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Abstract

A general formulation of zero curvature connections in a principle bundle is presented
and some applications are discussed. It is proved that a related connection based on a
prolongation in an associated bundle remains zero curvature as well. It is also shown that
the connection coefficients can be defined so that the partial differential equation to be
studied appears as the curvature term in the structure equations. It is discussed how Lax
pairs and Béacklund tranformations can be formulated for such equations that occur as zero
curvature terms.
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1 Introduction

Connections which determine representations of zero curvature have turned out to be a very useful
and innovative approach for studying nonlinear partial differential equations. These connection
forms have the capacity to produce results which can be used to obtain Lax pairs as well as
Backlund transformations in a very direct way provided information concerning the structural
differential forms of special fiber bundles can be specified. These types of connection have a
special property in that the curvature tensor of such a connection contains a subtensor which is
directly proportional to a partial differential equation which is of interest. For the case in which
the connection tensor with these components vanishes, as on the corresponding lifts of solutions of
a given nonlinear equation, it is said the connection determines a representation of zero curvature.

The main ideas which have led to these developments began several decades ago and can be
traced to the work of people such as Estabrook and Wahlquist [1-4] and by R. Hermann [5] as
well. Hermann first introduced at one point a particular connection of basically this type. He
proposed early on to interpret the Backlund transformation as a connection similar in a certain
sense to the connection which defines a representation of zero curvature. He first introduced the
concept of a Backlund connection which is defined by the way the connection form is specified.
Hermann then formulates Bécklund’s problem as that of finding a section in a bundle space on
whose pull-back the Backlund connection is plane. He has presented the basic idea in [6], and an
introductory outline can be given based on that.

Let M be a manifold and consider two sorts of object on M. First I will be a differential
ideal of differential forms on M, and R a Pfaffian system or submodule of the set of differential
one-forms on M. Thus, F*(M) denotes the exterior algebra of differential forms on M, and R is

called a prolongation of I if the following condition is satisfied
dR C F*(M)ANR+ 1. (1.1)

In the initial approach taken by Estabrook and Wahlquist, they primarily start off with I and then
search for R. If I = 0, then ([ILT]) expresses the fact that R is completely integrable. The Frobenius

complete integrability theorem [7] then asserts that there are, locally, one-forms wy, -+ ,w, € R
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forming a basis and such that dw; = --- = dw,, = 0. Second, if R is generated by a single element,
w, such that dw € I, then w is a conservation law for I. Studying the relation (L)) in more
advanced ways and further generalizations has led to an entire geometric approach to the classic
AKNS program [8-9], and the study of the geometric properties of non-linear partial differential
equations and their associated solutions. There has been much interest in this approach [10-13],
and has led to many insights between integrable evolution equations and pseudo-spherical surfaces
as well [14-16].

The objective of this work is to go beyond this more primitive formulation which has just been
described by starting with a jet-bundle J"E of r-jets over a lower dimensional bundle £ [17]. For
purposes here, r is usually two or three when second or third order equations are involved, however,
a formulation which doesn’t specify r at first will be given. Structure equations are established for
the systems of forms on these bundles. A very novel approach to the formulation of zero curvature
connections is presented in detail. Several theorems and different proofs of these are presented as
well which establish a general theory of the subject from a specific abstract viewpoint. It is shown
how the choice of particular connection coefficients can lead to an expression for the curvature,
and an expression for the curvature tensor under the assumed form of the coefficients is found
and satisfies a particular relation. It is also shown how prolongations of the connections can be
generated, and the resulting connections remain zero curvature. Out of this comes a method for
writing Lax pairs and Bécklund transformations [18] for the equations involved. In fact, one of
the remarkable features of these differential systems is that once they have been specified, they
can be used to yield Lax pairs very easily as well as Backlund transformations for the equations
which appear as the zero curvature terms in the structure equations. It is explained in detail
how these can be constructed. The difficult part as far as applications are concerned is to be
able to write down the specific system of connection one-forms to initialize the process. These
same forms contain the relevant information for producing these additional structures. Finally, it
will be shown how the formalism can be applied in practice to obtain Bécklund transformations
between the Liouville equation and the wave equation. Differential systems which are the zero

curvature representations for these two different nonlinear equations will be written down. They



will be shown to have the right zero curvature structure and moreover how information from these

differential forms needed to write down Lax pairs and Béacklund transformations can be extracted.

