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a b s t r a c t 

Imaging genetics analyses use neuroimaging traits as intermediate phenotypes to infer the degree of genetic 

contribution to brain structure and function in health and/or illness. Coefficients of relatedness (CR) summarize 

the degree of genetic similarity among subjects and are used to estimate the heritability – the proportion of 

phenotypic variance explained by genetic factors. The CR can be inferred directly from genome-wide genotype 

data to explain the degree of shared variation in common genetic polymorphisms (SNP-heritability) among related 

or unrelated subjects. We developed a central processing and graphics processing unit (CPU and GPU) accelerated 

Fast and Powerful Heritability Inference (FPHI) approach that linearizes likelihood calculations to overcome the 

∼N 

2–3 computational effort dependency on sample size of classical likelihood approaches. We calculated for 60 

regional and 1.3 × 10 5 voxel-wise traits in N = 1,206 twin and sibling participants from the Human Connectome 

Project (HCP) (550 M/656 F, age = 28.8 ± 3.7 years) and N = 37,432 (17,531 M/19,901 F; age = 63.7 ± 7.5 years) 

participants from the UK Biobank (UKBB). The FPHI estimates were in excellent agreement with heritability 

values calculated using Genome-wide Complex Trait Analysis software ( r = 0.96 and 0.98 in HCP and UKBB 

sample) while significantly reducing computational (10 2–4 times). The regional and voxel-wise traits heritability 

estimates for the HCP and UKBB were likewise in excellent agreement ( r = 0.63–0.76, p < 10 − 1 0 ). In summary, 

the hardware-accelerated FPHI made it practical to calculate heritability values for voxel-wise neuroimaging 

traits, even in very large samples such as the UKBB. The patterns of additive genetic variance in neuroimaging 

traits measured in a large sample of related and unrelated individuals showed excellent agreement regardless of 

the estimation method. The code and instruction to execute these analyses are available at www.solar-eclipse- 

genetics.org . 

1. Introduction 

Big data research initiatives - including the Human Connectome 

Project (HCP) and UK Biobank (UKBB) - collect comprehensive multi- 

Abbreviations: CR, coefficients of relatedness; CPU, central processing unit; GPU, graphics processing unit; FPHI, Fast and Powerful Heritability Inference; GCTA, 

Genome-wide Complex Trait Analysis; UKBB, UK Biobank; HCP, Human Connectome Project; h 2 , heritability; SNP, single nucleotide polymorphism; WAC, weighted 

allelic correlation; MAF, minor allele frequency; MLE, maximum likelihood estimation; MEGA, Multi-Ethnic Global Array; FA, fractional anisotropy; GRM, genetic 

relationship matrix; ELRT, expected likelihood ratio test; ENIGMA, Enhancing Neuro Imaging Genetics through Meta-Analysis; GREML, genomic-relatedness-based 

restricted maximum likelihood. 
∗ Corresponding author. 

E-mail address: pkochunov@som.umaryland.edu (P. Kochunov). 

modal neuroimaging datasets and allow researchers to quantify genetic 

and environmental risk and protective factors that affect human brain 

in health and illness ( Glasser et al., 2013 ; Van Essen et al., 2013 ). Ge- 

netic variance accounts for a significant proportion (20–90%) of func- 

https://doi.org/10.1016/j.neuroimage.2021.118700 . 

Received 2 August 2021; Received in revised form 15 October 2021; Accepted 30 October 2021 

Available online 2 November 2021. 

1053-8119/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.neuroimage.2021.118700
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2021.118700&domain=pdf
http://www.solar-eclipse-genetics.org
mailto:pkochunov@som.umaryland.edu
https://doi.org/10.1016/j.neuroimage.2021.118700
http://creativecommons.org/licenses/by/4.0/


S. Gao, B. Donohue, K.S. Hatch et al. NeuroImage 245 (2021) 118700 

tional and structural variability in human brain ( Adhikari et al., 2017 ; 

Hulshoff Pol et al., 2006 ; Pennington et al., 2000 ; Pfefferbaum et al., 

2000 ; Thompson et al., 2010 ). Heritability ( h 2 ) is defined as the de- 

gree of phenotypic variance explained by the additive genetic variance 

among participants. Classically, heritability is calculated using variance 

component models that use coefficients of relatedness (CR) to repre- 

sent the shortest self-reported ancestral path for a pair of individuals 

as the degree of genetic variance shared among individuals. CR can 

also be calculated empirically from high-throughput genome-wide sin- 

gle nucleotide polymorphism (SNP) data, in which case the heritability 

measures the proportion of the observed variation explained by com- 

mon SNPs (SNP- h 2 ) ( Kochunov et al., 2019a ; Ramstetter et al., 2017 ; 

Speed et al., 2017 ; Toro et al., 2014 ; Wood et al., 2014 ; Yang et al., 

2010 ). In family samples, the empirical CR tracks closely with self- 

reported values but provides more accurate estimates of heritability 

( Kochunov et al., 2019a ). The SNP- h 2 can also be calculated in sam- 

ples of unrelated individuals based on the phenotypic variance ex- 

plained by small amounts of genetic similarity shared among partic- 

ipants ( Yang et al., 2010 ). Here, we performed two sets of analy- 

ses: We first evaluated a novel Fast and Powerful Heritability Infer- 

ence (FPHI) approach that accelerates classical variance component 

models using algorithmic and hardware approaches and compared the 

measurements to that of a commonly used SNP- h 2 approach imple- 

mented in the Genome-wide Complex Trait Analysis (GCTA) software 

( https://cnsgenomics.com/software/gcta/ ). We compared heritability 

estimates for complex polygenic neuroimaging traits in a twin-and- 

siblings sample collected by HCP and mainly unrelated sample provided 

by UKBB. We finally showed a good agreement in heritability estimates 

measured in UKBB and these reported by large meta-and-mega anal- 

yses performed by Enhancing Neuro Imaging Genetics through Meta- 

Analysis (ENIGMA) studies ( Jahanshad et al., 2013 ; Kochunov et al., 

2014 ). 

