschl, U.; Crutzen, P.J. Sensitivities in global scale modeling of isoprene. Atmos. Chem. Phys.
2004, 4, 1–17. [CrossRef]

26. Fiore, A.M.; Horowitz, L.W.; Purves, D.W.; Levy, H.; Evans, M.J.; Wang, Y.; Li, Q.; Yantosca, R.M. Evaluating the contributing of
changes in isoprene emissions to surface ozone trends over the eastern United States. J. Geophys. Res. Atmos. 2005, 110, D12303.
[CrossRef]

27. Horowitz, L.W.; Fiore, A.M.; Milly, G.P.; Cohen, R.C.; Perring, A.; Wooldridge, P.J.; Hess, P.G.; Emmons, L.K.; Lamarque, J.-F.
Observational constraints on the chemistry of isoprene nitrates over the eastern United States. J. Geophys. Res. Atmos. 2007, 112,
D12S08. [CrossRef]

28. Perring, A.E.; Bertram, T.H.; Farmer, D.K.; Wooldridge, P.J.; Dibb, J.; Blake, N.J.; Blake, D.R.; Singh, H.B.; Fuelberg, H.; Diskin, G.;
et al. The production and persistence of ΣRONO2 in the Mexico City plume. Atmos. Chem. Phys. 2010, 10, 7215–7229. [CrossRef]

29. Farmer, D.K.; Perring, A.E.; Wooldridge, P.J.; Blake, D.R.; Baker, A.; Meinardi, S.; Huey, L.G.; Tanner, D.; Vargas, O.; Cohen, R.C.
Impact of organic nitrates on urban ozone production. Atmos. Chem. Phys. 2011, 11, 4085–4094. [CrossRef]

30. Paulot, F.; Henze, D.K.; Wennberg, P.O. Impact of the isoprene photochemical cascade on tropical ozone. Atmos. Chem. Phys. 2012,
12, 1307–1325. [CrossRef]

31. Griffin, R.J.; Cocker, D.R.; Flagan, R.C.; Seinfeld, J.H. Organic aerosol formation from the oxidation of biogenic hydrocarbons. J.
Geophys. Res. Atmos. 1999, 104, 3555–3567. [CrossRef]

32. Lee, A.; Goldstein, A.H.; Kroll, J.H.; Ng, N.L.; Varutbangkul, V.; Flagan, R.C.; Seinfeld, J.H. Gas-phase products and secondary
aerosol yields from the photooxidation of 16 different terpenes. J. Geophys. Res. Atmos. 2006, 111, D17305. [CrossRef]

33. Rollins, A.W.; Kiendler-Scharr, A.; Fry, J.L.; Brauers, T.; Brown, S.S.; Dorn, H.-P.; Dubé, W.P.; Fuchs, H.; Mensah, A.; Mentel,
T.F.; et al. Isoprene oxidation by nitrate radical: Alkyl nitrate and secondary organic aerosol yields. Atmos. Chem. Phys. 2009, 9,
6685–6703. [CrossRef]

34. Slade, J.H.; de Perre, C.; Lee, L.; Shepson, P.B. Nitrate radical oxidation of γ -terpinene: Hydroxy nitrate, total organic nitrate, and
secondary organic aerosol yields. Atmos. Chem. Phys. 2017, 17, 8635–8650. [CrossRef]

35. Fry, J.L.; Brown, S.S.; Middlebrook, A.M.; Edwards, P.M.; Campuzano-Jost, P.; Day, D.A.; Jimenez, J.L.; Allen, H.M.; Ryerson, T.B.;
Pollack, I.; et al. Secondary organic aerosol (SOA) yields from NO3 radical + isoprene based on nighttime aircraft power plant
plume transects. Atmos. Chem. Phys. 2018, 18, 11663–11682. [CrossRef]

36. Ng, N.L.; Kwan, A.J.; Surratt, J.D.; Chan, A.W.H.; Chhabra, P.S.; Sorooshian, A.; Pye, H.O.T.; Crounse, J.D.; Wennberg, P.O.;
Flagan, R.C.; et al. Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO3). Atmos. Chem.
Phys. 2008, 8, 4117–4140. [CrossRef]