2 Geometrical Setting

2.1 Framework

The main purpose in formulating connections which define representations of zero curvature is
to study nonlinear partial differential equations in a systematic way. By this it is intended that
useful structures relevant to the study of these equations, such as Lax pairs and Backlund trans-

formations, can be produced. For definiteness, a general third order equation is of the form
F (2", u,uj, ujp, ujpg) = 0. (2.1)

By enlarging the manifold which supports (2I]), equations of this type can be written in a more

general form as

F(a',u, Ajy Ajis Ajwt) = 0, (2.2)

This notation is common and can be found in [19-20]. The {z',u} are adapted local coordinates
in the (n 4 1)-dimensional bundle E over the n-dimensional base M, whose local coordinates are
given by {z'} where 4, j,k = 1,--- ,n. This larger manifold called J"E over which (2.2)) is defined
is called the space of holonomic 7-jets of the local sections of the manifold F. It carries the system
of coordinates {z’, u, \j .. } with & = 1,--- 7. Thus, there exist the following inclusions,
M C E C J'E. Let o', 0", Wi, Wit wit] Wi, -+ be a sequence of structural forms of the

n+1

holonomic frames of the manifold E, symmetric in the subscripts. The forms w?, w™*!, W'}

11,0 ,0g )

for k = 1,---,r, are referred to as principal forms in the bundle of holonomic r-jets, J"E [21].

These forms will satisfy systems of structural equations which have the form,

dw' = Wk AWl

n+l _ ,j n+1 n+1 n+1
dw"™ = w! AwiT + " Aw,



as well as equations which arise in the process of regular prolongation of these by means of Cartan’s

lemma. That is to say, taking the exterior derivative of the first equation in (2.3) gives
0 = d*w' = dw® AWl — WP A dwl = W A (WE A wh — dw?).
By the generalized Cartan lemma, the coefficients in the brackets can be expanded in terms of the
forms w’
dw! — WP AWl = W AW
This can be differentiated in turn and when the process is repeated, a tower of forms can be
constructed [22].

It is important in the course of this work to be able to evaluate appropriate sections in these

bundles, and it is carried out in the following way. For any section ¥ C E which is defined by the

equation u = u(x!, -+, 2™), sections in X" C J"E are defined by the equations
u=u(x, - 2", iy iy = Wiy o iy s k=1,---,r (2.4)
The subscripts ¢4 1, - - - , 7 on the function u now denote partial derivatives. Consequently, under

this process, the equation (2.2]) is mapped onto (2.1]), the equation of interest. If contact forms
are chosen as principal forms on the manifold J"E, then the pull-backs are integral manifolds of

the system of Pfaffian equations

Wt =Wt = =l =0, (2.5)
2.2 Principle Bundle

To begin with, based on this sequence of manifolds, consider the principle bundle P(J"E, G) over

J'E along with the g parameter structure group G. Let P(J"E,G) have structural forms w?,
(A,B=1,---,g) which satisfy structure equations of the form
1
dw® = §C§C w8 AW + W Awd (2.6)
In (Z6), the C4. are the structure constants pertaining to the Lie group G. They are skew-

symmetric with respect to the lower indices and satisfy the Jacobi identity
CuxCrin + CoChix + CpnCrp = 0. (2.7)
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The forms w® will be principle forms of the base J"E, and will be completely integrable. Thus,

their differentials satisfy structure equations of the form

dw® = W' A wg. (2.8)
3 General Zero-Curvature Formulation

To show exactly how zero curvature representations can be developed from a rigorous point of
view, a connection in the principle bundle P(J"E, G) has to be defined [19-20]. One way of doing
this is to specify the object of connection. This is made precise in the following theorem.

