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Abstract: A multidimensional, modified, fractional-order B-polys technique was implemented for
finding solutions of linear fractional-order partial differential equations. To calculate the results
of the linear Fractional Partial Differential Equations (FPDE), the sum of the product of fractional
B-polys and the coefficients was employed. Moreover, minimization of error in the coefficients was
found by employing the Galerkin method. Before the Galerkin method was applied, the linear
FPDE was transformed into an operational matrix equation that was inverted to provide the values
of the unknown coefficients in the approximate solution. A valid multidimensional solution was
determined when an appropriate number of basis sets and fractional-order of B-polys were chosen.
In addition, initial conditions were applied to the operational matrix to seek proper solutions in
multidimensions. The technique was applied to four examples of linear FPDEs and the agreements
between exact and approximate solutions were found to be excellent. The current technique can be
expanded to find multidimensional fractional partial differential equations in other areas, such as
physics and engineering fields.

Keywords: fractional B-polynomials (B-ploy); partial fractional differential equations; multidimensional
formulism

1. Introduction

In real-world scientific phenomena, most problems follow either linearity or nonlin-
earity in their systems. In different fields, for example, engineering, computer science,
and chemistry [1–3], fractional-order differential equations emerge more often. The most
physical phenomena are described by the differential systems, which are integral-order
systems. Many systems could be expressed with the help of the fractional differential
equation [4–9]. Due to the materials and chemical properties of the real-world problems,
and their memory and genetic characteristics, many physical problems follow fractional
dynamical behavior [9–11]. The partial fractional-order differential equations are becoming
a useful tool to model the physical phenomena [9]. For this reason, there has been an
urgent need to find a solution to the fractional-order problems. However, there has been
difficulty in obtaining the accurate analytical or numerical results of the most fractional-
order differential model equations. There is a need for a suitable technique to find solutions
to the fractional-order differential problems, linear and nonlinear. In our current paper,
we aim to apply a technique to resolve multivariable linear fractional-order differential
equations. Nonlinear fractional-order partial differential equations would be considered
in future work. In recent years, many authors have used various numerical and ana-
lytical procedures to unravel fractional-order differential equations such as the modified
simple equation approach [12–15] the variational iteration procedure [16], Adams–Bashfort–
Mowlton Method [17], the Lagrange characteristic approach [18,19], Adomian decompo-
sition method [20], the finite difference procedure [21], the differential transformation
method [22], the finite element technique [23], the fractional sub equation procedure [24],
the (G′/G)-expansion method [25], first integral approach [26], Jacobi–Gauss collocation
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method [27], the spectral collocation method (SCM) [28,29], and the fractional complex
transform technique [30]. Every method has its own pros and cons.

In this study, we are going to implement the modified fractional-order Bhatti polyno-
mial (B-poly) technique [31–37] that is significantly able to solve a variety of multivariable
linear fractional-order differential equations. We chose the fractional-order B-poly due
to its well-defined basis set and precision [33]. With these basis sets, it can be demon-
strated that an arbitrary function can be represented to the desired accuracy and is directly
differentiable over a closed interval. In several papers [31–36], using the B-poly basis of
fractional-order and a generalized Galerkin method, the authors were able to find solutions
to the fractional-order partial differential equations.

In an earlier work [31–36], the authors used a similar technique to find the solution to
ordinary nonlinear and linear multidimensional differential equations. The current study
focuses on linear fractional-order differential equations using the generalized Galerkin
method [36] and the B-poly basis of fractional-order. This technique has the special advan-
tage of the unitary partition property and the continuity of the generalized fractional-order
B-polys over an interval [0, R], which are seamlessly differentiated. With the help of
fractional-order B-polys, a fractional-order differential equation is transformed into an op-
erational matrix using a matrix formalism that provides greater flexibility to the application
of boundary as well as initial conditions on the operational matrix. The current study seeks
solutions to four examples of linear fractional-order partial differential equations using the
fractional-order B-poly technique. Employing Caputo’s fractional-order derivative defi-
nition, the derivatives of the fractional-order B-polys are taken. In the following sections,
we present analytical formulism to employ Caputo’s fractional-order derivative on the
polynomials, present the process used to create fractional-order basis sets, and develop an
algorithm to resolve various linear fractional-order partial differential equations. We apply
this technique to four examples. Finally, we shall present an error analysis of one of the
fourth considered examples.

2. Caputo’s Fractional Differential-Order Operator

The explanation of the fractional-order derivative of Caputo is provided as [3]

Dγ f (x) = Jm−γDm f (x) =
1

Γ(m− β)

∫ x

0
(x− t)m−γ−1 f (m)(t)dt, f or m− 1< γ ≤ m, m ∈ N, x >0, f ∈ Cm

−1, (1)

where Dγ are Caputo’s fractional operator and fractional derivative in Caputo’s sense
is Dγ f (x), Equation (1). Caputo’s derivative of a constant is zero, i.e., DγC = 0 and a
fractional derivative of the polynomial Dγxα is given by

Dγxα =

{
0 f or α ∈ N0 and α < [γ]

Γ(α+1) xα−γ

Γ(α+1−γ)
otherwise.

(2)

Here, α denotes the order of the fractional function. The unknown two-variable
dependent function U(x, t) is expanded as a product of two generalized fractional-order
B-polynomials, Bj,m(α, t)Bi,n(α, x), which may be considered as an approximate outcome
to the FPD equation represented by

U(x, t) = ∑n
i, j=0 bi

j Bj,m(α, t)Bi,n(α, x), (3)

where Bj,m(α, t) is a j-th and m-degree fractional-order B-poly in variable t or x, with
α as a fractional-order parameter over a given interval. The expansion coefficients bi

j
in Equation (3) are the set of variables that are determined in the Galerkin scheme of
minimization. Using Caputo’s derivative property as a linear operator, we can perform
fractional differentiation

Dγ
x

(
∑n

i,j=0 bi
j Bj,m(α, t)Bi,n(α, x)

)
= ∑n

i,j=0 bi
j
(

Bj,m(α, t) Dγ
x (Bi,n(α, x))

)
. (4)
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In the following section, we shall briefly mention the generalized fractional-order
B-Polys basis, and some of their properties that could be useful to determine a solution of
the linear fractional-order partial differential equation.

