
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International 

Journal (AAM) Journal (AAM) 

Volume 16 Issue 2 Article 27 

12-2021 

(R1412) Stability and Bifurcation of a Cholera Epidemic Model (R1412) Stability and Bifurcation of a Cholera Epidemic Model 

with Saturated Recovery Rate with Saturated Recovery Rate 

Huda Abdul-Satar 
University of Baghdad 

Raid K. Naji 
University of Baghdad 

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam 

 Part of the Biology Commons, Epidemiology Commons, and the Ordinary Differential Equations and 

Applied Dynamics Commons 

Recommended Citation Recommended Citation 
Abdul-Satar, Huda and Naji, Raid K. (2021). (R1412) Stability and Bifurcation of a Cholera Epidemic Model 
with Saturated Recovery Rate, Applications and Applied Mathematics: An International Journal (AAM), 
Vol. 16, Iss. 2, Article 27. 
Available at: https://digitalcommons.pvamu.edu/aam/vol16/iss2/27 

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for 
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of 
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu. 

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol16
https://digitalcommons.pvamu.edu/aam/vol16/iss2
https://digitalcommons.pvamu.edu/aam/vol16/iss2/27
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol16%2Fiss2%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol16%2Fiss2%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/740?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol16%2Fiss2%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/121?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol16%2Fiss2%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/121?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol16%2Fiss2%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol16/iss2/27?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol16%2Fiss2%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu


 

1248 
 

 

Available at 
http://pvamu.edu/aam 

Appl. Appl. Math. 
ISSN: 1932-9466 

 
Vol. 16, Issue 2 (December 2021),  pp. 1248 –1273 

Applications and Applied 
Mathematics: 

An International Journal 
(AAM) 

Stability and Bifurcation of a Cholera Epidemic Model with 
Saturated Recovery Rate 

 
1 Huda Abdul-Satar and 2* Raid K. Naji 

 
1&2 Department of Mathematics 

College of Science  
University of Baghdad  

Baghdad, IRAQ 
1 hadon2013@yahoo.com  

2* rknaji@gmail.com 
*Corresponding author 
 

Received: June 13, 2020; Accepted: January 1, 2021 

 
 
Abstract:  

In this paper, a Cholera epidemic model is proposed and studied analytically as well as 
numerically. It is assumed that the disease is transmitted by contact with Vibrio cholerae and 
infected person according to dose-response function. However, the saturated treatment function is 
used to describe the recovery process. Moreover, the vaccine against the disease is assumed to be 
utterly ineffective. The existence, uniqueness and boundedness of the solution of the proposed 
model are discussed. All possible equilibrium points and the basic reproduction number are 
determined. The local stability and persistence conditions are established. Lyapunov method and 
the second additive compound matrix are used to study the global stability of the system. The 
conditions that guarantee the occurrence of local bifurcation and backward bifurcation are 
determined. Finally, numerical simulation is used to investigate the global dynamical behavior of 
the Cholera epidemic model and understand the effects of parameters on evolution of the disease 
in the environment. It is observed that the solution of the model is very sensitive to varying in 
parameters values and different types of bifurcations are obtained including backward bifurcation.    
 
Keywords: Cholera; Stability; Persistence; Local bifurcation; Second additive compound matrix   
    
MSC 2010 No.: 92D30, 34D23 
 
1. Introduction 

Mathematical modeling of infectious diseases played a vital role in our understanding of disease 
dynamics and developing effective prevention and control measures against epidemics. The 
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occurrence of various infectious diseases represents a major challenge in modern society. The 
event of infectious disease causes a large loss of lives and other resources. Although there is an 
increased understanding of the mechanisms of infectious diseases from one side and the 
development of medical sciences from another side, infectious diseases caused millions of deaths 
and disabilities across the globe. Hence, people from different branches of science and medicine 
are working together to find an effective mechanism to stop the spread of infectious diseases, see 
Upadhyay et al. (2019) and Roy et al. (2020) and the references therein. Waterborne diseases (such 
as Cholera, typhoid, hepatitis) are the result of a lack of safe drinking water. The possibility of 
multiple transmission ways of the disease makes the study of waterborne disease more important. 
Among all the diseases which belong to this class, Cholera attracts more attention. Therefore, 
Cholera which is known as severe water and food-borne infectious disease caused by the gram-
negative bacterium Vibrio cholera remains a significant public health burden in the developing 
world. This is due to the limited understanding at present on the complex infection dynamics of 
Cholera, which involve both direct (human to human) and indirect (environment to human) 
transmission pathways, see Cheng (2012).  
 
Accordingly, a number of research papers dealing with modeling and simulating the dynamical 
behavior of Cholera have been done. Capasso and Paveri-Fontana (1979) constructed a simple 
Cholera model, which represents the first epidemic model that simulating the indirect transmission 
of the disease in the European Mediterranean region through the year 1973. They used two 
equations to describe the dynamics of infective people in the community and the dynamics of the 
bacteria population in the sea. Codeço (2001) extended the Cholera model of Capasso and Paveri-
Fontana so that the dynamics of the susceptible individuals in the host population are included. 
Later on, Hartley et al. (2006) extended Codeço’s work through incorporated a hyper infectious 
stage of the pathogen Vibrio cholerae based on the laboratory results. Joh et al. (2009) considered 
the dynamics of Cholera disease so that the primary mode of transmission is indirect and happened 
by contact with a contaminated reservoir. They also evaluated the realistic scenario in which the 
number of ingested pathogens must be above a critical threshold to cause infection in susceptible 
individuals. Mukandavire et al. (2011) explored the utility of mathematical models in 
understanding transmission (direct and indirect) dynamics of Cholera and in assessing the 
magnitude of interventions necessary to control the epidemic disease. Zhou et al. (2012) 
considered a Cholera model with imperfect vaccination. Cheng et al. (2012) discussed and 
investigated a global stability analysis for a generalized Cholera epidemiological model. Agarwal 
and Verma, (2012) proposed and analyzed a nonlinear delayed mathematical model with 
immigration for the spread of Cholera disease with carriers in the environment. Mondal and Kar 
(2013) proposed and analyzed a water-borne disease model involving water-to-person and person-
to-person transmission and saturated incidence. However, Cui et al. (2014) considered an SVR-B 
Cholera model with imperfect vaccination. They performed a sensitivity analysis of the 
reproduction number on the parameters to determine their relative importance to disease 
transmission. After that, Wang et al. (2015) studied a Cholera model so that it explicitly includes 
disease prevalence dependent contact rates (direct and indirect) and host shedding rate, and then 
analyzed the resulting dynamics. While Zhou et al. (2016) studied a Cholera epidemic model with 
a saturated recovery rate. 
 
Recently, Ayoade et al. (2018) studied the Cholera model so that it incorporates vaccination and 
therapeutic treatment as prevention and control measures for Cholera outbreaks. They considered 
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the possibility of re-infection after recovery too. However, Sisodiya et al. (2018) proposed a 
delayed SEIRB epidemic model with impulsive vaccination and disinfection. They studied the 
pulse vaccination strategy and sanitation to control the Cholera disease. While Subchan et al. 
(2019) have been used mathematical modeling and dynamics optimization to study the spread of 
Cholera disease. They proposed a SEIQR type of epidemic model considering the bacterial 
concentration of the Cholera spread dynamics. Later on, Meszaros et al. (2020) constructed a 
mathematical model of Cholera, which incorporates transmission within and between households. 
They observed that variation in the magnitude of household transmission changes multiple features 
of disease dynamics, including the severity and duration of outbreaks. However, Kwasi-Do and 
Afriyie (2020) developed a mathematical model that simulates the transmission mechanism of 
Cholera considering the role of control measures and the environment in the transmission of the 
disease. They formulated their model depending on two populations: the human population and 
the bacteria population. 
 
In this paper, Cui et al. (2014) model is modified so that it’s using a saturated recovery rate, in 
addition to that, a portion of the imperfect vaccine population becomes infected too through contact 
with an infected person or with contaminated environment resources.    
 
2. Model formulation 

In this section, a mathematical model for the transmission of Cholera epidemic disease is 
formulated mathematically with the help of a first-order nonlinear differential equations system. 
The following hypotheses are adopted in the following system: 

 
1. It is assumed that the total human population at a certain time 𝑡𝑡 is represented by 𝑁𝑁(𝑇𝑇). The 

disease divided the total population into four mutually exclusive compartments, namely 
susceptible population 𝑆𝑆(𝑡𝑡), vaccine population 𝑉𝑉(𝑡𝑡), infected population 𝐼𝐼(𝑡𝑡), and 
recovered population 𝑅𝑅(𝑡𝑡). Furthermore, the pathogen population is represented by 𝐵𝐵(𝑡𝑡).   

2. It is assumed further that all new entrants will join the susceptible class at rate 𝐴𝐴. While the 
infected people contribute to the concentration of Vibrio cholerae at a rate 𝜂𝜂. 

3. The susceptible people become infected at rates 𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

 and 𝛽𝛽ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

, which known as dose-
response function, see Codeço (2001), where 𝛽𝛽𝑒𝑒 and 𝛽𝛽ℎ are the rates of contact with the 
environment represented by untreated water or food and humane represented by infected 
people respectively. While 𝐾𝐾1 and 𝐾𝐾2 are the concentration of Vibrio cholerae in the 
environment and infected persons respectively. 

4. The rate at which the susceptible population is vaccinated is 𝛾𝛾1, and the rate at which the 
vaccine wears off is 𝛾𝛾2. Moreover, the vaccine has the effect of reducing infection by a factor 
of 𝜎𝜎 so that 𝜎𝜎 = 0 means that the vaccine is completely effective in preventing infection, 
while 𝜎𝜎 = 1 means that the vaccine is utterly ineffective, therefore the vaccinated people 
become infected at the same rates given in (3) for 𝜎𝜎 ∈ (0,1). 

5. Since the Cholera outbreak occurs in developing countries at which the availability of 
hospitals and other medical facilities is limited. Hence, the saturated treatment function 𝑐𝑐𝑐𝑐

𝑏𝑏+𝐼𝐼
 

is used, where 𝑐𝑐 represents the rate at which the infected population being treated, while 𝑏𝑏 
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represents the rate of preventing treatment to reach the infected population for different 
reasons. 

6. Finally, the natural death rate of humans is given by 𝜇𝜇1, while 𝜇𝜇2 is the natural death rate of 
Vibrio cholerae. However, the model considers the disease-related death rate as 𝑑𝑑. 
 

According to the above hypotheses, the dynamics of the Cholera epidemic disease within the 
human been can be described in the following set of differential equations.   

