University of Texas Rio Grande Valley

ScholarWorks @ UTRGV

Computer Science Faculty Publications and

Presentations College of Engineering and Computer Science

10-2021

Improving the Success of Non-Traditional Students in an
Introductory Computing Course

Christine F. Reilly
Laura M. Grabowski

Gustavo Dietrich
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/cs_fac

6‘ Part of the Computer Sciences Commons, and the Curriculum and Social Inquiry Commons

Recommended Citation

Reilly, Christine F, Laura M Grabowski, and Gustavo Dietrich. 2021. “Improving the Success of Non-
Traditional Students in an Introductory Computing Course.” 6.

This Conference Proceeding is brought to you for free and open access by the College of Engineering and
Computer Science at ScholarWorks @ UTRGV. It has been accepted for inclusion in Computer Science Faculty
Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information,
please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/cs_fac?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1038?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

C. F. Reilly, L.M. Grabowski, and G. Dietrich, “Improving the Success of Non-Traditional
Students in an Introductory Computing Course: An Experience Report”

Accepted to the 2021 IEEE Frontiers in Education Conference (FIE).
https://www.f1e2021.org/

Paper will be presented at and published in the proceedings of the conference in October
2021.

Improving the Success of Non-Traditional Students
in an Introductory Computing Course

Christine F. Reilly
Computer Science Department
Skidmore College
Saratoga Springs, New York, USA
creilly @skidmore.edu

Abstract—This Work in Progress Research to Practice paper
presents a redesign of an introduction to computing course at
a public, minority serving institution in the United States with
a majority of non-traditional students. The course redesign was
motivated by the desire to improve the success of the students
in this course and in the major. Active learning during class and
required attendance were the major components of the course
redesign. The course policies included flexibility for the occasional
absences that are expected with non-traditional students. A com-
parison of student performance in the experimental and control
sections indicated that the requirement of active participation
during class is not detrimental to students’ performance in the
course.

I. INTRODUCTION

This paper presents our experience with redesigning an
introduction to computing course (CS0), motivated by the
desire to improve the success of non-traditional students in this
course and in the major. We intended the work described in
this paper to be the ground work for a multi-year longitudinal
study of student success in the major. However, after the year
that is described in this paper most of the authors of this study
changed jobs and the author who remains at the university
where this study was conducted holds a contingent position
that does not provide much time for working on research. Our
experience with redesigning the CSO course and conducting
this study for one year provides the following contributions:

o A framework for using active learning and incentivizing
class attendance while providing flexibility for occasional
absences.

o An example that illustrates how factors external to the
classroom impact student success and the outcomes of
this experiment.

We embarked on this study with the hypothesis that an
active learning approach in the classroom along with incentives
that encourage class attendance and assignment completion
would improve student success in this course and have positive
impacts on success in courses throughout the major. Prior
studies conducted in our department [1] and by the univer-
sity indicated that the next few courses in the sequence of
the computer science and computer engineering majors had
relatively low pass rates. While the pass rates in these courses
are similar to those seen elsewhere [2], communications from
the university administration indicated that it was important

Laura M. Grabowski
Computer Science Department
SUNY Potsdam
Potsdam, New York, USA
grabowlm @potsdam.edu

Gustavo Dietrich
Computer Science Department
University of Texas Rio Grande Valley
Edinburg, Texas, USA
gustavo.dietrich@utrgv.edu

for faculty to raise the pass rates in this CSO course and in
courses later on in the major.

This CSO course was offered at a medium to large sized
regional public university that is designated as a minority
serving institution in the United States. The majority of
students at the university originate from the region where
the university is located and are categorized as non-traditional
college students. Some of the factors that categorize the stu-
dents as non-traditional are having significant work and family
commitments, being the first in their family to attend college,
living at their family home while attending the university, or
attending the university five or more years after they graduated
high school. Despite the use of the term non-traditional, the
majority of undergraduate students in the United States have at
least one non-traditional characteristic [3]. The students who
take this CSO course have a wide range of previous experience
with Computer Science, as well as a wide range of general
college-level skills.

This paper continues in Section II with a discussion of
related work. Section III describes the CSO course and the
course redesign experiment. An evaluation of the redesign is
presented in Section IV. Finally, this paper concludes with
Section V.