We first set out to study an agreement in heritability estimates using 

empirical CR values by our novel FPHI approach implemented within 

the SOLAR-Eclipse software ( www.solar-eclipse-genetics.org ) and SNP- 

heritability measured using the GCTA software which pioneered the 

SNP- h 2 measurements. SNP- h 2 refers to the proportion of phenotypic 

variance explained by the individual variances in the SNP data collected 

from genotyping arrays. SNP- h 2 values can be calculated using classi- 

cal variance component such as these implemented in FPHI or fitting 

the linear model across all SNP as implemented in GCTA. It can also 

be calculated using linkage disequilibrium (LD) score regression (LDSR) 

approaches that use summary statistics for trait from a genome-wide 

association study analysis (GWAS) ( Speed et al., 2012 , 2017 ). All ap- 

proaches have advantages and shortcomings regarding estimation bias, 

robustness, and computational efficiency. In this study, we did not con- 

sider LDSR because these analyses require performing GWAS analysis 

for a trait. LDSR analyses are practical when the summary statistics are 

already available. However, performing GWAS while correcting for the 

relatedness within a sample is a computationally formidable task, espe- 

cially for voxel-wise traits. Both FPHI and GCTA uses algorithmic accel- 

erations to make SNP- h 2 calculation practical in the absence of GWAS 

summary statistics. 

Classical heritability analyses use variance models that partition the 

phenotypic variance into the additive genetic and environmental com- 

ponents (See supplement for details) ( Nayor et al., 2021 ). These models 

rely on the N × N matrix of CR values (where N is the sample size), 

known as the pedigree or kinship matrix to map the sharing of genetic 

variance among subjects. Traditionally, CR values were fixed to the the- 

oretical values of the expected degree of autosomal genomic sharing 

for a given kinship type: 1 for the similarity with oneself, or with a 

monozygotic twin; 1 
2 for parents, full siblings and dizygotic twins; 1 

4 
for grandparents or half-siblings; 1/8 for cousins; and 0 for unrelated 

individuals. However, with the development of genome-wide genotyp- 

ing technologies, CR values can also be measured empirically by quan- 

tifying the similarity across genome or chromosomal SNP sets among 

the study participants. Comparisons of traditional versus empirical CR 

values show that there is variation in shared genetic variance around 

the traditional estimates and that seemingly unrelated individuals can 

have a non-zero degree of shared genetic variance ( Kochunov et al., 

2019a ; Visscher et al., 2006 , 2007 ). Neuroimaging traits have a com- 

plex polygenic architecture, and more precise estimation of the CR val- 

ues can improve statistical power for genetic analyses ( Kochunov et al., 

2019a ). 

The general formulation of the classical variance component model, 

such as implemented in SOLAR-Eclipse/FPHI software, allows for the 

use of empirical CR matrix estimates of the genetic relatedness across a 

wide-range of related individuals ( Kochunov et al., 2019a ; Zaitlen et al., 

2013 ). Here, we evaluated the agreement among SNP- h 2 values calcu- 

lated by FPHI and by the GCTA software that was specifically developed 

for SNP-based heritability ( Visscher et al., 2006 , 2007 ). Our goal was to 

show that heritability values derived by FPHI and GCTA closely agree 

using data from samples such as the HCP and UKBB. However, the GCTA 

approach may not scale readily to large samples such as the UKBB due 

to its computational complexity and non-linear dependance of compu- 

tational time versus pedigree size. The SOLAR-Eclipse FPHI approach 

uses software and hardware optimizations, including parallel CPU/GPU 

computing, to linearize likelihood estimation and achieves ∼10 5–6 per- 

formance improvement versus classical iterative likelihood approaches 

( Nayor et al., 2021 ). Here, we show that FPHI approach makes practi- 

cal calculation of SNP- h 2 values for calculation of high-resolution voxel- 

wise heritability maps. 

SOLAR-Eclipse uses a Weighted Allelic Correlation (WAC) approach 

to calculate the empirical CR. The WAC 

–CR values provided more 

stable empirical heritability measures than those from other meth- 

ods, including self-reported CR, although the differences were minor 

( Kochunov et al., 2019a ). The WAC was developed to study the “miss- 

ing heritability ” of complex phenotypes and produces CR values that are 

weighted by minor allele frequency (MAF) using a parameter, 𝛼, with 

assigned values of 1, − 1, or 0 ( Speed et al., 2012 , 2017 ). A weighting 

of 𝛼 = 1 calculates CR by up-weighting on common variants, whereas 

a weighting of 𝛼 = − 1 up-weights CR on the low MAF variants. The 

weighting of 𝛼 = − 1 was recommended for human studies based on 

empirical findings and simulations that show that it up-weights CR on 

the low MAF variants, reduces the bias and increases the precision of 

heritability estimation, while other 𝛼 were found more appropriate for 

animal or plants genetics studies ( Speed et al., 2012 , 2017 ). However, 

in our prior research, we found very minor differences in the heritability 

estimates obtained with different 𝛼 settings in imaging genetics analyses 

( Kochunov et al., 2015 ). The WAC approach produces a very dense N × N 

(where N is the sample size) pedigree matrix ( Fig. 1 ). This is a computa- 

tional challenge for traditional maximum likelihood estimate (MLE) cal- 

culation approaches. The MLE procedure requires multiple inversions 

of this matrix leading to an N 

2–3 computational complexity problem 

which makes Big Data analyses a formidable challenge ( Blangero et al., 

2013 ). 