 

   

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴 − 𝛽𝛽𝑒𝑒𝑆𝑆𝑆𝑆
𝐾𝐾1+𝐵𝐵

− 𝛽𝛽ℎ𝑆𝑆𝑆𝑆
𝐾𝐾2+𝐼𝐼

− 𝛾𝛾1𝑆𝑆 + 𝛾𝛾2𝑉𝑉 − 𝜇𝜇1𝑆𝑆,                     
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾1𝑆𝑆 − 𝛾𝛾2𝑉𝑉 −
𝜎𝜎𝛽𝛽𝑒𝑒𝑉𝑉𝑉𝑉
𝐾𝐾1+𝐵𝐵

− 𝜎𝜎𝛽𝛽ℎ𝑉𝑉𝑉𝑉
𝐾𝐾2+𝐼𝐼

− 𝜇𝜇1𝑉𝑉,                         
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑒𝑒𝑆𝑆𝑆𝑆
𝐾𝐾1+𝐵𝐵

+ 𝛽𝛽ℎ𝑆𝑆𝑆𝑆
𝐾𝐾2+𝐼𝐼

+ 𝜎𝜎𝛽𝛽𝑒𝑒𝑉𝑉𝑉𝑉
𝐾𝐾1+𝐵𝐵

+ 𝜎𝜎𝛽𝛽ℎ𝑉𝑉𝑉𝑉
𝐾𝐾2+𝐼𝐼

− (𝑑𝑑 + 𝜇𝜇1)𝐼𝐼 − 𝑐𝑐𝑐𝑐
𝑏𝑏+𝐼𝐼

,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐𝑐𝑐
𝑏𝑏+𝐼𝐼

− 𝜇𝜇1𝑅𝑅,                                                                     
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜂𝜂𝜂𝜂 − 𝜇𝜇2𝐵𝐵.                                                                       

            (1) 

 
All the parameters are assumed to be positive, while 𝜎𝜎 is a nonnegative parameter.  Since the first 
three equations along with the last equation in the system (1) are independent of the variable 𝑅𝑅, it 
suffices to consider the following model: 
 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴 − 𝛽𝛽𝑒𝑒𝑆𝑆𝑆𝑆
𝐾𝐾1+𝐵𝐵

− 𝛽𝛽ℎ𝑆𝑆𝑆𝑆
𝐾𝐾2+𝐼𝐼

− 𝛾𝛾1𝑆𝑆 + 𝛾𝛾2𝑉𝑉 − 𝜇𝜇1𝑆𝑆,                     
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾1𝑆𝑆 − 𝛾𝛾2𝑉𝑉 −
𝜎𝜎𝛽𝛽𝑒𝑒𝑉𝑉𝑉𝑉
𝐾𝐾1+𝐵𝐵

− 𝜎𝜎𝛽𝛽ℎ𝑉𝑉𝑉𝑉
𝐾𝐾2+𝐼𝐼

− 𝜇𝜇1𝑉𝑉,                         
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑒𝑒𝑆𝑆𝑆𝑆
𝐾𝐾1+𝐵𝐵

+ 𝛽𝛽ℎ𝑆𝑆𝑆𝑆
𝐾𝐾2+𝐼𝐼

+ 𝜎𝜎𝛽𝛽𝑒𝑒𝑉𝑉𝑉𝑉
𝐾𝐾1+𝐵𝐵

+ 𝜎𝜎𝛽𝛽ℎ𝑉𝑉𝑉𝑉
𝐾𝐾2+𝐼𝐼

− (𝑑𝑑 + 𝜇𝜇1)𝐼𝐼 − 𝑐𝑐𝐼𝐼
𝑏𝑏+𝐼𝐼

,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜂𝜂𝜂𝜂 − 𝜇𝜇2𝐵𝐵.                                                                      

            (2) 

 
The initial conditions of the system (2) are assumed as following: 
 
 𝑆𝑆(0) ≥ 0,𝑉𝑉(0) ≥ 0, 𝐼𝐼(0) ≥ 0,𝐵𝐵(0) ≥ 0. 
 
According to the equations in the system (1), and hence those given in system (2), it is clear that 
all the interaction functions are continuous and continuously differentiable functions. Hence, they 
are Lipschitz functions; therefore these systems have unique solutions. Further, the uniformly 
bounded of those solutions can be shown in the following theorem.    
 
Theorem 1.  
 
All solutions of the system (2) are uniformly bounded. 
Proof:  
 
Let 𝑤𝑤 = 𝑆𝑆 + 𝑉𝑉 + 𝐼𝐼, then according to the first three equations in system (2) we obtain 
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 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≤ 𝐴𝐴 − 𝜇𝜇1𝑤𝑤

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯⎯� 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝜇𝜇1𝑤𝑤 ≤ 𝐴𝐴. 

 
Then, 𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡→∞𝑤𝑤 ≤ 𝐴𝐴

𝜇𝜇1
. It follows form the fourth equation that: 

 
 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
≤ 𝜂𝜂 𝐴𝐴

𝜇𝜇1
− 𝜇𝜇2𝐵𝐵

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯⎯� 𝑙𝑙𝑙𝑙 𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡→∞𝐵𝐵 ≤ 𝜂𝜂𝜂𝜂

𝜇𝜇1𝜇𝜇2
. 

 
Therefore, all the variables are bounded and hence the proof is follows.            ■ 
 
3. Existence of equilibrium points and basic reproduction number 

The basic reproduction number, also it is known as basic reproductive rate or basic reproductive 
ratio, is one of the most useful threshold parameter that characterize mathematical problems 
concerning infection diseases. In fact, the infection will disappear and the system approaches 
asymptotically to the disease free equilibrium point when the basic reproduction number value is 
less than one, while the infection is outbreak and the disease will spread throughout all the system 
if it’s bigger than one in most of epidemiological systems. Now, in order to determine the basic 
reproduction number of system (2), we began by computing the disease-free equilibrium point of 
system (2), which denoted by 𝑃𝑃0 = (𝑆𝑆0,𝑉𝑉0, 0,0). Straightforward computation when there is no 
disease in the system (2), i.e., 𝐼𝐼 = 𝐵𝐵 = 0, gives that 
 
 𝑆𝑆0 = 𝐴𝐴[𝜇𝜇1+𝛾𝛾2]

𝜇𝜇1(𝛾𝛾1+𝜇𝜇1+𝛾𝛾2)
,𝑉𝑉0 = 𝛾𝛾1𝐴𝐴

𝜇𝜇1(𝛾𝛾1+𝜇𝜇1+𝛾𝛾2)
 .               (3) 

 
Now before determining the endemic equilibrium point and their existence conditions, the basic 
reproduction number 𝑅𝑅0 at the disease free equilibrium point is determined.  
Let 𝑥𝑥 = (𝐼𝐼,𝐵𝐵, 𝑆𝑆,𝑉𝑉)𝑇𝑇, then system (2) can be written as 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= ℱ(𝑥𝑥) − 𝒱𝒱(𝑥𝑥), where 

 

 ℱ(𝑥𝑥) =

⎣
⎢
⎢
⎡
𝛽𝛽𝑒𝑒𝑆𝑆𝑆𝑆
𝐾𝐾1+𝐵𝐵

+ 𝜎𝜎𝛽𝛽𝑒𝑒𝑉𝑉𝑉𝑉
𝐾𝐾1+𝐵𝐵

+ 𝛽𝛽ℎ𝑆𝑆𝑆𝑆
𝐾𝐾2+𝐼𝐼

+ 𝜎𝜎𝛽𝛽ℎ𝑉𝑉𝑉𝑉
𝐾𝐾2+𝐼𝐼

0
0
0 ⎦

⎥
⎥
⎤
, 

and 

 𝒱𝒱(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎡ (𝑑𝑑 + 𝜇𝜇1)𝐼𝐼 + 𝑐𝑐𝑐𝑐

𝑏𝑏+𝐼𝐼
𝜇𝜇2𝐵𝐵 − 𝜂𝜂𝜂𝜂

𝛽𝛽ℎ𝑆𝑆𝑆𝑆
𝐾𝐾2+𝐼𝐼

+ 𝛽𝛽𝑒𝑒𝑆𝑆𝑆𝑆
𝐾𝐾1+𝐵𝐵

+ 𝛾𝛾1𝑆𝑆 + 𝜇𝜇1𝑆𝑆 − 𝐴𝐴 − 𝛾𝛾2𝑉𝑉
𝜎𝜎𝛽𝛽ℎ𝑉𝑉𝑉𝑉
𝐾𝐾2+𝐼𝐼

+ 𝜎𝜎𝛽𝛽𝑒𝑒𝑉𝑉𝑉𝑉
𝐾𝐾1+𝐵𝐵

+ 𝛾𝛾2𝑉𝑉 + 𝜇𝜇1𝑉𝑉 − 𝛾𝛾1𝑆𝑆 ⎦
⎥
⎥
⎥
⎥
⎤

. 

 
Consequently, from the definition of the basic reproduction number we obtain 
 

5

Abdul-Satar and Naji: Stability and Bifurcation of a Cholera Epidemic Model

Published by Digital Commons @PVAMU, 2021



 AAM: Intern. J., Vol. 16, Issue 2 (December 2021) 1253 

 
 

 𝐹𝐹 = �
𝛽𝛽ℎ(𝑆𝑆0+𝜎𝜎𝑉𝑉0)

𝐾𝐾2

𝛽𝛽𝑒𝑒(𝑆𝑆0+𝜎𝜎𝑉𝑉0)
𝐾𝐾1

0 0
�,      and     V−1 = �

1
(𝑑𝑑+𝜇𝜇1+

𝑐𝑐
𝑏𝑏)

0
𝜂𝜂

𝜇𝜇2(𝑑𝑑+𝜇𝜇1+
𝑐𝑐
𝑏𝑏)

1
𝜇𝜇2

�. 

 
Hence, 𝐹𝐹𝑉𝑉−1, which represents the next generation matrix for system (2), can be determined and 
their spectral radius can be obtained as 
 

 𝜌𝜌(𝐹𝐹𝑉𝑉−1) = max � (𝑆𝑆0+𝜎𝜎𝑉𝑉0)
(𝑑𝑑+𝜇𝜇1+

𝑐𝑐
𝑏𝑏)
�𝜇𝜇2𝐾𝐾1𝛽𝛽ℎ+𝐾𝐾2𝜂𝜂𝛽𝛽𝑒𝑒

𝐾𝐾1𝐾𝐾2𝜇𝜇2
� , 0�.  

 
Accordingly, the basic reproduction number of system (2) is given by 
 
 𝑅𝑅0 = 𝐴𝐴(𝛾𝛾2+𝜇𝜇1+𝜎𝜎𝛾𝛾1)

(𝑑𝑑+𝜇𝜇1+
𝑐𝑐
𝑏𝑏)(𝛾𝛾1+𝜇𝜇1+𝛾𝛾2)

�𝜇𝜇2𝐾𝐾1𝛽𝛽ℎ+𝐾𝐾2𝜂𝜂𝛽𝛽𝑒𝑒
𝐾𝐾1𝐾𝐾2𝜇𝜇1𝜇𝜇2

�.              (4) 

 
On the other hand the endemic equilibrium point of system (2) can be determined as 
 
 𝑆𝑆∗ = 𝐴𝐴𝑅𝑅1𝑅𝑅2𝑅𝑅3

𝑅𝑅3𝑅𝑅4−𝛾𝛾1𝛾𝛾2𝑅𝑅12𝑅𝑅22
, 𝑉𝑉∗ = 𝐴𝐴𝛾𝛾1𝑅𝑅12𝑅𝑅22

𝑅𝑅3𝑅𝑅4−𝛾𝛾1𝛾𝛾2𝑅𝑅12𝑅𝑅22
 , 𝐵𝐵∗ =  𝜂𝜂𝐼𝐼∗

𝜇𝜇2
,             (5) 

 
while 𝐼𝐼∗ > 0 represents the positive root of the following five order polynomial equation 
 