37. Kanakidou, M.; Seinfeld, J.H.; Pandis, S.N.; Barnes, I.; Dentener, F.J.; Facchini, M.C.; Van Dingenen, R.; Ervens, B.; Nenes, A.;
Nielsen, C.J.; et al. Organic aerosol and climate modelling: A review. Atmos. Chem. Phys. 2005, 5, 1053–1123. [CrossRef]

38. IPCC. Climate Change 2013: The Physical Scientific Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535.

39. Nel, A. Air pollution-related illness: Effects of particles. Science 2005, 308, 804–806. [CrossRef]
40. Sharaiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G.; Kampf, C.J.; Fushimi, A.; Enami, S.; Arangio, A.M.; Fröhlich-Nowoisky, J.;

Fujitani, Y.; et al. Aerosol Heatlth Effects from Molecular to Global Scales. Environ. Sci. Technol. 2017, 51, 13545–13567. [CrossRef]
41. Rollins, A.W.; Browne, E.C.; Min, K.-E.; Pusede, S.E.; Wooldridge, P.J.; Gentner, D.R.; Goldstein, A.H.; Liu, S.; Day, D.A.; Russell,

L.M.; et al. Evidence for NOx control over nighttime SOA formation. Science 2012, 337, 1210–1212. [CrossRef]
42. Kiendler-Scharr, A.; Mensah, A.A.; Friese, E.; Topping, D.; Nemitz, E.; Prevot, A.S.H.; Äijälä, M.; Allan, J.; Canonaco, F.;

Canagaratna, M.; et al. Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. Geophys. Res.
Lett. 2016, 43, 7735–7744. [CrossRef]

43. Bohnenstengel, S.I.; Belcher, S.E.; Aiken, A.; Allan, J.D.; Allen, G.; Bacak, A.; Bannan, T.J.; Barlow, J.F.; Beddows, D.C.S.; Bloss, W.J.;
et al. Meteorology, Air Quality, and Health in London: The ClearfLo Project. Bull. Am. Meteorol. Soc. 2015, 96, 779–804. [CrossRef]

44. Bannan, T.J.; Bacak, A.; Muller, J.B.; Booth, A.M.; Jones, B.; Le Breton, M.; Leather, K.E.; Ghalaieny, M.; Xiao, P.; Shallcross, D.E.;
et al. Importance of direct anthropogenic emissions of formic acid measured by a chemical ionisation mass spectrometer (CIMS)
during the Winter ClearfLo Campaign in London, January 2012. Atmos. Environ. 2014, 83, 301–310. [CrossRef]

45. Bannan, T.J.; Booth, A.M.; Bacak, A.; Muller, J.B.A.; Leather, K.E.; Le Breton, M.; Jones, B.; Young, D.; Coe, H.; Allan, J.; et al. The
first UK measurements of nitryl chloride using a chemical ionisation mass spectrometer in central London in the summer of 2012,
and an investigation of the role of Cl atom oxidation. J. Geophys. Res. Atmos. 2015, 120, 5638–5657. [CrossRef]

http://doi.org/10.1016/S1010-6030(96)04458-9
http://doi.org/10.1029/97JD03461
http://doi.org/10.1039/a701781b
http://doi.org/10.5194/acp-4-1-2004
http://doi.org/10.1029/2004JD005485
http://doi.org/10.1029/2006JD007747
http://doi.org/10.5194/acp-10-7215-2010
http://doi.org/10.5194/acp-11-4085-2011
http://doi.org/10.5194/acp-12-1307-2012
http://doi.org/10.1029/1998JD100049
http://doi.org/10.1029/2006JD007050
http://doi.org/10.5194/acp-9-6685-2009
http://doi.org/10.5194/acp-17-8635-2017
http://doi.org/10.5194/acp-18-11663-2018
http://doi.org/10.5194/acp-8-4117-2008
http://doi.org/10.5194/acp-5-1053-2005
http://doi.org/10.1126/science.1108752
http://doi.org/10.1021/acs.est.7b04417
http://doi.org/10.1126/science.1221520
http://doi.org/10.1002/2016GL069239
http://doi.org/10.1175/BAMS-D-12-00245.1
http://doi.org/10.1016/j.atmosenv.2013.10.029
http://doi.org/10.1002/2014JD022629