In this study we present novel algorithmic developments that ad- 

dress a major roadblock to enable imaging genetics analyses in datasets 

as large as N > 35,000 based on our previous work on linearizing likeli- 

hood calculation ( Blangero et al., 2013 ). We demonstrate that the clas- 

sical quantitative genetics analyses can now be practical in large and 

inclusive datasets of unrelated individuals. We describe algorithmic so- 

lutions to take advantage of Central and Graphics Processing Units (CPU 

and GPU) computing. Our proposed method leads to improvements in 

the computational times while maintaining excellent agreement with re- 

sults from other software ( Blangero et al., 2013 ; Kochunov et al., 2019a , 

2019b ). Here, we demonstrated that empirical heritability measurement 

can be achieved in seconds using modern computational hardware, even 

in samples as large as the UKBB. 
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Fig. 1. A. Heatmaps of the UKBB and HCP pedigrees. 

The heatmaps present CR values between individuals in pedigrees. The color bar reflects negative and positive CR values in the heatmaps. The diagonal is CR between 

the same individual. 

B. The ELRT power curves for the HCP and UKBB samples. 

The blue and red dots indicate expected likelihood ratio test (ELRT) at specific null-heritability values for the UKBB and HCP, respectively. 

2. Materials and methods 

2.1. Participants 

Human Connectome Project. Heritability and genetic correlation anal- 

yses were performed on brain MRI scan data from N = 1206 (550 M/656 

F; age = 28.8 ± 3.7 years) healthy individuals in the Human Con- 

nectome Project (HCP) (humanconnectome.org) for whom imaging 

and genetic data were released after passing the HCP quality con- 

trol and assurance standards ( Marcus et al., 2013 ). Details of this re- 

lease may be found at ( https://www.humanconnectome.org/study/hcp- 

young-adult/document/1200-subjects-data-release ). Participants in the 

HCP study were recruited from the Missouri Family and Twin Registry 

of individuals born in Missouri ( Van Essen et al., 2013 ). The full set of 

inclusion and exclusion criteria are detailed elsewhere ( Van Essen et al., 

2013 ). All participants provided written informed consent on forms ap- 

proved by the Institutional Review Board of Washington University in 

St. Louis. 

UK BioBank. The UK BioBank (UKBB) dataset included N = 37,432 

individuals (17,531 M/19,901 F; age = 63.7 ± 7.5 years) whose imag- 

ing and genetic data were released from 2015 to 2021. The full set of 

inclusion and exclusion criteria are detailed elsewhere ( Manolio et al., 

2012 ). All participants provided written informed consent. 

2.2. Genotyping 

We used genotyping data provided by HCP and UKBB projects 

with minimal post-processing as recommended by GCTA software 

manual. The genotyping data for the HCP is available through the 

dbGAP database ( https://www.ncbi.nlm.nih.gov/projects/gap/cgi- 

bin/study.cgi?study_id = phs001364.v1.p1 ). Briefly, all participants 

were genotyped using the Illumina Multi-Ethnic Global Array (MEGA) 

SNP-array. This array provides extended coverage for European, East 

Asian, and South Asian populations. Overall, 1,580,642 SNPs satisfied 

the following quality control exclusion criteria: MAF < 1%, genotype 

call rate < 95%, and Hardy–Weinberg equilibrium < 1 × 10 6 . 

Genotyping data for the UKBB was downloaded as version 3 im- 

puted data from the UKBB showcase website. The protocol for geno- 

typing, imputation and quality control is described in sections of the 

UK Biobank documentation ( https://biobank.ndph.ox.ac.uk/showcase/ 

showcase/docs/genotyping_qc.pdf ) and ( https://biobank.ndph.ox.ac. 

uk/showcase/showcase/docs/impute_ukb_v1.pdf ). In summary, all par- 
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ticipants were genotyped using the UKBB Axiom array from Affymetrix 

and imputed using Haplotype Reference Consortium (HRC) and UK10K 

haplotype resource. Overall, there were 8,521,984 SNPs remaining after 

the same exclusion criteria as used for HCP data. 

2.3. Neuroimaging traits 

We selected traits from four neuroimaging domains: cortical gray 

matter thickness, subcortical gray matter volumes, fractional anisotropy 

FA values of water diffusion measured for regions of interest ( Table S1 ), 

and voxel-wise FA values for the whole-brain skeleton. 

HCP imaging data collection and preprocessing. The HCP data was 

collected at Washington University, St. Louis, using a customized 

Siemens Magnetom Connectome 3 Tesla scanner with a 100 mT/m 

maximum gradient strength and a 32-channel head coil. Details 

on the scanner, image acquisition, and reconstruction are provided 

elsewhere ( Ugurbil et al., 2013 ) and found online at ( https:// 

www.humanconnectome.org/study/hcp-young-adult/document/1200- 

subjects-data-release ). Diffusion data was collected using a single-shot, 

single refocusing spin-echo, echo-planar imaging sequence with 

1.25 mm isotropic spatial resolution (TE/TR = 89.5/5520 ms, FOV 

= 210 × 180 mm). Three gradient tables of 90 diffusion-weighted 

directions and 6 b = 0 images each, were collected with right-to-left and 

left-to-right phase encoding polarities for each of the three diffusion 

weightings ( b = 1000, 2000, and 3000 s/mm 

2 ). The diffusion data were 

then processed using the Enhancing Neuro Imaging Genetics through 

Meta-Analysis (ENIGMA) pipeline for structural and diffusion tensor 

imaging, including skeletonized voxel-wise FA values ( Jahanshad et al., 

2013 ). 