 𝜓𝜓5𝐼𝐼5 + 𝜓𝜓4𝐼𝐼4 + 𝜓𝜓3𝐼𝐼3 + 𝜓𝜓2𝐼𝐼2 + 𝜓𝜓1𝐼𝐼 + 𝜓𝜓0 = 0,              (6) 
here 
 𝜓𝜓5 = −(𝑑𝑑 + 𝜇𝜇1)[𝜃𝜃1𝜂𝜂𝜎𝜎1 + 𝜎𝜎𝜎𝜎12+𝜃𝜃3𝜂𝜂2] < 0, 
 𝜓𝜓4 = 𝛼𝛼1𝜎𝜎1 + 𝐴𝐴𝛾𝛾1𝜎𝜎𝜂𝜂𝜎𝜎1 − 𝜍𝜍4, 
 𝜓𝜓3 = 𝛼𝛼1𝜎𝜎2 + 𝛼𝛼2𝜎𝜎1 + 𝐴𝐴𝛾𝛾1𝜎𝜎[(𝑅𝑅5 + 𝜂𝜂𝜂𝜂)𝜎𝜎1 + 𝜂𝜂𝑅𝑅6) − 𝜍𝜍3, 
 𝜓𝜓2 = 𝛼𝛼1𝜎𝜎3 + 𝛼𝛼2𝜎𝜎2 + 𝛼𝛼3𝜎𝜎1 + 𝐴𝐴𝛾𝛾1𝜎𝜎[(𝑅𝑅5𝑏𝑏 + 𝜇𝜇2𝐾𝐾1𝐾𝐾2)𝜎𝜎1 + (𝑅𝑅5 + 𝜂𝜂𝜂𝜂)𝑅𝑅6) − 𝜍𝜍2, 
 𝜓𝜓1 = 𝛼𝛼2𝜎𝜎3 + 𝛼𝛼3𝜎𝜎1 + 𝐴𝐴𝛾𝛾1𝜎𝜎(𝑏𝑏𝜇𝜇2𝐾𝐾1𝐾𝐾2𝜎𝜎1 + (𝑅𝑅5𝑏𝑏 + 𝜇𝜇2𝐾𝐾1𝐾𝐾2)𝑅𝑅6) − 𝜍𝜍1, 
 𝜓𝜓0 = 𝛼𝛼3𝜎𝜎3 + 𝐴𝐴𝛾𝛾1𝜎𝜎𝜇𝜇2𝐾𝐾1𝐾𝐾2𝑅𝑅5𝑏𝑏 − 𝜍𝜍0, 
with 

𝜍𝜍4 = �[(𝑑𝑑 + 𝜇𝜇1)𝑏𝑏 + 𝑐𝑐][𝜃𝜃1𝜂𝜂𝜎𝜎1 + 𝜎𝜎𝜎𝜎12+𝜃𝜃3𝜂𝜂2]
+ [𝑑𝑑 + 𝜇𝜇1][2𝜎𝜎𝜎𝜎1𝑅𝑅6 + 𝜃𝜃1𝜂𝜂(𝑅𝑅7 + 2𝑅𝑅6) + 2𝜃𝜃3𝜂𝜂𝑅𝑅5]�, 

𝜍𝜍3 = �[(𝑑𝑑 + 𝜇𝜇1)𝑏𝑏 + 𝑐𝑐][2𝜎𝜎𝜎𝜎1𝑅𝑅6 + 𝜃𝜃1𝜂𝜂(𝑅𝑅7 + 2𝑅𝑅6) + 2𝜃𝜃3𝜂𝜂𝑅𝑅5] + [𝑑𝑑

+ 𝜇𝜇1]�𝜎𝜎𝑅𝑅62 + 𝜃𝜃1(2𝜇𝜇2𝐾𝐾1𝐾𝐾2𝜎𝜎1 + 𝑅𝑅8) + 𝜃𝜃3�2𝜇𝜇2𝐾𝐾1𝐾𝐾2𝜂𝜂 + 𝑅𝑅52���, 

𝜍𝜍2 = �[(𝑑𝑑 + 𝜇𝜇1)𝑏𝑏 + 𝑐𝑐]�𝜎𝜎𝑅𝑅62 + 𝜃𝜃1(2𝜇𝜇2𝐾𝐾1𝐾𝐾2𝜎𝜎1 + 𝑅𝑅8) + 𝜃𝜃3�2𝜇𝜇2𝐾𝐾1𝐾𝐾2𝜂𝜂 + 𝑅𝑅52��

+ [𝑑𝑑 + 𝜇𝜇1][𝜃𝜃1𝜇𝜇2𝐾𝐾1𝐾𝐾2𝑅𝑅6 + 2𝜃𝜃3𝜇𝜇2𝐾𝐾1𝐾𝐾2𝑅𝑅5]�, 
𝜍𝜍1 = �[(𝑑𝑑 + 𝜇𝜇1)𝑏𝑏 + 𝑐𝑐][𝜃𝜃1𝜇𝜇2𝐾𝐾1𝐾𝐾2𝑅𝑅6 + 2𝜃𝜃3𝜇𝜇2𝐾𝐾1𝐾𝐾2𝑅𝑅5] + [𝑑𝑑 + 𝜇𝜇1]𝜃𝜃3(𝜇𝜇2𝐾𝐾1𝐾𝐾2)2]�, 
𝜍𝜍0 = [(𝑑𝑑 + 𝜇𝜇1)𝑏𝑏 + 𝑐𝑐]𝜃𝜃3(𝜇𝜇2𝐾𝐾1𝐾𝐾2)2, 
𝑅𝑅1 = 𝜇𝜇2𝐾𝐾1 + 𝜂𝜂𝜂𝜂 > 0, 
𝑅𝑅2 = 𝐾𝐾2 + 𝐼𝐼 > 0, 
𝑅𝑅3 = 𝛾𝛾2𝑅𝑅1𝑅𝑅2 + 𝜎𝜎𝛽𝛽𝑒𝑒𝜂𝜂𝑅𝑅2𝐼𝐼 + 𝜎𝜎𝛽𝛽ℎ𝑅𝑅1𝐼𝐼 + 𝜇𝜇1𝑅𝑅1𝑅𝑅2 > 0, 
𝑅𝑅4 = 𝛽𝛽𝑒𝑒𝜂𝜂𝑅𝑅2𝐼𝐼 + 𝛽𝛽ℎ𝑅𝑅1𝐼𝐼 + 𝛾𝛾1𝑅𝑅1𝑅𝑅2 + 𝜇𝜇1𝑅𝑅1𝑅𝑅2 > 0, 
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𝑅𝑅5 = 𝜇𝜇2𝐾𝐾1 + 𝜂𝜂𝐾𝐾2 > 0, 
𝑅𝑅6 = 𝛽𝛽ℎ𝜇𝜇2𝐾𝐾1 + 𝛽𝛽𝑒𝑒𝜂𝜂𝐾𝐾2 > 0, 
𝑅𝑅7 = 𝛽𝛽𝑒𝑒𝜇𝜇2𝐾𝐾1 + 𝛽𝛽ℎ𝜂𝜂𝐾𝐾2 > 0, 
𝑅𝑅8 = 𝜂𝜂2𝛽𝛽𝑒𝑒𝐾𝐾22 + 𝜇𝜇22𝛽𝛽ℎ𝐾𝐾12 > 0, 

and  
𝛼𝛼1 = 𝐴𝐴𝐴𝐴(𝛾𝛾2 + 𝜎𝜎𝛽𝛽𝑒𝑒 + 𝜎𝜎𝛽𝛽ℎ + 𝜇𝜇1) > 0, 
𝛼𝛼2 = 𝐴𝐴(𝛾𝛾2𝑅𝑅5 + 𝜎𝜎𝑅𝑅6 + 𝜇𝜇1𝑅𝑅5) > 0, 
𝛼𝛼3 = 𝐴𝐴𝐾𝐾1𝐾𝐾2𝜇𝜇2(𝛾𝛾2 + 𝜇𝜇1) > 0, 
𝜎𝜎1 = 𝜂𝜂(𝛽𝛽ℎ + 𝛽𝛽𝑒𝑒) > 0, 
𝜎𝜎2 = 𝑏𝑏𝜎𝜎1 + 𝑅𝑅6 > 0,  
𝜎𝜎3 = 𝑏𝑏𝑅𝑅6 > 0, 
𝜃𝜃1 = 𝛾𝛾2 + 𝜎𝜎(𝛾𝛾1 + 𝜇𝜇1) + 𝜇𝜇1 > 0,  
𝜃𝜃2 = 𝛾𝛾1𝛾𝛾2 + 𝜃𝜃3 > 0, 
𝜃𝜃3 = 𝜇𝜇1𝛾𝛾2 + (𝛾𝛾1 + 𝜇𝜇1)𝜇𝜇1 > 0. 
 

Since 𝜓𝜓5 is negative in equation (6) then equation (6) has at least one positive root provided that 
𝜓𝜓0 > 0, which gives the following condition 
 
 𝜓𝜓0 = 𝑏𝑏 �𝑑𝑑 + 𝜇𝜇1 + 𝑐𝑐

𝑏𝑏
� 𝜇𝜇1(𝛾𝛾2 + 𝛾𝛾1 + 𝜇𝜇1)(𝜇𝜇2𝐾𝐾1𝐾𝐾2)2[𝑅𝑅0 − 1] > 0.         (7a) 

 
Therefore, in order to have a positive equilibrium point, denoted by 𝑃𝑃1, we have to have in addition 
to condition (7a) the following condition 
 
 𝑅𝑅3𝑅𝑅4 > 𝛾𝛾1𝛾𝛾2𝑅𝑅12𝑅𝑅22.               (7b) 
 
4. Local stability Analysis and Persistence 

In the following section, the local stability around each equilibrium point is studied using 
Linearization method and then the persistence conditions of the system are established. The 
general Jacobian matrix of system (2) at the point (𝑆𝑆,𝑉𝑉, 𝐼𝐼,𝐵𝐵), can be written as 
 
 𝐽𝐽 = �𝑐𝑐𝑖𝑖𝑖𝑖�4×4

 ,                                              (8) 
here 
 𝑐𝑐11 = − 𝛽𝛽𝑒𝑒𝐵𝐵

𝐾𝐾1+𝐵𝐵
− 𝛽𝛽ℎ𝐼𝐼

𝐾𝐾2+𝐼𝐼
− 𝛾𝛾1 − 𝜇𝜇1 , 𝑐𝑐12 = 𝛾𝛾2, 𝑐𝑐13 = −𝐾𝐾2𝛽𝛽ℎ𝑆𝑆

(𝐾𝐾2+𝐼𝐼)2
 , 𝑐𝑐14 = −𝐾𝐾1𝛽𝛽𝑒𝑒𝑆𝑆

(𝐾𝐾1+𝐵𝐵)2
, 

 𝑐𝑐21 = 𝛾𝛾1 , 𝑐𝑐22 = −𝛾𝛾2 − 𝜇𝜇1 −
𝜎𝜎𝜎𝜎𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

− 𝜎𝜎𝛽𝛽ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

, 𝑐𝑐23 = −𝐾𝐾2𝜎𝜎𝜎𝜎ℎ𝑉𝑉
(𝐾𝐾2+𝐼𝐼)2

, 𝑐𝑐24 = −𝐾𝐾1𝜎𝜎𝛽𝛽𝑒𝑒𝑉𝑉
(𝐾𝐾1+𝐵𝐵)2

,   

𝑐𝑐31 = 𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

+ 𝛽𝛽ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

 , 𝑐𝑐32 = 𝜎𝜎𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

+ 𝜎𝜎𝜎𝜎ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

, 𝑐𝑐33 = 𝐾𝐾2𝛽𝛽ℎ𝑆𝑆
(𝐾𝐾2+𝐼𝐼)2

+ 𝐾𝐾2𝜎𝜎𝛽𝛽ℎ𝑉𝑉
(𝐾𝐾2+𝐼𝐼)2

− (𝑑𝑑 + 𝜇𝜇1) − 𝑏𝑏𝑏𝑏
(𝑏𝑏+𝐼𝐼)2

, 

 𝑐𝑐34 = 𝐾𝐾1𝛽𝛽𝑒𝑒𝑆𝑆
(𝐾𝐾1+𝐵𝐵)2

+ 𝐾𝐾1𝜎𝜎𝛽𝛽𝑒𝑒𝑉𝑉
(𝐾𝐾1+𝐵𝐵)2

, 𝑐𝑐41 = 0, 𝑐𝑐42 = 0, 𝑐𝑐43 = 𝜂𝜂, and 𝑐𝑐44 = −𝜇𝜇2. 
 