3. Fractional-Order B-Poly Basis

The generalized form of fractional B-polys Bi,n(α, x) in terms of variable x or t over an
interval [0, R] or [0, T] are defined in Refs. [36,38]:

Bi,n(α, x) = ∑n
i=0 βi,k

( x
R

)αk
. (5)

The fractional-order parameter α represents the fractional degree of the B-poly. There
are (n + 1) fractional-order B-polynomials associated with any n value noted in Equation (5).
The factor βi,k in Equation (5) is defined as

βi,k = (−1)i−k
(

n
k

)(
k
i

)
, (6)

where this binomial coefficient is defined as,
(

n
k

)
= n!

k!(n−k)! . For convenience, if i < 0

or i > n we can set Bi,k(α, x) = 0. Mathematica or Maple software could be employed
to develop all the non-zero fractional polynomials using a simple code prewritten with
any value of n supported over an interval. The boundary conditions of the problem are
generally associated with the first and last polynomial of the basis set. As an example,
when n = 10 and fractional order α = 1

2 , 5
3 , 9

4 are chosen in Equation (5), the corresponding
basis sets of B-polys are plotted in Figure 1. Graphs of these fractional-order B-polys show
how these B-polys add up to 1 at any given point, x. Such B-polys sets may be used to
represent an arbitrary function with higher accuracy.
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(
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3 , x
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, Bi

(
9
4 , x
)

, and x are dimensionless quantities.

4. Technique for Approximating Solutions

Using the Galerkin method [36] and the generalized fractional-order B-poly basis set,
we exploit a technique to seek practical solutions to fractional-order partial differential
equations. We intend to apply Caputo’s fractional derivative to the fractional-order B-
ploys. The examples of Caputo’s derivatives of the B-polys are provided in the last column
of Table 1. Using the recent technique, we transform the fractional-order linear partial
differential equation into an operational matrix and the initial conditions and boundary
conditions are applied to the operational matrix. The presumed approximate solution,
Equation (3) is substituted into the fractional-order differential equation and by-products
are separated in terms of integral products in both variables x and t. Finally, both sides of the
fractional equation are multiplied with fractional B-polys basis elements, Bm(α, x) Bn(α, t),
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and the integrations are carried out using symbolic program, Mathematica, over the closed
intervals [0, R] and [0, T], respectively. For example, the integration of the two fractional
B-polys is given in the closed symbolic formula

mi,j =
(

Bi,n(α, x), Bj,n(α, x)
)
= ∑n

k=i βi,k

( x
R

)αk
∑n

l=j αi,k

( x
R

)αl R
(k + l)α

(7)

Table 1. For different values of α (order of fractional-polynomials) and γ (order of the fractional
differential equation), the table below shows fractional polynomial basis sets with n = 1, gives two
B-polys and the corresponding derivatives. The symbol Γ represents the Gamma function.

α γ n Basis Set Caputo’s Derivative of Basis Set
(Equation (2))

1/2 1/2 1
{

1−
√

x,
√

x
} {

−
√

π
2 ,
√

π
2

}
3/4 3/4 1

{
1− x3/4, x3/4

} {
−Γ
(

7
4

)
, Γ
(

7
4

)}
5/3 5/3 1

{
1− x5/3, x5/3

} {
−Γ
(

8
3

)
, Γ
(

8
3

)}
5/4 5/4 1

{
1− x5/4, x5/4

} {
−Γ
(

9
4

)
, Γ
(

9
4

)}
9/4 9/4 1

{
1− x9/4, x9/4

} {
−Γ
(

13
4

)
, Γ
(

13
4

)}
9/5 9/5 1

{
1− x9/5, x9/5

} {
−Γ
(

14
5

)
, Γ
(

14
5

)}

Caputo’s derivative defined in Equation (2) is applied to the fractional B-ploy basis
set, leading to the following closed results:

Dγ
x (Bi,n(α, x)) = ∑n

k=i αi,kDγ
x
( x

R
)α k

= ∑n
k=i

βi,k
Rα k

Γ(αk+1)
Γ(αk+1−γ)

xα k−γ,

d(γ)i,j (x) =
(

Dγ
x Bi,n(α, x), Bj,n(α, x)

)
= 〈Dγ

x Bi,n(α, x)|Bj,n(α, x)〉 =
n
∑

k=i,l=j
βi,kβ j,k

Γ(αk+1)
Γ(αk+1−γ)

R1−γ

((k+l)α+1−γ)
,

(8)

and the integrals of some arbitrary functions are given

F(x, t) = ( f (x, t), Bi,n(α, x)) = ∑n
k=i

βi,k

Rαk

∫ R

0
f (x, t) xαkdx,Wm,n =

x R,T

0
f (x, t) Bm(α, x)Bn(α, t)dx dt. (9)

With the help of these analytic formulas Equations (7)–(9), the operational matrix is
constructed. The inverse of the operational matrix is required to find out the unknown
coefficients bi

j of the linear combination in Equation (3). In the next section, we will
describe our technique, as well as how to obtain a desirable result for the linear fractional-
order partial differential equation. The technique will be employed in four examples to
demonstrate that it works appropriately for approximating the accurate solutions. Plots of
the approximate as well as exact solutions will be presented for comparison. An absolute
error analysis of the fourth example will be introduced to show that, when the basis set
of the fractional B-polys is enlarged, the accuracy of the solution is increased. Similarly,
the error investigation can be carried out for other examples considered in this study. In
the following section, for simplicity, we would like to drop off subscript n and m from the
fractional B-polys, i.e., Bi,n(α, x) = Bi (α, x) and Bj,m(α, t) = Bj (α, t).

Example 1: Let us introduce a linear partial fractional-order differential equation of the form

2
dγU(x, t)

dtγ
+

dγU(x, t)
dxγ

= 0. (10)
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The ideal solution to Equation (10) is Uexact(x, t) = (xγ − tγ/2). A numerical solution
is sought out in the intervals 0 ≤ x ≤ 1 & 0 ≤ t ≤ 1 using initial condition U(x, 0) =
f (x) = xγ. The assumed solution, Uapp(x, t) = ∑n

i,j=0 bi
j Bj(α, t) Bi(α, x) + xγ, is substi-

tuted into the Equation (10) and the result is presented below:

2
dγ

dtγ

(
∑n

i,j=0 bi
j Bj(α, t) Bi(α, x) + xγ

)
+

dγ

dxγ

(
∑n

i,j=0 bi
j Bi(α, t) Bi(α, x) + xγ

)
= 0 (11)

Caputo’s derivative operator is applied to Equation (11). The product of fractional
B-polys Bm(α, x) Bn(α, t) from the basis set is multiplied on both sides of the Equation (11)
and the integration on both variables is calculated over the intervals using a symbolic
program. This operation provides the following equation

∑n
i,j=0 bi

j[2〈Bi(α, x)|Bm(α, x)〉〈Dγ
t Bj(α, t)|Bn(α, t)〉 − 〈Dγ

x Bi(α, x)|Bm(α, x)〉 〈Bj(α, t)|Bn(α, t)〉]
= 〈〈− f γ(α, x)|Bm(α, x)〉|Bn(α, t)〉,

(12)

where f γ(x) = Dγ
x (xγ) = Γ(γ + 1) with α = γ. The current technique leads to a system

of (n + 1)× (n + 1) equations. The elements of matrix B =
{

b1
1, b1

2, b1
3, . . . , b2

1, b2
2, b2

3, . . . ,
}

are the unknown constants that are involved in those equations. After further simplification,
the right-hand side column matrix W and the matrix elements of operational matrix X in
terms of inner products of B-polys are given

Xm,n =
n
∑

i,j=0

[
2
〈

Bi(α, x)|Bm(α, x)〉
〈

Dγ
t Bj(α, t)|Bn(α, t)〉 −

〈
Dγ

x Bi(α, x)|Bm(α, x)〉
〈

Bj(α, t)|Bn(α, t) 〉
]
,

Wm,n = −〈〈 f γ(x)|Bm(α, x)〉|Bn(α, t)〉 = −
R,Ts

0
Γ(γ + 1) Bm(α, x)Bn(α, t)dx dt.