UKBB imaging data collection and preprocessing. The UKBB imag- 

ing data were collected using three sites each equipped with a 

Siemens Skyra 3T scanner and 32-channel RF head coil with high 

resolution T1-weighted (resolution = 1 × 1 × 1 mm, FOV = 

208 × 256 × 256, duration = 5 min, 3D MPRAGE, sagittal, in-plane 

acceleration iPAT = 2, prescan-normalize). Diffusion data was acquired 

with the following parameters: a resolution = 2 × 2 × 2 mm and two 

diffusion-weighted shells with all 100 distinct diffusion-encoding di- 

rections, 5 b = 0 images, 50x b = 1000 and 2000 s/mm 

2 , FOV = 

104 × 104 × 72, and a 7-minute duration. The data were extracted using 

the UKBB workflow and processed using the UKBB processing pipeline 

( https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1 ). 

We used average regional and skeletonized imaging data provided 

by the UKBB. The skeletonized data were extracted using the UKBB 

workflow. More information on the scanner, image acquisition, and 

processing are all recorded in the UKBB Brain Imaging Documenta- 

tion ( https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf ) 

( Alfaro-Almagro et al., 2018 ; Miller et al., 2016 ). All data were prepro- 

cessed prior to FPHI and GCTA analyses to reduce potential confounding 

of different approaches these tools may use for regression the effects of 

covariates. We used SOLAR-Eclipse mega-analysis data normalization 

pipeline to regress effects of age, sex and scan site (for UKBB data) and 

saving the residuals ( Kochunov et al., 2014 ). This was followed with 

the inverse normal transformation was used to ensure the multivariate 

normal distribution of the traits ( Kochunov et al., 2014 , 2019a ). 

2.4. Assessment of empirical relatedness 

SOLAR-Eclipse uses CR (r i,j ) (twice the coefficients of kinship) to rep- 

resent the probability that two alleles from individuals i and j are iden- 

tical by descent. The coefficient of relationship is a function of iden- 

tity by descent sharing statistics, r i,j = 𝜋1i,j /2 + 𝜋2i,j , where 𝜋1i,j and 

𝜋2i,j are the probabilities that two individuals share one and two alleles 

through a common ancestry. Empirical r i,j were calculated using meth- 

ods implemented in the SOLAR-Eclipse software ( www.solar-eclipse- 

genetics.org ). The pedifromsnps function uses the allelic data stored in a 

PLINK file as the input and produces a pedigree file. We calculated em- 

pirical r i,j using weighted allelic correlation (WAC) ( Hayes et al., 2009 ). 

This function is implemented for GPU computing in the gpu_pedifromsnps 

function. Relatedness was calculated using Eq. (1) : 

𝜙𝑖𝑗 = 

1 
𝑚 

𝑚 ∑

𝑘 =0 

(
𝑆𝑁 𝑃 𝑖𝑘 − 2 𝜇𝑘 

)(
𝑆𝑁 𝑃 𝑗𝑘 − 2 𝜇𝑘 

)

2 𝜇𝑘 
(
1 − 𝜇𝑘 

) (1) 

where 𝜙ij is the genetic relationship matrix (GRM)/empirical kinship 

matrix value between individual i and individual j . m is the total num- 

ber of SNP loci that are not missing values for both individual i and 

individual j . SNP ik and SNP jk are allelic scores (0, 1 or 2) for the k -th 

SNP in individuals i and j . 𝜇k is the frequency of the k -th major a 

2.5. Comparison of pedigree power: expected likelihood ratio test (ELRT) 

The ELRT method is used by SOLAR-Eclipse software to evaluate the 

statistical power of a pedigree for heritability analysis and to compare 

power between two pedigrees. This function is based on the function- 

ality proposed by ( Blangero et al., 2013 ) and further generalized by 

( Raffa and Thompson, 2016 ). The ELRT is defined as the expectation of 

twice the difference of the log-likelihoods evaluated at the true parame- 

ter and several different null-parameter values, respectively ( Raffa and 

Thompson, 2016 ). It uses Taylor series approximations to summarize 

the relatedness in a pedigree to accurately approximate the expecta- 

tion of the likelihood ratio test and expected confidence interval widths 

( Raffa and Thompson, 2016 ). 

2.6. Analysis of additive genetic variance: heritability 

The algorithms used to estimate variance components employ a vari- 

ance decomposition approach based on an extension of the strategy 

developed by ( Amos, 1994 ) and optimized for parallel computing and 

coded as the fphi function. The multivariate normal covariance matrix 

Ω for a pedigree of individuals is given by Eq. (2) : 

Ω = 2 𝜎2 
𝑔 
Φ + 𝜎2 

𝑒 
𝐼 (2) 

where Φ is the empirical kinship matrix among all participants, 𝜎e 
2 is 

the variance caused by environmental effects and measurement errors, 

and I is an identity matrix under the assumption that all environmental 

effects are uncorrelated among family members. 

