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Abstract

A general formulation of zero curvature connections in a principle bundle is presented

and some applications are discussed. It is proved that a related connection based on a

prolongation in an associated bundle remains zero curvature as well. It is also shown that

the connection coefficients can be defined so that the partial differential equation to be

studied appears as the curvature term in the structure equations. It is discussed how Lax

pairs and Bäcklund tranformations can be formulated for such equations that occur as zero

curvature terms.
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1 Introduction

Connections which determine representations of zero curvature have turned out to be a very useful

and innovative approach for studying nonlinear partial differential equations. These connection

forms have the capacity to produce results which can be used to obtain Lax pairs as well as

Bäcklund transformations in a very direct way provided information concerning the structural

differential forms of special fiber bundles can be specified. These types of connection have a

special property in that the curvature tensor of such a connection contains a subtensor which is

directly proportional to a partial differential equation which is of interest. For the case in which

the connection tensor with these components vanishes, as on the corresponding lifts of solutions of

a given nonlinear equation, it is said the connection determines a representation of zero curvature.

The main ideas which have led to these developments began several decades ago and can be

traced to the work of people such as Estabrook and Wahlquist [1-4] and by R. Hermann [5] as

well. Hermann first introduced at one point a particular connection of basically this type. He

proposed early on to interpret the Bäcklund transformation as a connection similar in a certain

sense to the connection which defines a representation of zero curvature. He first introduced the

concept of a Bäcklund connection which is defined by the way the connection form is specified.

Hermann then formulates Bäcklund’s problem as that of finding a section in a bundle space on

whose pull-back the Bäcklund connection is plane. He has presented the basic idea in [6], and an

introductory outline can be given based on that.

Let M be a manifold and consider two sorts of object on M . First I will be a differential

ideal of differential forms on M , and R a Pfaffian system or submodule of the set of differential

one-forms on M . Thus, F ∗(M) denotes the exterior algebra of differential forms on M , and R is

called a prolongation of I if the following condition is satisfied

dR ⊂ F ∗(M) ∧R + I. (1.1)

In the initial approach taken by Estabrook and Wahlquist, they primarily start off with I and then

search for R. If I = 0, then (1.1) expresses the fact that R is completely integrable. The Frobenius

complete integrability theorem [7] then asserts that there are, locally, one-forms ω1, · · · , ωn ∈ R
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forming a basis and such that dω1 = · · · = dωn = 0. Second, if R is generated by a single element,

ω, such that dω ∈ I, then ω is a conservation law for I. Studying the relation (1.1) in more

advanced ways and further generalizations has led to an entire geometric approach to the classic

AKNS program [8-9], and the study of the geometric properties of non-linear partial differential

equations and their associated solutions. There has been much interest in this approach [10-13],

and has led to many insights between integrable evolution equations and pseudo-spherical surfaces

as well [14-16].

The objective of this work is to go beyond this more primitive formulation which has just been

described by starting with a jet-bundle JrE of r-jets over a lower dimensional bundle E [17]. For

purposes here, r is usually two or three when second or third order equations are involved, however,

a formulation which doesn’t specify r at first will be given. Structure equations are established for

the systems of forms on these bundles. A very novel approach to the formulation of zero curvature

connections is presented in detail. Several theorems and different proofs of these are presented as

well which establish a general theory of the subject from a specific abstract viewpoint. It is shown

how the choice of particular connection coefficients can lead to an expression for the curvature,

and an expression for the curvature tensor under the assumed form of the coefficients is found

and satisfies a particular relation. It is also shown how prolongations of the connections can be

generated, and the resulting connections remain zero curvature. Out of this comes a method for

writing Lax pairs and Bäcklund transformations [18] for the equations involved. In fact, one of

the remarkable features of these differential systems is that once they have been specified, they

can be used to yield Lax pairs very easily as well as Bäcklund transformations for the equations

which appear as the zero curvature terms in the structure equations. It is explained in detail

how these can be constructed. The difficult part as far as applications are concerned is to be

able to write down the specific system of connection one-forms to initialize the process. These

same forms contain the relevant information for producing these additional structures. Finally, it

will be shown how the formalism can be applied in practice to obtain Bäcklund transformations

between the Liouville equation and the wave equation. Differential systems which are the zero

curvature representations for these two different nonlinear equations will be written down. They
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will be shown to have the right zero curvature structure and moreover how information from these

differential forms needed to write down Lax pairs and Bäcklund transformations can be extracted.