(13)

The partial fractional-order differential Equation (10) is now transformed into a matrix
equation X B = W. By deleting the rows and corresponding columns of the equation
(13), the initial conditions are imposed on the operational matrix equation X and the
corresponding matrix W, so that the solution vanishes at t = 0 and x = 0. The operational
matrix X was coded in the symbolic language Mathematica to determine its inverse. The
inverse matrix was multiplied by the column matrix W to yield values of the unknown
coefficients bi

j. The emerging estimated result is composed of the linear combination of
the B-poly basis set via Equation (3). The process provides a valid approximate solution
Uapp(x, t) of the Equation (10) using B-polys of fractional-order α = 1

2 and fractional
differential-order of γ = 1

2 in Equation (10) is given below:

Uapp(x, t) = xγ + tγ
(
−0.5 + 0.× 10−30xγ

)
≈ xγ − tγ/2. (14)

From the above result, it is noted that the approximate solution is very accurate. We
have experimented with different values of fractional order γ of the differential equation
while keeping the same order γ = α of the fractional polynomials basis set, the results
remain the same with various values of γ and α. To solve the fractional-order partial
differential Equation (10), we choose n = 1 and α = 1

2 order B-poly basis set
{

1−
√

t,
√

t
}

and
{

1−
√

x,
√

x
}

in variables t and x, respectively. The corresponding coefficient values

we obtained are
{

0,− 20
81 Γ
( 9

4
)
, 0,− 16

81 Γ
( 9

4
)}

. The Caputo’s derivative of the fractional

B-poly basis set is
{
−
√

π
2 ,
√

π
2

}
, as seen in the last column of Table 1. A 3D plot of the

estimated and the exact results of Equation (10) are presented in Figure 1 for comparison,
and an excellent agreement can be seen between both results at the level of machine
accuracy. Note that when t = x is substituted into Equation (14), the absolute error can be
observed in the order of 10−17 exhibiting the great aspect of constancy in one-dimension
x. In the example, the absolute error between the results, both exact and approximate,
shows that both results have excellent reliability. The absolute error in the 3D graph is also
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presented on the right-hand side in Figure 2. The 3D graph shows that the absolute error
in the converged solution is of the order of 10−17.
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Figure 2. A 1D plot of the absolute error between approximate (fx) and exact (sol) solutions is depicted
on the left-hand for t = x changed in the solution, Equation (14). The 1D plot of the absolute error
between approximate and exact results is also presented in the intervals t ∈ [0, 1] and x ∈ [0, 1].
The figure represents the consistency of the numerical solution is of the order of 10−17. This kind of
accuracy occurred with only two fractional B-polynomials in the basis set.

Example 2: Consider another example of fractional-order linear partial differential equation with
different initial condition U(x, 0) = f (x) = Eα,1(xα)

2
dγU(x, t)

dtγ
+

dγU(x, t)
dxγ

= 0. (15)

The ideal solution of the Equation (15) is Uexact(x, t) = Eα, 1(xα − tα/2). The function
Eα, β(z) , is called the Mittag–Leffler function [39] and is described as Eα, β(z) = ∑∞

k=0
Zk

Γ(k α+β)
.

In the summation of Mittag–Leffler function, we only kept k = 15 in the summation of
terms. Therefore, the accuracy of the numerical solution will likely depend on the number
of terms that we would keep in the summation of the Mittag–Leffler function. According
to Equation (3), an estimated solution of Equation (15) using the initial condition may be
assumed as Uapp(x, t) = ∑n

i=0 ai(α, t) Bi(α, x) + Eα,1(xα). After substituting this expression
into the Equation (15). The Galerkin method, [29] and [32], is also applied to the presumed
solution to obtain
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2
dγ

dtγ

(
∑n

i,j=0 bi
j Bj(α, t) Bi(α, x) + Eα,l(xα)

)
+

dγ

dxγ

(
∑n

i,j=0 bi
j Bj(α, t) Bi(α, x) + Eα,l(xα)

)
= 0. (16)

Caputo’s fractional derivative is applied to Equation (16), and the product of fractional
B-polys Bm(α, x) Bn(α, t) from the basis set is multiplied on both sides of the Equation (16).
The resulting integration of both variables (t and x) is calculated over the intervals 0 ≤ x ≤ 1
and 0 ≤ t ≤ 1, respectively. After further simplification of the Equation (16), we obtain

∑n
i,j=0 bi

j[2〈Bi(α, x)|Bm(α, x)〉〈Dγ
t Bj(α, t)|Bn(α, t)〉 − 〈Dγ

x Bi(α, x)|Bm(α, x)〉〈 Bj(α, t)|Bn(α, t)〉]
= 〈〈− f γ(α, x)|Bm(α, x)〉|Bn(α, t)〉,

(17)

where the fractional-order derivative of the Mittag-Leffler function f γ(α, x)
= dγ

dxγ (Eα,1(xα)) = Eα,1(xα), with α = γ is used. The current technique leads to a system of
(n + 1)× (n + 1) equations. This system of equations may be summarized in the matrix
equation X B = W, where the elements of matrix B =

{
b1

1, b1
2, b1

3, . . . , b2
1, b2

2, b2
3, . . . ,

}
are

the unknown constants. The right-hand side column matrix elements of W and the matrix
elements of operational matrix X are given as

Xm,n =
n
∑

i,j=0

[
2
〈

Bi(α, x)|Bm(α, x)〉
〈

Dγ
t Bj(α, t)|Bn(α, t)〉 −

〈
Dγ

x Bi(α, x)|Bm(α, x)〉
〈

Bj(α, t)|Bn(α, t) 〉
]
,

Wm,n = 〈 〈− f γ(γ, x)|Bm(α, x)〉|Bn(α, t)〉 =
R,Ts

0
f γ(γ, x) Bm(α, x)Bn(α, t)dx dt.

