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Stable Allocations of Vaccines in a Political Economy

Zéphirin Nganmeni Roland Pongou Bertrand Tchantcho Jean-Baptiste Tondji∗
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Abstract

We develop a theory that addresses the problem of the existence of stable vac-

cine allocations in a political economy. These are allocation policies that a political

leader can enforce without losing their popularity. Our analysis distinguishes be-

tween contexts where vaccination has positive externalities and contexts where it

does not. We show that a stable allocation may not exist if vaccine supply is suffi-

ciently low relative to the number of individuals eligible to receive a dose. We then

fully characterize the minimum number of vaccine doses that guarantees the exis-

tence of a stable vaccine allocation, regardless of society’s preference heterogeneity

level. Minimum dose number depends only on a society’s influence structure or

voting rule. When individuals have unequal voting rights, stable allocations favor

those with greater voting power. We generalize our main characterization result to

economies where spatial proximity between individuals varies and preferences are

unselfish due to positive vaccine externalities. Applying the theory, we find that

a political leader can enforce stable vaccine allocation policies that are minority-

inclusive only when the supply of vaccines is sufficiently high.

Keywords: Vaccine allocation game, influence structure, leader popularity, (un)selfish

preferences, spatial proximity, externalities, minority and inclusion.
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1 Introduction

We develop a theory that addresses the problem of the existence of stable vaccine

allocations in a political economy. These are allocation policies that a political leader can

enforce without losing their popularity. In our analysis, we distinguish between contexts

where vaccination has positive externalities on the unvaccinated and contexts where it

does not. When vaccination only benefits the vaccinated individual, agents have selfish

preferences; and when it has positive externalities, agents have unselfish preferences.

Our analysis is timely and fitting, given the current COVID-19 crisis. Indeed, recent

political events have demonstrated how the popularity of political leaders can depend on

how well they manage major global crises such as pandemics. These crises can both re-

inforce and undermine the popularity of the status quo (or incumbent policy) depending

on how a leader performs and how the electorate perceives this performance. Decisions

made by political leaders or institutions in response to a major crisis can affect political

support in two ways. First, major crises can rally the electorate around the status quo

when they perceive that the decisions made in the crisis by incumbent governments bring

some relief (Healy & Malhotra, 2009; Bechtel & Hainmueller, 2011; Bol et al., 2021). Sec-

ond, when handled poorly, major crises can reduce support for incumbent leaders, shifting

the electorate’s preferences towards political rivals in democratic societies and fostering

regime change in authoritarian ones (Aidt & Leon, 2016; Ruiz-Rufino & Alonso, 2017;

Baccini et al., 2021). These mechanisms of retrospective performance evaluation induce

accountability among leaders, as the electorate tends to reward leaders for making good

leadership decisions and punishes them for making bad ones. The study by Herrera et al.

(2020) which analyses government responses to the coronavirus disease 2019 (COVID-

19) pandemic, is consistent with this view. It shows that, when experiencing increasing

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1 infections and deaths,

governments that prioritized health over short-term economic gains obtained higher ap-

proval rates than those that failed to do so. Along these lines, Baccini et al. (2021) and

several viewpoints from news outlets, including, Acosta & Stracqualursi (2021), Oliphant

(2021), and McEvoy (2021), have partly attributed Donald Trump’s reelection loss to his

administration’s mismanagement of COVID-19 pandemic. On the same line, according to

1SARS-CoV-2 is the virus that causes COVID-19.
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BALLOTPEDIA (2021), the COVID-19 pandemic has contributed to the recall election

seeking to remove California Governor Gavin Newsom on September 14, 2021.2 Similarly,

faced with plunging approval ratings over the summer amid public dissatisfaction with

how his administration handled the pandemic (especially the vaccination program) and

the 2020 Tokyo Olympics, Yoshihide Suga, Japan’s Prime Minister, said he would not

seek re-election after just a year in office (Rich, 2021).

Given these realities, it is essential to investigate the conditions under which political

leaders and governments have the ability to implement pandemic-containing policies that

mitigate adverse short-term effects. We address this broad question in the specific context

of the allocation of vaccines, which can help reverse the spread of a pandemic. How can a

leader allocate a limited supply of vaccine doses in a heterogeneous society without risking

their popularity or their chances of re-election? We address this question through the lens

of an allocation model that we describe as follows.

A pandemic disease caused by a virus is affecting the livelihood of residents in a

society which consists of a finite set of individuals or agents, N = {1, 2, ..., n}, with

n ≥ 3. Thanks to advanced technology in medical science and financial government

investments, a safe and effective vaccine against the virus has been developed and is

approved for emergency use. However, the number of available doses, µ, is limited:

µ < n, where µ is a non-zero integer. Given N and µ, an allocation of the µ vaccine

doses to individuals is any S ⊆ N such |S| ≤ µ, where |S| denotes the cardinality of S.

We denote by N(µ) the set of allocations of µ vaccine doses. Each individual i ∈ N has

a preference relation, which we denote by -i, over the set N(µ) which is a weak ordering

(i.e., complete and transitive). In the society, an influence structure (or voting rule) I
collects influential coalitions—groups of individuals that have the power or ability to rule

out any proposed allocation in N(µ) regardless of the preferences of agents outside of

these coalitions—. We refer to the pair E = (N, I) as a political economy, and the couple

(E, µ) as a vaccine allocation problem. For any preference profile (-i), we consider the

tuple G = 〈(E, µ), (-i)〉 as a vaccine allocation game. Given these concepts, the goal

of a social planner or political leader is to design a vaccine allocation solution that only

proposes stable outcomes, i.e., allocations that would not be successfully challenged by

2The Governor Gavin Newsom survived the recall petition as a majority of California voters say “No”

by allowing him to stay in office until at least 2023.
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influential coalitions in the society.

With this model, we examine the following questions:

1. Under which conditions on I and µ does a stable vaccine allocation exist?

2. What is the minimal number of vaccine doses that guarantees the existence of a

stable allocation?

3. How does voting power affect priority in access to a vaccine?

We exploit a classical equilibrium solution (Black, 1948; Gillies, 1959; Serrano, 1995)

in the blocking approach (Dutta & Vohra, 2017) to investigate these questions in two

different environments.3 In the first environment, agents are selfish, and care only about

maximizing their own utility. In the second environment, agents can be described as

having“other regarding preferences”, meaning that agents have preferences regarding other

agents’ material payoffs and may or may not have preferences regarding their own material

payoffs. In this case we will assume that an agent prefers an allocation where their closest

neighbor receives a vaccine dose (at the expense of a more distant neighbor) to one

in which the converse happens. We will also assume that agents have no preferences

regarding their material payoffs, meaning that agents will prefer allocations where close

neighbors are prioritized over distant neighbors even if such allocations result in the agents

themselves receiving no doses. While the assumptions in this second environment may

be unrealistic, a less absolute form of this environment is highly prevalent in real life,

as individuals have preferences that are determined by their ethnic, gender, and cultural

proximity to others; see, for example, Rabin (1993), Fehr & Schmidt (1999), Dufwenberg

et al. (2011), Dimick et al. (2018), Bosi et al. (2021), and an excellent survey by Kagel &

Roth (2020). We exploit insights from this environment to derive implications for inclusive

allocation policies in a society that features minority groups.

Under the assumption that each agent behaves selfishly in their attempt to obtain a

vaccine dose4, Theorem 1 shows that the number of vaccine doses and the society’s influ-

3According to this equilibrium concept, a policy X is an equilibrium (or is stable) if there does not

exist another policy Y that is preferred to X by an influential coalition under the prevailing influence

structure (or voting rule). It follows that this solution also provides a measure of popularity since a

policy that is not an equilibrium outcome is preferred less compared to another policy and is therefore

unpopular.
4Recent studies (see, for instance, Bleier et al. (2021), Singanayagam et al. (2021), and Schiavone

et al. (2021)) showing that adenovirus and mRNA candidate vaccines demonstrated persistent SARS-Cov2

3
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ence structure are critical for the existence of a stable vaccine allocation. In Theorem 2,

we introduce a new notion of a stability index, which corresponds to the minimum number

of vaccine doses which guarantees the existence of a stable vaccine allocation. This index

provides a structural characterization of the set of stable allocations, as it only depends

on the prevailing influence structure. A corollary of these findings is that, from a vaccine

allocation problem for which the number of vaccine doses available corresponds to the

stability index, we can deduce all the stable allocations for any greater number of vaccine

doses. As an application of our theory, Proposition 1 derives a closed-form expression of

the stability index for vaccine allocations in the class of symmetrically weighted political

economies.

Given the limited supply of vaccine doses, we also address the question of how indi-

vidual influence (or a priori voting rights) in a political economy could affect priority in

access to a vaccine. Different approaches to the measurement of influence in voting have

been proposed in the literature.5 A classical measure is the so-called influence relation.

An agent i is said to have more influence than another agent j if whenever j is replaced

by i in an influential (or a winning) coalition, the resulting coalition remains influential.

The influence relation, like other classical voting power measures, is therefore a measure

of “a priori” voting power. We know very little about whether this measure translate into

the ability to bring about a social outcome that maximizes individual preferences (Pongou

& Tchantcho, 2021). In Proposition 2, we show that, if agent i is at least as influential

as j, then, i can replace j in any stable allocation without compromising the allocation’s

stability. In other words, more influential individuals have greater access to vaccine. For

robustness, we use another measure of a priori influence—partner-dependence—to confirm

this relationship. An agent k is partner-dependent of another agent i when any influential

coalition containing k also contains i. In Proposition 3, we show that when the number

of vaccine doses available is the stability index (or the minimum number that guarantees

virus in nasal swabs despite preventing COVID-19 disease justify selfish preferences for these vaccines. In

simple words, a fully COVID-19 vaccinated individual can be infected from SARS-Cov2 and can transmit

the virus. Thus, currently, the COVID-19 vaccination mainly has private benefits because I am only

protecting myself from becoming sick if I am vaccinated.
5For a general discussion on voting power, we refer the reader to Shapley & Shubik (1954), Isbell

(1958), Taylor et al. (1999), Tchantcho et al. (2008), Pongou & Tchantcho (2021) and Freixas & Pons

(2021), among many others.