2 Geometrical Setting

2.1 Framework

The main purpose in formulating connections which define representations of zero curvature is

to study nonlinear partial differential equations in a systematic way. By this it is intended that

useful structures relevant to the study of these equations, such as Lax pairs and Bäcklund trans-

formations, can be produced. For definiteness, a general third order equation is of the form

F (xi, u, uj, ujk, ujkl) = 0. (2.1)

By enlarging the manifold which supports (2.1), equations of this type can be written in a more

general form as

F (xi, u, λj, λjk, λjkl) = 0, (2.2)

This notation is common and can be found in [19-20]. The {xi, u} are adapted local coordinates

in the (n+ 1)-dimensional bundle E over the n-dimensional base M , whose local coordinates are

given by {xi} where i, j, k = 1, · · · , n. This larger manifold called JrE over which (2.2) is defined

is called the space of holonomic r-jets of the local sections of the manifold E. It carries the system

of coordinates {xi, u, λj1,··· ,jk} with k = 1, · · · , r. Thus, there exist the following inclusions,

M ⊂ E ⊂ JrE. Let ωi, ωn+1, ωi
j , ω

n+1
j , ωn+1

n+1, ω
i
jk, · · · be a sequence of structural forms of the

holonomic frames of the manifold E, symmetric in the subscripts. The forms ωi, ωn+1, ωn+1
i1,··· ,ik

,

for k = 1, · · · , r, are referred to as principal forms in the bundle of holonomic r-jets, JrE [21].

These forms will satisfy systems of structural equations which have the form,

dωi = ωk ∧ ωi
j,

dωn+1 = ωj ∧ ωn+1
j + ωn+1 ∧ ωn+1

n+1,

(2.3)
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as well as equations which arise in the process of regular prolongation of these by means of Cartan’s

lemma. That is to say, taking the exterior derivative of the first equation in (2.3) gives

0 = d2ωi = dωk ∧ ωi
k − ωk ∧ dωi

k = ωs ∧ (ωk
s ∧ ωi

k − dωi
s).

By the generalized Cartan lemma, the coefficients in the brackets can be expanded in terms of the

forms ωi

dωi
s − ωk

s ∧ ωi
k = ωk ∧ ωi

sk.

This can be differentiated in turn and when the process is repeated, a tower of forms can be

constructed [22].

It is important in the course of this work to be able to evaluate appropriate sections in these

bundles, and it is carried out in the following way. For any section Σ ⊂ E which is defined by the

equation u = u(x1, · · · , xn), sections in Σr ⊂ JrE are defined by the equations

u = u(x1, · · · , xn), λi1,··· ,ik = ui1,··· ,ik , k = 1, · · · , r. (2.4)

The subscripts i+1, · · · , ik on the function u now denote partial derivatives. Consequently, under

this process, the equation (2.2) is mapped onto (2.1), the equation of interest. If contact forms

are chosen as principal forms on the manifold JrE, then the pull-backs are integral manifolds of

the system of Pfaffian equations

ωn+1 = ωn+1
i = · · · = ωn+1

i1···ik
= 0. (2.5)

2.2 Principle Bundle

To begin with, based on this sequence of manifolds, consider the principle bundle P (JrE,G) over

JrE along with the g parameter structure group G. Let P (JrE,G) have structural forms ωA,

(A,B = 1, · · · , g) which satisfy structure equations of the form

dωA =
1

2
CA

BC ω
B ∧ ωC + ωδ ∧ ωA

δ . (2.6)

In (2.6), the CA
BC are the structure constants pertaining to the Lie group G. They are skew-

symmetric with respect to the lower indices and satisfy the Jacobi identity

CA
BKC

B
LM + CA

BLC
B
MK + CA

BMC
B
KL = 0. (2.7)
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The forms ωδ will be principle forms of the base JrE, and will be completely integrable. Thus,

their differentials satisfy structure equations of the form

dωδ = ωµ ∧ ωδ
µ. (2.8)

3 General Zero-Curvature Formulation

To show exactly how zero curvature representations can be developed from a rigorous point of

view, a connection in the principle bundle P (JrE,G) has to be defined [19-20]. One way of doing

this is to specify the object of connection. This is made precise in the following theorem.

Theorem 3.1 A connection in the principle bundle P (JrE,G) can be given by the field

of a connection object on JrE which has components ΓA
ǫ that satisfy the system of differential

equations

dΓA
ǫ + CA

BCΓ
B
ǫ ω

C − ΓA
δ ω

δ
ǫ − ωA

ǫ = ΓA
ǫδω

δ, (3.1)

The forms ωδ
ǫ are determined from (2.8). The associated connection forms

ω̃A = ωA + ΓA
ǫ ω

ǫ (3.2)

satisfy the structure equations

dω̃A =
1

2
CA

BC ω̃
B ∧ ω̃C + ΩA. (3.3)

The ΩA in (3.3) are curvature forms given by

ΩA = RA
ǫδω

ǫ ∧ ωδ. (3.4)

Proof: Differentiating the connection forms in (3.2) and requiring the exterior derivative be

consistent with (3.3), yields

dωA + d(ΓA
δ ω

δ) =
1

2
CA

BC(ω
B + ΓB

ǫ ω
ǫ) ∧ (ωC + ΓC

δ ω
δ) + ΩA.