Accordingly, the following theorems can be proved directly using Equation (8) at each equilibrium 
point for system (2). 
 
Theorem 2. 
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 The disease-free equilibrium 𝑃𝑃0 is local asymptotically for 𝑅𝑅0 < 1 and unstable for 𝑅𝑅0 > 1. 
 
Proof: 
 
By substituting the equilibrium point 𝑃𝑃0 in the Jacobian matrix, we obtain the following 
characteristic equation 
 
 [𝜆𝜆2 + (𝛾𝛾1 + 𝛾𝛾2 + 2𝜇𝜇1)𝜆𝜆 + 𝜇𝜇1(𝛾𝛾1 + 𝛾𝛾2 + 𝜇𝜇1)](𝜆𝜆2 − 𝑇𝑇𝑇𝑇 + 𝐷𝐷) = 0,           (9) 
where  
 𝑇𝑇 = 𝛽𝛽ℎ

𝐾𝐾2
(𝑆𝑆0 + 𝜎𝜎𝑉𝑉0) − (𝑑𝑑 + 𝜇𝜇1 + 𝑐𝑐

𝑏𝑏
+ 𝜇𝜇2), 𝐷𝐷 = −𝜇𝜇2 �𝑑𝑑 + 𝜇𝜇1 + 𝑐𝑐

𝑏𝑏
� (𝑅𝑅0 − 1). 

 
For 𝑅𝑅0 < 1, we obtain that 𝐷𝐷 > 0 and 𝑇𝑇 < 0. Hence, the roots of the, 𝜆𝜆2 − 𝑇𝑇𝑇𝑇 + 𝐷𝐷 = 0, have 
negative real parts. Also since the coefficients of the first term of equation (9) are positive, then its 
follows that all the eigenvalues have negative real parts. Therefore, the disease free equilibrium 
point 𝑃𝑃0 is locally asymptotically stable. However, for 𝑅𝑅0 > 1 we have 𝐷𝐷 < 0, which leads to have 
positive eigenvalue for equation (9). Hence, the disease free equilibrium point 𝑃𝑃0 is unstable.  
                                                   ■  
 
Theorem 3.  
 
The endemic equilibrium point 𝑃𝑃1 = (𝑆𝑆∗,𝑉𝑉∗, 𝐼𝐼∗,𝐵𝐵∗) is locally asymptotically stable provided that 
 (𝑑𝑑 + 𝜇𝜇1) + 𝑏𝑏𝑏𝑏

(𝑏𝑏+𝐼𝐼)2
> 𝐾𝐾2𝛽𝛽ℎ

(𝐾𝐾2+𝐼𝐼)2
(𝑆𝑆∗ + 𝜎𝜎𝑉𝑉∗),            (10a) 

 𝜇𝜇2 �
𝐾𝐾2𝛽𝛽ℎ𝑆𝑆

(𝐾𝐾2+𝐼𝐼)2
+ 𝐾𝐾2𝜎𝜎𝛽𝛽ℎ𝑉𝑉

(𝐾𝐾2+𝐼𝐼)2
− (𝑑𝑑 + 𝜇𝜇1) − 𝑏𝑏𝑏𝑏

(𝑏𝑏+𝐼𝐼)2
� > 𝜂𝜂 � 𝐾𝐾1𝛽𝛽𝑒𝑒𝑆𝑆

(𝐾𝐾1+𝐵𝐵)2
+ 𝐾𝐾1𝜎𝜎𝛽𝛽𝑒𝑒𝑉𝑉

(𝐾𝐾1+𝐵𝐵)2
�,       (10b) 

 Γ1Γ2(Γ3 − Γ4)2 + (Γ1 + Γ2)(Γ1Γ2 − Γ5)[Γ2Γ3 + Γ1Γ4 − Γ10 − Γ11] >                      
(Γ10 − Γ11)2 + (Γ1 + Γ2)2(Γ6Γ7 + Γ8Γ9) + (Γ10 − Γ11)(Γ3 − Γ4)(Γ2 − Γ1),

    (10c) 

 
where all symbols are clearly described in the proof. 
 
Proof:  
 
Clearly the Jacobian matrix around the endemic equilibrium point is written as 
 
 𝐽𝐽(𝑃𝑃1) = �𝑑𝑑𝑖𝑖𝑖𝑖�4×4

,               (11) 
 
here 𝑑𝑑𝑖𝑖𝑖𝑖 follows directly from equation (8) by substituting, 𝑃𝑃1 = (𝑆𝑆∗,𝑉𝑉∗, 𝐼𝐼∗,𝐵𝐵∗), instead of the 
point (𝑆𝑆,𝑉𝑉, 𝐼𝐼,𝐵𝐵). Hence, the characteristic equation of 𝐽𝐽(𝑃𝑃1) can be written as 
 
 𝜆𝜆4 + 𝐴𝐴1𝜆𝜆3 + 𝐴𝐴2𝜆𝜆2 + 𝐴𝐴3𝜆𝜆 + 𝐴𝐴4 = 0,             (12)             
 
where 
 
 𝐴𝐴1 = −(Γ1 + Γ2), 𝐴𝐴2 = Γ3 + Γ1Γ2 + Γ4 − Γ5,  

𝐴𝐴3 = −Γ2Γ3 − Γ1Γ4 − Γ10 + Γ11, 𝐴𝐴4 = Γ3Γ4 + Γ8Γ9 + Γ6Γ7, 
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with 
 
 Γ1 = 𝑑𝑑11 + 𝑑𝑑22, Γ2 = 𝑑𝑑33 + 𝑑𝑑44, Γ3 = 𝑑𝑑11𝑑𝑑22 − 𝑑𝑑12𝑑𝑑21, Γ4 = 𝑑𝑑33𝑑𝑑44 − 𝑑𝑑34𝑑𝑑43, 
 Γ5 = 𝑑𝑑23𝑑𝑑32 + 𝑑𝑑13𝑑𝑑31, Γ6 = 𝑑𝑑21𝑑𝑑32 − 𝑑𝑑22𝑑𝑑31, Γ7 = 𝑑𝑑13𝑑𝑑44 − 𝑑𝑑14𝑑𝑑43,  

Γ8 = 𝑑𝑑44𝑑𝑑23 − 𝑑𝑑24𝑑𝑑43, Γ9 = 𝑑𝑑12𝑑𝑑31 − 𝑑𝑑11𝑑𝑑32, Γ10 = 𝑑𝑑13Γ6 − 𝑑𝑑31Γ7,  
Γ11 = 𝑑𝑑32Γ8 − 𝑑𝑑23Γ9. 
 

Moreover, it’s easy to verify that 
 

 𝐴𝐴1𝐴𝐴2𝐴𝐴3 − 𝐴𝐴32 − 𝐴𝐴12𝐴𝐴4                                                                                             
= Γ1Γ2(Γ3 − Γ4)2 + (Γ1 + Γ2)(Γ1Γ2 − Γ5)(Γ2Γ3 + Γ1Γ4 + Γ10 − Γ11)

 

         −(Γ10 − Γ11)(Γ3 − Γ4)(Γ2 − Γ1) − (Γ10 − Γ11)2 − (Γ1 + Γ2)2(Γ6Γ7 + Γ8Γ9). 
 
Now straightforward computation shows that conditions (10a) - (10b) guarantee that Γ1 < 0, Γ2 <
0, Γ3 > 0, Γ4 > 0, Γ5 < 0, Γ6 > 0, Γ7 > 0, Γ8 > 0, Γ9 > 0, Γ10 < 0, and  Γ11 > 0. Therefore, it’s 
follows that 𝐴𝐴1 > 0,  𝐴𝐴2 > 0, 𝐴𝐴3 > 0, and 𝐴𝐴4 > 0. However, the sufficient conditions (10a) - (10c) 
guarantee that 𝐴𝐴1𝐴𝐴2𝐴𝐴3 − 𝐴𝐴32 − 𝐴𝐴12𝐴𝐴4 > 0. Hence, the endemic equilibrium point 𝑃𝑃1 is locally 
asymptotically stable.                   
 
 In the following, we will present the persistence of the system (2). The disease is endemic if the 
infected population remains above a certain positive level for a sufficiently large time. This 
definition of the endemic concept has been characterized with the help of the notion of uniform 
persistence in several epidemiological models, see Thiem (1993). Accordingly system (2) can be 
defined to be uniformly persistent if 
 
 min � lim

𝑡𝑡→∞
inf 𝑆𝑆(𝑡𝑡) , lim

𝑡𝑡→∞
inf𝑉𝑉(𝑡𝑡) , lim

𝑡𝑡→∞
inf 𝐼𝐼(𝑡𝑡) , lim

𝑡𝑡→∞
inf𝐵𝐵(𝑡𝑡)� > 𝜀𝜀,               (13) 

 
for some 𝜀𝜀 > 0 and all initial points in interior of positive domain. Note that it’s easy to show 
using Bendixson theorem that there is no periodic dynamics in the interior of 𝑆𝑆𝑆𝑆 −plane and then 
the only possible invariant set in that plane is the disease free equilibrium point. Hence, for any 
initial point in the interior of 𝑆𝑆𝑆𝑆 −plane with 𝑅𝑅0 < 1 the disease free equilibrium point 𝑃𝑃0 is a 
globally asymptotically stable. 
 
Theorem 4.  
 
Assume that 𝑅𝑅0 > 1 then system (2) is uniformly persistent.  
 
Proof:  
 
Suppose that 𝑢𝑢 is a point in the interior of ℝ+

4 , and 𝑂𝑂(𝑢𝑢) is the orbit through 𝑢𝑢. Let Ω(𝑢𝑢) is the 
omega limit set of 𝑂𝑂(𝑢𝑢). Further, since Ω(𝑢𝑢) is bounded, due to the boundedness of the system 
(2), then we first show that 𝑃𝑃0 ∉ Ω(𝑢𝑢). Assume the contrary, since 𝑃𝑃0 is a saddle point under 𝑅𝑅0 >
1, then 𝑃𝑃0 cannot be the only point in Ω(𝑢𝑢), and hence by Butler-McGhee lemma, see Freedman 
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and Waltman (1984), there is at least one other point 𝑣𝑣 such that 𝑣𝑣 ∈ 𝜔𝜔𝑠𝑠(𝑃𝑃0)⋂Ω(𝑢𝑢), where 𝜔𝜔𝑠𝑠(𝑃𝑃0) 
is the stable manifold of 𝑃𝑃0. 
 
Now, since the stable manifold of 𝑃𝑃0 is given by ℝ+

3  with the directions of 𝑆𝑆, 𝑉𝑉, and 𝐵𝐵 respectively 
and the entire orbit through 𝑣𝑣, say 𝑂𝑂(𝑣𝑣), is contained in Ω(𝑢𝑢). Hence, if 𝑣𝑣 is on either boundary 
axes of ℝ+

3  with the directions of 𝑆𝑆, 𝑉𝑉, and 𝐵𝐵, then we obtain that the positive specific axis (that 
containing 𝑣𝑣) is contained in Ω(𝑢𝑢), which contradicting its boundedness. 