II. RELATED WORK

A number of approaches to CSO courses are discussed in
the Computer Science Education literature. The variety of
CSO courses that are described in the literature indicate that
there is not a consensus on the definition of a CSO course,
and that different approaches may be appropriate for different
institutions. The results from a survey of Computer Science
programs in the USA showed that 60.1% of respondents offer
a CSO course [4]. Purposes found in the literature for offering a
CSO0 course include providing an introduction to programming
prior to CS1 [5], as a way to give non-major students a view
of the field of computing [6], or as a multi-purpose course
that fulfills a general education requirement at the college
and serves as an introduction to the CS major [7]. Other
universities have noted that they had challenges with retaining
students in the major and developed a CSO course to provide
students with additional preparation prior to taking the CSI
course [8].

Incorporating active learning techniques into the classroom
has been shown to improve student performance [9], classroom
environment, and student retention [10]. Active learning and
similar student-centered methods have gained prominence in
higher education over the last several decades, and are now
accepted as effective, quality education [11]. Studies have also
shown that “active learning confers disproportionate benefits
for STEM students from disadvantaged backgrounds and for
female students in male-dominated fields” [9]. Because the
course described in this paper was offered at a minority-
serving institution, these prior studies indicate that the students
at this university would benefit from student-centered active
learning approaches in the classroom.

III. OVERVIEW OF THE CSO COURSE

The course described in this paper is technically two
different courses: Introduction to Computer Science taken
by Computer Science majors, and Introduction to Computer
Engineering taken by Computer Engineering majors. However,
these two courses have a significant amount of overlap. Both
courses evolved from the same previously offered course,
and the same group of faculty generally teach both courses.
Therefore, this paper presents a combined description of both
courses under the name CSO.

We acknowledge that this CSO course deviates from the
definition of a CSO course used in much of the related
work, as discussed in Section II, because the CSO course
described in this paper is required for the major. We decided
to use the term CSO for this course because it is placed in
the curriculum before the CS1 course. The department had
three main reasons for requiring all students in the Computer
Science and Computer Engineering majors to take the CSO
course. First, we were addressing the retention issues we
experienced in these majors and overall retention issues at
the university. Research that focuses on professional identity
development in computer science has suggested that providing
opportunities for students to learn about different areas of
computing at an early point in the major could help with
retention [12]. The second reason that the department required
this CSO course was so that our series of major courses was
similar to those from other departments within our college.
The third reason for requiring all students in the major to take
this course was because the student advising process at the
university did not provide a reliable way for the department to
identify students who would benefit from the extra preparation
of a CSO course before the CS1 course. There were enough
students who would benefit from taking CSO before CS1 that it
was reasonable to require all students to take the CSO course.

The instructor for the CSO course was typically a tenure-
line faculty member or a lecturer who had been employed by
the department for many years. Additionally, undergraduate or
graduate (masters-level) student assistants were assigned to the
course. These student assistants attended the class meetings,
held office hours, and maintained the LEGO Mindstorms
robots.

TABLE I
CONTROL CS0O COURSE TOPICS

Binary and Hexadecimal Representation
Using bits to represent text, images, and sound
Boolean algebra and Circuits
Computer architecture, machine language,
and program representation
Algorithms and problem solving:
Programming using LEGO Mindstorms
Overview of searching and sorting algorithms
Miscellaneous topics: Operating systems,
the Internet and the World Wide Web

The course met for two 75-minute sessions per week during
a 15-week semester. Because the CS0O course was a lab course
where students earned one credit for a three hour per week
course, the faculty minimized the amount of work required
outside of class time.

A. Control Course

The topics covered in the control version of the course
are shown in Table I. The course had a bottom—up approach
to covering the breadth of Computer Science starting with
bits and ending with programming and applications. Approxi-
mately half of class time was used for a lecture on the content
and half of the time was used for students to work on the lab
assignments. There were approximately ten lab assignments
throughout the semester, and students often worked on one
lab assignment across multiple class sessions.