Heritability ( h 2 ) is the proportion of the total phenotypic variance 

( 𝜎p 
2 ) that can be explained by the additive effects of genes ( 𝜎g 

2 ): 

ℎ 2 = 

𝜎2 
𝑔 

𝜎2 
𝑃 

(3) 

The fphi function uses algorithmic developments to reduce the com- 

putational burden of heritability measurements (see supplement). This 

approach uses eigenvalue decomposition of the empirical kinship ma- 

trix, Φ ( Blangero et al., 2013 ), and then performs one-step asymp- 

totically unbiased MLE estimation ( Ganjgahi et al., 2015 ). The vari- 

ance parameters are estimated by comparing the observed phenotypic 

covariance matrix with the covariance matrix predicted by kinship 

( Almasy and Blangero, 1998 ). Significance of heritability is assessed 

using a likelihood-ratio test, which compares the maximum likelihood 

with the likelihood estimation in which 𝜎g 
2 is constrained to zero in the 

model. Twice the difference between the log-likelihoods of these models 

yields a test statistic, which is a 1/2:1/2 mixture of an asymptotic 𝜒2 

distribution with 1°-of-freedom and a point mass at zero. 

2.7. GCTA analysis 

We compared the heritability values estimated using FPHI to 

those estimates using the restricted MLE approach used within GCTA 

( Lee et al., 2011 ; Yang et al., 2010 ). The GCTA approach estimates the 

proportion of the variance of the phenotype that is explained by the 

genome-wide genotypic data, or in this case, SNPs. Specifically, the vari- 
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ance is estimated by fitting the following linear mixed model, in Eq. (4) : 

𝑦 = 𝑋𝛽 + Φ𝑢 + 𝜀 (4) 

𝑣𝑎𝑟 ( 𝑦 ) = 𝜎2 
𝑔 
𝐺 + 𝜎2 

𝜀 
𝐼 (5) 

where y is the vector of phenotypes, 𝛽 is the vector of fixed effects of 

covariates to be adjusted, Φ is the matrix of the coefficients of related- 

ness and 𝑢 is the vector of random effects from SNPs with 𝑢 ∼ 𝑛 ( 0 , 𝜎2 
𝑢 
𝐼 ) , 

𝜀 is the vector of residual effects with 𝜀 ∼ 𝑛 ( 0 , 𝜎2 
𝜀 
𝐼 ) , 𝑮 = 𝜙𝜙′∕m , where 

m is the number of SNPs. 

GCTA also estimates the GRM using the WAC approach ( Eq. (1) ). 

The variance explained by the genotypic data used in the analyses, 

𝜎2 
𝑔 
= 𝑚𝜎2 

𝑢 
, is estimated using the genomic-relatedness-based restricted 

maximum likelihood (GREML) approach. The heritability can then be 

estimated as: ℎ 2 = 𝜎2 
𝑔 
∕( 𝜎2 

𝑔 
+ 𝜎2 

𝜀 
) , the proportion of total phenotypic vari- 

ance that is due to additive genetic effects. The iterative REML approach 

performs an inversion of the Φ matrix at every iteration. Φ is a dense 

matrix and the computational complexity of this operation is a function 

of ∼N 

2–3 , where N is the number of subjects. This computational effort of 

iterative likelihood calculations becomes non-trivial for very large-scale 

studies such as the UKBB ( N = 500,000 and growing). 

2.8. Timing analysis: FPHI versus GCTA and FPHI CPU versus FPHI GPU 

Large-scale imaging genetic analyses such as voxel-wise heritability 

calculations in large datasets, such as the UKBB, may benefit from mod- 

ern computational hardware. The highly parallel and non-iterative na- 

ture of the SOLAR-Eclipse FPHI algorithms calls for efficient implemen- 

tation using modern hardware optimized for massively parallel compu- 

tations (see supplement). Here, we tested the timing of trait-wise anal- 

yses for FPHI and GCTA, and the voxel-wise analysis between CPU and 

GPU versions of the FPHI. The voxel-wise analyses were not tested with 

GCTA due to very long (estimated several years) calculation times. We 

used a Lenovo computer with 256 GB of RAM and equipped with a dual 

Intel Xeon Gold 6150 processor with 18 cores running at 2.7 GHz (36 

cores in total) and a Tesla P100 GPU card with 3584 cores and 16 GB 

of GPU RAM. 

3. Results 

3.1. Empirical pedigrees: HCP and UKBB 

As expected, the HCP pedigree had a higher average CR than that of 

the UKBB ( Fig. 1 A ). However, ELRT analysis indicated that the UKBB 

pedigree had higher statistical power for heritability studies. The power 

of a pedigree is proportional to both the average relatedness among the 

subjects and the N and therefore the large UKBB sample provided more 

power than the HCP sample ( Fig. 1 B ). 

3.2. SOLAR-Eclipse vs GCTA 

The scatter plots of the heritability estimates showed an excellent 

agreement (overall regression r = 0.96 and 0.98, p < 10 − 10 ) between 

the h 2 values estimated from FPHI and GCTA in both the HCP and UKBB 

samples ( Fig. 2 A and B, Table S1; see supplement ). The heritability 

estimates by FPHI and GCTA showed no significant differences in the 

HCP (average h 2 = 0.72 ± 0.15 versus. 0.70 ± 0.18, paired t -test p = 0.1). 

However, the average FPHI h 2 estimates were higher than GCTA-derived 

h 2 values in the UKBB (average h 2 = 0.36 ± 0.08 versus 0.29 ± 0.07, 

paired t -test p < 10 − 10 ). 