4
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existence of a stable allocation), a stable allocation that contains agent i cannot con-

tain another agent k which is partner-dependent of i. Propositions 2 and 3 imply that

individuals that have more a priori voting power have higher priority access to the vaccine.

We extend the analysis to societies characterized by varying spatial proximity between

individuals who have in-group preferences. Such preferences could be explained by al-

truism towards in-group individuals, or by the fact that certain vaccines have positive

externalities; that is, individuals’ vulnerability to infection decreases more if their closer

neighbors are vaccinated. In these economies, preferences are unselfish due to positive

vaccine externalities. Networks offer an alternative approach to representing the relation-

ships between agents. We therefore add a spatial dimension to the vaccine allocation

game. Spatial preferences come from the positions of agents in the metric space used to

represent and analyze proximity between agents. In this environment, Theorem 3 char-

acterizes the set of stable allocations. In line with our analysis for selfish societies, we

provide in Corollary 1, a spatial stability index, which corresponds to the minimum num-

ber of vaccine doses which guarantees the existence of a stable vaccine allocation in a

spatial vaccine allocation problem. In a practical application of our theory, we consider a

network polarized community consisting of a majority and a minority group. We find that

stable policies exist, but they may not be minority-inclusive in the sense that they may not

allocate a vaccine dose to any agent in the minority group. Unless the supply of vaccine

doses exceeds a certain threshold, stable allocations only allocate vaccines to members

of the majority group. Additionally, inclusive policies pursued in such environments may

not be stable. The central insight from this application is that, unless they can secure a

sufficiently large number of vaccine doses, a social planner who desires to be fair while

preserving their popularity will be unable to find solutions that satisfy both of these goals.

Contributions to the Related Literature. To our best knowledge, our analysis

proposes the first model of resource allocation in a political economy in which the social

planner’s goal is to preserve their popularity. We provide necessary and sufficient conditions

under which the planner’s problem can be solved. While our analysis focuses on vaccine

allocation, our results extend to the allocation of any scarce good in a political economy

context. However, our application to vaccines is timely, given the current COVID-19

pandemic. In this application, we distinguish situations in which vaccines provide only

private benefits, therefore justifying selfish preferences, and situations where vaccines

5
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carry positive externalities. We also address the question of how a priori voting rights

affect access to vaccine. All of our results are original.

We view our work as contributing to several literatures. We add to the literature on the

allocation of discrete goods. Several approaches to distributing such resources have been

considered. The random solution is one such approach. Applied to the vaccine problem,

it consists of randomly choosing µ individuals in N to receive a vaccine dose. This

approach and its variations (Price, 1958; Dahl, 1970; Mueller et al., 1972) do not consider

structural and individual factors that could be essential for a planner to achieve a stable

allocation of resources. Another literature, that is more recent, addresses the problem of

optimally allocating vaccines during a pandemic to satisfy a set of other objectives related

to demographics and occupations. Some studies suggest using vaccine efficacy (Kirwin

et al., 2021; Matrajt et al., 2021; Singanayagam et al., 2021), cost-benefit analyses by

coupling epidemiological and economic models (Mylius et al., 2008; Medlock & Galvani,

2009; Matrajt et al., 2013; Duijzer et al., 2018; Rao & Brandeau, 2021), mechanism

design (Westerink-Duijzer et al., 2020; Xue & Ouellette, 2020; Akbarpour et al., 2021;

Pathak et al., 2021; Castillo et al., 2021), and ethics (Yi & Marathe, 2015; Wu et al.,

2020; Emanuel et al., 2020; Nichol & Mermin-Bunnell, 2021; Pathak et al., 2021). These

studies show that the nature of epidemics, human characteristics, and market conditions

are essential in implementing optimal vaccine allocations. We add to this literature the

notion that leader popularity matters in a political setting where a leader is evaluated

based on how well they manage a pandemic. Our main contribution highlights that

the composition of a society in terms of the distribution of political influence (I) and

technology (supplying µ) are valuable tools that can help political leaders enhance their

popularity from implementing stable vaccine allocations.

Our study is also related to the literature that uses tools from voting environments

to solve allocation problems. Examples of such problems include, but are not limited to,

the apportionment and proportional representation problems (Johnston, 1983; Balinski &

Laraki, 2007; Florek, 2012; Brill et al., 2018; Jones et al., 2020), and the claim problems

(Ju et al., 2007; Flores-Szwagrzak, 2015). Classical voting models that use the core

(Gillies, 1959) as a solution concept do not account for the patterns of relationships

between voters. Our modeling of unselfish societies does. In this respect, we are closer to

the coalition structure model introduced by Aumann & Dreze (1974). We however differ

6
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from these studies in our scope, analysis and empirical implications.

The unselfish society model that we propose is inspired by the spatial framework. In

this approach, we assume that each agent i ∈ N is associated with an (ideal) point qi in a

Euclidean space of dimension m ≥ 1. The Euclidean preference assumption is that agents

are more attracted to allocations near their ideal points. Several studies are related to the

core and its variants in the spatial framework. We can quote, inter alia, the usual spatial

core (Plott, 1967; Davis et al., 1972), the epsilon-core (Shubik & Wooders, 1983; Eban

& Stephen, 1990; Tovey, 2010, 1991; Bräuninger, 2007), the heart (Schofield, 1995),

the soul (Austen-Smith, 1996), the delta-core (M. Martin & Tovey, 2021), the minmax

or Simpson-Kramer point (Kramer, 1977), the strong point or Copeland winner (Owen,

1990), the yolk (McKelvey, 1986; Ferejohn et al., 1984), and the finagle point (Wuffle

et al., 1989). Again, while our work shares some features of these models, our main

research question is different. In a spatial framework, we characterize the set of stable

vaccine allocations and derive implications for how the supply of vaccine doses can affect

both the stability and inclusiveness of possible vaccine allocations.

We also contribute to a recent literature on how a priori voting rights affect the ability

to induce social outcomes that maximize own preferences. There is a large and growing

literature on the measurement of a priori voting power (Shapley & Shubik, 1954; Isbell,

1958; Banzhaf III, 1964; Taylor et al., 1999; Lambo & Moulen, 2002; Tchantcho et al.,

2008; Kurz et al., 2017, 2021; Freixas & Pons, 2021). This literature does not address

the question of whether a priori power reflects the ability to affect social outcomes. This

question has been addressed in a few studies (Diffo Lambo & Moulen, 2000; Lambo et al.,

2012; Pongou & Tchantcho, 2021). While our study partly addresses a similar question,

we note that our setting is different.

The rest of this study is organized as follows. In Section 2, we formalize the general

problem of vaccine allocation. Section 3 addresses the problem of the existence and

characterization of stable vaccine allocations when agents are selfish. Section 4 addresses

the same problem when agents are unselfish (or organized into distinct groups and have

in-group preferences). Section 5 offers concluding remarks.

7
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2 General Framework of Vaccine Allocation Games

To formalize the notion of a vaccine allocation game, we need several intermediate con-

cepts and assumptions.

2.1 Allocations and Preferences

For any non-zero integer n, let N = {1, ..., n} be a finite set of agents. A coalition

is any nonempty subset of agents; 2N refers to the set of coalitions and |S| refers to

the cardinality of any coalition S. There are µ available doses of a vaccine, where µ

is a non-zero integer. Given N and µ, an allocation of the µ doses to agents is any

S ⊆ N such |S| ≤ µ, where |S| denotes the cardinality of S. Therefore, we denote

N(µ) = {S ⊆ N : |S| ≤ µ} the set of allocations. Each agent has a preference relation

over the set N(µ) which is a weak ordering over N(µ). We denote agent i’s preferences

by -i , the relation ≺i denotes the strict portion of -i, and the relation ∼i denotes the

indifference portion of -i. We denote by (-i) a preference profile over N(µ). In this first

part of our model, which is more general, we do not impose any additional assumptions

on agents’ preferences. For example, it is not assumed that all agents desire to receive

a vaccine dose; it might happen that an agent i prefers not being vaccinated over being

vaccinated and another agent j prefers being vaccinated over being unvaccinated. Next,

we introduce the concept of an influence structure.

2.2 Influence Structures

Generally, governments and citizens face different challenges during a pandemic than they

do in regular times. Producing a vaccine that may reduce adverse effects on health and

economic conditions is a rare event in many societies. Those who succeed in developing

a new vaccine face an allocation problem at the onset of its production. This problem

generally arises from the fact that the social planner (or decision-makers) and citizens

eligible to receive vaccines have misaligned preferences. Generally, political leaders avoid

implementing policies that may result in them becoming unpopular with citizens, signifi-

cant donors, and other interest groups.6 Since political leaders care about maximizing the

6For more information on how interests groups influence policymakers’ decisions, we refer the reader

to Dellis & Oak (2019); also, a recent study by Dellis (2021) describes the literature on legislative

8
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power wielded by themselves and their political party, democratic leaders avoid becoming

unpopular as it increases the probability of an electoral loss for the leader or their party.

Though weaker in autocratic societies, the incentive to prevent unpopularity still exists.

Although leaders in autocratic societies don’t have to face electoral backlash, unpopular

policies still increase the risk of civil wars, revolutions, and other conflicts which may result

in government instability or leaders’ death.

We will refer to any group able to influence the popularity of a leader (and therefore

the vaccine allocation) as an influential coalition. When developing an allocation strategy,

any social planner must design a vaccine allocation solution that only proposes stable

outcomes, i.e., allocations that will not be successfully challenged by any influential coali-

tion.7 We denote the set of influential coalitions by I. Throughout the study, we call I,

the influence structure. Each coalition S ∈ I has the ability to veto out any proposed

allocation in N(µ) regardless of the preferences of agents outside of S. Non-influential

coalitions (i.e., all S /∈ I) do not have this veto power. We will assume that I satisfies

the following two conditions:

(1) ∅ /∈ I and I 6= ∅

(2) for all coalitions S and T , if S ∈ I and S ⊆ T , then T ∈ I.