Theorem 3.1 A connection in the principle bundle P(J"E,G) can be given by the field
of a connection object on J"E which has components I'? that satisfy the system of differential
equations

dT4 + CATBWC — 4w — w? =TAW, (3.1)

The forms w?® are determined from (2.8). The associated connection forms

oA = wA +TA W (3.2)
satisfy the structure equations
a_ 1.4 g, ¢ A

The Q4 in ([33) are curvature forms given by
Q4 = RAW AW, (3.4)

Proof: Differentiating the connection forms in (8.2)) and requiring the exterior derivative be

consistent with (3.3)), yields

1
dw® + d(I'w’) = iCﬁc(wB + T80 A (WO + TS W) + Q4.

Expanding this out, the following expression results,
1 1 1 1
dw+dD§ A+ T dw’ = icgchAwC +§C§CMBAF(§M5+§C§CF?WEAMC +§C§0Ffrgw€/\w5+9f‘.
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Substituting (2.8) and (31 into this, we obtain,

é

1

dw® — §C§CWB Aw® — W Awf + (=CacTEw® + T2w7 4+ wit + T4 W) Aw’ + THw AW’

s At a e By st aa e s a B L aa pBRC e 6, OA
Now replace dw” using (2.6)) to obtain

—Ch TP AW+ TAWI AW’ +wit A +T5 w? AW’ +THw AWl

1
= —wW AW 4+ O w8 AW’ + icgcrfrgjwf Aw® 4+ QA
The fact that the O3, are antisymmetric in the lower indices simplifies this result to the form,
1
QO =TLw AW’ — §C§CFEBF? W AW,

Factoring the one-forms in the first part of Q4, it is found that

1
04 = _5@3 — T4 + CH.TET) we A WP, (3.5)

This gives Q4 explicitly and finishes the proof.
The coefficients of Q4 in ([B.5) give the components of R4 and the theorem allows us to identify

the components of the curvature tensor as
1
R = _5@;; — T4 + CacTETS). (3.6)
Theorem 3.2 The curvature tensor satisfies the following relation

A B A C A o A o
dR)\M + R)\MCBCW — R(ww/\ - R/\Uwu =

0, mod w?, (3.7)

A

where w™ are principle forms of the jet manifold.

Proof: Differentiating both sides of (3.3]) exteriorly, it is found that
1 1
0= 5030 dio® A o° — 5@30@3 A d@® + dR3, Aw Awh + Ry, dw Aw! — R wh A dw

1 - - -
= Cﬁc(ngQwD A9+ Rfuw’\ AWM NDY deu AW Aw" + Rfuw” AW Awh — Rfu W AW Awh



1 D ~B .~ - o o
= §C$CC£BMD/\wB/\wc—l—C’ﬁcRABuwc/\wA/\w“deRfu/\wA/\w“—Rfuwﬁ/\w /\w“—Rfu W AW AW

Invoking the Jacobi identity (2.7)), this result reduces to the following form
(de\qu + REMCSCQC - Rfuwi - Rfawg) Awh Awh = 0.

This implies that the coefficient of w*Aw* is zero mod w*?, the principle forms of the jet manifold,
so that @ = w®. The result in ([B.7) then follows.

Thus, the curvature tensor components include, in particular, the components Riy. As a
consequence of these theorems, the following result is very important as far as the application of
the zero-curvature idea to specific nonlinear differential equations is concerned.

Theorem 3.3 For the connection given in the principle bundle P(J"E, G) to define the rep-
resentation of zero curvature which corresponds to an equation F(z’, u, A\j, \jk,-+) = 0, it is
necessary and sufficient that the components Rj} of the curvature vanish on the pull-backs of the
solutions to the equation.

Proof: Since the vanishing of the forms of curvature Q4 = Rfu w* A w” on the pull-backs of
solutions is invariant, it suffices to show the statement for some special choice of the principle
forms. The statement then becomes obvious if contact forms are taken as principle forms since,
in this case, the relations Q4 = R2w* A w! hold on the pull-back of any section ¥ C E.

In practical terms, the curvature tensor will be, or will have a subtensor, which is proportional
to the equation under consideration, and will clearly vanish identically on solutions of that equa-
tion. Thus, a connection is called a connection determining a representation of zero curvature for
a differential equation if the curvature form vanishes on the solutions, or on the corresponding

lifts of solutions, and only on solutions.