B. Motivation for Redesigning the Course

As the first class in both the Computer Science and Com-
puter Engineering majors, this is a course where department
expectations and culture regarding attendance and assignment
completion can be established. Poor attendance and late arrival
were issues in all courses in these majors. A prior study of
this CSO course as well as a CS1 course at the same university
found that the majority of students who fail the courses are not
submitting assigned work [13]. Because much of the graded
work for this CSO class is completed during class time, it
seemed that encouraging attendance and participation during
class meetings could have a positive impact on the pass rate
in this course and may have a positive influence on attendance
and assignment completion in later classes in the majors.

We had some hesitation about requiring students to actively
participate in class in order to earn the majority of each lab
assignment grade because this requirement was a significant
change for this course and from the culture within the de-
partment. Most of the students are non-traditional students
who commute to campus and have significant work and family
commitments. Therefore, for the experimental course we de-
veloped policies that allow a few absences while maintaining
high expectations for class participation.

C. Experimental Course

Three major principles guided the design of the experimen-
tal course:

TABLE II
EXPERIMENTAL CSO COURSE TOPICS
Big Idea Activity
Programmer and Computer LEGO game
Algorithms Logic Puzzles

LEGO Mindstorms robot programming
Searching and Sorting Algorithms
Fetch, Decode, Execute cycle

Binary and Hexadecimal Representation
Two’s Complement Representation
Boolean Algebra

Gates and Circuits

Codes of Ethics

Sustainability

Diversity and Implicit Bias

Computer Arch.
and Data
Representation

Social Impacts

1) To provide better context for the course material;

2) To incentivize attendance and completion of work while
accommodating students’ external commitments;

3) To increase active learning during class.

1) Adding Context to Course Content: The topics covered
in the new CSO course are shown in Table II. The content of
the experimental course was largely the same as the content of
the control course because this course fulfills certain learning
outcomes as part of the departments’ ABET accreditations.
For the redesigned course, the content was organized into three
“Big Ideas” that present the topics in a top-down order: Algo-
rithms, Computer Architecture and Data Representation, and
Social Impacts of Computing. In order to explicitly demon-
strate the relationships between the various topics within each
unit, a class session at the end of each Big Idea unit was
dedicated to discussing the Big Idea and identifying how the
lab assignments in that unit relate to the Big Idea. The two
motivations for this topic ordering are: (1) to help students
better appreciate how these topics relate to Computer Science
and Computer Engineering, and (2) to encourage students to
become engaged in the course through their enjoyment of
working with the popular LEGO Mindstorms robots. The unit
on Social Impacts of Computing was a significant addition to
the new CSO course and reflects the computing community’s
growing recognition of the importance of including ethics and
societal issues as part of the computer science curriculum [14],
[15].

2) Encouraging Active Learning and Participation: The
design of the experimental course focused on three aspects of
student participation: active learning, interaction between stu-
dents, and attendance. The lab assignment structure provided
scaffolding for good student habits: prepare for class, actively
participate during class, then reflect on the learning. Course
policies allowed for occasional absences while maintaining
high expectations for participation.

The pre-lab was due before class and contributed to 5%
to 10% of the lab assignment grade. In order to prepare for
the in-class activity, the pre-lab included readings or videos
that provided background material and required students to
review the in-class activity instructions. Credit was earned for
each pre-lab by completing multiple choice questions using

the learning management system (LMS).

The in-class activity contributed 70% of the lab assignment
grade and was completed during one or two class meetings. In
order to encourage interaction between students they worked
in pairs on each in-class activity. The instructor arbitrarily
selected new pairings for each lab with the goal of giving
every student the opportunity to work with every other student
over the span of the semester. The inclusion of group work
in this CSO course reflects that many studies have demon-
strated the benefits of pair programming in computer science
courses [16], including some indications that group work can
be especially helpful for students who identify with groups that
are underrepresented in computer science [17], [18]. Because
a late arrival would disrupt the group work process, a late
penalty was assessed for any student who arrived after the
small groups were formed. The late penalty was a deduction
of 10 points on the lab assignment grade.

Students completed a post-lab after each in-class activity
that contributed 20% to 25% of the total lab grade. The
goals of the open-response questions on the post-lab were to
reinforce the concepts learned during the in-class activity and
to guide students in reflection on how the material relates to
the field of computer science.