Both assumptions (1) and (2) are natural. According to assumption (1), an empty

coalition can’t influence the allocation of vaccines. Assumption (1) also states that at

least one influential coalition exists. Assumption (2) is a monotonicity condition which

stipulates that the addition of new agents to an influential coalition yields another influ-

ential coalition. The two assumptions together imply that the entire community, N , is an

influential coalition.

An influence structure is said to be weighted if the following two conditions hold.

• There exist a real number q called quota, with 0 < q ≤ n.

• For all i ∈ N , there exists a non-negative weight αi such that for all subset S of

N , S ∈ I if and only if
∑
i∈S

αi ≥ q.

informational lobbying.
7In other words, a stable vaccine allocation is one that is not unpopular.

9
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In this case, we denote I ≡ I(q) = [q;α1, ..., αn]. A weighted influence structure is

symmetrical if all agents have the same weight, which by normalization is αi = 1, for

each i ∈ N . We introduce below a formal definition of a political economy, a vaccine

allocation problem, and a vaccine allocation game.

2.3 Political Economies and Vaccine Allocation Games

Throughout the study, a political economy is a pair E = (N, I), and the couple V =

(E, µ) is referred to as a vaccine allocation problem. A vaccine allocation game, which

we denote G, is any pair G = 〈V, (-i)〉, where (-i) is a preference profile over N(µ).

Sometimes, we will also write a vaccine allocation game as G = 〈N, I, µ, (-i)〉. We

denote by V the set of all vaccine allocation games. Next, we provide the definition of a

stable allocation of vaccines.

2.4 Stable Allocations of Vaccines

Let V = (E, µ) be a vaccine allocation problem, X and Y be two allocations in N(µ). In

the vaccine allocation game G = 〈V, (-i)〉, we denote by P (X, Y, (-i)) := {i ∈ N\X : X ≺i Y },
the set of agents who prefer allocation Y to X. The following definition introduces the

stability concept in our model of vaccine allocation.

Definition 1. Let G = 〈N, I, µ, (-i)〉 be a vaccine allocation game, and X and Y be

two allocations in N(µ).

1. Y challenges X (i.e., Y is more popular than X) if P (X, Y, (-i)) is an influential

coalition, i.e, P (X, Y, (-i)) ∈ I .

2. X is challenged (i.e., is unpopular) if, there is an allocation Y that challenges X.

3. A stable allocation is an allocation that is not challenged.

4. The core of the vaccine allocation game, denoted C(G), consists of all stable

allocations.8

In the following examples, we illustrate the notion of the core of a vaccine allocation

game.

8In other words, the core of a vaccine allocation game is the set of all vaccine allocations that are

not unpopular. Leaders who implement allocation policies that do not belong to the core will lose their

popularity, if judged only by how well they perform on the vaccine allocation problem.

10
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Example 1. Consider a set of five individuals, N = {1, 2, 3, 4, 5}, working for three

different firms denoted A, B and C. These firms offer different services, and interactions

between individuals and firms are described as follows: A = {1, 2, 3}; B = {2, 4}; and

C = {3, 5} (also, see Figure 1). In other words, individual 1 only works for firm A, and

individual 2 works for two firms, A and B.

Figure 1: Representation of firms and services in the community

Assume that the supply of vaccine is limited, and therefore, not all the individuals in

a firm can be vaccinated in the same period. How can a social planner solve the vaccine

allocation problem? One approach which is widely used in the real-world consists of having

an appropriate institution with the support of independent experts analyze the severity

of the pandemic in different communities, then use this information to recommending

vaccine priority.9 This method of prioritization deals with the problem of vaccine scarcity

while following some basic ethical principles such as: maximizing benefits and minimizing

harms, mitigating health inequities, promoting fair access to the vaccine, and allowing for

transparency in the allocation process. Assuming that agents in a group have some set

of common characteristics which can used for analysis by institutions, an example of this

prioritization policy could include agents in group A being offered vaccines first (because

the nature of firm A services exposes its workers to a higher infection risk), followed by

firm B, and then by firm C. It is essential to point out that the recommended priority

9For some recent proposals on vaccine prioritization, see, for instance, Persad et al. (2020), Pathak

et al. (2021), Pollard & Bijker (2021), Han et al. (2021), World Health Organization (2021), Akbarpour

et al. (2021), and the references therein. Currently, several countries are recommending eligible groups

of individuals to a third COVID-19 vaccine shot (see, for example, Furlong & Deutsh (2021) and Anne

Arundel County Department of Health (2021)).
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decision is often made through bargaining and deliberation. In this context, individuals

or firms can use their personal or economic power in the community to influence the

allocation of the limited vaccine doses. It follows then that a society’s influence structure

will play a role in determining the set of agents who are likely to receive the vaccine first.

Following this discussion, we assume that a coalition is influential if it consists of more

than half of the size of a firm. For instance, {1, 2} (more than half of the size of firm

A) is influential while {1, 5} is not. In general, it follows that I contains coalitions S

such that |S ∩ {1, 2, 3}| ≥ 2 or {2, 4} ⊆ S or {3, 5} ⊆ S. Remark that any influential

coalition contains at least one of the two individuals working for two different firms, 2

and 3, which implies that these individuals have more power to influence the allocation of

vaccines. We consider the preference profile (-i), such that for all allocations X and Y :

∀i ∈ N\ {3} ,


X ≺i Y, if i ∈ Y \X
Y ≺i X, if i ∈ X\Y
X ∼i Y, otherwise

and for i = 3,


X ≺i Y, if i ∈ X\Y
Y ≺i X, if i ∈ Y \X
X ∼i Y, otherwise

According to these preferences, individuals 1, 2, 4 and 5 have a positive attitude towards

vaccine since they would like to be vaccinated, unlike individual 3 who has a negative

attitude towards vaccination. Let (-i) be the preference profile given above, and let

E = (N, I) be a political economy. This situation can formally be analyzed using the

vaccine allocation game G = 〈E, µ, (-i)〉, where µ ≤ 5. We provide the set C(E, µ) of

stable vaccine allocations for different values of µ.

• C(E, 1) = {{i} : i ∈ N\ {3}};
• C(E, 2) = {{2} , {1, 2} , {1, 4} , {2, 4} , {2, 5}};
• C(E, 3) = C(E, 2) ∪ {{1, 2, 4} , {1, 2, 5} , {1, 4, 5} , {2, 4, 5}};
• C(E, 4) = C(E, 3) ∪ {{1, 2, 4, 5} , {1, 2, 3, 5}}; and

• C(E, 5) = C(E, 3) ∪ {{1, 2, 3, 4, 5}}.

We note that when µ ≤ 3, agent 3 does not receive a vaccine dose in any stable

allocation. Indeed, if agent 3 receives a dose of vaccine in an allocation X, then at least

one agent j of {1, 2, 5} must not receive a dose of vaccine. There is an allocation Y that

challenges X via the influential structure {j, 3}; consider any allocation Y that contains

j but does not contain 3. Note also that when µ = 5, the stable allocation {1, 2, 3, 5}
reserves a vaccine dose for the hesitant agent 3 at the expense of agent 4 who, unlike 3,

would like to be vaccinated.

12

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3955958

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Example 2. Consider a vaccine allocation game G = 〈N, I(2), µ, (-i)〉, where N =

{1, 2, 3, 4}, I(2) = [2; 1, 1, 1, 1] is a weighted symmetrical influence structure, µ = 2,

and (-i) are the agents’ preferences. If all the agents have a positive attitude towards

vaccine, we show that the core C(G) is empty, that is, C(G) = ∅. If only agent 4 has a

negative attitude towards vaccine, then, C(G) = {{1, 2} , {1, 3} , {2, 3}}.

Example 3. Consider a political economy E = (N, I(3)), where N = {1, ..., 6}, and

I(3) = [3; 1, 1, 1, 1, 1, 1]. We assume that agent i ∈ N has an ideal position denoted, qi,

in the usual Euclidean plane, with qi 6= qj when i 6= j; see Figure 2. We derive agents’

preference profile (-i) from their ideal positions so that for all allocations X and Y ,

we have X -i Y if min
k∈Y

{
d
(
qi, qk

)}
≤ min

l∈X

{
d
(
qi, ql

)}
, where d is the usual Euclidean

distance.

Figure 2: Illustration of an unselfish community in a spatial setting. The positions of

agents in both Figures 2-(a) and 2-(b) form a regular hexagon.

• For µ = 1, any allocation in the vaccine allocation game G = (E, µ, (-i)) can

be challenged, yielding an empty core. For instance, the allocation X = {5} is

challenged by Y = {2} via {1, 2, 3}; see Figure 2-(a). Indeed, for any i ∈ {1, 2, 3},
d (qi, q2) < d (qi, q5).

• For µ = 2, the set of stable allocations in G = (E, µ, (-i)) becomes non-empty.

For instance, we show that X = {2, 5} ∈ C(G). If we consider an influential

coalition S, it is not possible to find an allocation Y that collectively improves the

preferences of the members of S with respect to X; see Figure 2-(b).
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Though a stable vaccine allocation always exists in Example 1, this is not necessarily

the case in Example 2 or Example 3. A natural question therefore arises: What conditions

guarantee the existence of a stable vaccine allocation? This question is pertinent because

if a stable vaccine allocation does not exist in a political economy, then any chosen

allocation policy will be unpopular. Throughout the remaining of the study, we assume

that agents have positive attitude towards vaccines. We address this issue in Sections

3 and 4. In Section 3, we assume that agents have selfish preferences in the sense that

being vaccinated brings more utility to an agent. In this environment, agents only care

about themselves. Agents’ preferences in Example 2 illustrate such a selfish environment.