4 Prolongations on These Spaces

An additional bundle associated with the principle bundle P(J"E, E'), which is called F(P(J"E, GQ)),
can now be constructed. A larger space is now being associated with P. The typical fiber of this

new bundle is a space F which is an N-dimensional space of the representation of the Lie group



G. The representation of the group G as a group of transformations of the space F' can be defined

by the specification of the system of Pfaffian equations
dXT —&\(X)w* = 0. (4.1)
In ([@J), the w? are invariant forms of the group G which satisfy the structural equations
dw? = % Caow? Aw®. (4.2)

Indeed, it is worth recalling that if GG is connected, any diffeomorphism f : G — G which preserves
left-invariant forms, 6%, so that f*0¢ = 6 is left translation. If N is a smooth manifold and
w® linearly independent forms on N satisfying (4.2)), then for any point in NV, there exists a
neighborhood U and a diffeomorphism f : U — G such that 0% = f*(w®).

The following theorem will produce a condition that, when satisfied, will guarantee that system
(A1) is completely integrable.

Theorem 4.1 Pfaffian system (4.1]) is completely integrable provided the set of &4 (X) satisfy

the following constraint,

&L &L
Proof: Differentiate both sides of system (4.1]) to obtain,
861{‘ K X C A A 1 I X CA B A C __ 0
—aXKfc( Jw” Aw ‘|‘§§B( )Chew” Aw™ =0.

The first term in this equation can be put in the form

ogl oh ¢
0XK 0XK

1 1
§{§§(X) w? Aw® + 5 (X) /\wB}+§££(X)C§CwB/\wC:0.
Equating the coefficient of w?” A w® to zero, the condition (&3] for complete integrability is
obtained. These conditions are often referred to as the Lie identities.

If there exists a connection in P(J"FE,G) which determines a representation of zero curvature,
it is remarkable that the same property holds in the associated bundle F(P(J"E,G)). The N-

dimensional space F' is coordinatized by means of coordinates { X*}Y and carries a representation

of the group. Moreover, the curvature forms of F(P(J"E,G)) are defined by
of =ax?’ —¢h(xt,-  XMwt, ILJJK=1,--- N. (4.4)
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In ([#4), the w” are structural forms of the principle bundle.

If a connection with the connection forms
o = w + T{w, (4.5)

is defined in the principle bundle, then along with this connection in the principle bundle, a

connection is induced in the associated bundle F(P(J"E, G)) and it has connection forms
0" = dx' — &l (X)a. (4.6)
Proposition 4.1 The Pfaffian system 6§’ satisfies the system of structural equations
do' = 0% A 0L — €L (X) Rj\“uw)‘ A wh. (4.7)

The £4(X) satisfy the Lie identities (@3] and the % are given by

~ gk
01 = —8)§é(w‘4. (4.8)

The Rf}u are the components of the curvature tensor defined in P(J"E, G).

Proof: Differentiating the set of forms in (6], it is found that

S
OXK

do" = AXE Ao — el (X)do?
3
- 0XK
3
- OXKE

(0% + €5 (X)a) Aot = €4(X) do”

43
OXK

0% N oA — 5 (X) 0 Ao — €4 (X) dat

~ oEl . et . . 1 N -
=05 A (—a)%;()wA — fg(X)af(CKwB A&C — 503051{1()()&)8 A — €L (X) RfuwA A wh,

Assuming that the Lie identities (E3) hold and 6% are defined by (&S), the desired result (.7
appears directly,

do' = 0% AL — L (X) Rfuw)‘ A wh.
Therefore, if the connection defined in the principle bundle specifies a representation of zero cur-
vature for an equation, then the related connection just defined in the associated bundle generated

by it will define a representation of zero curvature as well. Its curvature tensor & ARf\‘M vanishes on
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sections ¥ C FE if and only if the sections are solutions of the equations. This has established the
following.

Corollary 4.1 The system of forms 6! defined by () is completely integrable on the pull-
backs of solutions to the associated equation and only on these solutions.