Now, let 𝑣𝑣 belongs to the interior of ℝ+
3  with the directions of 𝑆𝑆, 𝑉𝑉, and 𝐵𝐵. Since there is no 

equilibrium point in the interior of ℝ+
3  with the directions of 𝑆𝑆, 𝑉𝑉, and 𝐵𝐵; the orbit through 𝑣𝑣, which 

is contained in Ω(𝑢𝑢) must be unbounded. Giving a contradiction too and this shows that 𝑃𝑃0 ∉
Ω(𝑢𝑢). Thus Ω(𝑢𝑢) must be in the interior of ℝ+

4 , which guarantee the uniform persistence of system 
(2).                ■ 

 
5. Global stability 

The global stability of the equilibrium points of system (2) is studied. It’s well known that an 
equilibrium point 𝑃𝑃𝑖𝑖; 𝑖𝑖 = 0,1 is said to be a globally asymptotically stable with respect to an open 
set, say Λ, if it’s locally asymptotically stable and its basin of attraction contains Λ, see Li and 
Muldowney (1996). Consequently, in the following theorems the global stability of the free-
disease equilibrium point starting from any initial point in the interior of ℝ+

4  is discussed with the 
help of suitable Lyapunov function, while the stability of endemic equilibrium point 𝑃𝑃1 is discussed 
with the help of second additive compound matrix. 

Theorem 5.  
 
For any initial point in the interior of ℝ+

4  the disease-free equilibrium 𝑃𝑃0 is global asymptotically 
stable provided that 𝑅𝑅0 < 1. 
 
Proof:  
 
Consider the following Lyapunov function 𝐿𝐿 = 𝐼𝐼 + 𝑚𝑚𝑚𝑚 with 𝑚𝑚 > 0 constant. Clearly 𝐿𝐿:ℝ4 → ℝ 
is a positive definite real valued function so that  
 
 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝑚𝑚𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. 

 
Then, we obtain that 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑒𝑒𝑆𝑆𝑆𝑆
𝐾𝐾1+𝐵𝐵

+ 𝛽𝛽ℎ𝑆𝑆𝑆𝑆
𝐾𝐾2+𝐼𝐼

+ 𝜎𝜎𝛽𝛽𝑒𝑒𝑉𝑉𝑉𝑉
𝐾𝐾1+𝐵𝐵

+ 𝜎𝜎𝛽𝛽ℎ𝑉𝑉𝑉𝑉
𝐾𝐾2+𝐼𝐼

− (𝑑𝑑 + 𝜇𝜇1)𝐼𝐼 − 𝑐𝑐𝑐𝑐
𝑏𝑏+𝐼𝐼

+  𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝜇𝜇2𝐵𝐵. 
 
Hence, 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≤ �𝛽𝛽𝑒𝑒

𝐾𝐾1
(𝑆𝑆0 + 𝜎𝜎𝑉𝑉0) −𝑚𝑚𝜇𝜇2�𝐵𝐵 + �𝛽𝛽ℎ

𝐾𝐾2
(𝑆𝑆0 + 𝜎𝜎𝑉𝑉0) − �𝑑𝑑 + 𝜇𝜇1 + 𝑐𝑐

𝑏𝑏
�+ 𝑚𝑚𝑚𝑚� 𝐼𝐼. 
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So by choosing the value of the constant 𝑚𝑚 as 𝑚𝑚 =
𝛽𝛽𝑒𝑒𝐾𝐾2(𝑑𝑑+𝜇𝜇1+

𝑐𝑐
𝑏𝑏)

𝐾𝐾1𝜇𝜇2𝛽𝛽ℎ+𝜂𝜂𝐾𝐾2𝛽𝛽𝑒𝑒
, its obtain that 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≤

𝛽𝛽𝑒𝑒𝐾𝐾2�𝑑𝑑+𝜇𝜇1+
𝑐𝑐
𝑏𝑏�

𝐾𝐾1𝜇𝜇2𝛽𝛽ℎ+𝜂𝜂𝐾𝐾2𝛽𝛽𝑒𝑒
(𝑅𝑅0 − 1)𝐵𝐵 + �

𝐾𝐾1𝜇𝜇2𝛽𝛽ℎ�𝑑𝑑+𝜇𝜇1+
𝑐𝑐
𝑏𝑏�

𝐾𝐾1𝜇𝜇2𝛽𝛽ℎ+𝜂𝜂𝐾𝐾2𝛽𝛽𝑒𝑒
� (𝑅𝑅0 − 1)𝐼𝐼.  

 
Then, 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
< 0 for 𝑅𝑅0 < 1 and 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0 for all points (𝑆𝑆,𝑉𝑉, 0,0) including (𝑆𝑆0,𝑉𝑉0, 0,0). Therefore, the 

disease-free equilibrium 𝑃𝑃0 is a stable point. Now since the only invariant set that satisfies 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 
is given by 𝑃𝑃0 then according to the LaSalle's invariance principle, its attracting. Hence, 𝑃𝑃0 is a 
globally asymptotically stable.                 ■ 
 
Now in order to study the global dynamics around the endemic equilibrium point 𝑃𝑃1 of system (2), 
the Li and Muldowney (1996), approach is used as shown in the following theorem. 
 
Theorem 6.  
 
The endemic equilibrium point 𝑃𝑃1 is globally asymptotically stable in the 𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷 ⊂ ℝ4 provided that 
 
 𝜋𝜋 < 𝜇𝜇1,                 (14) 
 
here 𝜋𝜋 is given in the proof. 
 
Proof: 
 
Rewrite system (2) in the form of autonomous dynamical system given by 
 
 𝑑𝑑𝑿𝑿

𝑑𝑑𝑑𝑑
= 𝒇𝒇(𝑿𝑿),               (15) 

 
here 𝒇𝒇:𝐷𝐷 → ℝ𝑛𝑛,𝐷𝐷 ⊂ ℝ𝑛𝑛 is a simplify connected open set, and 𝒇𝒇 ∈ 𝐶𝐶1(𝐷𝐷).  
 
Let 𝒙𝒙∗ be equilibrium point of system (15). The point 𝒙𝒙∗ is said to be a globally stable in 𝐷𝐷 provided 
that it’s locally stable and all the trajectories approach to 𝒙𝒙∗. 
 
Let 𝒙𝒙 ⟼ 𝑄𝑄(𝑥𝑥) be an �𝑛𝑛2� × �𝑛𝑛2� matrix valued function that is 𝐶𝐶1 for 𝒙𝒙 ∈ 𝐷𝐷. Assume that 𝑄𝑄−1(𝒙𝒙) 
exists and is continuous for 𝒙𝒙 ∈ 𝐾𝐾, the compact absorbing set. 
 
Consider  
 

𝐵𝐵 = 𝑄𝑄𝑓𝑓𝑄𝑄−1 + 𝑄𝑄𝐽𝐽[2]𝑄𝑄−1,              (16)   
                                                                             

here 𝑄𝑄𝑓𝑓 = (𝐷𝐷𝐷𝐷)(𝑓𝑓) or simply 𝑄𝑄𝑓𝑓 is the matrix obtained by replacing each entry 𝑞𝑞𝑖𝑖𝑖𝑖 of 𝑄𝑄 by its 
directional derivative in the direction of 𝑓𝑓 and 𝐽𝐽[2] is the second additive compound matrix of the 
Jacobian matrix for system (15).  
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Consider the Lozinskiĭ measure 𝜇𝜇 of 𝐵𝐵 with respect to a vector norm | ⋅ | on ℝ𝑁𝑁,  𝑁𝑁 = �𝑛𝑛2�, which 
defined  
 

𝜇𝜇(𝐵𝐵) = lim
ℎ→0+

‖𝐼𝐼+ℎ𝐵𝐵‖−1
ℎ

 .                            (17a) 
 
 Then, according to Li and Muldowney, the Lozinskiĭ measure 𝜇𝜇 of 𝐵𝐵, can be written by   
 

𝜇𝜇(𝐵𝐵) = 𝑖𝑖𝑖𝑖𝑖𝑖{c:𝐷𝐷+ ∥ z ∥≤ 𝑐𝑐 ∥ z ∥},           (17b) 
 

for all solutions of 𝑧𝑧′ = 𝐴𝐴𝐴𝐴, with 𝐷𝐷+ is the righthand derivative. Hence, if we can find a norm on 
ℝ𝑁𝑁 for which the associated Lozinskiĭ measure satisfied 𝜇𝜇(𝐵𝐵) < 0 for all 𝑥𝑥 ∈ 𝑖𝑖𝑖𝑖𝑖𝑖 𝐷𝐷 then the 
endemic equilibrium is globally asymptotically stable for  𝑅𝑅0 > 1. 
 
Now, since the Jacobian matrix 𝐽𝐽 of the autonomous dynamical system given by system (2) at an 
arbitrary point (𝑆𝑆,𝑉𝑉, 𝐼𝐼,𝐵𝐵) is given in equation (8), then the second compound matrix of 𝐽𝐽 can be 
written as follows 
 