(18)

By deleting the rows and corresponding columns of Equation (18), the initial condition
was imposed on the operational matrix, to make sure the solution vanishes at x = 0 and t = 0.
The operational matrix X is inverted using Mathematica symbolic program and multiplied
with the column matrix W to solve equation B = X−1W and yield values of the unknown
coefficients bi

j. The emerging estimated result is composed of the B-poly basis set and the
coefficients via Equation (3). The process provides an approximate solution Uapp(x, t) to
Equation (15) using B-polys of fractional-order α = 1

2 and a fractional differential-order of
γ = 1

2 . The final approximate solution is provided below:

Uapp(x, t) = 1.0 + t11/2(−1.654× 10−6 − 1.914× 10−6√x
)
+

t6(2.998× 10−7 + 3.826× 10−7√x
)
+ t5(8.106× 10−6 + 9.183× 10−6√x + 8.138× 10−6x

)
+1.128

√
x + 1.0x + 0.7522x3/2 + 0.5x2 + 0.3009x5/2 + 0.1667x3 + 0.0860x7/2+

0.0417x4 + 0.0191x9/2 + 8.333× 10−3x5 + 3.473× 10−3x11/2 + 0.00139x6 + 5.344× 10−4x13/2

+1.984× 10−4x7 + 7.125× 10−5x15/2 + t9/2
(
−3.729× 10−5 − 4.210× 10−5√x− 3.731× 10−5x− 2.807× 10−5x3/2

)
+t4

(
1.628× 10−4 + 1.837× 10−4√x + 1.628× 10−4x + 1.224× 10−4x3/2

)
+t7/2

(
−6.717× 10−4 − 7.579× 10−4√x− 6.717× 10−4x− 5.053× 10−4x3/2 − 3.358× 10−4x2

)
+t3

(
2.604× 10−3 + 2.939× 10−3√x + 2.604× 10−3x + 1.959× 10−3x3/2 + 1.302× 10−3x2 + 7.836× 10−4x5/2+

4.34× 10−4x3)+ t5/2
(
−9.403× 10−3 − 0.0106

√
x− 9.403× 10−3x− 0.0071x3/2 − 0.0047x2 − 0.0028x5/2−

0.0016x3 − 8.084× 10−4x7/2
)
+ t2

(
0.03125 + 0.0353

√
x + 0.0313x + 0.0235x3/2 + 0.0156x2 + 9.403× 10−3x5/2+

5.208× 10−3x3 + 2.687× 10−3x7/2 + 1.302× 10−3x4 + 5.970× 10−4x9/2 + 2.604× 10−4x5
)

+t3/2
(
−0.0940− 0.1061

√
x− 0.0940x− 0.0707x3/2 − 0.047x2 − 0.0283x5/2 − 0.0157x3 − 8.084× 10−3x7/2−

3.918× 10−3x4 − 1.796× 10−3x9/2 − 7.836× 10−4x5 − 3.266× 10−4x11/2 − 1.306× 10−4x6 − 5.025× 10−5x13/2
)

+t
(

0.25 + 0.2821
√

x + 0.25x + 0.188x3/2 + 0.125x2 + 0.0752x5/2 + 0.0417x3 + 0.0215x7/2 + 0.0104x4+

4.776× 10−3x9/2 + 2.083× 10−3x5 + 8.684× 10−4x11/2 + 3.472× 10−4x6 + 1.336× 10−4x13/2 + 4.960× 10−5x7
)

+
√

t
(
−0.5642− 0.6366

√
x− 0.5642x− 0.4244x3/2 − 0.2821x2 − 0.1698x5/2 − 0.094x3−

0.0485x7/2 − 0.0235x4 − 0.0108x9/2 − 4.702× 10−3x5 − 1.96× 10−3x11/2−
7.836× 10−4x6 − 3.015× 10−4x13/2 − 1.119× 10−4x7 − 4.02× 10−5x15/2

)

(19)
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To solve the fractional order partial differential Equation (15), we chose n = 15 and
α = 1

2 order B-poly basis set in both variables t and x. The corresponding fractional-order
B-poly basis set is given in terms of variable x,{

1− 15
√

x + 105x− 455x3/2 + 1365x2 − 3003x5/2 + 5005x3 − 6435x7/2 + 6435x4 − 5005x9/2+

3003x5 − 1365x11/2 + 455x6 − 105x13/2 + 15x7 − x15/2, 15
√

x− 210x + 1365x3/2 − 5460x2+
15, 015x5/2 − 30, 030x3 + 45, 045x7/2 − 51, 480x4 + 45, 045x9/2 − 30, 030x5 + 15, 015x11/2 − 5460x6+
1365x13/2 − 210x7 + 15x15/2, 105x− 1365x3/2 + 8190x2 − 30, 030x5/2 + 75, 075x3 − 135, 135x7/2+

180, 180x4 − 180, 180x9/2 + 135, 135x5 − 75, 075x11/2 + 30, 030x6 − 8190x13/2 + 1365x7−
105x15/2, 455x3/2 − 5460x2 + 30, 030x5/2 − 100, 100x3 + 225, 225x7/2 − 360360x4 + 420, 420x9/2−
360, 360x5 + 225, 225x11/2 − 100, 100x6 + 30, 030x13/2 − 5460x7 + 455x15/2, 1365x2 − 15, 015x5/2+

75, 075x3 − 225, 225x7/2 + 450, 450x4 − 630, 630x9/2 + 630, 630x5 − 450, 450x11/2 + 225, 225x6−
75, 075x13/2 + 15, 015x7 − 1365x15/2, 3003x5/2 − 30, 030x3 + 135, 135x7/2 − 360, 360x4 + 630, 630x9/2−
756, 756x5 + 630, 630x11/2 − 360, 360x6 + 135, 135x13/2 − 30, 030x7 + 3003x15/2, 5005x3 − 45, 045x7/2+

180, 180x4 − 420, 420x9/2 + 630, 630x5 − 630, 630x11/2 + 420, 420x6 − 180, 180x13/2 + 45, 045x7−
5005x15/2, 6435x7/2 − 51, 480x4 + 180, 180x9/2 − 360, 360x5 + 450, 450x11/2 − 360, 360x6 + 180, 180x13/2−

51, 480x7 + 6435x15/2, 6435x4 − 45, 045x9/2 + 135, 135x5 − 225, 225x11/2 + 225, 225x6 − 135, 135x13/2+
45, 045x7 − 6435x15/2, 5005x9/2 − 30, 030x5 + 75, 075x11/2 − 100, 100x6 + 75, 075x13/2 − 30, 030x7+

5005x15/2, 3003x5 − 15, 015x11/2 + 30, 030x6 − 30, 030x13/2 + 15, 015x7 − 3003x15/2, 1365x11/2 − 5460x6+
8190x13/2 − 5460x7 + 1365x15/2, 455x6 − 1365x13/2 + 1365x7 − 455x15/2, 105x13/2 − 210x7+

105x15/2, 15x7 − 15x15/2, x15/2
}

.