The theoretical advantage then in introducing the general formalism is that the Rfu can be in-
terpreted as curvature forms with respect to this larger manifold. This also suggests an application
for these results. It is possible that a system of forms 6% can be found such that a set of equations
of the form (A7) obtain. The curvature terms may automatically vanish or be proportional to
some nonlinear partial differential equation of interest which vanishes on some transverse integral
manifold of solutions. Along with Backlund connections on bundles having one-dimensional fibers,
Backlund connections on bundles with two-dimensional fibers can be studied; for example, on a
bundle associated to a two-dimensional vector space of the representation of the group SI(2). This
connection is often referred to as a Lax connection as it can be made to lead directly to formulation
of Lax pairs for the equation. In this event, the specific forms can then be used to generate both
Lax pairs and Bécklund transformations. This will be illustrated clearly in the following general
theorem below [23].

Hermann used a one-form with the structure (4.6]) for the KdV equation and realized that
it could be written in a particular way [5]. He inferred that the Wahlquist-Estabrook prolonga-
tion structure could be interpreted as a type of connection. As for the form 6, it is a form of
connection in a bundle with a one-dimensional typical fiber associated with the principal bundle
P(J"E,SI(2)). This connection is also a connection defining a representation of zero curvature.
Note that a one-form is a connection form in a bundle with a one-dimensional typical fiber asso-

ciated with the principal bundle P(J"E, S1(2)) if and only if it takes the form
dy — £(y)fo — E ()b — & (y)e.

The Lie identities satisfied by these coefficients are obtained from the system

gK . %é—K — gch
C ayK B A~ BC"

(233
oyK
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Consider a Backlund mapping in the one-dimensional case. In this case the system of Pfaff

equations that define the Béacklund mapping consist of a single equation

dy — §(y)w — & (y)@; — & (y)at = 0. (4.9)
The Lie identities satisfied by the coefficients in (4.9) are of the following form

06 5,08

6 51 _§%>

9] e

52— g {f &, (1.10)
51852 52851 = 2.

Theorem 4.2. The Pfaff equation (4.9) which defines the Bécklund mapping with the asso-

ciated space of the structure group G of dimension one can be represented in either of the two

forms,
dp — @F — i + Wy =0,
(4.11)
dp — @b — @ — 202 = 0.
Proof: Take the second equation in (fI0) and divide it by (£3)? to obtain
§ d§ dy
del + .
@t g 4
This is equivalent to
£, _dy
d(=) = —.
@ "
Define the variable ¢ = £/£} and use it in this result to give,
d
do = 2. (4.12)
&
Dividing by (£2)2, the third equation becomes
& df1 §
B R TR S
@r g (&2)2
Consequently, using (£12),
3 £ dy 2
Ay = 22 W_
UG



Thus, we can identify —p? = £2/&1. Since the form (£9) can be written in the following way,

dy o &y . &)
& 1 8T 8

the required first equation in (I1]) follows by substituting these results for ¢ and ¢? into ([13)).

@y =0, (4.13)

The second equation in ({I1]) follows in a similar fashion.

An example which shows how the results in these last two sections can be combined and made
into something useful will be presented. Here M will be the two-dimensional base manifold which
is coordinatized by the coordinates (z!, 2?) = (z,t). Now consider the following application which

A

starts with Theorem 3.1. A system of structural forms @ is required to satisfy the structure

equations (B.3) expressed as

dio' = 20° N + Rigda' Nda?,  d@? = ' ANO*+ Ry yda' Ada?,  do® = 0P AQ + Ry, dat Ad?

(4.14)
The last terms in these are the curvature terms which are required to vanish when they are
considered on the lifting of a section. This will result in producing a particular equation in the

end. In the notation of (2.2)), take for the forms &4
1
O =2\ da?, = M de' 4 (ud; — A\iy) da?, &3 = da' + 2uda®. (4.15)

It is easily verified that these forms satisfy system (4.14]). The curvature term in the first and third
is zero. The second is satisfied provided that considered on the lifting of a section in which the
notation reverts to that of (2.I]), u satisfies the following Burgers-type equation —%Ulg + %(uQ)M —

uy11+ (u1)? = 0. Replacing (2!, 2%) = (z,t) in this, the following form for the equation is obtained,

Following along the lines of Theorem 4.2, there should be a Béacklund transformation of the form
dy +@&? — yw' — y?03 = 0. Substituting the forms (Z.I5) into this, the following differential system

is obtained
1

Yo = —SUe TYL Y= Uaw — Ul + 2ay + 2y’ (4.17)

13



Evaluating the derivatives y,; and v, and subtracting, all higher order terms in the expression
above y° are found to cancel. Only the y° term remains and it is precisely the equation (Z.I6).