𝑀𝑀 = [𝑀𝑀𝑖𝑖𝑖𝑖]6×6,                (18) 
where 

𝑀𝑀11 = −(1 + 𝜎𝜎) 𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

− (1 + 𝜎𝜎) 𝛽𝛽ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

− 𝛾𝛾1 − 𝛾𝛾2 − 2𝜇𝜇1 ,  

𝑀𝑀12 = −𝐾𝐾2𝜎𝜎𝜎𝜎ℎ𝑉𝑉
(𝐾𝐾2+𝐼𝐼)2

, 𝑀𝑀13 = −𝐾𝐾1𝜎𝜎𝛽𝛽𝑒𝑒𝑉𝑉
(𝐾𝐾1+𝐵𝐵)2

, 𝑀𝑀14 = 𝐾𝐾2𝛽𝛽ℎ𝑆𝑆
(𝐾𝐾2+𝐼𝐼)2

 ,  

𝑀𝑀15 = 𝐾𝐾1𝛽𝛽𝑒𝑒𝑆𝑆
(𝐾𝐾1+𝐵𝐵)2

 , 𝑀𝑀21 = 𝜎𝜎𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

+ 𝜎𝜎𝜎𝜎ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

 , 

𝑀𝑀22 = − 𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

− 𝛽𝛽ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

− 𝛾𝛾1 − 𝜇𝜇1 + 𝐾𝐾2𝛽𝛽ℎ
(𝐾𝐾2+𝐼𝐼)2

(𝑆𝑆 + 𝜎𝜎𝜎𝜎) − (𝑑𝑑 + 𝜇𝜇1) − 𝑏𝑏𝑏𝑏
(𝑏𝑏+𝐼𝐼)2

 , 

𝑀𝑀23 = 𝐾𝐾1𝛽𝛽𝑒𝑒
(𝐾𝐾1+𝐵𝐵)2

(𝑆𝑆 + 𝜎𝜎𝜎𝜎), 𝑀𝑀24 = 𝛾𝛾2, 𝑀𝑀26 = 𝐾𝐾1𝛽𝛽𝑒𝑒𝑆𝑆
(𝐾𝐾1+𝐵𝐵)2

 ,  

𝑀𝑀32 = 𝜂𝜂, 𝑀𝑀33 = − 𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

− 𝛽𝛽ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

− 𝛾𝛾1 − 𝜇𝜇1 − 𝜇𝜇2,  

𝑀𝑀35 = 𝛾𝛾2, 𝑀𝑀36 = − 𝐾𝐾2𝛽𝛽ℎ𝑆𝑆
(𝐾𝐾2+𝐼𝐼)2

 , 𝑀𝑀41 = − 𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

− 𝛽𝛽ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

, 𝑀𝑀42 = 𝛾𝛾1 , 

𝑀𝑀44 = − 𝜎𝜎𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

− 𝜎𝜎𝜎𝜎ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

− 𝛾𝛾2 − 𝜇𝜇1 + 𝐾𝐾2𝛽𝛽ℎ
(𝐾𝐾2+𝐼𝐼)2

(𝑆𝑆 + 𝜎𝜎𝜎𝜎) − (𝑑𝑑 + 𝜇𝜇1) − 𝑏𝑏𝑏𝑏
(𝑏𝑏+𝐼𝐼)2

 , 

𝑀𝑀45 = 𝐾𝐾1𝛽𝛽𝑒𝑒
(𝐾𝐾1+𝐵𝐵)2

(𝑆𝑆 + 𝜎𝜎𝜎𝜎) , 𝑀𝑀46 = 𝐾𝐾1𝜎𝜎𝛽𝛽𝑒𝑒𝑉𝑉
(𝐾𝐾1+𝐵𝐵)2

 , 𝑀𝑀53 = 𝛾𝛾1, 𝑀𝑀54 = 𝜂𝜂,  

  𝑀𝑀55 = − 𝜎𝜎𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

− 𝜎𝜎𝜎𝜎ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

− 𝛾𝛾2 − 𝜇𝜇1 − 𝜇𝜇2 , 𝑀𝑀56 = −𝐾𝐾2𝜎𝜎𝜎𝜎ℎ𝑉𝑉
(𝐾𝐾2+𝐼𝐼)2

 , 

𝑀𝑀63 = 𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

+ 𝛽𝛽ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

 ,𝑀𝑀65 = 𝜎𝜎𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

+ 𝜎𝜎𝜎𝜎ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

 , 

𝑀𝑀66 = 𝐾𝐾2𝛽𝛽ℎ
(𝐾𝐾2+𝐼𝐼)2

(𝑆𝑆 + 𝜎𝜎𝜎𝜎)− (𝑑𝑑 + 𝜇𝜇1) − 𝑏𝑏𝑏𝑏
(𝑏𝑏+𝐼𝐼)2

− 𝜇𝜇2, 
while 

𝑀𝑀16 = 𝑀𝑀25 = 𝑀𝑀31 = 𝑀𝑀34 = 𝑀𝑀43 = 𝑀𝑀51 = 𝑀𝑀52 = 𝑀𝑀61 = 𝑀𝑀62 = 𝑀𝑀64 = 0. 
 

Let 
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𝑄𝑄 =

⎣
⎢
⎢
⎢
⎢
⎡1 𝐼𝐼⁄

0
0
0
0
0

0
1 𝐼𝐼⁄

0
0
0
0

0
0
0

1 𝐵𝐵⁄
0
0

0
0

1 𝐼𝐼⁄
0
0
0

0
0
0
0

1 𝐵𝐵⁄
0

0
0
0
0
0

1 𝐵𝐵⁄ ⎦
⎥
⎥
⎥
⎥
⎤

. 

 
Then, we obtain 
 

𝑄𝑄−1 =

⎣
⎢
⎢
⎢
⎢
⎡𝐼𝐼0
0
0
0
0

0
𝐼𝐼
0
0
0
0

0
0
0
𝐼𝐼
0
0

0
0
𝐵𝐵
0
0
0

0
0
0
0
𝐵𝐵
0

0
0
0
0
0
𝐵𝐵⎦
⎥
⎥
⎥
⎥
⎤

. 

 
Also from the definition of 𝑄𝑄𝑓𝑓 with the help of system (2), its obtain that 
 

 𝑄𝑄𝑓𝑓 =

⎣
⎢
⎢
⎢
⎢
⎡− 𝐼𝐼

′ 𝐼𝐼2⁄
0
0
0
0
0

0
−𝐼𝐼′ 𝐼𝐼2⁄

0
0
0
0

0
0
0

−𝐵𝐵′ 𝐵𝐵2⁄
0
0

0
0

−𝐼𝐼′ 𝐼𝐼2⁄
0
0
0

0
0
0
0

−𝐵𝐵′ 𝐵𝐵2⁄
0

0
0
0
0
0

−𝐵𝐵′ 𝐵𝐵2⁄ ⎦
⎥
⎥
⎥
⎥
⎤

. 

 
Consequently, 
 
 𝐵𝐵 = 𝑄𝑄𝑓𝑓𝑄𝑄−1 + 𝑄𝑄𝐽𝐽[2]𝑄𝑄−1 = �𝑏𝑏𝑖𝑖𝑖𝑖�6×6

, 
where 

 
𝑏𝑏11 = 𝑀𝑀11 − (𝐼𝐼′ 𝐼𝐼)⁄ = −(1 + 𝜎𝜎) 𝛽𝛽𝑒𝑒𝐵𝐵

𝐾𝐾1+𝐵𝐵
− (1 + 𝜎𝜎) 𝛽𝛽ℎ𝐼𝐼

𝐾𝐾2+𝐼𝐼
                                        

− 𝛽𝛽𝑒𝑒𝐵𝐵
𝐼𝐼(𝐾𝐾1+𝐵𝐵)

(𝑆𝑆 + 𝜎𝜎𝜎𝜎) − 𝛽𝛽ℎ
𝐾𝐾2+𝐼𝐼

(𝑆𝑆 + 𝜎𝜎𝜎𝜎) − 𝛾𝛾1 − 𝛾𝛾2 − 𝜇𝜇1 + 𝑑𝑑 + 𝑐𝑐
𝑏𝑏+𝐼𝐼

 ,
 

 𝑏𝑏12 = 𝑀𝑀12, 𝑏𝑏13 = 𝑀𝑀14, 𝑏𝑏14 = 𝑀𝑀13
𝐵𝐵
𝐼𝐼
, 𝑏𝑏15 = 𝑀𝑀15

𝐵𝐵
𝐼𝐼
,  

 
𝑏𝑏22 = 𝑀𝑀22 − (𝐼𝐼′ 𝐼𝐼)⁄ = − 𝛽𝛽𝑒𝑒𝐵𝐵

𝐾𝐾1+𝐵𝐵
− 𝛽𝛽ℎ𝐼𝐼

𝐾𝐾2+𝐼𝐼
+ 𝐾𝐾2𝛽𝛽ℎ

(𝐾𝐾2+𝐼𝐼)2
(𝑆𝑆 + 𝜎𝜎𝜎𝜎)                     

− 𝛽𝛽𝑒𝑒𝐵𝐵
𝐼𝐼(𝐾𝐾1+𝐵𝐵)

(𝑆𝑆 + 𝜎𝜎𝜎𝜎) − 𝛽𝛽ℎ
𝐾𝐾2+𝐼𝐼

(𝑆𝑆 + 𝜎𝜎𝜎𝜎) − 𝛾𝛾1 − 𝜇𝜇1 + 𝑐𝑐𝑐𝑐
(𝑏𝑏+𝐼𝐼)2

 ,
 

 𝑏𝑏21 = 𝑀𝑀21, 𝑏𝑏23 = 𝑀𝑀24, 𝑏𝑏24 = 𝑀𝑀23
𝐵𝐵
𝐼𝐼
, 𝑏𝑏26 = 𝑀𝑀26

𝐵𝐵
𝐼𝐼
, 

 
𝑏𝑏33 = 𝑀𝑀44 − (𝐼𝐼′ 𝐼𝐼)⁄ = − 𝜎𝜎𝛽𝛽𝑒𝑒𝐵𝐵

𝐾𝐾1+𝐵𝐵
− 𝜎𝜎𝛽𝛽ℎ𝐼𝐼

𝐾𝐾2+𝐼𝐼
+ 𝐾𝐾2𝛽𝛽ℎ

(𝐾𝐾2+𝐼𝐼)2
(𝑆𝑆 + 𝜎𝜎𝜎𝜎)               

− 𝛽𝛽𝑒𝑒𝐵𝐵
𝐼𝐼(𝐾𝐾1+𝐵𝐵)

(𝑆𝑆 + 𝜎𝜎𝜎𝜎) − 𝛽𝛽ℎ
𝐾𝐾2+𝐼𝐼

(𝑆𝑆 + 𝜎𝜎𝜎𝜎) − 𝛾𝛾2 − 𝜇𝜇1 + 𝑐𝑐𝑐𝑐
(𝑏𝑏+𝐼𝐼)2

 ,
 

 𝑏𝑏31 = 𝑀𝑀41, 𝑏𝑏32 = 𝑀𝑀42, 𝑏𝑏35 = 𝑀𝑀45
𝐵𝐵
𝐼𝐼
, 𝑏𝑏36 = 𝑀𝑀46

𝐵𝐵
𝐼𝐼
, 

 𝑏𝑏44 = 𝑀𝑀33 − (𝐵𝐵′ 𝐵𝐵⁄ ) = − 𝛽𝛽𝑒𝑒𝐵𝐵
(𝐾𝐾1+𝐵𝐵)

− 𝛽𝛽ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

− 𝛾𝛾1 − 𝜇𝜇1 −
𝜂𝜂𝐼𝐼
𝐵𝐵

, 

 𝑏𝑏42 = 𝑀𝑀32
𝐼𝐼
𝐵𝐵
, 𝑏𝑏45 = 𝑀𝑀35, 𝑏𝑏46 = 𝑀𝑀36, 
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 𝑏𝑏55 = 𝑀𝑀55 − (𝐵𝐵′ 𝐵𝐵⁄ ) = − 𝜎𝜎𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

− 𝜎𝜎𝛽𝛽ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

− 𝛾𝛾2 − 𝜇𝜇1 −
𝜂𝜂𝐼𝐼
𝐵𝐵

, 

 𝑏𝑏53 = 𝑀𝑀54
𝐼𝐼
𝐵𝐵
, 𝑏𝑏54 = 𝑀𝑀53, 𝑏𝑏56 = 𝑀𝑀56, 𝑏𝑏64 = 𝑀𝑀63, 𝑏𝑏65 = 𝑀𝑀65 

 𝑏𝑏66 = 𝑀𝑀66 − (𝐵𝐵′ 𝐵𝐵⁄ ) = 𝐾𝐾2𝛽𝛽ℎ
(𝐾𝐾2+𝐼𝐼)2

(𝑆𝑆 + 𝜎𝜎𝜎𝜎) − 𝑏𝑏𝑏𝑏
(𝑏𝑏+𝐼𝐼)2

− 𝑑𝑑 − 𝜇𝜇1 −
𝜂𝜂𝐼𝐼
𝐵𝐵

, 
while 
 𝑏𝑏16 = 𝑏𝑏25 = 𝑏𝑏34 = 𝑏𝑏41 = 𝑏𝑏43 = 𝑏𝑏51 = 𝑏𝑏52 = 𝑏𝑏61 = 𝑏𝑏62 = 𝑏𝑏63 = 0. 
 
Now 𝐵𝐵 can be written as a block matrix  
 
 𝐵𝐵 = �𝐻𝐻𝑖𝑖𝑖𝑖�4×4

 , 
where 
 𝐻𝐻11 = 𝑏𝑏11, 𝐻𝐻12 = [𝑏𝑏12 𝑏𝑏13], 𝐻𝐻13 = [𝑏𝑏14 𝑏𝑏15], 𝐻𝐻14 = 0, 

 𝐻𝐻21 = �𝑏𝑏21𝑏𝑏31
�, 𝐻𝐻22 = �𝑏𝑏22 𝑏𝑏23

𝑏𝑏32 𝑏𝑏33
�, 𝐻𝐻23 = �𝑏𝑏24 0

0 𝑏𝑏35
�, 𝐻𝐻24 = �𝑏𝑏26𝑏𝑏36

�, 

 𝐻𝐻31 = �00�, 𝐻𝐻32 = �𝑏𝑏42 0
0 𝑏𝑏53

�, 𝐻𝐻33 = �𝑏𝑏44 𝑏𝑏45
𝑏𝑏54 𝑏𝑏55

�, 𝐻𝐻34 = �𝑏𝑏46𝑏𝑏56
�, 

 𝐻𝐻41 = 0, 𝐻𝐻42 = [0 0], 𝐻𝐻43 = [𝑏𝑏64 𝑏𝑏65], 𝐻𝐻44 = 𝑏𝑏66. 
  