To obtain the B-polys basis set in variable t, we replace x = t. We have verified that
as we enlarge the number of fractional-order B-polys set, the accuracy of the numerical
solution increases. A 3D plot of the absolute error, between the estimated and exact solution
of Equation (15), is presented for comparison in Figure 3, which presents the reliability
between both results at the level of 10−6. Note that when t = x is substituted in the solution
Equation (19), the absolute error can be observed of the order of 10−6 in one-dimension.
The absolute error between the solutions, both approximate and exact, is found to be in
good agreement.
Example 3: Consider another partial fractional differential equation with an initial condition
depending on the generalized fractional-order sine function

2
dγU(x, t)

dtγ
+

dγU(x, t)
dxγ

= 0. (20)

A numerical solution is pursued using the initial condition U(x, 0) = f (x) = sinγ(xγ)
in intervals 0 ≤ x ≤ 1 & 0 ≤ t ≤ 1. The generalized definitions of sine and cosine
function [3] are given

sinγ(xγ) =
∞

∑
k=0

(−1)k x2k

Γ(2kγ + 1)
, and cosγ(xγ) =

∞

∑
k=0

(−1)k x(2k+1)

Γ(2kγ + γ + 1)
.

In this example, the assumed approximate solution contains an initial condition that
has a generalized sine function as defined above. The efficiency of the numerical result is
based on the number of terms that are kept in the summation of the generalized function.
For this example, we kept k = 15 terms in the summation of the generalized sine function.

The exact solution of Equation (20) is Uexact(x, t) = sinγ(xγ) cosγ(−tγ/2) +
cosγ(xγ) sinγ(−tγ/2). The approximated solution Uapp(x, t) = ∑n

i,j=0 bi
j Bj(α, t) Bi(α, x) +

sinγ(xγ) is substituted into the Equation (20) and the result is given below:

2
dγ

dtγ

(
∑n

i,j=0 bi
j Bj(α, t) Bi(α, x) + sinγ(xγ)

)
+

dγ

dxγ

(
∑n

i,j=0 bi
j Bj(α, t) Bi(α, x) + sinγ(xγ)

)
= 0. (21)
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Figure 3. The absolute error plot between approximate (fx) and exact (sol) results is depicted on the
left-hand side for t = x (1D plot). This graph is obtained when t = x is substituted in Equation (19).
On the right-hand side, a 3D plot of the absolute error between exact and estimated solutions is
also presented in the intervals x ∈ [0, 1] and t ∈ [0, 1]. Both graphs show that the efficiency of the
numerical solutions is of the order of 10−6. This kind of accuracy was observed when n = 15 and
α = 1

2 order polynomial basis set was used.

The Caputo’s derivative is applied to the above expression and the product of frac-
tional B-polys Bm(α, x) Bn(α, t) from the basis, sets are multiplied on both sides of the
Equation (21). The integration on both variables (x and t) is carried out over the intervals,
respectively, and after further simplification, Equation (21) may be written in the form

n
∑

i,j=0
bi

j[2〈Bi(α, x)|Bm(α, x)〉〈Dγ
t Bj(α, t)|Bn(α, t)〉 − 〈Dγ

x Bi(α, x)|Bm(α, x)〉〈 Bj(α, t)|Bn(α, t)〉]

= 〈〈− f γ(α, x)〉|Bm(α, x)|Bn(α, t)〉.
(22)

The fractional-order derivative of the sine function is f γ(γ, x) = dγ

dxγ (sinγ(xγ)) =
cosγ(xγ) with α = γ. The technique leads to a system of (n + 1) × (n + 1) operational
matrix. This system of equations may be summarized in the matrix equation of the form
X B = W, where the elements of matrix B =

{
b1

1, b1
2, b1

3, . . . , b2
1, b2

2, b2
3, . . . ,

}
are the

unknown constants. After further simplification, the right-hand side column matrix W
and the matrix elements of operational matrix X in terms of inner products of B-polys are
given as
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Xm,n = ∑n
i,j=0

[
2
〈

Bi(α, x)|Bm(α, x)〉
〈

Dγ
t Bj(α, t)|Bn(α, t)〉 −

〈
Dγ

x Bi(α, x)|Bm(α, x) 〉
〈

Bj(α, t)|Bn(α, t) 〉
]
,

Wm,n =
〈〈
− f γ(γ, x)|Bm(α, x)〉|Bn(α, t)〉 =

s R,T
0 −cosγ(xγ) Bm(α, x)Bn(α, t)dx dt.

(23)

To construct an appropriate solution to Equation (20), the partial fractional order
differential Equation (20) is transformed into a matrix equation X B = W. By deleting rows
and the corresponding columns of the Equation (23), the initial conditions are imposed
on the operational matrix equation, X so that the solution vanishes at t = 0 and x = 0. The
operational matrix X is programmed in the symbolic language Mathematica to determine its
inverse. The inverse of the matrix X is multiplied by the column matrix W and, by solving
the matrix equation B = X−1W, the values of the unknown coefficients bi

j are determined.
The resulting approximate solution is composed of the product of the B-poly basis set and
the expansion coefficients, as in Equation (3). The technique provides the approximate
solution Uapp(x, t) to Equation (20) using 16 B-polys with n = 15, fractional-order α = 1

2
and fractional differential-order of γ = 1

2 . The approximate solution is provided,

Uapp(x, t) = −2.06× 10−8t7 + t13/2(−1.277× 10−7 + 1.09× 10−7√x
)
+

t6(−1.783× 10−7 + 7.839× 10−7√x
)
+ t11/2(1.411× 10−6 + 9.554×

10−7√x− 3.475× 10−6x) + t5(−3.806× 10−7 − 7.588× 10−6√x−
4.062× 10−6x + 1.254× 10−5x3/2) + t9/2(−3.766× 10−5 + 1.931×
10−6√x + 3.083× 10−5x + 1.401× 10−5x3/2) + t4(−2.423× 10−7+

1.854× 10−4√x− 7.464× 10−6x− 1.012× 10−4x3/2 − 4.062×
10−5x2) + t7/2(6.715× 10−4 + 1.12× 10−6√x− 6.779× 10−4x + 2.317×

10−5x3/2 + 2.775× 10−4x2 + 1.009× 10−4x5/2) + t3(−4.38× 10−8−
2.938× 10−3√x− 3.848× 10−6x + 1.977× 10−3x3/2 − 5.971× 10−5x2−
6.475× 10−4x5/2 − 2.167× 10−4x3 + 4.587× 10−4x7/2) + t5/2(−9.403×
10−3 + 1.779× 10−7√x + 9.402× 10−3x + 1.045× 10−5x3/2 − 4.746×

10−3x2 + 1.298× 10−4x5/2 + 1.295× 10−3x3 + 4.035× 10−4x7/2−
8.027× 10−4x4) + t2(0.0353