Another approach to Lax and Béacklund systems will be presented in the next section.

5 Lax and Backlund Systems

Perhaps the most interesting aspect of the theoretical development presented so far is that there
exists a clear relationship between connections which define a representation of zero curvature
and specific Lax and Bécklund systems for the equation. Let the group be G = GI(2), so that r
is selected to suit the system under consideration. In fact, for the example given here, we take
r = 2, and the following theorem holds.

Theorem 5.1 Given a connection in P(J"E,G), where G = GI(2) or a subgroup, which
defines a representation of zero curvature corresponding to an equation of the form (2.1J), a Lax
system exists which can be defined in terms of the connection coefficients.

Proof: Let

3= w4 T (5.1)

be connection forms in the principle bundle P(J"E,GI(2)) which define the representation of
zero curvature for the @”. This connection which is defined in the principle bundle generates a
connection in the associated bundle whose typical fiber is a two-dimensional linear space. The
connection forms in the associated bundle corresponding to the connection in P can be written in

the form (4.0])
0" = dX' + XTIl

As for the connection in P, the connection in the associated bundle is also a connection which
defines a representation of zero curvature for the equation. Consequently, the restriction of the
to the corresponding pull-back of the section 3 C E defined by u = u(x, y) is completely integrable
if and only if the section X C F is a solution of the equation. &

In practical terms, if contact forms are taken as principle forms then w; will be equal to zero

14



and the forms @ take the form

0" = dX' + XIT! w. (5.2)
In this case, with (2!, 22) = (z,y), the system of equations 6'|x, = 0 have the form
dX' + Xjfé»l(x, Y, U, U, Upy) AT+ XIT jo (0, y, w, up, upy) dy = 0. (5.3)
Of course, this is equivalent to the following system of partial differential equations

Xi = _P;l(x>y>u>uk>ukl)Xja X, = _F;2($ayauaukaukl)Xj' (54)

T Yy

In matrix form for a two-dimensional representation of G, (B.4]) can be written as

X2 \~Th 15 \X? X2) o\ - \ X

This system is completely integrable and has solutions satisfying any initial conditions if and

—~

5.5)

only if u = u(z,y) is a solution of the associated nonlinear equation.

There are relationships between Béacklund transformations and the connections defining rep-
resentations of zero curvature, as Hermann pointed out [3]. Consider restricting the problem to
investigate how to write Backlund transformations between two second order equations. Sup-
pose z,y,u and x,y,v are adapted local coordinates in bundles F; and FE, respectively which
share a common base manifold M with local coordinates x, y. The variables x,y,u, A;, \jr and
T, Y, v, Wi, i are local coordinates in the bundles of second order jets J?E; and J?E,. In this
case, x,y,u, \; and x,y, v, u; are local coordinates in the corresponding bundles of first order jets

J'E, and J'E,. In this event, the equations then take the form
Fi(z,y,u, A, \jg) =0, (5.6)

and,
FQ(ZE’,y,'U,,Ui,Mjk) = 0. (57)
A Backlund transformation between these two equations can be defined as a system of equations
O(z,y,u,v,u;,v5) = 0. (5.8)
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Equation (5.8) will be integrable over w if and only if v = v(z,y) is a solution of (5.7)) and
integrable over v if and only if u = u(z,y) is a solution of (5.6). For any specified solution u of
(E4), or v of (B7), (B.8) makes it possible to determine a certain solution v of (5.1), or of (5.0,
respectively.

It is said that a Bécklund transformation is established between (5.6]) and (5.7) if connections
have been defined in the two principle bundles P(J'E,, G,) and P(J'E,, G3) which define repre-
sentations of zero curvature for each equation. In each of the manifolds F; and FE5 a structure
of the bundle is defined with a one-dimensional fiber associated. In the case of Fs, it is with the
principle bundle P(J'E;, G;) and in the case of E; with P(J!E,, G5). Therefore, the connections
which are defined in the principle bundles and specify representations of zero curvature generate
corresponding representations of zero curvature in the associated bundles. The forms for these
two connection forms are written € and .