In Section 4, we assume instead that agents are unselfish, i.e., they also care about others

who are closer to them. We illustrate such a society using a spatial model in Example 4.

3 Stable Vaccine Allocations in Selfish Societies

In this section, we analyze the existence of stable vaccine allocations in an environment

where agents are selfish. Selfish preferences in the context of vaccination are generally

widespread in the early production stage of vaccines during pandemics. These preferences

often induce social planners or policymakers to implement conservative and protectionist

policies in the production and distribution of vaccines. This phenomenon is known as

vaccine nationalism (see, for example, Bollyky & Bown (2020), Eaton (2021), and Katz

et al. (2021)), a common situation where powerful countries deploy enough resources to

secure vaccines and therapeutics at the expense of less-wealthy countries. Most people

will not support a social planner who supplies vaccine doses to another country when

the pandemic is not yet contained at home. Therefore, we might expect leaders to

face tenuous challenges in allocating a limited supply of vaccines in selfish democratic

communities where politicians seek popularity and re-election.

The main objective of each agent is to be among the first to receive a vaccine dose.

Consequently, an agent prefers an allocation X to an allocation Y if X provides a vaccine

dose to that agent and Y does not. An agent is indifferent between X and Y if they

receive a vaccine dose in both allocations, or if neither allocation gives them a dose. The

formal definition is below.

Definition 2. Let V = (E, µ) be a vaccine allocation problem, X and Y be two alloca-
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tions in N(µ). Agent i’s preferences -i over N(µ) are selfish if the following hold.

1. Agent i prefers Y over X (or X ≺i Y ) if i ∈ Y \X.

2. Agent i is indifferent between X and Y (or X ∼i Y ) if i ∈ (X ∩ Y ) or i /∈
(X ∪ Y ).

3. Agent i weakly prefers Y over X (or X -i Y ), if X ≺i Y or X ∼i Y .

Without loss of generality, we assume that µ ≤ n. It is straightforward that, if a

stable allocation X is such as |X| < µ, then, by allocating the remainder of vaccine doses

available to the agents chosen in any way in N\X, the new induced allocation remains

stable. In addition, the agents have a positive attitude towards vaccines by assumption.

Therefore, we only consider efficient allocations i.e., N(µ) = {S ⊆ N : |S| = µ}.

3.1 Characterization of Stable Vaccine Allocations in Selfish So-

cieties: Minimum Number of Vaccine Doses

We will now tackle the existence problem for stable allocations with a given number

of vaccine doses. We already know from Example 2 that a stable allocation may not

exist in a society where citizens are selfish. Our goal is to determine conditions under

which a stable allocation always exists in such societies. In particular, we determine the

minimum number of vaccine doses that guarantees the existence of a stable allocation.

This is equivalent to finding a threshold number µ∗ such that for any µ ≥ µ∗, we have

a non-empty core for a corresponding vaccine allocation game G = 〈E, µ, (-i)〉. Such

a minimal integer is justified given that the scarcity of a resource increases with its cost.

Therefore, social planners can approve of a vaccine during a pandemic when the suppliers

guarantee the production of the minimum supply of doses µ∗. Notice that the latter

decision might depend on several characteristics of the society, including the preferences

and responsibilities of the planners towards their constituents and special interest groups.

In Example 1, we can show that µ∗ = 1. More generally, we will prove the existence of

such a number µ∗ in any given political economy E = (N, I).

Let N∗ be the set of non-zero integers. For any political economy E = (N, I), let

HE = {k ∈ N∗ : ∀t ≥ k,∃T ∈ N (t) ,∀S ∈ I, if |S| ≤ t, then, S ∩ T 6= ∅},

where N(t) = {S ⊆ N : |S| = t}. Obviously, HE 6= ∅ since |N | = n ∈ HE. We define

the stability index as follows.
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Definition 3. The stability index of a political economy E = (N, I), denoted µ∗(E), is

defined as µ∗(E) := min(HE).

We shall prove that the stability index is essential to the determination of the stability

of vaccine allocations in a selfish community. Before deriving the stability index, we first

prove the following result.

Theorem 1. Let G = 〈N, I, µ, (-i)〉 be a vaccine allocation game, and let X ∈ N (µ)

be an allocation. Assume that each agent i’s preferences -i over N(µ) are selfish. Then

:

X ∈ C(G) if and only if for any S ∈ I, if |S| ≤ µ then, X ∩ S 6= ∅.

Proof. We proceed by double implications.

⇒) Let X ∈ C(G) and let us show that for any S ∈ I, if |S| ≤ µ then, X ∩ S 6= ∅.

For this purpose, consider such a coalition S, and assume that |S| ≤ µ and X ∩ S 6= ∅.

Let T be a subset of µ−|S| elements of N\S, and consider the allocation Y = S∪T . It is

obvious that S ⊆ P (X, Y ); since S is an influential coalition, it follows that Y challenges

X via S, which contradicts the assumption that X is a stable allocation. We have shown

that for any S ∈ I, if |S| ≤ µ, then X ∩ S 6= ∅.

⇐) Assume that for any S ∈ I, if |S| ≤ µ, then X ∩ S 6= ∅. We need to show

that X cannot be challenged in the allocation game G. Assume that X is challenged

by another allocation Y ∈ N(µ). It follows that P (X, Y ) ∈ I. Naturally, we have two

cases, either |P (X, Y )| > µ or |P (X, Y )| ≤ µ. If |P (X, Y )| > µ, then according to

the definition, it is not possible that X is challenged by Y , because Y ∈ N(µ) implies

|Y | = µ. Therefore, |P (X, Y )| ≤ µ, and by assumption, X ∩ P (X, Y ) 6= ∅, which is

impossible. In fact, let i ∈ X ∩P (X, Y ). Then, agent i prefers X to Y , and Y to X, i.e,

X ≺i Y ≺i X or X ≺i X (since the preference ≺i is transitive), which is a contradiction.

Hence, allocation X ∈ C(G).

Theorem 1 states that an allocation is in the core if it contains at least one member of

each influential coalition whose size does not exceed µ. Overall, this result conveys a key

message: any allocation of vaccine to µ agents in the community cannot be challenged

so long as memberships in influential coalitions are costly. What we mean by cost is the

capacity to gather a large number of agents in order to form an influential coalition. In fact,

it is implied from the statements in Theorem 1, that, if the influence structure of the society
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is such that only coalitions which consist of more than µ agents can impact the allocation

process of vaccines (i.e., S ∈ I if and only if |S| > µ), then any allocation in N(µ)

is stable: C(G) = N (µ). This situation happens not because of agents’ unwillingness

to challenge allocations, but simply because successful challenges require a significant

degree of adhesion from members in the society. We have stable allocations because of

the limited number of resources that prevents bargaining. This is similar to the concept of

“abstention due to alienation;”see Zipp (1985), Plane & Gershtenson (2004), and Adams

et al. (2006).

Definition 4. A vaccine allocation game 〈N, I, µ, (-i)〉 has a stable horizon if for any

integer µ ≥ µ, the game 〈N, I, µ, (-i)〉 has a non-empty core.

The main result of this section follows.

Theorem 2. Let E = (N, I) be a political economy. For any integer µ and selfish

preference profile (-i), the vaccine allocation game G = 〈E, µ, (-i)〉 has a stable horizon

if and only if µ ≥ µ∗(E).

Proof. ⇒) Assume that G = 〈E, µ, (-i)〉 has a stable horizon, we must show that

µ ≥ µ∗(E). Since µ∗(E) is the smallest element of HE, it is sufficient to show that

µ ∈ HE. For this purpose, let t ≥ µ, by assumption, G has a stable horizon thus, the core

of the vaccine allocation game Gt = 〈E, t, (-i)〉 is non-empty. Let X ∈ C (Gt) ⊆ N (t),

Theorem 1 ensures that: for any S ∈ I, if |S| ≤ t then, S ∩ X 6= ∅. It follows that

µ ∈ HE and therefore µ ≥ µ∗(E).

⇐) Conversely, assume that µ ≥ µ∗(E) and show that G = 〈E, µ, (-i)〉 has a stable

horizon. Let µ ≥ µ, we have µ ≥ µ∗(E) and by definition of HE, there is T ∈ N (µ)

such that for any S ∈ I, if |S| ≤ µ, then, S ∩ T 6= ∅. According to Theorem 1, T is

a stable allocation for the vaccine allocation game Gµ = 〈E, µ, (-i)〉, i.e., T ∈ C(Gµ).

The latter completes the proof.

When there is no ambiguity, for any political economy E = (N, I), and any selfish

preference profile (-i), we denote by G∗ = 〈E, µ∗, (-i)〉, with µ∗ = µ∗(E), the vaccine

allocation game with a stable horizon that requires the smallest number of vaccine doses.

In Proposition 1, we provide the stability index for the class of symmetrically weighted

political economies. Precisely, we show that the stability index for a q-weighted symmetric
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political economy E = (N, I(q)) is given by µ∗(E) = n−q+1 if q ≤ n
2

, and by µ∗(E) = 1

if q > n
2

. A corollary of this finding is that when the quota exceeds half of the total number

of agents (simple majority rule), then all the vaccine allocations are stable for any number

of doses.

Proposition 1. Let E = (N, I(q)) be a symmetric weighted political economy with quota

q < n. Then, the stability index of E is given by:

{
µ∗(E) = n− q + 1 if q ≤ n

2

µ∗(E) = 1 if q > n
2

.

Proof. We differentiate two cases.

• Case 1 : q ≤ n
2
. If µ∗ 6= n − q + 1, then we have either µ∗ < n − q + 1 or

µ∗ > n − q + 1. Assume that µ∗ < n − q + 1 and let t = n − q ≥ µ∗. By

assumption, there exists T ∈ N (t) such that for any S ∈ I(q), if |S| ≤ t, then

S ∩ T 6= ∅. For such a coalition T , we have |N\T | = q. Moreover, q ≤ n
2

is

equivalent to q ≤ n− q = t. Given that I(q) is a weighted influence structure with

quota q, it follows that S = N\T is an influential coalition such that |S| ≤ t and

S∩T = ∅. This is in contradiction with the initial assumption that µ∗ < n−q+1.