Expanding this out, the following expression results,

dωA+dΓA
δ ∧ωδ+ΓA

δ dω
δ =

1

2
CA

BCω
B∧ωC+

1

2
CA

BCω
B∧ΓC

δ ω
δ+

1

2
CA

BCΓ
B
ǫ ω

ǫ∧ωC+
1

2
CA

BCΓ
B
ǫ Γ

C
δ ω

ǫ∧ωδ+ΩA.
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Substituting (2.8) and (3.1) into this, we obtain,

dωA − 1

2
CA

BCω
B ∧ ωC − ωδ ∧ ωA

δ + (−CA
BCΓ

B
δ ω

C + ΓA
σω

σ
δ + ωA

δ + ΓA
δσω

σ) ∧ ωδ + ΓA
δ ω

ǫ ∧ ωδ
ǫ

= −ωδ ∧ ωA
δ +

1

2
CA

BCΓ
C
δ ω

B ∧ ωδ +
1

2
CA

BCΓ
C
δ ω

δ ∧ ωB +
1

2
CA

BCΓ
B
ǫ Γ

C
δ ω

ǫ ∧ ωδ + ΩA.

Now replace dωA using (2.6) to obtain

−CA
BCΓ

B
δ ω

C ∧ ωδ + ΓA
σω

σ
δ ∧ ωδ + ωA

δ ∧ ωδ + ΓA
δσω

σ ∧ ωδ + ΓA
δ ω

ǫ ∧ ωδ
ǫ

= −ωδ ∧ ωA
δ + CA

BCΓ
C
δ ω

B ∧ ωδ +
1

2
CA

BCΓ
B
ǫ Γ

C
δ ω

ǫ ∧ ωδ + ΩA.

The fact that the CA
BC are antisymmetric in the lower indices simplifies this result to the form,

ΩA = ΓA
δσω

σ ∧ ωδ − 1

2
CA

BCΓ
B
ǫ Γ

C
δ ω

ǫ ∧ ωδ.

Factoring the one-forms in the first part of ΩA, it is found that

ΩA = −1

2
(ΓA

ǫδ − ΓA
δǫ + CA

BCΓ
B
ǫ Γ

C
δ )ω

ǫ ∧ ωδ. (3.5)

This gives ΩA explicitly and finishes the proof.

The coefficients of ΩA in (3.5) give the components of RA
ǫδ and the theorem allows us to identify

the components of the curvature tensor as

RA
ǫδ = −1

2
(ΓA

ǫδ − ΓA
δǫ + CA

BCΓ
B
ǫ Γ

C
δ ). (3.6)

Theorem 3.2 The curvature tensor satisfies the following relation

dRA
λµ +RB

λµC
A
BCω

C − RA
σµω

σ
λ −RA

λσω
σ
µ = 0, mod ω∆, (3.7)

where ω∆ are principle forms of the jet manifold.

Proof: Differentiating both sides of (3.3) exteriorly, it is found that

0 =
1

2
CA

BC dω̃
B ∧ ω̃C − 1

2
CA

BC ω̃
B ∧ dω̃C + dRA

λµ ∧ ωλ ∧ ωµ +RA
λµdω

λ ∧ ωµ − RA
λµ ω

λ ∧ dωµ

= CA
BC(

1

2
CB

DQω̃
D ∧ ω̃Q+RB

λµω
λ∧ωµ)∧ ω̃C + dRA

λµ∧ωλ∧ωµ+RA
λµω

σ ∧ωλ
σ ∧ωµ−RA

λµ ω
λ∧ωσ ∧ωµ

σ
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=
1

2
CA

TCC
T
DBω̃

D∧ω̃B∧ω̃C+CA
BCR

B
λµω̃

C∧ωλ∧ωµ+dRA
λµ∧ωλ∧ωµ−RA

λµω
λ
σ∧ωσ∧ωµ−RA

λµ ω
µ
σ∧ωλ∧ωσ.

Invoking the Jacobi identity (2.7), this result reduces to the following form

(dRA
λµ +RB

λµC
A
BCω̃

C −RA
σµω

σ
λ − RA

λσω
σ
µ) ∧ ωλ ∧ ωµ = 0.

This implies that the coefficient of ωλ∧ωµ is zero mod ω∆, the principle forms of the jet manifold,

so that ω̃C = ωC. The result in (3.7) then follows.

Thus, the curvature tensor components include, in particular, the components RA
kl. As a

consequence of these theorems, the following result is very important as far as the application of

the zero-curvature idea to specific nonlinear differential equations is concerned.

Theorem 3.3 For the connection given in the principle bundle P (JrE,G) to define the rep-

resentation of zero curvature which corresponds to an equation F (xi, u, λj, λjk, · · · ) = 0, it is

necessary and sufficient that the components RA
kl of the curvature vanish on the pull-backs of the

solutions to the equation.

Proof: Since the vanishing of the forms of curvature ΩA = RA
λµ ω

λ ∧ ωµ on the pull-backs of

solutions is invariant, it suffices to show the statement for some special choice of the principle

forms. The statement then becomes obvious if contact forms are taken as principle forms since,

in this case, the relations ΩA = RA
klω

k ∧ ωl hold on the pull-back of any section Σ ⊂ E.