Let 𝑍𝑍 = (𝑍𝑍1,𝑍𝑍2,𝑍𝑍3,𝑍𝑍4,𝑍𝑍5,𝑍𝑍6) be a vector in ℝ6, with the norm defined as  
 

‖𝑍𝑍‖ = max {|𝑍𝑍1|, |𝑍𝑍2| + |𝑍𝑍3|, |𝑍𝑍4| + |𝑍𝑍5|, |𝑍𝑍6|}. 
 

Let 𝜇𝜇(𝐵𝐵) be the Lozinskiĭ measure of 𝐵𝐵 with respect to this norm. So by using similar argument 
as in Zhou et al. (2016), we have the following estimate 
 
 𝜇𝜇(𝐵𝐵) ≤ sup{𝑔𝑔1,𝑔𝑔2,𝑔𝑔3,𝑔𝑔4},   
here 

𝑔𝑔1 =  𝜇𝜇(𝐻𝐻11) + |𝐻𝐻12| + |𝐻𝐻13| + |𝐻𝐻14|, 
𝑔𝑔2 = |𝐻𝐻21| +  𝜇𝜇(𝐻𝐻22) + |𝐻𝐻23| + |𝐻𝐻24|, 
𝑔𝑔3 =  |𝐻𝐻31| + |𝐻𝐻32| + 𝜇𝜇(𝐻𝐻33) + |𝐻𝐻34|, 
𝑔𝑔4 =  |𝐻𝐻41| + |𝐻𝐻42| + |𝐻𝐻43| + 𝜇𝜇(𝐻𝐻44), 
 

with �𝐻𝐻𝑖𝑖𝑖𝑖�, 𝑖𝑖 ≠ 𝑗𝑗 = 1,2,3,4 are the matrix norms induced by the 𝑙𝑙1 vector norm, and 𝜇𝜇(𝐻𝐻𝑖𝑖𝑖𝑖)  denotes 
the Lozinskiĭ measure with respect to 𝑙𝑙1 norm. Moreover we have 
 

 
𝜇𝜇(𝐻𝐻11) = −(1 + 𝜎𝜎) 𝛽𝛽𝑒𝑒𝐵𝐵

𝐾𝐾1+𝐵𝐵
− (1 + 𝜎𝜎) 𝛽𝛽ℎ𝐼𝐼

𝐾𝐾2+𝐼𝐼
− 𝛽𝛽𝑒𝑒𝐵𝐵

𝐼𝐼(𝐾𝐾1+𝐵𝐵)
(𝑆𝑆 + 𝜎𝜎𝜎𝜎)      

− 𝛽𝛽ℎ
𝐾𝐾2+𝐼𝐼

(𝑆𝑆 + 𝜎𝜎𝜎𝜎) − 𝛾𝛾1 − 𝛾𝛾2 − 𝜇𝜇1 + 𝑑𝑑 + 𝑐𝑐𝑐𝑐
(𝑏𝑏+𝐼𝐼)

 ,
 

 𝜇𝜇(𝐻𝐻22) = − 𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

− 𝛽𝛽ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

− 𝛽𝛽ℎ𝐼𝐼
(𝐾𝐾2+𝐼𝐼)2

(𝑆𝑆 + 𝜎𝜎𝜎𝜎) − 𝛽𝛽𝑒𝑒𝐵𝐵
𝐼𝐼(𝐾𝐾1+𝐵𝐵)

(𝑆𝑆 + 𝜎𝜎𝜎𝜎) − 𝜇𝜇1 + 𝑐𝑐𝑐𝑐
(𝑏𝑏+𝐼𝐼)2

, 

𝜇𝜇(𝐻𝐻33) = − 𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

− 𝛽𝛽ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

− 𝜇𝜇1 −
𝜂𝜂𝐼𝐼
𝐵𝐵

, 

𝜇𝜇(𝐻𝐻44) = 𝐾𝐾2𝛽𝛽ℎ
(𝐾𝐾2+𝐼𝐼)2

(𝑆𝑆 + 𝜎𝜎𝜎𝜎) − 𝑏𝑏𝑏𝑏
(𝑏𝑏+𝐼𝐼)2

− 𝑑𝑑 − 𝜇𝜇1 −
𝜂𝜂𝐼𝐼
𝐵𝐵

, 
with 
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|𝐻𝐻12| = 𝐾𝐾2𝛽𝛽ℎ𝑆𝑆
(𝐾𝐾2+𝐼𝐼)2

, |𝐻𝐻13| = 𝐾𝐾1𝛽𝛽𝑒𝑒𝑆𝑆
(𝐾𝐾1+𝐵𝐵)2

𝐵𝐵
𝐼𝐼
, |𝐻𝐻21| = (1 + 𝜎𝜎) 𝛽𝛽𝑒𝑒𝐵𝐵

(𝐾𝐾1+𝐵𝐵)
+ (1 + 𝜎𝜎) 𝛽𝛽ℎ𝐼𝐼

𝐾𝐾2+𝐼𝐼
, 

|𝐻𝐻23| = 𝐾𝐾1𝛽𝛽𝑒𝑒𝐵𝐵
𝐼𝐼(𝐾𝐾1+𝐵𝐵)2

(𝑆𝑆 + 𝜎𝜎𝜎𝜎), |𝐻𝐻24| = 𝐾𝐾1𝛽𝛽𝑒𝑒𝐵𝐵
𝐼𝐼(𝐾𝐾1+𝐵𝐵)2

(𝑆𝑆 + 𝜎𝜎𝜎𝜎), |𝐻𝐻32| = 𝜂𝜂𝐼𝐼
𝐵𝐵

,  

|𝐻𝐻34| = 𝐾𝐾2𝛽𝛽ℎ
(𝐾𝐾2+𝐼𝐼)2

(𝑆𝑆 + 𝜎𝜎𝜎𝜎), |𝐻𝐻43| = 𝛽𝛽𝑒𝑒𝐵𝐵
𝐾𝐾1+𝐵𝐵

+ 𝛽𝛽ℎ𝐼𝐼
𝐾𝐾2+𝐼𝐼

, 
|𝐻𝐻14| = |𝐻𝐻31| = |𝐻𝐻41| = |𝐻𝐻42| = 0. 
 

Accordingly, we get that 
 

𝑔𝑔1 ≤ −𝜇𝜇1 + 𝑑𝑑 + 𝑐𝑐
𝑏𝑏+𝜀𝜀

, 

𝑔𝑔2 ≤ 𝜎𝜎𝛽𝛽𝑒𝑒 + 𝜎𝜎𝛽𝛽ℎ + 2𝛽𝛽𝑒𝑒
𝛿𝛿
𝜀𝜀
− 𝜇𝜇1 + 𝑐𝑐

𝑏𝑏+𝜀𝜀
,  

𝑔𝑔3 ≤ −𝜇𝜇1 + 𝛽𝛽ℎ𝛿𝛿
𝐾𝐾2+𝜀𝜀

, 

𝑔𝑔4 ≤ 𝛽𝛽𝑒𝑒 + 𝛽𝛽ℎ + 𝛽𝛽ℎ𝛿𝛿
𝐾𝐾2+𝜀𝜀

− 𝜇𝜇1, 
 

where 𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆 + 𝜎𝜎𝜎𝜎) = 𝛿𝛿, 𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼) = 𝜀𝜀. Assume that  
 

π = 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑑𝑑 + 𝑐𝑐
𝑏𝑏+𝜀𝜀

� , �𝜎𝜎𝛽𝛽𝑒𝑒 + 𝜎𝜎𝛽𝛽ℎ + 2𝛽𝛽𝑒𝑒
𝛿𝛿
𝜀𝜀

+ 𝑐𝑐
𝑏𝑏+𝜀𝜀

� , �𝛽𝛽𝑒𝑒 + 𝛽𝛽ℎ + 𝛽𝛽ℎ𝛿𝛿
𝐾𝐾2+𝜀𝜀

��.                      (19) 
 

Hence, we obtain 
 
 𝑔𝑔𝑖𝑖 ≤ −𝜇𝜇1 + 𝜋𝜋 = −𝜌𝜌, 𝑖𝑖 = 1,2,3,4. 
 
Therefore, we get that 𝜇𝜇(𝐵𝐵) ≤ −(𝜇𝜇1 − 𝜋𝜋) = −𝜌𝜌, and hence the proof is complete provided that 
the condition (14) is satisfied.                    ■ 
 
6. Local bifurcation 

In this section, the effect of the varying parameter values on the dynamical behavior of the system 
(2) around equilibrium points are considered using the Sotomayer theorem that is given in Perko 
(2013). The occurrence of backward bifurcation in the system (2) is also considered using Castillo-
Chavez and Song (2004) theorem for backward bifurcation. 
 
Now by using equation (14) to describe system (2) with 𝑿𝑿 = (𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4)𝑇𝑇 = (𝑆𝑆,𝑉𝑉, 𝐼𝐼,𝐵𝐵)𝑇𝑇 and 
𝒇𝒇 = (𝑓𝑓1,𝑓𝑓2,𝑓𝑓3,𝑓𝑓4)𝑇𝑇, where 𝑓𝑓𝑖𝑖 , 𝑖𝑖 = 1,2,3,4 are given in the right hand side of system (2) then for 
any vector 𝑉𝑉 = (𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, 𝑣𝑣4)𝑇𝑇 we have 
 

 𝐷𝐷2𝒇𝒇(𝑿𝑿)(𝑉𝑉,𝑉𝑉) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡∑

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

(𝑣𝑣𝑖𝑖)(𝑣𝑣𝑗𝑗)4
𝑖𝑖,𝑗𝑗=1

∑ 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

(𝑣𝑣𝑖𝑖)(𝑣𝑣𝑗𝑗)4
𝑖𝑖,𝑗𝑗=1

∑ 𝜕𝜕𝑓𝑓3
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

(𝑣𝑣𝑖𝑖)(𝑣𝑣𝑗𝑗)4
𝑖𝑖,𝑗𝑗=1

∑ 𝜕𝜕𝑓𝑓4
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

(𝑣𝑣𝑖𝑖)(𝑣𝑣𝑗𝑗)4
𝑖𝑖,𝑗𝑗=1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

= �𝑎𝑎𝑖𝑖𝑖𝑖�4×1
,                               (20) 
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where 
  

𝑎𝑎11 = − 2𝐾𝐾2𝛽𝛽ℎ
(𝐾𝐾2+𝐼𝐼)2

𝑣𝑣1𝑣𝑣3 −
2𝐾𝐾1𝛽𝛽𝑒𝑒

(𝐾𝐾1+𝐵𝐵)2 𝑣𝑣1𝑣𝑣4 + 2𝐾𝐾2𝛽𝛽ℎ𝑆𝑆
(𝐾𝐾2+𝐼𝐼)3

𝑣𝑣32 + 2𝐾𝐾1𝛽𝛽𝑒𝑒𝑆𝑆
(𝐾𝐾1+𝐵𝐵)3 𝑣𝑣4

2, 

𝑎𝑎21 = −2𝐾𝐾2𝜎𝜎𝛽𝛽ℎ
(𝐾𝐾2+𝐼𝐼)2

𝑣𝑣2𝑣𝑣3 −
2𝐾𝐾1𝜎𝜎𝜎𝜎𝑒𝑒
(𝐾𝐾1+𝐵𝐵)2 𝑣𝑣2𝑣𝑣4 + 2𝐾𝐾2𝜎𝜎𝛽𝛽ℎ𝑉𝑉

(𝐾𝐾2+𝐼𝐼)3
𝑣𝑣32 + 2𝐾𝐾1𝜎𝜎𝜎𝜎𝑒𝑒𝑉𝑉

(𝐾𝐾1+𝐵𝐵)3 𝑣𝑣4
2, 

𝑎𝑎31 = 2𝐾𝐾2𝛽𝛽ℎ
(𝐾𝐾2+𝐼𝐼)2

𝑣𝑣1𝑣𝑣3 + 2𝐾𝐾1𝛽𝛽𝑒𝑒
(𝐾𝐾1+𝐵𝐵)2 𝑣𝑣1𝑣𝑣4 + 2𝐾𝐾2𝜎𝜎𝜎𝜎ℎ

(𝐾𝐾2+𝐼𝐼)2
𝑣𝑣2𝑣𝑣3 + 2𝐾𝐾1𝜎𝜎𝜎𝜎𝑒𝑒

(𝐾𝐾1+𝐵𝐵)2 𝑣𝑣2𝑣𝑣4

− � 2𝐾𝐾2𝛽𝛽ℎ(𝐾𝐾2+𝐼𝐼)3
(𝑆𝑆 + 𝜎𝜎𝜎𝜎) − 2𝑏𝑏𝑏𝑏

(𝑏𝑏+𝐼𝐼)3
� 𝑣𝑣32 −

2𝐾𝐾1𝛽𝛽𝑒𝑒
(𝐾𝐾1+𝐵𝐵)3

(𝑆𝑆 + 𝜎𝜎𝜎𝜎)𝑣𝑣42
, 

𝑎𝑎41 = 0. 
 