Thus, we can conclude that µ∗ ≥ n − q + 1. To show that µ∗ ≤ n − q + 1, we

consider the coalition T = {i ∈ N : i ≤ n− q + 1}. It holds that |T | = n− q + 1

and |N\T | = q−1. Moreover, any influential coalition S contains at least q agents,

and consequently, S cannot be contained in N\T . Thus S ∩ T 6= ∅, which proves

that µ∗ ≤ n− q + 1. We can conclude that µ∗ = n− q + 1.

• Case 2 : q > n
2

. To show that µ∗ = 1, it is sufficient to show that for any t ≥ 1,

there is T ∈ N (t) such that for any S ∈ I, if |S| ≤ t, then S ∩ T 6= ∅. Indeed,

if t ≤ n
2

, then there is no coalition S ∈ I(q) such that |S| ≤ t. If t > n
2

, just

take T = {i ∈ N : i ≤ t}. Since |S| = t > n
2

, it follows that |N\T | ≤ n
2
< q

and therefore, no influential coalition can be included in N\T , i.e., any influential

coalition intersects T . This is especially true for S ∈ I(q) such that |S| ≤ t.
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3.2 Stable Vaccine Allocations and Individual Influence in a Po-

litical Economy

In this section, we ask how, in circumstances of scarce resources, individual influence (or

voting power) in a political economy affects priority in access to vaccines. For simplicity,

given that preferences are fixed, we will represent the core of the vaccine allocation game

G = 〈N,µ, I, (-i)〉 by C(G) = C(E, µ), where E = (N, I). Consider the following

example, which illustrates the problem we aim to solve in this section.

Example 4. The allocation problem studied in Example 4 is similar to that in Example

1, with the exception that agents now have selfish preferences. We recall that N =

{1, 2, 3, 4, 5} and I = {S ⊆ N : {2, 4} ⊆ S or {3, 5} ⊆ S or |S ∩ {1, 2, 3}| ≥ 2}.
• If µ = 1 then, any allocation is stable and C(E, 1) = {{i} : i ∈ N}. Indeed, we need

at least two individuals from the same firm to form an influential coalition to challenge an

allocation. Since there is only one resource unit, any individual can get it. In fact, nobody

has an incentive to cooperate with another individual from the same firm to challenge

an allocation since doing so can only increase the utility of one member of the coalition,

leaving the other member’s utility unchanged.

• If µ = 2, we show that X = {2, 3} is the unique stable allocation. Each of individuals

2 and 3 belong to two firms, making them more influential than individuals 1, 4, and 5.

The priority given to them in terms of accessing the vaccine is therefore in line with the

influence structure of the society.

• If µ = 3, we show that C(E, 3) = {{1, 2, 3} , {2, 3, 4} , {2, 3, 5}}.
• If µ = 4, C(E, 4) = {{1, 2, 3, 4} , {2, 3, 4, 5} , {1, 2, 3, 5}}.
• If µ = 5, the unique stable allocation is the entire community, i.e., C(E, 5) = {N}.

It follows from this example that stable allocations depend on preference structure. We

note, for example that when the number of doses is at least equal to 2, both individuals 2

and 3 receive a vaccine dose; this is not the case in Example 1 where 3 is strongly opposed

to vaccination.

We also note that when the number of vaccine doses is at least equal to 2, individuals

2 and 3 are given a vaccine dose in all stable allocations. However, there exist stable

allocations where other individuals are not given any doses. This observation reveals that

individuals 2 and 3 are more influential (or have higher voting power) than the other
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individuals (see, for example, Taylor et al. (1999), Tchantcho et al. (2008), Pongou &

Tchantcho (2021) and Freixas & Pons (2021)). We will generalize this insight below.

First, we need to introduce the notions of individual influence and partner-dependence in

a political economy.

Definition 5. Let E = (N, I) be a political economy, and let i, j and k be three agents.

1. Agent i is at least as influential as agent j in E when, for any S ⊆ N\ {i, j}, if

S ∪ {j} ∈ I then, S ∪ {i} ∈ I.

2. Agent k is partner-dependent of agent i when for any S ∈ I, if k ∈ S then, i ∈ S.

An individual i is at least as influential as another individual j if whenever j can turn a

non-influential coalition S (not containing i and j) into an influential coalition by joining

it, i can turn a non-influential coalition into an influential one by doing the same. An

individual k is partner-dependent of another individual i if, whenever k belongs to an

influential coalition S, i also belongs to S. The notion of partner-dependence reflects

a certain correlation in the membership of influential coalitions. The dependent agent

cannot belong to an influential coalition without their partners. Note that if k is partner-

dependent of agent i, then i is at least as influential as agent k, but the converse is not

true,

To illustrate these notions, consider the influence structure in Example 1. Agent 3 is

at least as influential as agents 1 and 5; likewise, agent 2 is at least as influential as agents

1 and 4. Note that the converse is not true, as agents 1 and 5 are not as influential as

agent 3 and agents 1 and 4 are not as influential as agent 2. Also note that, agent 4 is

partner-dependent of agent 2 and, agent 5 is partner-dependent of agent 3.

For any agent i ∈ N , denote by Ci(G) = {X ∈ C(E, µ) : i ∈ X} the set of core

allocations in the game G = 〈E, µ〉 that contain i. The following result shows that the

core is consistent with the structure of individual influence among agents in a game.

Proposition 2. Let G = 〈N,µ, I〉 be a vaccine allocation game and X ∈ N(µ) be an

allocation. Let i, j ∈ N be such that i is at least as influential as j. The following

statements hold.

1. For any X ∈ C(G), if j ∈ X and i /∈ X then, (X\ {j}) ∪ {i} ∈ C(G).
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2. |Cj(G)| ≤ |Ci(G)|. In particular, if for any X ∈ C(G), we have i /∈ X, then for

all X ∈ C(G), we also have j /∈ X.

Proof. 1. Assume that i is at least as influential as j and consider an allocation X such

that j ∈ X and i /∈ X. We need to show that Z = (X\ {j})∪ {i} is a stable allocation.

It is sufficient to show that no allocation challenges Z. Let Y be an allocation. Since X

is stable, Y does not challenge X, that is the set P (X, Y ) := N\X is not an influential

coalition. By definition, P (Z, Y ) := N\ ((X\ {j}) ∪ {i}) = N\ (X ∪ {i}) ∪ {j}. Let

S = N\ (X ∪ {i}). It is straightforward that S ⊆ N\ {i, j} and S ∪ {i} = N\X =

P (X, Y ) is not an influential coalition. Since i is at least as influential as j, S ∪ {j} =

N\ (X ∪ {i})∪ {j} = P (Z, Y ) cannot be an influential coalition. We can conclude that

there is no allocation Y that can challenge Z, and so Z is a stable allocation.

2. According to the first point, the correspondence f which maps any element X of

Cj(G) to the element f (X) of Ci(G), with f (X) = (X\ {j}) ∪ {i}, is well defined.

Moreover, f is an injective correspondence, thus |Cj(G)| ≤ |Ci(G)|. The particular

situation for which no stable allocation contains i corresponds to |Ci(G)| = 0. In this

case, we also have |Cj(G)| = 0, which implies that no stable allocation contains j.

The first statement in Proposition 2 stipulates that the core is consistent with the

influence relation among agents in any vaccine allocation game. That is, if there exists

a stable allocation that contains an agent j, then there also exists a stable allocation

that contains any agent i that is at least as influential as j. The second statement in

Proposition 2 deduces naturally from the first. In fact, the second statement says that,

given two agents i and j, if agent i is at least as influential as agent j then, the core

allocations which contain agent i are at least as numerous as those which contain agent

j. In other words, the likelihood that an agent gets priority in access to a vaccine is higher

if that agent is more influential.

Proposition 3 examines the case where agents have some partner-dependence relation-

ship in a political economy and yields a result similar to that of Proposition 2.

Proposition 3. Let E = (N, I) be a political economy and X ∈ N(µ∗) be an allocation.

Let i and k ∈ N be two agents, with agent k being a partner-dependent of agent i. If X

belongs to the core of the vaccine allocation game G∗ = 〈E, µ∗, (-i)〉 and i ∈ X, then

k /∈ X.
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Proof. By assumption, µ∗ is the smallest strictly positive integer such that for any µ ≥ µ∗,

we have C(E, µ) 6= ∅. By contradiction, consider X ∈ C(G∗) such that {i, k} ⊆ X. It

is clear that µ ≥ 2. Let µ = µ∗ − 1 ≥ 1 and Y = X\ {k}. For any S ∈ I, we have

by assumption S ∩ X 6= ∅. For such a coalition S, if i ∈ S, then i ∈ S ∩ (X\ {k}),

that is, S ∩ Y 6= ∅. Otherwise, if i /∈ S, then k /∈ S; but S ∩ X 6= ∅, it follows that

S∩ (X\ {k}) ⊇ S∩ (X\ {i, k}) 6= ∅, that is, S∩Y 6= ∅. For µ = µ∗−1 < µ∗, we have

Y ∈ C(E, µ) and by assumption, for any µ ≥ µ∗, we have C(E, µ) 6= ∅. We can deduce

that for any µ ≥ µ∗ − 1, we have C(E, µ) 6= ∅, which contradicts the assumption that

µ∗ is minimal.

In this section, we have assumed that agents only care about themselves in a vac-

cine allocation game. This consideration abstracts any information about the potential

connections or links that may exist between agents. This assumption may in fact be unre-

alistic, as individuals that belong to the same group, whether defined by race, profession,

or household, may have other-regarding preferences towards members of their own group

for several reasons. One reason this may be the case is that members of the same group

are more likely to physically interact with each other than with those outside of the group.