In practical terms, the curvature tensor will be, or will have a subtensor, which is proportional

to the equation under consideration, and will clearly vanish identically on solutions of that equa-

tion. Thus, a connection is called a connection determining a representation of zero curvature for

a differential equation if the curvature form vanishes on the solutions, or on the corresponding

lifts of solutions, and only on solutions.

4 Prolongations on These Spaces

An additional bundle associated with the principle bundle P (JrE,E), which is called F (P (JrE,G)),

can now be constructed. A larger space is now being associated with P . The typical fiber of this

new bundle is a space F which is an N -dimensional space of the representation of the Lie group
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G. The representation of the group G as a group of transformations of the space F can be defined

by the specification of the system of Pfaffian equations

dXI − ξIA(X)wa = 0. (4.1)

In (4.1), the wA are invariant forms of the group G which satisfy the structural equations

dwA =
1

2
CA

BC w
B ∧ wC. (4.2)

Indeed, it is worth recalling that if G is connected, any diffeomorphism f : G→ G which preserves

left-invariant forms, θα, so that f ∗θα = θα is left translation. If N is a smooth manifold and

wα linearly independent forms on N satisfying (4.2), then for any point in N , there exists a

neighborhood U and a diffeomorphism f : U → G such that θα = f ∗(wα).

The following theorem will produce a condition that, when satisfied, will guarantee that system

(4.1) is completely integrable.

Theorem 4.1 Pfaffian system (4.1) is completely integrable provided the set of ξIA(X) satisfy

the following constraint,

ξKB
∂ξIC
∂XK

− ξKC
∂ξIB
∂XK

+ ξIAC
A
BC = 0. (4.3)

Proof: Differentiate both sides of system (4.1) to obtain,

∂ξIA
∂XK

ξKC (X)wC ∧ wA +
1

2
ξIB(X)CA

BC w
B ∧ wC = 0.

The first term in this equation can be put in the form

1

2
{ξKB (X)

∂ξIC
∂XK

wB ∧ wC + ξKC (X)
∂ξIB
∂XK

wC ∧ wB}+ 1

2
ξIA(X)CA

BC w
B ∧ wC = 0.

Equating the coefficient of wB ∧ wC to zero, the condition (4.3) for complete integrability is

obtained. These conditions are often referred to as the Lie identities.

If there exists a connection in P (JrE,G) which determines a representation of zero curvature,

it is remarkable that the same property holds in the associated bundle F (P (JrE,G)). The N -

dimensional space F is coordinatized by means of coordinates {X i}N1 and carries a representation

of the group. Moreover, the curvature forms of F (P (JrE,G)) are defined by

θI = dXI − ξIA(X
1, · · · , XN)ωA, I, J,K = 1, · · · , N. (4.4)
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In (4.4), the ωA are structural forms of the principle bundle.

If a connection with the connection forms

ω̃A = ωA + ΓA
λω

λ, (4.5)

is defined in the principle bundle, then along with this connection in the principle bundle, a

connection is induced in the associated bundle F (P (JrE,G)) and it has connection forms

θ̃I = dXI − ξIA(X)ω̃A. (4.6)

Proposition 4.1 The Pfaffian system θ̃I satisfies the system of structural equations

dθ̃I = θ̃K ∧ θ̃IK − ξIA(X)RA
λµω

λ ∧ ωµ. (4.7)

The ξIA(X) satisfy the Lie identities (4.3) and the θ̃IK are given by

θ̃IK = − ∂ξIA
∂XK

ω̃A. (4.8)

The RA
λµ are the components of the curvature tensor defined in P (JrE,G).

Proof: Differentiating the set of forms in (4.6), it is found that

dθ̃I = − ∂ξIA
∂XK

dXK ∧ ω̃A − ξIA(X)dω̃A

= − ∂ξIA
∂XK

(θ̃K + ξKC (X)ω̃C) ∧ ω̃A − ξIA(X) dω̃A

= − ∂ξIA
∂XK

θ̃K ∧ ω̃A − ξKC (X)
∂ξIA
∂XK

ω̃C ∧ ω̃A − ξIA(X) dω̃A

= θ̃K ∧ (− ∂ξIA
∂XK

)ω̃A − ξKB (X)
∂ξIC
∂XK

ω̃B ∧ ω̃C − 1

2
CA

BCξ
I
A(X)ω̃B ∧ ω̃C − ξIA(X)RA

λµω
λ ∧ ωµ.

Assuming that the Lie identities (4.3) hold and θ̃IK are defined by (4.8), the desired result (4.7)

appears directly,

dθ̃I = θ̃K ∧ θ̃IK − ξIA(X)RA
λµω

λ ∧ ωµ.

Therefore, if the connection defined in the principle bundle specifies a representation of zero cur-

vature for an equation, then the related connection just defined in the associated bundle generated

by it will define a representation of zero curvature as well. Its curvature tensor ξIAR
A
λµ vanishes on
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sections Σ ⊂ E if and only if the sections are solutions of the equations. This has established the

following.

Corollary 4.1 The system of forms θ̃I defined by (4.6) is completely integrable on the pull-

backs of solutions to the associated equation and only on these solutions.