3.3. Regional and voxel-wise heritability in the HCP versus UKBB 

The regional heritability analyses showed good agreement between 

HCP and UKBB ( Fig. 2 C and D ) when calculated using FPHI (overall lin- 

ear regression r = 0.76, p < 10 − 10 ) and GCTA (overall linear regression 

r = 0.75, p < 10 − 10 ). However, the heritability estimates in UKBB were 

approximately 50% lower than those for HCP (average h 2 = 0.36 ± 0.08 

versus 0.72 ± 0.15, paired t -test p < 10 − 10 ). 

The plot of voxel-wise heritability values of skeletonized FA values 

for 32,215 voxels that overlapped between UKBB and HCP skeletons is 

shown in Fig. S1 (see supplement). Overall, the regional pattern of her- 

itability showed a good agreement (overall linear regression r = 0.76, 

p < 10 − 10 ). However, the voxel-wise heritability estimates in the UKBB 

sample were lower than those for HCP (average h 2 = 0.16 ± 0.08 versus 

h 2 = 0.25 ± 0.16, paired t -test p < 10 − 10 for UKBB and HCP, respec- 

tively). 

3.4. Regional white matter heritability: UKBB versus. ENIGMA 

ENIGMA has published regional white matter heritability meta- and 

mega- analytical multi-site estimates from a multi-site heritability anal- 

ysis. The FPHI and GCTA heritability estimates for white matter tracts 

in UKBB showed good agreement with the published values (linear re- 

gression r = 0.76–0.82, p < 0.01) ( Fig. 3 A and B ). The heritability es- 

timates in the UKBB were approximately 60% of the h 2 values reported 

in ENIGMA (average h 2 = 0.42 ± 0.05 versus h 2 = 0.67 ± 0.09, paired 

t -test p < 10 − 10 for UKBB and ENIGMA, respectively). 

3.5. Timing of heritability analyses 

FPHI-CPU analyses in the HCP required ∼0.02 ± 0.01 s per trait ver- 

sus 3.0 ± 0.10 s per trait for GCTA. The heritability analyses of regional 

phenotypes in the UKBB took about 1.1 ± 0.10 s per trait using FPHI- 

CPU and 2046 ± 470 s for GCTA. 

The timing of voxel-wise analyses was limited to FPHI due to the 

long execution time of GCTA (estimated ∼7 years for UKBB analyses). 

We performed a timing analysis for the CPU and GPU versions of FPHI 

in SOLAR-Eclipse. The FPHI-CPU voxel-wise heritability analyses took 

approximately 2 min for HCP and 22 h for UKBB. The FPHI-GPU version 

took approximately 36 s for HCP and 58.33 min for UKBB. The scaling 

of computational burden with respect to the number of participants ( N ) 

was approximately linear for both CPU and GPU versions of FPHI versus 

∼N 

2–3 for GCTA. 

4. Discussion 

We compared the estimates of SNP-heritability (SNP-h 2 ) derived us- 

ing a classical variance component model and empirical coefficients of 

relatedness (CR) with the SNP-h 2 estimated from an independent ana- 

lytic approach using samples of related (Human Connectome Project) 

and unrelated (UK Biobank) genetic imaging datasets. We showed that 

heritability estimates obtained using the SOLAR-Eclipse Fast and Pow- 

erful Heritability Inference (FPHI) method that was developed to lin- 

earize the calculations of the classical heritability model were in good 

agreement with the estimated provided by the established SNP-h 2 soft- 

ware - Genome-wide Complex Trait Analysis (GCTA) ( Visscher et al., 

2006 , 2007 ). We demonstrated an excellent agreement between SNP- 

h 2 values calculated using the FPHI and GCTA and between the results 

from the HCP and UKBB cohorts, as well as estimates in the UKBB and 

these reported by the meta-and-mega analysis of heritability studies per- 

formed by Enhancing Neuro Imaging Genetics through Meta-Analysis 

(ENIGMA) consortium. Overall, our findings demonstrated good agree- 

ment among genetic contribution to neuroimaging traits regardless of 

the study/sample design. The small degree of shared genotypic vari- 

ance in sufficiently large samples such as UKBB can enable standard 

heritability analyses. We discussed the finding of lower heritability esti- 

mates in UKBB versus HCP and attributed it to several well-known fac- 

tors. Nonetheless, the patterns of additive genetic contribution across 

the brain were consistent and readily replicable across diverse samples 

and study designs. 
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Fig. 2A. Scatter plot of the HCP FPHI estimates calculated using empirical kinship versus HCP GCTA estimates calculated using GREML for 60 neuroimaging 

phenotypes. 

Linear regression models were fitted to the HCP heritability estimates using the FPHI and GCTA methods, including fit lines, equations, and coefficient of determi- 

nations (R 2 ). The blue solid line is an overall linear regression fit between two heritability methods across all phenotypes in the HCP. The green dashed lines, red 

dashed lines and orange dashed lines represent linear regression fits between two heritability methods in cortical thickness, white matter FA and subcortical volume, 

respectively. The black dashed lines are identity lines. 

B. Scatter plot of the UKBB FPHI estimates calculated using empirical kinship versus UKBB GCTA estimates calculated using GREML for 60 neuroimaging phenotypes. 

Linear regression models were fitted to the UKBB heritability estimates using the FPHI and GCTA methods, including fit lines, equations, and coefficient of determi- 

nations (R 2 ). The blue solid line is an overall linear regression fit between two heritability methods across all phenotypes in the UKBB. The green dashed lines, red 

dashed lines and orange dashed lines represent linear regression fits between two heritability methods in cortical thickness, white matter FA and subcortical volume, 

respectively. The black dashed lines are identity lines. 
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Fig. 2C. Scatter plot of the UKBB FPHI estimates calculated using empirical kinship versus the HCP FPHI estimates calculated using empirical kinship for 60 

neuroimaging phenotypes. 