Atmosphere 2021, 12, 1381 13 of 13

46. Bannan, T.J.; Bacak, A.; Le Breton, M.; Flynn, M.; Ouyang, B.; McLeod, M.; Jones, R.; Malkin, T.L.; Whalley, L.K.; Heard, D.E.;
et al. Ground and airborne UK measurements of nitryl chloride: An investigation of the role of Cl atom oxidation at Weybourne
Atmospheric Observatory. J. Geophys. Res. Atmos. 2017, 122, 11–154. [CrossRef]

47. Wang, X.; Wang, T.; Yan, C.; Tham, Y.J.; Xue, L.; Xu, Z.; Zha, Q. Large daytime signals of N2O5 and NO3 inferred at 62 amu in a
TD-CIMS: Chemical interference or a real atmospheric phenomenon? Atmos. Meas. Tech. 2014, 7, 1–12. [CrossRef]

48. Le Breton, M.; Bacak, A.; Muller, J.B.A.; Bannan, T.J.; Kennedy, O.; Ouyang, B.; Xiao, P.; Ashfold, M.N.R.; Bauguitte, S.J.-B.;
Shallcross, D.E.; et al. The first airborne inter-comparison of N2O5 measurements over the UK using a Chemical Ionisation Mass
Spectrometer (CIMS) and Broadband Cavity Enhanced Absorption Spectrometer (BBCEAS) during the RONOCO 2010/2011
campaign. Anal. Meth. 2014, 6, 9731–9743. [CrossRef]

49. Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry
within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [CrossRef]

50. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.;
et al. The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011,
137, 553–597. [CrossRef]

51. Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.-F.; Pfizer, G.G.; Fillmore, D.; Granier, C.; Guenther, A.; Kinnison, D.; Laepple,
T.; et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model.
Dev. 2010, 3, 43–67. [CrossRef]

52. Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, P.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using
MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [CrossRef]

53. Sakulyanontvittaya, T.; Duhl, T.; Wiedinmyer, C.; Helmig, D.; Matsunaga, S.; Potosnak, M.; Milford, J.; Guenther, A. Monoterpene
and sesquiterpene emission estimates for the United States. Environ. Sci. Technol. 2008, 42, 1623–1629. [CrossRef]

54. Kuenen, J.J.P.; Visschedijk, A.J.H.; Jozwicka, M.; Denier van der Gon, H.A.C. TNO-MACC_IIemission inventory; a multi-year
(2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys. 2014, 14,
10963–10976. [CrossRef]

55. Jenkin, M.E.; Watson, L.A.; Utembe, S.R.; Shallcross, D.E. A Common Representative Intermediates (CRI) mechanism for VOC
degradation. Part 1: Gas phase mechanism development. Atmos. Environ. 2008, 42, 7185–7195. [CrossRef]

56. Watson, L.A.; Shallcross, D.E.; Utembe, S.R.; Jenkin, M.E. A Common Representative Intermediates (CRI) mechanism for VOC
degradation. Part 2: Gas phase mechanism reduction. Atmos. Environ. 2008, 42, 7196–7204. [CrossRef]

57. Wild, O.; Zhu, X.; Prather, M.J. Fast-J: Accurate simulation of IN- and Below-Cloud Photolysis in Tropospheric Chemical Models.
J. Atmos. Chem. 2000, 37, 245–282. [CrossRef]

58. Khan, M.A.H.; Clements, J.; Lowe, D.; McFiggans, G.; Percival, C.J.; Shallcross, D.E. Investigating the behaviour of the CRI-MECH
gas-phase chemistry scheme on a regional scale for different seasons using the WRF-Chem model. Atmos. Res. 2019, 229, 145–156.
[CrossRef]