The theoretical advantage then in introducing the general formalism is that the RA
λµ can be in-

terpreted as curvature forms with respect to this larger manifold. This also suggests an application

for these results. It is possible that a system of forms θ̃K can be found such that a set of equations

of the form (4.7) obtain. The curvature terms may automatically vanish or be proportional to

some nonlinear partial differential equation of interest which vanishes on some transverse integral

manifold of solutions. Along with Bäcklund connections on bundles having one-dimensional fibers,

Bäcklund connections on bundles with two-dimensional fibers can be studied; for example, on a

bundle associated to a two-dimensional vector space of the representation of the group Sl(2). This

connection is often referred to as a Lax connection as it can be made to lead directly to formulation

of Lax pairs for the equation. In this event, the specific forms can then be used to generate both

Lax pairs and Bäcklund transformations. This will be illustrated clearly in the following general

theorem below [23].

Hermann used a one-form with the structure (4.6) for the KdV equation and realized that

it could be written in a particular way [5]. He inferred that the Wahlquist-Estabrook prolonga-

tion structure could be interpreted as a type of connection. As for the form θ̃, it is a form of

connection in a bundle with a one-dimensional typical fiber associated with the principal bundle

P (JrE, Sl(2)). This connection is also a connection defining a representation of zero curvature.

Note that a one-form is a connection form in a bundle with a one-dimensional typical fiber asso-

ciated with the principal bundle P (JrE, Sl(2)) if and only if it takes the form

dy − ξ(y)θ̃0 − ξ21(y)θ̃1 − ξ12(y)θ̃2.

The Lie identities satisfied by these coefficients are obtained from the system

∂ξIB
∂yK

ξKC − ∂ξIC
∂yK

ξKB = ξIAC
A
BC .
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Consider a Bäcklund mapping in the one-dimensional case. In this case the system of Pfaff

equations that define the Bäcklund mapping consist of a single equation

dy − ξ(y)ω̃ − ξ21(y)ω̃
1
2 − ξ12(y)ω̃

2
1 = 0. (4.9)

The Lie identities satisfied by the coefficients in (4.9) are of the following form

ξ
∂ξ21
∂y

− ξ21
∂ξ

∂y
= ξ21 ,

ξ
∂ξ12
∂y

− ξ12
∂ξ

∂y
= −ξ12 , (4.10)

ξ21
∂ξ12
∂y

− ξ12
∂ξ21
∂y

= 2ξ.

Theorem 4.2. The Pfaff equation (4.9) which defines the Bäcklund mapping with the asso-

ciated space of the structure group G of dimension one can be represented in either of the two

forms,

dϕ− ω̃2
1 − ϕω̃ + ϕ2ω̃1

2 = 0,

dψ − ω̃1
2 − ψω̃ − ψ2ω̃2

1 = 0.

(4.11)

Proof: Take the second equation in (4.10) and divide it by (ξ12)
2 to obtain

− ξ

(ξ12)
2
dξ12 +

dξ

ξ12
=
dy

ξ12
.

This is equivalent to

d(
ξ

ξ12
) =

dy

ξ12
.

Define the variable ϕ = ξ/ξ12 and use it in this result to give,

dϕ =
dy

ξ12
. (4.12)

Dividing by (ξ12)
2, the third equation becomes

− ξ21
(ξ12)

2
dξ12 +

dξ21
ξ12

= −2
ξ

(ξ12)
2
dy.

Consequently, using (4.12),

d(
ξ21
ξ12
) = −2

ξ

ξ12

dy

ξ12
= −dϕ2.
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Thus, we can identify −ϕ2 = ξ21/ξ
1
2. Since the form (4.9) can be written in the following way,

dy

ξ12
− ω̃2

1 −
ξ(y)

ξ12(y)
ω̃ − ξ21(y)

ξ12(y)
ω̃1
2 = 0, (4.13)

the required first equation in (4.11) follows by substituting these results for ϕ and ϕ2 into (4.13).

The second equation in (4.11) follows in a similar fashion.

An example which shows how the results in these last two sections can be combined and made

into something useful will be presented. Here M will be the two-dimensional base manifold which

is coordinatized by the coordinates (x1, x2) = (x, t). Now consider the following application which

starts with Theorem 3.1. A system of structural forms ω̃A is required to satisfy the structure

equations (3.3) expressed as

dω̃1 = 2ω̃2∧ ω̃3+R12 dx
1∧dx2, dω̃2 = ω̃1∧ ω̃2+R2

112 dx
1∧dx2, dω̃3 = ω̃3∧ ω̃1+R1

212 dx
1∧dx2.