Linear regression models were fitted to the UKBB and HCP heritability estimates using the FPHI method, including fit lines, equations, and coefficient of determinations 

(R 2 ). The blue solid line is an overall linear regression fit between two groups across all phenotypes. The green dashed lines, red dashed lines and orange dashed lines 

represent linear regression fits between two groups in cortical thickness, white matter FA and subcortical volume, respectively. The black dashed lines are identity 

lines. 

D. Scatter plot of the UKBB GCTA estimates calculated using GREML versus the HCP GCTA estimates calculated using GREML for 60 neuroimaging phenotypes. 

Linear regression models were fitted to the UKBB and HCP heritability estimates using the GCTA method, including fit lines, equations, and coefficient of determina- 

tions (R 2 ). The blue solid line is overall linear regression between two groups across all tracts. The blue line is an overall linear fits regression between two groups 

across all phenotypes. The green dashed lines, red dashed lines and orange dashed lines represent linear regression fits between two groups in cortical thickness, 

white matter FA and subcortical volume, respectively. The black dashed lines are identity lines. 
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Fig. 3. A. Scatter plot of the UKBB FPHI estimates versus ENIGMA for 16 white matter FA. 

Linear regression models were fitted to the heritability estimates from the FPHI and published heritability estimates from ENIGMA for 16 white matter phenotypes 

in the UKBB. The linear regression fits include fit lines, equations, and coefficient of determinations (R 2 ). The black dashed lines are identity lines. 

B. Scatter plot of the UKBB GCTA estimates versus ENIGMA for 16 white matter FA. 

Linear regression models were fitted to the heritability estimates from the GCTA and published heritability estimates from ENIGMA for 16 white matter phenotypes 

in the UKBB. The linear regression fits include fit lines, equations, and coefficient of determinations (R 2 ). The black dashed lines are identity lines. 

Modern, genetic panels provide the opportunity to directly measure 

the genetic sharing between any two individuals in a study and calculate 

the relatedness matrix using empirical, rather than self-reported coeffi- 

cients of relatedness (CR). Prior work demonstrated that heritability val- 

ues derived using the empirical CR had better confidence intervals and 

lower p -values as compared to those from analyses using self-reported 

CR and recommend this approach for genetic analyses in related samples 

( Kochunov et al., 2019a ). GCTA approaches were specifically developed 

to estimate SNP-h 2 using from unrelated individuals ( Visscher et al., 

2006 , 2007 ). However, the SNP-h 2 estimates by GCTA were shown to be 

accurate for related samples ( Zaitlen et al., 2013 ). Here, we confirmed 

that the two methods provided highly consistent (r ∼0.9) heritability es- 

timates in datasets of related and unrelated individuals. 

We demonstrated significant heritability for a series of neuroanatom- 

ical phenotypes that cover structural and diffusion properties of the hu- 

man brain. We observed an excellent ( r = 0.7–0.8) agreement in the 

regional genetic variance across the brain between the HCP and UKBB 

datasets despite the differences in the study design (twin-siblings versus 

unrelated), sample size ( N = ∼1000 versus ∼37,000) and sample charac- 

teristics such as differences in average age (28.8 ± 3.7 versus 63.7 ± 7.5 

years for HCP and UKBB respectively) and imaging protocols. The HCP 

imaging protocol was focused on collecting data at twice (structural) 

to four (diffusion) times higher spatial resolution than the UKBB im- 

ages. Despite the differences in protocols, we observed good agreement 

in the patterns of heritability values among the HCP, UKBB, as well 

as data published by ENIGMA. This demonstrates that the substantial 

genetic variance influencing individual differences in brain structure 

can be readily and consistently measured across diverse samples, study 

designs, imaging protocols, and software approaches. Importantly, the 

agreement in the patterns of heritability between UKBB and HCP data 

provides an opportunity to exploit the greater statistical power of large 

and inclusive samples such as UKBB for the classical genetic analyses 

that were previously limited to twins, siblings, and extended pedigree 

samples. 

Despite the excellent agreement in regional patterns, the heritability 

estimates for the neuroimaging traits in the HCP cohort were approxi- 

mately twice those (average h 2 = 0.72 versus 0.36) observed in the UKBB 

sample, and for white matter approximately 40% smaller than ENIGMA 
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(average h 2 = 0.42 versus 0.67). Likewise, the voxel-wise heritability es- 

timates for the HCP cohort were ∼60% higher than those calculated in 

the UKBB. These absolute differences were independent of the software 

used to estimate heritability. The SNP-h 2 values depend on study design, 

sample characteristics, and the fidelity and ‘closeness’ of the trait to un- 

derlying genetic processes. The higher heritability of the neuroimaging 

traits in the HCP cohort is likely to be the product of three factors: study 

design, sample differences, and quality of the imaging data. Heritabil- 

ity is the proportion of the variance attributed to the additive genetic 

variance after correction for covariates. In the HCP sample, we found 

that sex was the only significant covariate. The HCP sample was de- 

signed to reduce the effects of age on the brain measurements by lim- 

iting recruitment to an age range that corresponds to a plateau in the 

brain-aging-versus-development trend (22–35 years) ( Kochunov et al., 

2011 ; Van Essen et al., 2013 ). The focus of UKBB study is on the aging- 

related disorders, and the age effects were highly significant for all neu- 

roimaging traits in this sample. The lack of aging effects in HCP sub- 

jects is the first likely contributor to the higher heritability estimates. 