The following course policies provided flexibility for the
occasional absences that are expected with non-traditional
students:

o The student’s two lowest lab assignment grades were
dropped when calculating their course grade.

o Three class periods were designated as lab make up days
when students could complete the in-class portion of a
lab they missed. Other students were encouraged to use
this time to review for the upcoming exam.

IV. EVALUATION

The experimental course was taught in two consecutive
semesters (fall and spring) within a single academic year.
Four sections of the experimental course were offered, with
instructors A and B each teaching two sections. Instructor C
taught a total of five sections of the control course during
the same two semesters. Note that instructor C had limited
knowledge about the details of the experimental course until
after the end of the academic year, so that the control course
was not influenced by this experiment.

Student participation and performance were evaluated by
extracting aggregated grade data from the experimental and
control sections, as well as historical data from four sections
that instructor A taught during the previous four semesters.
Assignment completion rates were used to measure partici-
pation, and exam scores and course pass rates provided data
about student performance.

Assignment completion data, as summarized in Table III,
were examined from two perspectives:

1) The fraction of assignments with a non-zero score.
That is, (total non-zero assignments)/(total number of
assignments).

TABLE III
ASSIGNMENT COMPLETION

Measure | Experimental | Control | Previous Semesters
Non-zero 99.1% 88.5% 81.5%
Passing 89.8% 86.5% 75.9%
TABLE IV
COURSE GRADES
Measure Experimental | Control | Previous Semesters
Exam Average 81.0% 82.5% 69.0%
Course Pass 91.8% 95.2% 78.0%

2) The fraction of assignments with a passing score. This
measure was calculated as (total number of assignments
with score > 70)/(total number of assignments). A score
of 70 is the threshold for passing because the major
requires students to earn a course grade of C or better.

The students’ grades provide information about their overall
course performance. The average exam scores and percent of
students who passed the course are summarized in Table IV.

1) The average of the students’ scores for all exams was
calculated.

2) Pass rates. A course grade of C or better is a passing
grade in the major. The pass rate was calculated as (total
number of students with C or better)/(total enrollment
for the course). Students who withdrew from the course
are excluded.

All of these measures indicate better student performance
during the year when this study was conducted (both exper-
imental and control sections) when compared with the data
from instructor A’s classes in the four previous semesters.
Focusing within the year of this study, the experimental
sections have a higher percentage of assignments that are
submitted (having a non-zero grade) as well as a higher
percentage of assignments that have a passing grade, when
compared with the control sections during the study period.
The reverse pattern is seen in the course grades: the control
sections have slightly higher average exam grades and course
grades than the redesigned sections.

V. CONCLUSIONS AND REFLECTIONS

The evaluation of course grades shows that the experimental
and control courses had similar exam averages and course
pass rates. This indicates that requiring non-traditional students
to actively participate in class while allowing for occasional
absences is not detrimental to student’s performance in the
course.

An intriguing finding is that participation and performance
was better during the year of the study (in both the exper-
imental and control sections) than during the previous four
semesters. This finding emphasizes the importance of the
control sections in this study. If there were not experimental
and control sections during the same academic year, the
results would have indicated that the experimental sections had

much better student performance than the sections in previous
semesters.

A unique factor that may have impacted student perfor-
mance during the year of this study was a major institutional
change at the university. At the beginning of the first semester
of this study, two universities in the region merged. We are
curious about whether factors such as the media campaign
associated with this merger could have impacted students’
attitudes towards their college studies. There were record
enrollments in the university during the fall semester of this
study. The pass rates for the nine sections of CS0O during this
year range from 85% to 100% and are among the best pass
rates that we ever experienced in our courses at this university.

This paper presented an implementation of a teaching
philosophy where high standards for student participation are
balanced with a reasonable amount of flexibility. The results
from this study indicate that this philosophy did not have
detrimental impacts for a cohort of non-traditional students
at a minority serving institution. This teaching philosophy is
likely to be useful at other universities because the majority of
undergraduate students in the United States are non-traditional
students, as well as in other contexts where instructors wish
to implement flexible requirements for student participation,
such as during the COVID-19 pandemic.