For the case in which G; = G5 = GI(2), the forms 6 and ¢ take the form

1)

0 =dv— & (v)a] (5.9)
and,
¥ =du— n;(u)frf (5.10)
The structure forms on the right of (5.9]) and (5.I0) are given by
0 =wj + D,y u, M, 7 =+ Qe y, o me®,  4j=12. (511
These will be connection forms in P(J'E;, Gl(2)) and P(J'E,, GI(2)), respectively. If contact
forms are selected as principle forms in the bundle of jets, then w;'- = 0 and 7r§- = 0 hold. The
forms in (B.11]) simplify to
~;’ = F;’k($7y7u7 >\l) wku ~;’ = (I);"k(xvyavnul)wk‘ (512)
In this case, the equations # = 0 and ¥ = 0 considered on pull-backs of solutions of the equations

(B.6) and (B.7), respectively, are written as

dv — g;(U)FZ1 (LU, Y, u, uk) dx — g;(v)rz2(x7 Y, u, uk) dy = Ov
(5.13)
du — 0 (u)®], (z,y,v,v%) do — 1} (u) (2, y, v, v) dy = 0.
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Of course, (B.I3]) are equivalent to the following systems of partial differential equations

7

Uy = gﬁ(v)rgl(l’ayauauk)a Uy = gj(v)rg2(zayauauk)a (514)

and

Uy = nj(u)q)gl(x,y,v,vk), Uy = n;(u)q)gé(x?yvvvvk)‘ (515)
6 An Application of the Theory

This formalism is now applied to obtain Béacklund transformations between the Liouville equation
Ugy = € and the wave equation v,, = 0. These can now be defined by specifying the connections
in two principle bundles which define representations of zero curvature, and the corresponding
connections in the associated bundles. In this case, the connection forms in the principle bundles

are defined as in (5.12)).

A system of forms which will accomplish the task can be specified as follows

~ )\1 )\2 - )\1 )\2 - 1 - 1
1:__d ZZd 2:—d — 24 2:_u/2d lz_u/2d
Wi 4 T+ 4 Y, W 4 £ 4 Y, Wi \/56 L, Wy \/56 Y
il %dm - %d , T2 = —%daz + %dy, 72 = /2(e7V2dx + e¥/2dy), 7 =0.
(6.1)
Based on this collection of definitions, the required coefficients ng and @{k can be read off
A Al 1 .,
Fh:_Z’ F§1:Z’ Fi:%e ", Iy =0,
(6.2)
A2 A2 1,
I, = T Iz, = T 2, =0, rl, = ﬁe /2
and as well,
H1 H1 v
oh = ag =M et = vEe, el =0,
(6.3)

0y, = _%’ 03, = %’ R

Now the corresponding sets of forms 6° and 9 are defined in terms of the structural forms (E.1]),
0' =2(0] —@3), 0* =207, 6= -—220],
(6.4)
Ot =27} —73), =71, =0



It will be shown explicitly that these forms define representations of zero curvature for the two

equations above. The first three structure equations in the 6 are given by
do* + 0* N 0® = —dX\; Adx + dXg A dy — 2 dx A dy,
d0? — 1ot p g2 = ieuﬂ(du — Xody) A dx (6.5)
2 V2 ’

1 1
do® + 591 NG ﬁe“/z(—du + Ay dx) A dy.

On a section ¥y C £y, using (2.4)) it follows that A\; = u,, Ay = u, and all three of these equations
vanish provided that u satisfies u,, = e*.

Similarly, for the forms 9, it is found that

dot + 92 N3 = dpy A dx — dugy A dy,

(6.6)
1
d¥? — 39PN = —[—e"(dv A dx + padx A dy) + e (dv A dy — dx A dy)).

V2
The third vanishes identically since 93 = 0. On a section Xy C Es, by applying (2.4), it follows

that y1, = v,, 2 = v, and these equations vanish provided that v satisfies the equation v,, = 0.