√
x− 5.2405× 10−7x− 0.0235x3/2−

2.309× 10−5x2 + 9.491× 10−3x5/2 − 2.388× 10−4x3 − 2.22×
10−3x7/2 − 6.5× 10−4x4 + 1.223× 10−3x9/2 − 3.858× 10−4x5)+

t3/2(0.0940− 0.0940x + 1.186× 10−6x3/2 + 0.047x2 + 4.181×
10−5x5/2 − 0.0158x3 + 3.707× 10−4x7/2 + 0.0032x4 + 8.968× 10−4x9/2

−1.605× 10−3x5 + 4.839× 10−4x11/2 − 1.148× 10−5x6−
1.151× 10−5x13/2) + t(−0.2821

√
x− 1.417× 10−8x + 0.1881x3/2−

2.096× 10−6x2 − 0.0752x5/2 − 6.157× 10−5x3 + 0.0217x7/2−
4.777× 10−4x4 − 3.947× 10−3x9/2 − 1.04× 10−3x5 + 1.779×

10−3x11/2 − 5.144× 10−4x6 + 1.174× 10−5x13/2 + 1.136× 10−5x7)+√
t(−0.5642 + 0.5642x + 2.406× 10−8x3/2 − 0.2821x2 + 2.847×

10−6x5/2 + 0.0940x3 + 7.168× 10−5x7/2 − 0.0237x4 + 4.943×
×10−4x9/2 + 3.885× 10−3x5 + 9.783× 10−4x11/2 − 1.605× 10−3x6+

4.466× 10−4x13/2 − 9.84× 10−6x7 − 9.205× 10−6x15/2) +
√

x(1.128×
10−6 − 0.752x + 0.301x2 − 0.0860x3 + 0.0191x4 − 3.474× 10−3x5+

5.344× 10−4x6 − 7.125× 10−5x7 + 8.383× 10−6x8).

(24)

From the above result, it is noted that the desired approximate solution is converged
and reached the desired accuracy. To find the solution to fractional-order partial differential
Equation (20), we used the same fractional-order B-poly basis set as in Example 2. With
the higher number (n) of fractional B-polys, a higher order of accuracy is achievable at
the expense of computer CPU time. A 3D plot of the estimated and exact results of
Equation (20) is presented in Figure 4 for the purpose of comparison. The plot shows an
excellent agreement between both solutions at the level of 10−7. Note that when t = x is
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substituted in the Equation (24), the absolute error can be observed at the same level as
10−7 exhibiting the great aspect of constancy in one-dimension x.
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From the above result, it is noted that the desired approximate solution is converged 
and reached the desired accuracy. To find the solution to fractional-order partial differen-
tial Equation (20), we used the same fractional-order B-poly basis set as in Example 2. 
With the higher number (n) of fractional B-polys, a higher order of accuracy is achievable 
at the expense of computer CPU time. A 3D plot of the estimated and exact results of 
Equation (20) is presented in Figure 4 for the purpose of comparison. The plot shows an 
excellent agreement between both solutions at the level of 10ି଻. Note that when t = x is 
substituted in the Equation (24), the absolute error can be observed at the same level as 10ି଻ exhibiting the great aspect of constancy in one-dimension x. 
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Figure 4. A 1D plot of the absolute error between approximate (fx) and exact (sol) solutions is
presented on the left-hand side when t = x is replaced in Equation (24). The plot shows that the
desired error is smaller. On the right-hand side, a 3D plot of the absolute error between approximate
and exact results is also presented in the intervals t ∈ [0, 1] and x ∈ [0, 1]. The figure represents the
efficacy of the numerical solutions is of the order of 10−7. This accuracy occurred with n = 15 number
of fractional order B-poly basis set in x variable and the same basis set was used in t variable.

It is further noted that, from the traditional trigonometric identity, we know that

sin(x + t) = sin(x)cos(t) + cos(x)sin(t). (25)

However, in Ref. [39] the authors state that, in fractional calculus, this kind of trigonom-
etry identity does not hold. In this example, we have computationally proven that the
above identity is no longer valid in fractional calculus, i.e.,

sinγ

(
xγ +

(
− tγ

2

))
6= sinγ(xγ) cosγ

(
− tγ

2

)
+ cosγ(xγ) sinγ

(
− tγ

2

)
. (26)

For further verification, we have plotted both sides of the identity Equation (26) and
Figure 5 and they seem to disagree. For example, for α = 1

2 and γ = 1
2 , we show the graphs

of both sides of the identity at x = t, sinγ(xγ/2) (blue curve) and sinγ(xγ) cosγ

(
− tγ

2

)
+

cosγ(xγ) sinγ

(
− tγ

2

)
(yellow curve). From the graphs of both sides of the identity, we see
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that the blue and the yellow curves do not match. However, we know that when γ takes
integral values, both curves overlap. We tried different γ and n values of B-polys; these
curves still did not overlap. It is concluded that, in fractional calculus, certain traditional
trigonometry identities may not be valid.
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2 are used. The blue curve and the yellow curve do not agree or overlap. Hence, in general, the
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Example 4: We consider a final example of the partial fractional-order differential equation with an
initial condition as the generalized fractional-order cosine function,

2
dγU(x, t)

dtγ
+

dγU(x, t)
dxγ

= 0. (27)

A numerical solution is sought using initial condition U(x, 0) = f (x) = cosγ(xγ) [3],
in the intervals 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1. The assumed approximate solution contains an
initial condition that has a generalized cosine function. The exact solution of Equation (27)
is Uexact(x, t) = (cosγ(xγ) cosγ(−tγ/2)− sinγ(xγ) sinγ(−tγ/2)). The assumed solution,
Uapp(x, t) = ∑n

i,j=0 bi
j Bj(α, t) Bi(α, x) + cosγ(xγ), is substituted into Equation (27) and the

result is presented below:

2
dγ

dtγ

(
∑n

i,j=0 bi
j Bj(α, t) Bi(α, x) + cosγ(xγ)

)
+

dγ

dxγ

(
∑n

i,j=0 bi
j Bj(α, t) Bi(α, x) + cosγ(xγ)

)
= 0. (28)

After further simplification and applying the Caputo’s derivative, we obtain
n
∑

i,j=0
bi

j[2〈Bi(α, x)|Bm(α, x)〉〈Dγ
t Bj(α, t)|Bn(α, t)〉 − 〈Dγ

x Bi(α, x)|Bm(α, x) 〉〈Bj(α, t)|Bn(α, t)〉]

= 〈〈− f γ(α, x)|Bm(α, x)〉|Bn(α, t)〉,
(29)

where f γ(γ, x) = dγ

dxγ (cosγ(xγ)) = −sinγ(xγ) with α = γ. The current technique
leads to a system of (n + 1)× (n + 1) equations. This system of equations may be sum-
marized in the matrix equation of the form X B = W, where the elements of matrix
B =