Therefore, if a member of an individual’s group is vaccinated, it decreases that individual’s

vulnerability to infection, even if they are not personally vaccinated. While this is also true

for those outside of an individual’s group, the individual benefits more from the vaccination

of group members, with whom they frequently interact, than they do from vaccinating

outsiders, with whom they have little to no interactions. Therefore, if an individual has

to choose between two vaccine allocations X and Y to which they don’t belong, that

individual will choose the allocation that gives more vaccine doses to individuals closer to

them. Moreover, two individuals may have preferences that are closer if they belong to

the same group than if they belong to different groups. In the next section, we extend

the analysis of stable allocations in a framework where agents may have some degree of

direct or indirect connections in the community. In order to simulate these connections,

we add a spatial dimension to a vaccine allocation game using concepts from Euclidean

geometry. This spatial dimension captures the relationship that individuals may have with

each other.
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4 Stable Vaccine Allocations in Unselfish Societies

In the previous section we assumed that given an allocation X, an agent i is either satisfied

(i ∈ X) or not (i /∈ X). However, in practice, it might happen that even if agent i does

not receive the vaccine, they prefer that agent j who is “closer” to them receives it than

another agent k who is“further”from them. This is the case, for example, when vaccines

have positive externalities in the sense that an unvaccinated individual is less vulnerable

to infection when of their neighbors are vaccinated.

In order to capture agents’ consideration of “closeness” in their preferences, we add a

spatial dimension to the definition of a vaccine allocation game. We assume that each

agent i ∈ N is associated with a unique (ideal) point qi in the metric space Rm of

dimension m ≥ 1. We denote by {qi}i∈N or {qi} a profile of agents’ ideal points. The

metric space is endowed with a distance d. For simplicity, we assume that for all distinct

i, j ∈ N , qi 6= qj. Therefore, agents in N are equivalent to their ideal points in {qi}i∈N ,

i.e., for any allocation S ∈ N(µ), with |S| = µ, we can write S = {S1, ..., Sµ}, a subset

of {qi}i∈N . A spatial political economy, which we denote Ed, is defined as the triple

Ed = (N, I, {qi}). Given a spatial political economy Ed, the pair V d = (Ed, µ) defines

a spatial vaccine allocation problem. We denote by Ṽ the domain of spatial vaccine

allocation problems. In an unselfish society, agents have unselfish spatial preferences

defined as follows.

Definition 6. Let V d = (Ed, µ) be a spatial vaccine allocation problem, and X and Y

be two allocations in N(µ). Agent i’s preferences over N(µ), which we denote -d
i , are

unselfish if the following hold.

1. Agent i prefers Y over X, denoted as X ≺di Y , if there exists an element j ∈ Y
such that for all k ∈ X, d (qi, qj) < d

(
qi, qk

)
10;

2. Agent i is indifferent between X and Y , denoted as X ∼di Y , if neither X ≺di Y
nor Y ≺di X.

3. Agent i weakly prefers Y over X, denoted as X -d
i Y , if X ≺di Y or X ∼di Y .

We define a spatial vaccine allocation game, which we denote Gd, as an array

Gd = 〈N, I, {qi} , µ, (-d
i )〉 or simply Gd = 〈V d, (-d

i )〉. As in the previous sections, since

10We can also write this inequality as d(i, Y ) < d(i,X), where d(i, Z) is the distance of agent i to an

allocation Z, with d(i, Z) := min{d
(
qi, qj

)
: j ∈ Z}.
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preferences are fixed, we can represent the set of stable allocations of the spatial vaccine

allocation game Gd simply by C(Gd) ≡ C(Ed, µ). In the following example, we determine

the set of stable vaccine allocations in a simple spatial political economy.

Example 5. Consider a small community which consists of four juniors and three seniors.

The community is affected by a deadly respiratory virus which creates a pandemic. Relative

to juniors, seniors are more likely to get very sick from the disease and are more likely

to need hospitalization, intensive care, or a ventilator to help them breathe. Additionally,

relative to juniors, seniors have a higher probability of being killed by the disease if they

catch it. Other factors, such as having certain underlying medical conditions also increase

the likelihood of dying or becoming very ill if infected by the virus. In the community,

most of these underlying medical conditions are concentrated among seniors.11 With

intensive investment in science and medical technology, a vaccine is discovered and it is

shown to be highly effective against the adverse effects caused by the virus. However,

not everyone can get a shot at the same time. The structure of the community is such

that potential influential coalitions fall into one of the following categories: (1) a group

of agents that includes at least two individuals in which there is at least one senior; or

(2) a group of agents that includes at least four juniors. Such an influential coalition

can challenge any allocation of vaccines that does not satisfy some specific interests. Let

J = {1, 2, 3, 4} denote the group of juniors and S = {5, 6, 7} denote the group of seniors,

so that N = J ∪ S. We assume that the number of vaccine doses µ is less than 7, the

cardinality of N .

Consider the two different spatial configurations given in Figure 3. Each of the two

configurations reflects a certain proximity which induces an unselfish community.

The situation can be represented in both configurations by a vaccine allocation game

whose underlying political economy (N, I(4)) is such that I corresponds to the weighted

influence structure, defined by I(4) = [4; 1, 1, 1, 1, 3, 3, 3]. Notice that the weight of

each senior is three times that of a junior. Such a difference might reflect a certain

priority given to seniors due to the risk severity of the virus among seniors. Within a

population with a fixed cardinality n = N , the number of influential coalitions increases

with the proportion of seniors. In other words, in an aging population, there is more

tension for access to the vaccine. For instance, in African countries where the population

11A typical real-world example of such a scenario is COVID-19.
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Figure 3: Representation of agents’ relationships in an unselfish community

is younger, pressures for access to the vaccine against COVID-19 are less high than in

Western countries with an aging population. Social planners can also consider separately

or simultaneously other factors in the allocation of a limited number of vaccines. These

factors include occupational exposure to disease and the epidemiological parameters such

as transmission rate, effective reproductive numbers, and immunity threshold.

In this model, even if an agent i is in none of the two allocations X and Y , they can

still support a challenge of X for Y , simply because agent i’s ideal might be closer to Y

than to X. For instance, when µ = 1, the configuration of relationships given in Figure

2-(a) induces an empty set of stable vaccine allocations. If the allocation {1} is proposed,

then the influential coalition {2, 6} prefers the allocation {6}; if {6} is proposed, then the

influential coalition {1, 5} prefers {5}; if {5} is proposed, then the influential coalition

{2, 6} prefers {6}, etcetera. Similarly, we can show that for µ = 2, there is no stable

vaccine allocations.

µ = 3 is the lowest value of µ for which the core is not empty for the configuration

in Figure 3-(a). Specifically, we show that X = {5, 6, 7} is the only stable allocation

in Figure 3-(a). Indeed, the only influential coalition that would have challenged X is

S = {1, 2, 3, 4}, but there is no allocation that is collectively better than X for members

of S. However, in the second configuration (Figure 3-(b)), several alternative allocations

to X are available to members of S such that there is no stable vaccine allocations. This

example shows that the social structure of the community affects the existence of a stable

allocation of vaccines.
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4.1 Characterization of Stable Allocations in Unselfish Societies

In what follows, we provide a characterization of the core for any vaccine allocation

game V d ∈ Ṽ. To do this, we need to introduce additional concepts and notations.

Let I− (µ) = {S ∈ I : |S| ≤ µ} denote the set of minimal influential coalitions, and

I+ (µ) = I\I− (µ) = {S ∈ I : |S| > µ}, the complementary set of I− (µ) in the in-

fluence structure I. When there is no ambiguity, we use the notations I− and I+ for

I−(µ) and I+(ν), respectively. The set I+ consists of majority influential coalitions.

Giving a majority influential coalition A ∈ I+, and an allocation B ∈ N(µ), we introduce

the set ΛA,B defined as follows: ΛA,B = A ∪ {j ∈ N : ∃i ∈ A/d (qi, qj) ≤ αiB}, where

αiB = min
k∈B

{
d
(
qi, qk

)}
. Lastly, we consider I = I− ∪ {ΛA,B : A ∈ I+, B ∈ N(µ)},

I− =
{
S ∈ I : |S| ≤ µ

}
and I+ =

{
S ∈ I : |S| > µ

}
.

To illustrate the set ΛA,B, let N = {1, ..., 7} and the ideal points of Figure 3-(a) in Ex-

ample 5. Consider the symmetric weighted influence structure I(4) = [4; 1, 1, 1, 1, 1, 1, 1].

For µ = 1, we have I(4)− = ∅, because any influential coalition contains more than one

agent. It follows that I(4)+ = I(4). Furthermore, N (µ) = {{k} : k ∈ N}.

• Consider for instance the winning coalition A = {1, 2, 3, 4} ∈ I(4) and the coali-

tion B = {6}. We have αiB = d (qi, q6), and N\A = {5, 6, 7}. By definition,

ΛA,B = {1, 2, 3, 4} ∪ {j ∈ N : ∃i ∈ A/d (qi, qj) = d (qi, q6)}. For j = 5, we have

d(q1, q5) < d(q1, q6), and 1 ∈ A; similarly, for j = 6, we have d(q1, q6) = d(q1, q6),

and 1 ∈ A; and for j = 7, we have d(q2, q7) < d(q2, q6), and 2 ∈ A. Therefore,

ΛA,B = N .

• If A = {1, 4, 5, 6} ∈ I(4) and B = {6} then, for any j ∈ N\A = {2, 3, 7} and

for any i ∈ A, we have d (qi, q6) < d (qi, qj), i.e., j /∈ ΛA,B. We deduce that

ΛA,B = A.

• Now, consider any influential coalition A ∈ I(4), and the coalition B = {k}, where

k 6= 6. It is straightforward to show that there is i ∈ A such that d (qi, q6) ≤
d
(
qi, qk

)
= αiB, i.e., 6 belongs to any ΛA,B. It follows that {6} is a stable vaccine

allocation when µ = 1. In fact, we show that {6} is the only stable vaccine

allocation.