Using (6.2)) and the definitions in (6.4]), then under the assignment
=2 &=-2 &=2"7 &=-2" (6.7)
the equation for dv in (BI3]) is written as
dv — 0 — e7V/20? — /203 = 0. (6.8)
Similarly, using (6.3)) and identifying
m=-2 ;=2  m=e? (6.9)
the equation for du in (5.13) becomes

du +9' — e29% = 0. (6.10)

It can be observed that the one-form of (6.8) is a closed form, whereas ([6.10) is not closed,

but leads to a consistent result. Now all of the required information is at hand to write down
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Bécklund transformations between these two equations. Substituting (6.2) and (6.7)) into (B.14),

there results the system

Uy + v, = V22, w, — vy, = V22, (6.11)
Substituting (63]) and (69) into (B.13), it is found that the same pair appears,

Uy + v, = V2T gy, — v, = V2elMT)/2, (6.12)

Theorem 6.1. The exterior derivatives of the one-forms in (68) and (€I0) vanish modulo
the sets of forms {dv, d0'} and {du, d¥'}, respectively.
Proof: Let 7 denote the one-form on the laft-hand side of (6.8). Differentiate 7 exteriorly and

there results,
1 1 —v/2 2 —v/2 792 1 v/2 3 v/2 393
dr = —df +§e dv\NO° —e d0_§€ dv A\ 6> —e"db".
Replacing the known forms df from (6.5) and dv (6.8), we obtain that
SN LRy B S T U S PR R B B PO RN S D S PR
dr =6 N0 +§6 0" NO +§9 NG —5e 6" NE —3e 6" NG —59 NG +§e 0 NE° =0,

as required.

In the same way, differentiate (G.I0) and substitute dv’ from (6.6) and du from (G.10).

This provides another way to get the f} and nj- which appear in (5.14) and (B.15).

Theorem 6.2. Equations (6.11]) and (6.12]) form a system of Bécklund transformations which
connect the equations u,, = e* and v,, = 0 respectively.

Proof: Differentiating the pair of equations in (G.11]) and replacing the first derivatives on the
right-hand side, it is found that

1 1
(u+v)ay = —=(u— U)ye(u_v)/2 = e, (u—=0)ye = —=(u+ U)xe(u+v)/2 =e".

V2 V2

Adding these two second derivatives, the Liouville equation u,, = €* results. Upon subtracting

this pair, the wave equation v,, = 0 is obtained.

19



7 Outlook and Summary

A very general and useful formalism has been examined which makes use of connections of zero
curvature. The first few sections present one way of giving an abstrct formulation to this subject,
and the latter part transfers this to the more concrete aspect of actually calculating some differ-
ential systems for a pair of specific equations. If the forms are selected in the right way, it should
be possible to create auto-Béacklund transformations, that is transformations between solutions
of the same equation. It has been shown that these types of connection have the potential to
produce Lax pairs and Béacklund transformations for nonlinear partial differential equations. In
fact the results of the previous section can be used to write Lax pairs for the respective equations.

Using coefficients (6.2)) for the equation u,, = e, the following Lax pair is obtained

Ug
X! Z 0 X! X1 _@ _ieu/Q X1
= 1 U = 4 V2 :
X2 __eu/2 _ =z X2/’ X2 0 % X2
g V2 4 v 4

The compatibility condition for this pair can be calculated by differentiating the first matrix
equation with respect to y and the second with respect to x. It is seen to hold provided that u
satisfies the equation wu,, = e*. Similarly, using the results in (G.3]) for the equation v,, = 0, the

following Lax pair results

X! —% 0 /[xt X! % 0 X!
x2| = Voev2 Y\ x2 ) x2| = Voev2 W\ x2 )
T 4 Y 4

The compatibility condition is again found to hold provided that v satisfies v,, = 0.

It might be conjectured as a further application of this work that if Lax pairs of the form (5.5])
can be produced by some means, their matrix elements might be used to generate connections of
zero curvature as discussed here. If they are found to have zero curvature structure, the results

obtained here would be of use in generating Backlund transformations for the equations involved.
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