REFERENCES

[1] C.F Reilly and E. Tomai, “An examination of mathematics preparation
for and progress through three introductory computer science courses,”
in 2014 IEEE Frontiers in Education Conference (FIE) Proceedings,
October 2014.

[2] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory
programming: 12 years later,” ACM Inroads, vol. 10, no. 2, pp. 30-36,
Apr 2019.

[3]1 A. W. Radford, M. Cominole, and P. Skomsvold, “Demographic and
enrollment characteristics of nontraditional undergraduates: 2011-12,”
National Center for Education Statistics, Tech. Rep. NCES 2015025,
2015.

[4] S. Davies, J. A. Polack-Wahl, and K. Anewalt, “A snapshot of current
practices in teaching the introductory programming sequence,” in Pro-
ceedings of the 42Nd ACM Technical Symposium on Computer Science
Education, ser. SIGCSE "11. New York, NY, USA: ACM, 2011, pp.
625-630.

[5] C. Dierbach, B. Taylor, H. Zhou, and I. Zimand, “Experiences with
a CSO course targeted for CS1 success,” in Proceedings of the 36th
SIGCSE Technical Symposium on Computer Science Education, ser.
SIGCSE ’05. New York, NY, USA: ACM, 2005, pp. 317-320.

[6] M. desJardins and M. Littman, “Broadening student enthusiasm for
computer science with a great insights course,” in Proceedings of the
41st ACM Technical Symposium on Computer Science Education, ser.
SIGCSE ’10. New York, NY, USA: ACM, 2010, pp. 157-161.

[7]1 A. Brady, P. Cutter, and K. Schultz, “Benefits of a CSO course in liberal
arts colleges,” Journal of Computing Sciences in Colleges, vol. 20, no. 1,
October 2004.

[8] C. Marling and D. Juedes, “CSO for computer science majors at Ohio
University,” in Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, ser. SIGCSE *16. New York, NY, USA:
ACM, 2016, pp. 138-143.

[9] S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor,

H. Jordt, and M. P. Wenderoth, “Active learning increases student

performance in science, engineering, and mathematics,” PNAS, vol. 111,

no. 23, pp. 8410-8415, 6 2014.

L. Barker, C. L. Hovey, and L. D. Thompson, “Results of a large-

scale, multi-institutional study of undergraduate retention in computing,”

in 2014 IEEE Frontiers in Education Conference (FIE) Proceedings.

IEEE, Oct 2014, pp. 1-8.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

O. Hazzan, T. Lapidot, and N. Ragonis, Guide to Teaching Computer
Science: An Activity Based Approach, 2nd ed. London: Springer-Verlag,
2014, ch. 2, pp. 15-22.

A. Kapoor and C. Gardner-McCune, “Understanding CS undergraduate
students’ professional identity through the lens of their professional
development,” in Proceedings of the 2019 ACM Conference on Inno-
vation and Technology in Computer Science Education. Association
for Computing Machinery, 2019, pp. 9-15.

C. Reilly, E. Tomai, and L. M. Grabowski, “An evaluation of how
changes to the introductory computer science course sequence impact
student success,” in Frontiers in Education Conference, 2015.

L. Carter and C. Crockett, “An ethics curriculum for CS with flexibility
and continuity,” in Frontiers in Education Conference, 2019.

S. Kumar and N. Kremer-Herman, “Integrating ethics across computing:
An experience report of three computing courses engaging ethics and
societal impact through roleplaying, case studies, and service learning,”
in Frontiers in Education Conference, 2019.

B. Hanks, S. Fitzgerald, R. McCauley, L. Murphy, and C. Zander,
“Pair programming in education: a literature review,” Computer Science
Education, vol. 21, no. 2, pp. 135-173, 2011.

K. S. Choi, “A comparative analysis of different gender pair combi-
nations in pair programming,” Behaviour & Information Technology,
vol. 34, no. 8, pp. 825-837, 2015.

L. H. LeGault, “Understanding and supporting better pairings for CS1
students,” in Proceedings of the 2017 ACM Conference on International
Computing Education Research, ser. ICER "17. New York, NY, USA:
ACM, 2017, pp. 267-268.

	Improving the Success of Non-Traditional Students in an Introductory Computing Course
	Recommended Citation

	tmp.1637604969.pdf.RArwX