(4.14)

The last terms in these are the curvature terms which are required to vanish when they are

considered on the lifting of a section. This will result in producing a particular equation in the

end. In the notation of (2.2), take for the forms ω̃A

ω̃1 = 2λ1 dx
2, ω̃2 =

1

2
λ1 dx

1 + (uλ1 − λ11) dx
2, ω̃3 = dx1 + 2u dx2. (4.15)

It is easily verified that these forms satisfy system (4.14). The curvature term in the first and third

is zero. The second is satisfied provided that considered on the lifting of a section in which the

notation reverts to that of (2.1), u satisfies the following Burgers-type equation −1
2
u12+

1
2
(u2)11−

u111+(u1)
2 = 0. Replacing (x1, x2) = (x, t) in this, the following form for the equation is obtained,

uxt = (u2)xx − 2uxxx + 2(ux)
2. (4.16)

Following along the lines of Theorem 4.2, there should be a Bäcklund transformation of the form

dy+ ω̃2−yω̃1−y2ω̃3 = 0. Substituting the forms (4.15) into this, the following differential system

is obtained

yx = −1

2
ux + y2, yt = uxx − uux + 2uxy + 2uy2. (4.17)
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Evaluating the derivatives yxt and ytx, and subtracting, all higher order terms in the expression

above y0 are found to cancel. Only the y0 term remains and it is precisely the equation (4.16).

Another approach to Lax and Bäcklund systems will be presented in the next section.

5 Lax and Bäcklund Systems

Perhaps the most interesting aspect of the theoretical development presented so far is that there

exists a clear relationship between connections which define a representation of zero curvature

and specific Lax and Bäcklund systems for the equation. Let the group be G = Gl(2), so that r

is selected to suit the system under consideration. In fact, for the example given here, we take

r = 2, and the following theorem holds.

Theorem 5.1 Given a connection in P (JrE,G), where G = Gl(2) or a subgroup, which

defines a representation of zero curvature corresponding to an equation of the form (2.1), a Lax

system exists which can be defined in terms of the connection coefficients.

Proof: Let

ω̃i
j = ωi

j + Γi
jλω

λ (5.1)

be connection forms in the principle bundle P (JrE,Gl(2)) which define the representation of

zero curvature for the ω̃A. This connection which is defined in the principle bundle generates a

connection in the associated bundle whose typical fiber is a two-dimensional linear space. The

connection forms in the associated bundle corresponding to the connection in P can be written in

the form (4.6)

θ̃i = dX i +Xjω̃i
j.

As for the connection in P , the connection in the associated bundle is also a connection which

defines a representation of zero curvature for the equation. Consequently, the restriction of the θ̃i

to the corresponding pull-back of the section Σ ⊂ E defined by u = u(x, y) is completely integrable

if and only if the section Σ ⊂ E is a solution of the equation. ♣

In practical terms, if contact forms are taken as principle forms then ωi
j will be equal to zero
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and the forms θ̃i take the form

θ̃i = dX i +XjΓi
jλω

λ. (5.2)

In this case, with (x1, x2) = (x, y), the system of equations θ̃i|Σ = 0 have the form

dX i +XjΓi
j1(x, y, u, uk, ukl) dx+XjΓj2(x, y, u, uk, ukl) dy = 0. (5.3)

Of course, this is equivalent to the following system of partial differential equations

X i
x = −Γi

j1(x, y, u, uk, ukl)X
j, X i

y = −Γi
j2(x, y, u, uk, ukl)X

j. (5.4)

In matrix form for a two-dimensional representation of G, (5.4) can be written as

(

X1

X2

)

x

=

(

−Γ1
11 −Γ1

21

−Γ2
11 −Γ2

21

)(

X1

X2

)

,

(

X1

X2

)

y

=

(

−Γ1
12 −Γ1

22

−Γ2
12 −Γ2

22

)(

X1

X2

)

. (5.5)

This system is completely integrable and has solutions satisfying any initial conditions if and

only if u = u(x, y) is a solution of the associated nonlinear equation.

There are relationships between Bäcklund transformations and the connections defining rep-

resentations of zero curvature, as Hermann pointed out [3]. Consider restricting the problem to

investigate how to write Bäcklund transformations between two second order equations. Sup-

pose x, y, u and x, y, v are adapted local coordinates in bundles E1 and E2 respectively which

share a common base manifold M with local coordinates x, y. The variables x, y, u, λi, λjk and

x, y, v, µi, µjk are local coordinates in the bundles of second order jets J2E1 and J2E2. In this

case, x, y, u, λi and x, y, v, µi are local coordinates in the corresponding bundles of first order jets

J1E1 and J1E2. In this event, the equations then take the form

F1(x, y, u, λi, λjk) = 0, (5.6)

and,

F2(x, y, v, µi, µjk) = 0. (5.7)

A Bäcklund transformation between these two equations can be defined as a system of equations

Φ(x, y, u, v, ui, vj) = 0. (5.8)
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Equation (5.8) will be integrable over u if and only if v = v(x, y) is a solution of (5.7) and

integrable over v if and only if u = u(x, y) is a solution of (5.6). For any specified solution u of

(5.6), or v of (5.7), (5.8) makes it possible to determine a certain solution v of (5.7), or of (5.6),

respectively.