{
b1

1, b1
2, b1

3, . . . , b2
1, b2

2, b2
3, . . . ,

}
are the unknown constants. The matrix elements of

the column matrix W, and operational matrix X are given as

Xm,n = ∑n
i,j=0

[
2 〈Bi(α, x)|Bm(α, x)〉〈Dγ

t Bj(α, t)|Bn(α, t)〉 − 〈Dγ
x Bi(α, x)|Bm(α, x) 〉〈Bj(α, t)|Bn(α, t)〉

]
,

Wm,n = 〈〈− f γ(γ, x)|Bm(α, x)〉|Bn(α, t)〉 =
s R,T

0 sinγ(xγ)Bm(α, x)Bn(α, t)dx dt.
(30)
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The partial fractional-order differential Equation (27) is now converted into an op-
erational matrix equation X B = W. By deleting the rows and corresponding columns
of Equation (30), the initial condition is imposed on the operational matrix equation X,
so that the result has the correct behavior at t = 0 and x = 0. The inverse of matrix X is
multiplied by the column matrix W to solve the matrix equation B = X−1W to yield the
values of the unknown coefficients bi

j. The resulting approximate solution is composed of
the product of the expansion coefficients and the B-poly basis set, as given in Equation (3).
The technique provides the approximate solution Uapp(x, t) of Equation (27) using n = 15
B-polys of fractional-order α = 1

2 and fractional differential-order γ = 1
2 .

Uapp(x, t) = 1.0− 1.0x + 0.5x2 − 0.166x3 + 0.0417x4 − 8.3× 10−3x5

+1.39× 10−3x6 − 1.98× 10−4x7 + 2.48× 10−5x8 − 2.75×
10−6x9 + 2.75× 10−7x10 + t(−0.25 + 0.25x + 8.1× 10−8x3/2−

0.125x2 + 5.74× 10−6x5/2 + 0.0416x3 + 1× 10−4x7/2 − 0.0106x4+
5.18× 10−4x9/2 + 1.32× 10−3x5 + 8.1× 10−4x11/2 − 9.7× 10−4x6+

3.17× 10−4x13/2 − 3.71× 10−5x7) + t2(0.0312 + 1.52× 10−8√x−
0.0312x + 1.79× 10−6x3/2 + 0.0156x2 + 4.37× 10−5x5/2 − 5.34×

10−3x3 + 2.91× 10−4x7/2 + 8.2× 10−4x4 + 5.61× 10−4x9/2 − 7.29×
10−4x5 + 2.57× 10−4x11/2 − 3.24× 10−5x6) + t7/2(−5.31× 10−8−
7.58× 10−4√x− 3.12× 10−6x + 5.18× 10−4x3/2 − 3.64× 10−5x2−

1.28× 10−4x5/2) + t9/2(−1.87× 10−7 + 4.32× 10−5√x− 4.04×
10−6x− 1.78× 10−5x3/2) + t11/2(−2.15× 10−7 − 1.21× 10−6√x−
1.59× 10−6x) + t6(2.45× 10−7 + 3.59× 10−7√x− 9.5× 10−7x

)
+

t15/2(1.83× 10−9√x
)
+ t7(−2.52× 10−8 + 3.24× 10−8√x

)
+

t13/2(−8× 10−8 + 2.06× 10−7√x
)
+ t5(−8.3× 10−6 + 9.9×

10−7√x + 5.18× 10−6x) + t4(1.62× 10−4 + 8.5× 10−7√x− 1.67×
10−4x + 1.32× 10−5x3/2 + 5.18× 10−5x2) + t3(−0.0026 + 2.24×
10−7√x + 2.6× 10−3x + 9.1× 10−6x3/2 − 1.33× 10−3x2 + 8.5×

10−5x5/2 + 2.76× 10−4x3) + t5/2(0.0106
√

x− 7.18× 10−7x− 7.07×
10−3x3/2 − 2.18× 10−5x2 + 2.9× 10−3x5/2 − 1.7× 10−4x3 − 5.14×
10−4x7/2 − 3.68× 10−4x4 + 5.03× 10−4x9/2) + t3/2(−0.106

√
x−

4.06× 10−8x + 0.0707x3/2 − 3.59× 10−6x2 − 0.0283x5/2 − 7.29×
10−5x3 + 8.2× 10−3x7/2 − 4.25× 10−4x4 − 1.14× 10−3x9/2−

7.36× 10−4x5 + 9.1× 10−4x11/2 − 3.1× 10−4x6 + 3.76× 10−5x13/2)+√
t(0.637

√
x− 0.424x3/2 − 1.22× 10−7x2 + 0.169x5/2 − 7.18×

10−6x3 − 0.0485x7/2 − 1.09× 10−4x4 + 0.011x9/2 − 5.1× 10−4x5−
1.24× 10−3x11/2 − 7.36× 10−4x6 + 8.4× 10−4x13/2 − 2.65× 10−4x7+

3.0× 10−5x15/2).

(31)

From the above result of Equation (31), it is noted that the approximate solution is
converged and accurate. We have experimented with various values of fractional-order
γ of the differential equation while keeping the same fractional-order polynomials basis
set; the result remained the same at the desired level of accuracy. It is noted that when
n = 6 set of B-polys is used, the absolute error is 10−3, and when n = 15 set of B-polys is
used, the absolute error reduces to 10−7. It is concluded that with the increasing number
of n sets of B-polys, a higher order of accuracy is attainable. In Table 2, we compare
our calculated Uapp(x, t) values with the exact values Uexact(x, t) at various points for x
and t. The absolute differences between the solutions are provided in the last column of
Table 2, which shows excellent agreement. A 3D plot of the estimated and exact results of
Equation (31) is presented in Figure 6 for the purpose of comparison. Note that when t = x
is substituted in Equation (31), the absolute error in one dimension also goes to 10−7. The
absolute error in the 3D graph is also presented in Figure 6 showing that the error in the
converged solution is of the order of 10−7.
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Table 2. For different values of x and t, we compare our calculated approximated Uapp(x, t) value
with the exact value Uexact(x, t). We also provide their absolute difference.