59. Archer-Nicholls, S.; Lowe, D.; Utembe, S.; Allan, J.; Zaveri, R.A.; Fast, J.D.; Hodnebrog, Ø.; van der Gon, H.D.; McFiggans, G.
Gaseous chemistry and aerosol mechanism developments for version 3.5.1 of the online regional model, WRF-Chem. Geosci.
Model. Dev. 2014, 7, 2557–2579. [CrossRef]

60. Dörich, R.; Eger, P.; Lelieveld, J.; Crowley, J.N. Iodide CIMS and m/z 62: The detection of HNO3 as NO3
- in the presence of PAN,

peroxyacetic acid and ozone. Atmos. Meas. Tech. 2021, 14, 5319–5332. [CrossRef]
61. Liebmann, J.; Karu, E.; Sobanski, N.; Schuladen, J.; Ehn, M.; Schallhart, S.; Quéléver, L.; Hellen, H.; Hakola, H.; Hoffmann, T.; et al.

Direct measurement of NO3 radical reactivity in a boreal forest. Atmos. Chem. Phys. 2018, 18, 3799–3815. [CrossRef]
62. Liebmann, J.M.; Muller, J.B.A.; Kubistin, D.; Claude, A.; Holla, R.; Plass-Dülmer, C.; Lelieveld, J.; Crowley, J.N. Direct mea-

surements of NO3 reactivity in and above the boundary layer of a mountaintop site: Identification of reactive trace gases and
comparison with OH reactivity. Atmos. Chem. Phys. 2018, 18, 12045–12059. [CrossRef]

63. Kames, J.; Schurath, U. Alkyl nitrates and bifunctional nitrates of atmospheric interest: Henry’s law constants and their
temperature dependencies. J. Atmos. Chem. 1992, 15, 79–95. [CrossRef]

64. Utembe, S.R.; Cooke, M.C.; Archibald, A.T.; Shallcross, D.E.; Derwent, R.G.; Jenkin, M.E. Simulating secondary organic aerosol in
a 3-D Lagrangian chemistry transport model using the reduced Common Representative Intermediates mechanism (CRI v2-R5).
Atmos. Environ. 2011, 45, 1604–1614. [CrossRef]

65. Khan, M.A.H.; Jenkin, M.E.; Foulds, A.; Derwent, R.G.; Percival, C.J.; Shallcross, D.E. A modeling study of secondary organic
aerosol formation from sesquiterpenes using the STOCHEM global chemistry and transport model. J. Geophys. Res. Atmos. 2017,
122, 4426–4439. [CrossRef]

http://doi.org/10.1002/2017JD026624
http://doi.org/10.5194/amt-7-1-2014
http://doi.org/10.1039/C4AY02273D
http://doi.org/10.1016/j.atmosenv.2005.04.027
http://doi.org/10.1002/qj.828
http://doi.org/10.5194/gmd-3-43-2010
http://doi.org/10.5194/acp-6-3181-2006
http://doi.org/10.1021/es702274e
http://doi.org/10.5194/acp-14-10963-2014
http://doi.org/10.1016/j.atmosenv.2008.07.028
http://doi.org/10.1016/j.atmosenv.2008.07.034
http://doi.org/10.1023/A:1006415919030
http://doi.org/10.1016/j.atmosres.2019.06.021
http://doi.org/10.5194/gmd-7-2557-2014
http://doi.org/10.5194/amt-14-5319-2021
http://doi.org/10.5194/acp-18-3799-2018
http://doi.org/10.5194/acp-18-12045-2018
http://doi.org/10.1007/BF00053611
http://doi.org/10.1016/j.atmosenv.2010.11.046
http://doi.org/10.1002/2016JD026415

	Introduction 
	Methodology 
	Measurement Site and Measurement Technique 
	WRF-Chem-CRI Model 

	Results and Discussion 
	Model Validation 
	Contribution of NO3 Sources Organo-Nitrates 
	Atmospheric Implications of NO3-Sourced Organo-Nitrates 

	Conclusions 
	References