It is said that a Bäcklund transformation is established between (5.6) and (5.7) if connections

have been defined in the two principle bundles P (J1E1, G1) and P (J
1E2, G2) which define repre-

sentations of zero curvature for each equation. In each of the manifolds E1 and E2 a structure

of the bundle is defined with a one-dimensional fiber associated. In the case of E2, it is with the

principle bundle P (J1E1, G1) and in the case of E1 with P (J
1E2, G2). Therefore, the connections

which are defined in the principle bundles and specify representations of zero curvature generate

corresponding representations of zero curvature in the associated bundles. The forms for these

two connection forms are written θ and ϑ.

For the case in which G1 = G2 = Gl(2), the forms θ and ϑ take the form

θ = dv − ξij(v)ω̃
j
i , (5.9)

and,

ϑ = du− ηij(u)π̃
j
i . (5.10)

The structure forms on the right of (5.9) and (5.10) are given by

ω̃i
j = ωi

j + Γi
jk(x, y, u, λl)ω

k, π̃i
j = πi

j + Φi
jk(x, y, v, µl)ω

k, i, j = 1, 2. (5.11)

These will be connection forms in P (J1E1, Gl(2)) and P (J1E2, Gl(2)), respectively. If contact

forms are selected as principle forms in the bundle of jets, then ωi
j = 0 and πi

j = 0 hold. The

forms in (5.11) simplify to

ω̃i
j = Γi

jk(x, y, u, λl)ω
k, π̃i

j = Φi
jk(x, y, v, µl)ω

k. (5.12)

In this case, the equations θ = 0 and ϑ = 0 considered on pull-backs of solutions of the equations

(5.6) and (5.7), respectively, are written as

dv − ξij(v)Γ
j
i1(x, y, u, uk) dx− ξij(v)Γ

j
i2(x, y, u, uk) dy = 0,

du− ηij(u)Φ
j
i1(x, y, v, vk) dx− ηij(u)Φ

j
i2(x, y, v, vk) dy = 0.

(5.13)
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Of course, (5.13) are equivalent to the following systems of partial differential equations

vx = ξij(v)Γ
j
i1(x, y, u, uk), vy = ξij(v)Γ

j
i2(x, y, u, uk), (5.14)

and

ux = ηij(u)Φ
j
i1(x, y, v, vk), uy = ηij(u)Φ

j
i2(x, y, v, vk). (5.15)

6 An Application of the Theory

This formalism is now applied to obtain Bäcklund transformations between the Liouville equation

uxy = eu and the wave equation vxy = 0. These can now be defined by specifying the connections

in two principle bundles which define representations of zero curvature, and the corresponding

connections in the associated bundles. In this case, the connection forms in the principle bundles

are defined as in (5.12).

A system of forms which will accomplish the task can be specified as follows

ω̃1
1 = −λ1

4
dx+

λ2
4
dy, ω̃2

2 =
λ1
4
dx− λ2

4
dy, ω̃2

1 =
1√
2
eu/2dx, ω̃1

2 =
1√
2
eu/2 dy

π̃1
1 =

µ1

4
dx− µ2

4
dy, π̃2

2 = −µ1

4
dx+

µ2

4
dy, π̃2

1 =
√
2(e−v/2dx+ ev/2dy), π̃1

2 = 0.

(6.1)

Based on this collection of definitions, the required coefficients Γj
ik and Φj

ik can be read off

Γ1
11 = −λ1

4
, Γ2

21 =
λ1
4
, Γ2

11 =
1√
2
eu/2, Γ1

21 = 0,

Γ1
12 =

λ2
4
, Γ2

22 = −λ2
4
, Γ2

12 = 0, Γ1
22 =

1√
2
eu/2.

(6.2)

and as well,

Φ1
11 =

µ1

4
, Φ2

21 = −µ1

4
, Φ2

11 =
√
2e−v/2, Φ1

21 = 0,

Φ1
12 = −µ2

4
, Φ2

22 =
µ2

4
, Φ2

12 =
√
2ev/2, Φ1

22 = 0.

(6.3)

Now the corresponding sets of forms θi and ϑi are defined in terms of the structural forms (6.1),

θ1 = 2(ω̃1
1 − ω̃2

2), θ2 = 2ω̃2
1, θ3 = −2ω̃1

2,

ϑ1 = 2(π̃1
1 − π̃2

2), ϑ2 = π̃2
1 , ϑ3 = 0.

(6.4)
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It will be shown explicitly that these forms define representations of zero curvature for the two

equations above. The first three structure equations in the θi are given by

dθ1 + θ2 ∧ θ3 = −dλ1 ∧ dx+ dλ2 ∧ dy − 2eu dx ∧ dy,

dθ2 − 1

2
θ1 ∧ θ2 = 1√

2
eu/2(du− λ2dy) ∧ dx, (6.5)

dθ3 +
1

2
θ1 ∧ θ3 = 1√

2
eu/2(−du+ λ1 dx) ∧ dy.

On a section Σ1 ⊂ E1, using (2.4) it follows that λ1 = ux, λ2 = uy and all three of these equations

vanish provided that u satisfies uxy = eu.