x t Uexact(x, t) Uapp(x, t)
Absolute Difference
|Uexact(x, t)−Uapp(x, t)|

0.1 0.1 0.941097 0.941097 1.036 × 10−11

0.2 0.2 0.886784 0.886784 1.091 × 10−10

0.3 0.3 0.836674 0.836674 5.120 × 10−10

0.4 0.4 0.790420 0.790420 1.660 × 10−9

0.5 0.5 0.747668 0.747668 4.333 × 10−9

0.6 0.6 0.708152 0.708152 9.785 × 10−9

0.7 0.7 0.671593 0.671593 1.991 × 10−8

0.8 0.8 0.637742 0.637742 3.744 × 10−8

0.9 0.9 0.606376 0.606376 6.617 × 10−8

1.0 1.0 0.577288 0.577288 1.112 × 10−7
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Figure 6. A plot of the absolute error between approximate (fx) and exact (sol) solutions is introduced
on the left-hand for t = x, Equation (31). The one-dimensional graph shows that the overlap of both
results is pretty good. On the right-hand side, a 3D plot of the absolute error between approximate
and exact results is also presented in the intervals t ∈ [0, 1] and x ∈ [0, 1]. The figure represents the
effectiveness of the numerical solution is of the order of 10−7.
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From the traditional trigonometric rule, we know that the following is a valid identity

cos(x + t) = cos(x) cos(t)− sin(x) sin(t) (32)

However, in Ref. [39], the authors state that, in fractional calculus, this trigonometry
identity may not be true. In this example, we have computationally proven that the above
identity is no longer valid in fractional calculus, i.e.,

cosγ

(
xγ +

(
− tγ

2

))
6= cosγ(xγ) cosγ

(
− tγ

2

)
− sinγ(xγ) sinγ

(
− tγ

2

)
. (33)

For further verification, we have plotted both sides of the identity Equation (33)
and they seem to disagree as shown in Figure 7. For example, for α = 1

2 and γ = 1
2 ,

we show the graphs of both sides of the identity at x = t, cosγ(xγ/2) (blue curve) and(
cosγxγ cosγ

(
− tγ

2

)
− sinγxγ sinγ

(
− tγ

2

))
(yellow curve). The graphs of both sides of the

identity show that the blue and the yellow curves do not agree. However, we know
that when γ takes integral values, both curves overlap. We tried different n values for
B-polys and fractional values of γ, these curves still did not overlap. It is concluded that,
in fractional calculus, this trigonometry identity may not be valid.
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γ = 1
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the identity does not hold true when fractional calculus is considered.

5. Error Analysis

We performed the calculations in the absence of a grid to solve linear fractional partial
differential based on fractional B-polys. The fractional-order B-polys basis sets are defined
on the intervals x ∈ [0, 1] and t ∈ [0, 1]. Our approximated results are dependent on the
chosen (n) number of B-polys and the fractional-order modified Bhatti-polynomials. In
this section, we present an error analysis based on the increasing number of B-poly basis
sets; it is noted that the accuracy improves. The absolute error analysis for Example 4 is
presented for the exact and approximate results. As you may have seen in Example 4,
in the final calculation, we used the number k = 15 in the summation of the generalized

formula for cosγ(xγ/2) = ∑n
k=0

(−1)k x(2k+1)

Γ(2kγ+γ+1) and also used n = 15 for the B-poly basis set
in both x and t variables. Here, we want to show that as we set n = 6, the B-poly basis
set would have only seven B-polys in it. We performed the calculations in Example 4;
it is observed that the absolute error among solutions is of the order of 10−3. Next, we
used n = 10, which would give us 11 B-poly sets. The absolute error among solutions
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reduces to the level of 10−6. Finally, we use n = 15, which would comprise 16 B-polys
in the basis set. It is observed the error reduces to 10−7. We note that n = 15 leads to a
256× 256-dimensional operational matrix, which is already a large matrix to invert. We had
to increase the accuracy of the program to handle this matrix in the Mathematica symbolic
program. Beyond these limits, it becomes problematic to find an accurate inversion of the
matrix. Please note that increasing the number of terms in the summation (k-values in the
initial conditions) also helps reduce error in the approximate solutions of the linear partial
fractional differential equations. We can observe from the graphs (Figures 8 and 9) that
the absolute error decreases as we steadily increase the size of the fractional B-poly basis
set. Due to the analytic nature of the fractional B-polys, all the calculations are carried out
without a grid representation on the intervals of integration. We also presented the absolute
error in terms of 3D graphs in Figures 2–9. Clearly, the error is systematically decreased
as the number of B-polys basis sets is increased in the calculations. The method provides
a converged solution that is comparable with the exact solution. The CPU time for the
calculation notably rises as we include a larger set of fractional B-polys in the computations.
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6. Results and Discussions

In the current study, we investigated the 2D modified fractional Bhatti-polys basis set
technique to determine the solutions to the partial fractional differential equations. Four
examples of the linear partial fractional differential equations have been presented with
various initial conditions and their semi-analytic solutions are also provided. Furthermore,
an explanation of the 2D fractional algorithm process has been provided to calculate
approximate solutions of the linear fractional differential equation. We estimated the
results using the Galerkin method [40] in both variables (x, t). The graphs of the converged
solutions are provided in Figures 2–7. In the first example, the estimated solution was
precise, which was equivalent to the exact solution after ignoring the tiny contributions. As
the number of fractional B-polynomial basis set in the approximate solutions to Equation (3)
was increased, the accuracy of the numerical solutions [36] increased. In our second, third,
and fourth examples, we have used a value of n = 15 for the basis set of fractional B-polys
in two variables (x, t). We also present 3D graphs of the precise and the approximated
results of the absolute error in Figures 2–9. In every case, the accuracy of the solutions
was different because different B-poly basis sets and different operational matrix sizes
were used. The numerical efficiency of the inverted matrix depends on the size of the
matrix. In the last three examples, we used the series representation of the generalized sine
and cosine functions; this requires the inclusion of many terms in the summation. When
variable t was equal to x for 1D error analysis, the absolute errors among approximate
and exact results were examined. The precision appears to be the same in both 1D and
3D error analyses. It is concluded that the present technique performed well in resolving
linear fractional-order differential equations utilizing operational matrix scheme [40,41],
as exhibited by the graphs and data shown in the study. We performed all integrations
analytically and performed computations using Wolfram Mathematica symbolic program
version-12 [42] for both x and t variables over the closed intervals.

The technique has presented great possibilities for solving linear multidimensional
fractional differential equation problems in chemistry, physics, genetics, and other related
disciplines. Nonlinear partial fractional differential equations will be investigated in
another paper. Recently, many authors [43,44] have constructed operational matrices
using B-polys methods to explain 1D partial differential equations. We have successfully
expanded this technique to solve the 2D linear fractional differential equations. In our
study, we also showed a detailed error investigation for the fourth problem that can be
applied to other examples. The CPU time for computing the first example was less than
1 min, while examples 2–4 took 5–30 min of CPU time since those required a larger B-ploys
basis set and higher dimensions of the operational matrix.

In this paper, we presented an expanded form of this technique [36] to determine
solutions to linear partial fractional differential problems using fractional-order basis sets.
This technique works well for resolving the equations connected to a complicated system of
linear fractional-order differential problems where there are no known solutions. We may
explore this method’s potential to solve 2D nonlinear partial fractional-order differential
equations in forthcoming publications.
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