Theorem 3 provides a complete characterisation of the set of stable vaccine allocations
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in a spatial model.

Theorem 3. For all V d = (Ed, µ) ∈ Ṽ, C(V d) =
{
X ∈ N(µ) : ∀S ∈ I, {qi}i∈S ∩X 6= ∅

}
.

Proof. ⊆) Let X = {X1, .., Xµ} ∈ N(µ), we need to show that: if X ∈ C
(
V d
)
, then

for any S ∈ I we have {qi}i∈S ∩X 6= ∅. By contraposition, it is sufficient to show that,

if there is S ∈ I such that {qi}i∈S ∩ X = ∅, then X /∈ C
(
V d
)
. For these purposes,

consider a coalition S ∈ I = I− ∪
{

ΛA,B : A ∈ I+, B ⊆ N, |B| = µ
}

. If S ∈ I− then,

let Y = {Y 1, .., Y µ} ∈ N(µ) such that {qi}i∈S ⊆ Y . It is always possible to choose such

a Y because by definition, S ∈ I− means that |S| ≤ µ. Since {qi}i∈S ∩ X = ∅ and

{qi}i∈S ⊆ Y , it is clear that any individual i ∈ S prefers qi ∈ Y to any Xk ∈ X. It

follows that X is challenged by Y because S ∈ I, therefore X /∈ C
(
V d
)
.

If S /∈ I− then, S ∈
{

ΛA,B : A ∈ I+, B ⊆ N, |B| = µ
}

, that is there are A ∈

I+, B ⊆ N such that |B| = µ and S = ΛA,B = {j ∈ N : ∃i ∈ A, d (qi, qj) ≤ αiB} ,
where for any i ∈ A, αiB = min

k∈B

{
d
(
qi, qk

)}
. Let Y = {Y 1, .., Y µ} ∈ N(µ) such that the

components of Y are the points of {qi}i∈B. It should be noted that it is always possible

to choose such a Y because by definition |B| = µ. For any i ∈ A, let us choose li ∈ B
such that αiB = min

k∈B

{
d
(
qi, qk

)}
= d

(
qi, ql

i
)

. The existence of li is certain because, B

is a nonempty and finite set. It should be noted that if i ∈ B then, li = i and αiB = 0.

For any k ∈ {1, .., µ}, there is jk ∈ N such that Xk = qj
k
, where jk /∈ S because

{qi}i∈S ∩X = ∅. We know that jk /∈ S implies jk /∈ {j ∈ N : ∃i ∈ A, d (qi, qj) ≤ αiB},
meaning, for any i ∈ A, d

(
qi, qj

k
)
> αiB ≥ d

(
qi, ql

i
)

. It follows that any individual

i ∈ A prefers ql
i ∈ Y to any Xk ∈ X, that is, X is challenged by Y via A ∈ I+ ⊆ I,

therefore X /∈ C
(
V d
)
.

⊇) Let X = {X1, .., Xµ} ∈ N(µ) such that for any S ∈ I we have {qi}i∈S ∩X 6= ∅,

we need to show that X ∈ C
(
V d
)
, or equivalently, we must show that X is not challenged.

Consider Y = {Y 1, .., Y µ} ∈ N(µ) and a winning coalition T ∈ I: Can Y dominate X

via T? By assumption, for any S ∈ I = I− ∪
{

ΛA,B : A ∈ I+, B ⊆ N, |B| = µ
}

, we

have {qi}i∈S ∩ X 6= ∅. Thus, if T ∈ I− then {qi}i∈T ∩ X 6= ∅. Let j ∈ T such that

there is t ∈ {1, .., µ} , qj = X t, there is no k ∈ {1, .., µ} such that individual i prefers Y k

to X t because d (qi, X t) = d (qi, qi) = 0. In this case, Y can’t challenge X via T .

Assume that T /∈ I− then, T ∈ I+: let B =
{
k : qk ∈ Y

}
, by definition S =

ΛT,B ∈ I and by assumption, {qi}i∈S ∩ X 6= ∅. Remember that S = ΛT,B =
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{j ∈ N : ∃i ∈ T, d (qi, qj) ≤ αiB} , where for any i ∈ T , αiB = min
k∈B

{
d
(
qi, qk

)}
. Con-

sider j ∈ N such that: (1) there is t ∈ {1, .., µ} , qj = X t, and (2) there is i ∈ T ,

d (qi, qj) ≤ αiB = min
k∈B

{
d
(
qi, qk

)}
. There is no k such that individual i prefers Y k to X t

because: for any k, we have d (qi, X t) = d (qi, qj) ≤ αiB ≤ d
(
qi, qk

)
. And then, Y can’t

challenge X via T .

In Section 3, we determine the minimum number of vaccine doses that guarantees the

existence of a stable allocation in a selfish community. Theorem 3 provides a complete

characterization of the core of a vaccine allocation game in a spatial model with unselfish

preferences. The core may be empty as described in Example 3 in Section 2.4. We want

to provide an investigation similar to the one in Section 3 on the effects of vaccine supply

on the non-emptiness of the core in an unselfish society. We need additional notation.

For a given spatial political economy Ed = (N, I, {qi}), let HEd be the set of non-zero

integers k such that for any integer t ≥ k there is S ∈ N (t) such that for any influential

coalition A ∈ I: if |A| ≤ t, then S∩A 6= ∅, otherwise, for any B ∈ N(t), S∩ΛA,B 6= ∅.

Definition 7. The spatial stability index of a spatial political economy Ed, denoted

µ∗
(
Ed
)
, is defined as follows : µ∗

(
Ed
)

:= min (HEd).

The notion of a vaccine allocation game with a stable horizon remains the same as in

Definition 4 in Section 3.1. We have the following result.

Corollary 1. Let Ed = (N, I, {qi}) be a spatial political economy. For any integer µ and

unselfish preference profile (-d
i ), the spatial vaccine allocation game Gd = 〈Ed, µ, (-d

i )〉
has a stable horizon if and only if µ ≥ µ∗

(
Ed
)
.

Proof. The proof of this corollary follows directly from Theorem 3.

For several reasons, including vaccine attributes, misinformation on public attitudes

towards vaccination (Kreps et al., 2021; Brewer et al., 2017), online and offline mis-

information surrounding the safety and effectiveness of vaccines (Loomba et al., 2021;

Fridman et al., 2021), and culture (Schmelz & Bowles, 2021), the social planner may

receive incomplete information about agents’ ideal points. Theorem 4 shows that the set

of stable vaccine allocations is robust to small perturbations of agents’ preferences. In

other words, if the difference between agents’ perceived ideal points from the planner’s
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viewpoint and agents’ true ideal points is small (or does not exceed a certain threshold),

then the allocation of vaccine will not jeopardize the planner’s popularity.

Theorem 4. Apart from a negligible set of configurations {qi}, given V d
1 = 〈N,µ, I, {qi}〉 ∈

Ṽ, there exists a positive real number γ such that for all V d
2 = 〈N,µ, I, {pi}〉 ∈ Ṽ, if for

any agent i ∈ N , d(pi, qi) ≤ γ, then C(V d
1 ) = C(V d

2 ).

Proof. For purpose of clarity, we provide a detailed proof of Theorem 4 for two-dimensional

games. One can naturally extend the arguments of the proof to any dimension. We

proceed in three steps.

Step 1 : Let us specify the set of configurations of the ideal points to be discarded.

These are configurations such that three ideal points are aligned and configurations are

such that one ideal point is located equidistant from two other distinct ideal points. It must

be shown that these configurations are negligible in the sense of measurement. For this

purpose, let us assume that the ideal points are drawn at random on a domain D of non-

zero finite measure. Randomly drawing three distinct positions such that one is located at

an equal distance from two others is equivalent to randomly drawing three distinct points

X, Y and Z such that Z belongs to the perpendicular bisector of the segment [X, Y ].

This probabilistic event can be translated into two events: (A1) randomly choose two

distinct positions X, Y ; and (A2) randomly draw Z on the perpendicular bisector of the

segment [X, Y ]. It is clear that P (A1) > 0, the conditional probability rule results in:

P (A1 ∩ A2) = P (A1)× P (A2/A1). Moreover A2/A1 is the probability of drawing Z on

the perpendicular bisector of the segment [X, Y ] knowing X and Y , which is zero. To

denote configurations which are such that no ideal point is on the perpendicular bisector

of the segment formed by two other ideal points, we use the expression λ-almost any

configuration.

Step 2 : By assumption, for λ-almost any configuration, we have: d (qi, qj) 6= d
(
qi, qk

)
i.e., d (qi, qj) < d

(
qi, qk

)
or d

(
qi, qk

)
< d (qi, qj). Let us show that there is a strictly

positive real number ρ such that: given three distinct individuals i, j and k, such that

pi ∈ B (qi, ρ), pj ∈ B (qj, ρ) and pk ∈ B
(
qk, ρ

)
, we have d (qi, qj) < d

(
qi, qk

)
if and

only if d (pi, pj) < d
(
pi, pk

)
. Assume that d (qi, qj) < d

(
qi, qk

)
, then for any i ∈ N, let

i1 be the agents of N\ {i} whose ideal point is closer to that of i and i2 be the agents of

N\ {i, i1} whose ideal point is closer to that of i. By assumption, an ideal point is not

located at the same distance from two others, therefore, 0 < d (qi, qi1) < d (qi, qi2). Let
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ρi =
d(qi,qi2)−d(qi,qi1)

4
and ρ = min {ρi : i ∈ N}.