Similarly, for the forms ϑi, it is found that

dϑ1 + ϑ2 ∧ ϑ3 = dµ1 ∧ dx− dµ2 ∧ dy,

dϑ2 − 1
2
ϑ1 ∧ ϑ2 = 1√

2
[−ev/2(dv ∧ dx+ µ2dx ∧ dy) + ev/2(dv ∧ dy − µ1dx ∧ dy)].

(6.6)

The third vanishes identically since ϑ3 = 0. On a section Σ2 ⊂ E2, by applying (2.4), it follows

that µ1 = vx, µ2 = vy and these equations vanish provided that v satisfies the equation vxy = 0.

Using (6.2) and the definitions in (6.4), then under the assignment

ξ11 = 2, ξ22 = −2, ξ12 = 2e−v/2, ξ21 = −2ev/2. (6.7)

the equation for dv in (5.13) is written as

dv − θ1 − e−v/2θ2 − ev/2θ3 = 0. (6.8)

Similarly, using (6.3) and identifying

η11 = −2, η22 = 2, η12 = eu/2, (6.9)

the equation for du in (5.13) becomes

du+ ϑ1 − eu/2ϑ2 = 0. (6.10)

It can be observed that the one-form of (6.8) is a closed form, whereas (6.10) is not closed,

but leads to a consistent result. Now all of the required information is at hand to write down
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Bäcklund transformations between these two equations. Substituting (6.2) and (6.7) into (5.14),

there results the system

ux + vx =
√
2e(u−v)/2, uy − vy =

√
2e(u+v)/2. (6.11)

Substituting (6.3) and (6.9) into (5.15), it is found that the same pair appears,

ux + vx =
√
2e(u−v)/2, uy − vy =

√
2e(u+v)/2. (6.12)

Theorem 6.1. The exterior derivatives of the one-forms in (6.8) and (6.10) vanish modulo

the sets of forms {dv, dθi} and {du, dϑi}, respectively.

Proof: Let τ denote the one-form on the laft-hand side of (6.8). Differentiate τ exteriorly and

there results,

dτ = −dθ1 + 1

2
e−v/2dv ∧ θ2 − e−v/2dθ2 − 1

2
ev/2dv ∧ θ3 − ev/2dθ3.

Replacing the known forms dθi from (6.5) and dv (6.8), we obtain that

dτ = θ2∧ θ3+ 1

2
e−v/2θ1∧ θ2+ 1

2
θ3∧ θ2− 1

2
e−v/2θ1∧ θ2− 1

2
ev/2θ1∧ θ3− 1

2
θ2∧ θ3+ 1

2
ev/2θ1∧ θ3 = 0,

as required.

In the same way, differentiate (6.10) and substitute dϑi from (6.6) and du from (6.10).

This provides another way to get the ξij and η
i
j which appear in (5.14) and (5.15).

Theorem 6.2. Equations (6.11) and (6.12) form a system of Bäcklund transformations which

connect the equations uxy = eu and vxy = 0 respectively.

Proof: Differentiating the pair of equations in (6.11) and replacing the first derivatives on the

right-hand side, it is found that

(u+ v)xy =
1√
2
(u− v)ye

(u−v)/2 = eu, (u− v)yx =
1√
2
(u+ v)xe

(u+v)/2 = eu.

Adding these two second derivatives, the Liouville equation uxy = eu results. Upon subtracting

this pair, the wave equation vxy = 0 is obtained.
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7 Outlook and Summary

A very general and useful formalism has been examined which makes use of connections of zero

curvature. The first few sections present one way of giving an abstrct formulation to this subject,

and the latter part transfers this to the more concrete aspect of actually calculating some differ-

ential systems for a pair of specific equations. If the forms are selected in the right way, it should

be possible to create auto-Bäcklund transformations, that is transformations between solutions

of the same equation. It has been shown that these types of connection have the potential to

produce Lax pairs and Bäcklund transformations for nonlinear partial differential equations. In

fact the results of the previous section can be used to write Lax pairs for the respective equations.

Using coefficients (6.2) for the equation uxy = eu, the following Lax pair is obtained

(

X1

X2

)

x

=







ux
4

0

− 1√
2
eu/2 −ux

4







(

X1

X2

)

,

(

X1

X2

)

y

=







−uy
4

− 1√
2
eu/2

0
uy
4







(

X1

X2

)

.

The compatibility condition for this pair can be calculated by differentiating the first matrix

equation with respect to y and the second with respect to x. It is seen to hold provided that u

satisfies the equation uxy = eu. Similarly, using the results in (6.3) for the equation vxy = 0, the

following Lax pair results

(

X1

X2

)

x

=





−vx
4

0

−
√
2e−v/2 vx

4





(

X1

X2

)

,

(

X1

X2

)

y

=





vy
4

0

−
√
2e−v/2 −vy

4





(

X1

X2

)

.

The compatibility condition is again found to hold provided that v satisfies vxy = 0.

It might be conjectured as a further application of this work that if Lax pairs of the form (5.5)

can be produced by some means, their matrix elements might be used to generate connections of

zero curvature as discussed here. If they are found to have zero curvature structure, the results

obtained here would be of use in generating Bäcklund transformations for the equations involved.
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