The genotype-by-age interaction during aging observed in studies that 

recruit subjects across the lifespan, can significantly reduce heritability 

estimates ( Batouli et al., 2013 ; Brouwer et al., 2012 , 2020 ; Glahn et al., 

2013 ). 

The HCP study used a twin-sibling recruitment design. Heritabil- 

ity estimates obtained using this study design are typically higher than 

heritability estimates obtained other study designs such as extended- 

family-based pedigrees or unrelated samples ( Kochunov et al., 2014 ; 

Manolio et al., 2009 ). For instance, heritability measurements of re- 

gional white matter traits using self-reported CR HCP were ∼20% 

higher than these estimates reported by ENIGMA studies that combined 

heritability estimates for cerebral white matter across several world- 

wide cohorts using meta-analytical and mega-analytical aggregation 

( Jahanshad et al., 2013 ; Kochunov et al., 2015 ). One potential expla- 

nation is that the phenotypic variance in complex polygenic traits such 

as neuroanatomical measurements is also controlled by the heritable 

epigenetic regulation. This variance is accounted for via study design 

in the twin-siblings design but less so in extended family and cannot 

be accounted for in the unrelated sample design ( Manolio et al., 2009 ). 

One other potential cause of missing heritability is shared early life en- 

vironment that may shape neuroanatomical traits ( Workalemahu et al., 

2018 ). In addition, though there is little variance in age between siblings 

and none within twin pairs, there is a large variation in the differences 

in age between pairs of individuals in samples such as the UKBB. Al- 

though age is included as a covariate in the model, this correction does 

not correct for the difference in age between individuals and the im- 

pact of this on phenotypic covariance. There is also a possibility that 

the difference in dataset demographics influences the heritability mea- 

sures. While there is some variance in ancestry within the UKBB dataset 

it is a much lower proportion than in the HCP data. The difference in 

minor allele frequencies between datasets due to these ancestral differ- 

ences could contribute to the higher heritability within the HCP results, 

however, this is likely a small contribution as the heritability estimates 

using self-reported and empirical values showed only minor differences 

( Kochunov et al., 2015 ). Lastly, the higher quality of the HCP imag- 

ing data likely reduces the measurement error and thus contributes to 

higher heritability estimates. We note the remarkable agreement in the 

overall patterns of the regional heritability estimates between the UKBB, 

HCP, and ENIGMA samples, which argues for the suitability of the UKBB 

for next-generation genetic analyses focused on understanding imaging 

genetic networks in complex illnesses. 

The SOLAR-Eclipse FPHI is an extension of the standard variance 

component model that has served the biomedical genetics community 

for over seven decades. Empirical relatedness is a logical extension of 

this method, allowing the estimation of additive genetic variation cap- 

tured by SNP arrays and informative of the genetic architecture of com- 

plex traits ( Yang et al., 2010 ). The highly parallel nature of the FPHI 

algorithm allows for implementation using modern hardware optimized 

for massively parallel computations of voxel-wise datasets in samples as 

large as the UKBB. The FPHI code was implemented using linear algebra 

software libraries that optimize the code for parallel scientific comput- 

ing in CPU and GPU environments (see supplement section for algo- 

rithmic details). This provided a 10 2–4 -fold acceleration in heritability 

analyses versus GCTA, which makes the approach especially valuable 

for studies using data from the UKBB ( N = 500,000 and growing). The 

progress of methodological developments in imaging genetics enables 

the transition from an interrogation of only a few traits to massive voxel- 

wise analyses in order to study regional variations in genetic influences 

across the brain. 

5. Limitations 

Empirical CR methods also have a few limitations. The threshold for 

empirical CR was set at 0 because WAC can produce negative CR val- 

ues for some unrelated individuals. The negative CR reflect violations of 

Hardy-Weinberg equilibrium, i.e. ancestral differences in linkage dise- 

quilibrium structures, overlapping generations, and deviations from the 

assumption that genotype frequencies in a population will remain con- 

stant from generation to generation ( Visscher et al., 2007 ). GCTA, con- 

versely, retains negative values in the analysis to prevent biases in the 

iterative likelihood calculations ( Visscher et al., 2007 ). However, we be- 

lieve that this is a minor limitation, as both methods provided very sim- 

ilar heritability estimates. Empirical CR estimation is sensitive to both 

the content and quality of genotyping, and this may alter the heritabil- 

ity results. For instance, allowing for more rare variants in the GCTA 

software led to failure of algorithmic convergence for many traits. An- 

other limitation of this study was the large difference in the number of 

SNPs between the dataset, as the HCP data were not imputed in accor- 

dance with the GCTA guidelines while the only available data from the 

UKBB had already been imputed. However, we feel that this had little 

impact on our results and further exemplifies how well the SOLAR FPHI 

methods agree with the established GTCA methods. 

6. Conclusion 

We show that heritability measurements for complex neuroimaging 

traits based on empirically measured genetic variance among the largely 

unrelated participants in the UKBB sample were in agreement with those 

measured in the twin- and family-based HCP sample. This agreement 

was observed for both region-based and voxel-wise traits. We likewise 

observed an excellent agreement between empirical heritability values 

derived by SOLAR-Eclipse and SNP- h 2 values calculated by the GCTA 

software, suggesting stability of these estimates independent of the an- 

alytic methods. Overall, this suggests that large and inclusive samples 

of unrelated individuals such as data collected by the UKBB can be used 

to estimate the proportion of phenotypic variance explained by additive 

genetic factors. 
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