Given three distinct individuals i, j and k, such that d (qi, qj) < d
(
qi, qk

)
, if pi ∈

B (qi, ρ), pj ∈ B (qj, ρ) and pk ∈ B
(
qk, ρ

)
, then the most distant points pi and pj that

can be obtained are as such: d (pi, pj) = d (qi, qj) + 2ρ. Likewise, the closest points

pi and pk that can be obtained are as such: d
(
pi, pk

)
= d

(
qi, qk

)
− 2ρ. It follows

that d
(
pi, pk

)
− d (pi, pj) ≥ d

(
qi, qk

)
− d (qi, qj) − 4ρ. By construction, we have ρ ≤

d(qi,qk)−d(qi,qj)
4

thus, −4ρ ≥ d (qi, qj)− d
(
qi, qk

)
. We finally get d

(
pi, pk

)
− d (pi, pj) ≥

d
(
qi, qk

)
− d (qi, qj) > 0, i.e., d (pi, pj) ≤ d

(
pi, pk

)
.

In the same way, we can show that if d
(
qi, qk

)
< d (qi, qj), then d

(
pi, pk

)
< d (pi, pj).

Step 3 : Now let us show that for a given vaccine allocation game V d
2 =

(
N, I, {pi}i , µ

)
,

if for any i ∈ N, d(pi, qi) ≤ ρ, then C
(
V d
1

)
= C

(
V d
2

)
. It is sufficient to show that

for any S ∈ I, for all X = {X1, .., Xµ}, Y = {Y 1, .., Y µ}, X =
{
X

1
, .., X

µ
}

and

Y =
{
Y

1
, .., Y

µ
}

such that for any k ∈ {1, ..., µ}, Xk ∈ B
(
Xk, ρ

)
and Y

k ∈ B
(
Y k, ρ

)
,

we have: X is challenged by Y via S for V d
1 if and only if X is challenged by Y via

S for game V d
2 . By definition, X is challenged by Y if and only if for any i ∈ S,

min
Z∈Y
{d (qi, Z)} < min

Z∈X
{d (qi, Z)}. From Step 2, for all three distinct individuals i, j and

k, we have d (qi, qj) < d
(
qi, qk

)
if and only if d (pi, pj) < d

(
pi, pk

)
. It follows that, for any

i ∈ S, min
Z∈Y
{d (qi, Z)} < min

Z∈X
{d (qi, Z)} if and only if min

Z∈Y
{d (pi, Z)} < min

Z∈X
{d (pi, Z)},

i.e., X is challenged by Y via S for V d
1 if and only if X is challenged by Y via S for game

V d
2 . The combination of the three steps allows the proof to be concluded with γ = ρ.

4.2 An Application to Minority Inclusion

In the spatial model, it is essential to know the coordinates of the ideal points in the con-

sidered space. However, in some circumstances, the social planner may not completely

infer agents’ ideal points. It is also necessary to account for the cost of the investigations

to obtain the information on the agents. For this reason, we must consider alternative

approaches to capturing the distance between agents. Networks provide a way of address-

ing this concern. Networks model connections (direct or indirect) that may exist between

agents. We can use these relationships to evaluate how close an agent is to others. Fac-

tors such as gender, occupation, political ideology, beliefs, or ethnicity induce relationships

between agents. In the specific case discussed in this application, agents are the nodes of
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a weighted undirected network structure. Each vertex between two agents is associated

with a weight corresponding to the distance between the two agents connected by this

vertex. If there is no vertex between two agents, then they are considered to be infinitely

distant. In a network, a connected component is a maximum subset of nodes. Any two

nodes in a component are connected by a path, i.e., a series of vertices between nodes in

the considered subset.

To illustrate, consider an undirected weighted network with n nodes numbered from

1 to n. The nodes are the agents involved in a spatial vaccine allocation problem V A =

(N,µ, I, A) such that I is the weighted influence structure defined by I ≡ I(
⌈
n
2

⌉
) =[⌈

n
2

⌉
; 1, ..., 1

]
, and A is a network structure that describes connections between agents.

The quota, q =
⌈
n
2

⌉
, is the smallest integer which strictly exceeds the real number n

2
; that

is a simple majority influence structure. Note that the network A replaces the agents’

ideal points profile in a spatial vaccine allocation problem.

To describe the network A, we assume that the set of agents N is partitioned into two

subsets denoted N1 and N2. If N1 contains n1 agents and N2 contains n2 agents, then

n1 +n2 = n. Each of the two subsets N1 and N2 corresponds to a connected component.

Figure 4 displays a specific network A, involving 11 agents such that N1 = {1, ..., 8} and

N2 = {9, 10, 11}. For practical reasons, we assume that each vertex has a measure of 1,

and the absence of a link is assimilated to an infinite distance. Thus, the preferences of

the agents are such that, agents prefer themselves first, then the members of their network

depending on the length of the connection path, and finally the other agents. Assuming

that the total number n of agents is odd, it follows that one of the two groups is an

influential coalition (majority) and the other is not (minority). Without loss of generality,

assume that N1 is an influential coalition and as a consequence, N2 is not. For a spatial

vaccine allocation problem V A = (N,µ, I, A), how does the number of vaccine doses µ

affect minority inclusion in core allocations of these doses?

It is straightforward that, if µ ≥ q, then any vaccine allocation is stable. Assume

that µ < q. For the configuration considered in Figure 4, if there is only one vaccine

dose, then {1} is the only stable allocation. Indeed, if the single dose is given to agent 7

for instance or to an agent chosen in N2, then, the members of the influential coalition

S = {1, ..., 6} will propose the allocation {1} to challenge the proposed allocation. With

the same reasoning, we show that if µ = 2, then, the stable allocations are in the form
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Figure 4: Illustration of an unselfish community on the network structure A

{1, k} where k ∈ {2, ..., 8}. Remark that these allocations are not minority-inclusive as

they do not reserve any vaccine dose for a minority individual. Similarly, if µ = 3, no

vaccine dose will go to a minority individual in any stable allocation. Stable allocations

that allocate vaccine doses to minority individuals exist only for µ at least equal to 4.

In fact, it holds in this example that the analysis of the existence of a stable allocation in

V A = (N,µ, I, A) is reduced to the vaccine allocation problem V A =
(
N2, µ, I(

⌈
n
2

⌉
), A
)
,

where I(
⌈
n
2

⌉
) is the weighted influence structure defined on N2, with the same quota

q =
⌈
n
2

⌉
as the influence structure I(

⌈
n
2

⌉
). In this case, there is a better chance of

obtaining a stable allocation since everything happens as if the members of N1 were

excluded but without changing the quota. In other words, the stability index of V A

cannot exceed that of V A, that is µ∗
(
V A
)
≤ µ∗

(
V A
)
. For µ = µ∗

(
V A
)

, there is at

least one stable allocation but no member of the influential coalition N1 belongs to a

stable allocation. For µ > µ∗
(
V A
)

, in a stable allocation, up to µ− µ∗
(
V A
)

doses of

vaccine can be released for members of N1. This shows that inclusive policies are possible

only if the number of vaccine doses exceeds the threshold µ = µ∗
(
V A
)

.

Finally, if the members of N1 are pairwise connected, then the set N1 can be compared

to a selfish community. In that case, µ∗
(
V A
)

= n1 − q + 1.

The application that we illustrate in Section 4 discusses the non-emptiness of the core

and inclusion in a polarized and unselfish society as a function of the supply of vaccine

doses µ. Though the findings in this application offer a glimpse of the issue, a formal

analysis of the problem is an avenue for future research. Section 4.2 also opens a discussion
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on whether a political leader can implement a stable and inclusive vaccine allocation in a

society organized around distinct groups where individuals have in-group preferences. The

application shows that their ability to enforce such popular and inclusive allocations in a

majoritarian democratic institution may depend on the supply of vaccines and, hence, on

society’s technological capability to produce vaccine doses.

5 Concluding Remarks

In this study, we developed a theory that addresses the problem of the existence of sta-

ble vaccine allocations in a political economy. Stable allocations are defined as feasible

allocations that a social planner can implement without losing their popularity. We distin-

guished between contexts where vaccination has positive externalities on the unvaccinated

and contexts where it does not. When vaccination does not have any positive externalities

in that it only benefits the vaccinated individual, agents have selfish preferences; and when

it has positive externalities, agents have unselfish preferences.

We have seen that when the supply of vaccine doses is sufficiently low relative to the

number of individuals eligible to receive a dose, a stable allocation may not exist. In such

a situation, any policy implemented by the social planner will be unpopular. The absence

of a stable vaccine allocation is caused by highly divergent preferences. This observation

motivated us to investigate “structural” conditions under which a stable allocation policy

always exists. The identification of structural conditions is useful because such conditions

do not depend on preferences and can therefore inform policy design. Assuming that

individuals have selfish preferences, we characterized the minimum number of vaccine

doses that guarantees the existence of a stable policy regardless of the level of preference

heterogeneity. This number only depends on the society’s influence structure.

We also studied some properties of stable vaccine allocations under selfish preferences.

In particular, we investigated the relationship between voting rights and priority in access

to vaccine. We found that when individuals have unequal voting rights, stable allocations

favor those with greater voting power. In other words, if there exists a stable allocation

that gives an individual a vaccine dose, there must also exist a stable allocation that gives

any individual that possesses more voting power a vaccine dose. A direct implication is

that the likelihood of an individual having priority in access to vaccines increases with the
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amount of voting power the individual wields.

When agents have unselfish preferences and the society is such that proximity between

individuals varies, we also characterized the minimum number of vaccine doses that guar-

antees the existence of a stable vaccine allocation policy. This number depends both on

the society’s influence structure and the patterns of proximity between individuals. Un-

selfish preferences can be explained by the fact that a person’s vulnerability to infection

decreases if their close neighbors are less vulnerable or are vaccinated. In an application,

we explore one implication of such preferences for minority inclusion in the design of stable

vaccine allocations. We found that while a stable vaccine allocation policy may exist, it

may not be minority-inclusive, especially if the number of vaccine doses is very small. Also,

in such situations, minority-inclusive policies may not be stable, creating a dilemma for

the social planner. These findings open discussions into the circumstances under which

a social planner can feasibly design a vaccine allocation policy that is both stable and

inclusive in a fragmented society.

Finally, we would like to emphasize that while our analysis focuses on vaccine allo-

cation, our results extend to the allocation of any scarce good in a political economy

context.
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