Accordingly, the following theorem specifies the bifurcation parameter around the disease free 
equilibrium point and the type of local bifurcation occurred. 
 
Theorem 7.  
 
Assume that 𝑅𝑅0 = 1. Then, system (2) near the equilibrium point 𝑃𝑃0 has 
 

1. No saddle-node bifurcation. 
2. A trans-critical bifurcation provided that the following condition holds 

 
𝛽𝛽ℎ
𝐾𝐾2
𝛾𝛾3(𝛾𝛾1 + 𝜎𝜎𝛾𝛾2) + 𝛽𝛽𝑒𝑒

𝐾𝐾1
(𝛾𝛾1 + 𝜎𝜎𝛾𝛾2) ≠ � 𝛽𝛽ℎ

𝐾𝐾2
2
(𝑆𝑆0 + 𝜎𝜎𝑉𝑉0) −

𝑐𝑐

𝑏𝑏2� 𝛾𝛾32 + 𝛽𝛽𝑒𝑒
𝐾𝐾1

2
(𝑆𝑆0 + 𝜎𝜎𝑉𝑉0).       (21a) 

 
3. A backward bifurcation provided that the following condition holds 

 
𝑐𝑐
𝑏𝑏2

< 𝛽𝛽ℎ (𝑆𝑆0+𝜎𝜎𝑉𝑉0)
𝐾𝐾22

 .                (21b) 

Proof:  

Clearly from theorem (2) the characteristic equation given in equation (9) has zero eigenvalue 
when 𝑅𝑅0 = 1 and hence by substituting the value of  𝑅𝑅0  and simplifying the resulting terms we 
obtain the following positive quantity 

 
𝜂𝜂 = 𝜂𝜂∗= 

𝐾𝐾1𝐾𝐾2𝜇𝜇2�𝑑𝑑+𝜇𝜇1+
𝑐𝑐
𝑏𝑏�−𝐾𝐾1𝛽𝛽ℎ𝜇𝜇2(𝑆𝑆0+𝜎𝜎𝑉𝑉0)

𝐾𝐾2𝛽𝛽𝑒𝑒(𝑆𝑆0+𝜎𝜎𝑉𝑉0)   .           (22) 
 

Hence, 𝑃𝑃0 is a nonhyperbolic point at 𝜂𝜂 = 𝜂𝜂∗.  

Recall that, the Jacobain matrix of system (2) at 𝑃𝑃0 and 𝜂𝜂 = 𝜂𝜂∗ follows directly from equation (8) 
and can be represented by 𝐽𝐽0 = �𝑐𝑐𝑖̅𝑖𝑖𝑖(𝑃𝑃0, 𝜂𝜂∗)�

4×4
. Let 𝑽𝑽𝟎𝟎 = (𝑣𝑣10, 𝑣𝑣20, 𝑣𝑣30, 𝑣𝑣40)𝑇𝑇 be the eigenvector 

(right eigenvector) corresponding to the zero eigenvalue, say 𝜆𝜆0(𝜂𝜂∗) = 0, then 𝐽𝐽0𝑽𝑽𝟎𝟎 = 𝟎𝟎 gives that 
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 𝑉𝑉0 = �

𝛾𝛾1 𝑣𝑣40
𝛾𝛾2 𝑣𝑣40
𝛾𝛾3 𝑣𝑣40
𝑣𝑣40

�,    

with 𝑣𝑣40 ≠ 0 be any real number. While, 

 
𝛾𝛾1 =  �(𝑐𝑐2̅4𝑐𝑐3̅3−𝑐𝑐2̅3𝑐𝑐3̅4)𝑐𝑐1̅2+(𝑐𝑐1̅3𝑐𝑐3̅4−𝑐𝑐1̅4𝑐𝑐3̅3)𝑐𝑐2̅2

𝑐𝑐3̅3(𝑐𝑐1̅1𝑐𝑐2̅2−𝑐𝑐1̅2𝑐𝑐2̅1)
�, 

𝛾𝛾2 = �(𝑐𝑐1̅1𝑐𝑐2̅3−𝑐𝑐1̅3𝑐𝑐2̅1)𝑐𝑐3̅4−(𝑐𝑐2̅4𝑐𝑐1̅1−𝑐𝑐1̅4𝑐𝑐2̅1)𝑐𝑐3̅3
𝑐𝑐3̅3(𝑐𝑐1̅1𝑐𝑐2̅2−𝑐𝑐1̅2𝑐𝑐2̅1)

�, 

𝛾𝛾3 = −𝑐𝑐3̅4
𝑐𝑐3̅3

. 

It is clear that under the condition 𝑅𝑅0 = 1 we obtain that 𝑐𝑐3̅3 < 0 and hence the quantities 𝛾𝛾1,𝛾𝛾2 
are negative and  𝛾𝛾3 is positive. Similarly, let 𝝍𝝍𝟎𝟎 = (𝜓𝜓10,𝜓𝜓20,𝜓𝜓30,𝜓𝜓40)𝑇𝑇 be the eigenvector 
corresponding to the zero eigenvalue of the matrix 𝐽𝐽0

𝑇𝑇, hence 𝐽𝐽0
𝑇𝑇𝝍𝝍𝟎𝟎 = 𝟎𝟎 gives that 

 

 𝝍𝝍𝟎𝟎 = �

 0
0

𝛼𝛼1𝜓𝜓40
 𝜓𝜓40

�, 

 
where 𝜓𝜓40 ≠ 0 be any real number and 𝛼𝛼1 = −𝑐𝑐4̅3

𝑐𝑐3̅3
> 0. Moreover, since 

 
 𝑑𝑑𝒇𝒇

𝑑𝑑𝑑𝑑
= 𝒇𝒇𝜂𝜂 =  (0,0, 𝐼𝐼, 0)T → 𝒇𝒇𝜂𝜂(𝑃𝑃0, 𝜂𝜂∗) = (0,0,0,0)T. 

 
Then, 𝝍𝝍𝟎𝟎

𝑇𝑇𝒇𝒇𝜂𝜂(𝑃𝑃0, 𝜂𝜂∗) = 0, which leads according to Sotomayer's theorem to that system (2) near 
the disease free equilibrium point 𝑃𝑃0 has no saddle node bifurcation. Further, we have 
 

 𝐷𝐷𝒇𝒇𝜂𝜂(𝑃𝑃0, 𝜂𝜂∗) = �
0
0
0
0

0
0
0
0

0
0
0
1

0
0
0
0

�. 

 
Therefore, we obtain that 𝐷𝐷𝐷𝐷𝜂𝜂(𝑃𝑃0, 𝜂𝜂∗)𝑽𝑽𝟎𝟎 = (0,0,0, γ3𝑣𝑣40)T and hence the following is obtained 
𝝍𝝍𝟎𝟎

𝑇𝑇[𝐷𝐷𝒇𝒇𝜂𝜂(𝑃𝑃0, 𝜂𝜂∗)𝑽𝑽𝟎𝟎] = 𝜓𝜓40γ3𝑣𝑣40 ≠ 0. Moreover according to equation (20) with 𝑽𝑽 = 𝑽𝑽𝟎𝟎 we 
have 
 
 𝐷𝐷2𝒇𝒇(𝑃𝑃0,𝜂𝜂∗)(𝑽𝑽𝟎𝟎,𝑽𝑽𝟎𝟎) = [𝑎𝑎�𝑖𝑖1]4×1, 

with 

 𝑎𝑎�11 = −2𝛽𝛽ℎ
𝑘𝑘2
γ1γ3𝑣𝑣402 −

2𝛽𝛽𝑒𝑒
𝑘𝑘1
γ1𝑣𝑣402 + 2𝛽𝛽ℎ𝑆𝑆0

𝑘𝑘22
γ32𝑣𝑣40

2 + 2𝛽𝛽𝑒𝑒𝑆𝑆0
𝐾𝐾12

𝑣𝑣402, 
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 𝑎𝑎�21 = −2𝜎𝜎𝛽𝛽ℎ
𝐾𝐾2

γ2γ3𝑣𝑣402 −
2𝜎𝜎𝜎𝜎𝑒𝑒
𝐾𝐾1

γ2𝑣𝑣402 + 2𝜎𝜎𝛽𝛽ℎ𝑉𝑉0
𝐾𝐾22

γ32𝑣𝑣40
2 + 2𝜎𝜎𝜎𝜎𝑒𝑒𝑉𝑉0

𝐾𝐾12
𝑣𝑣402,  

 
𝑎𝑎�31 = 2𝛽𝛽ℎ

𝐾𝐾2
γ1γ3𝑣𝑣402 + 2𝛽𝛽𝑒𝑒

𝐾𝐾1
γ1𝑣𝑣402 + 2𝜎𝜎𝜎𝜎ℎ

𝐾𝐾2
γ2γ3𝑣𝑣402 + 2𝜎𝜎𝜎𝜎𝑒𝑒

𝐾𝐾1
γ2𝑣𝑣402

− �2𝛽𝛽ℎ
𝐾𝐾22

(𝑆𝑆0 + 𝜎𝜎𝑉𝑉0) − 2𝑐𝑐
𝑏𝑏2
� γ32𝑣𝑣40

2 − 2𝛽𝛽𝑒𝑒
𝐾𝐾12

(𝑆𝑆0 + 𝜎𝜎𝑉𝑉0)𝑣𝑣402
, 

 𝑎𝑎�41 = 0. 

 
Therefore,  
 

 
𝝍𝝍𝟎𝟎

𝑇𝑇 𝐷𝐷
2
𝒇𝒇(𝑃𝑃0,𝜂𝜂∗)(𝑽𝑽𝟎𝟎,𝑽𝑽𝟎𝟎) = 2 𝛼𝛼3𝑣𝑣40

2𝜓𝜓40 �
𝛽𝛽ℎ
𝑘𝑘2
𝛾𝛾3�𝛾𝛾1 + 𝜎𝜎𝛾𝛾2�+ 𝛽𝛽𝑒𝑒

𝑘𝑘1
�𝛾𝛾1 + 𝜎𝜎𝛾𝛾2�

− �𝛽𝛽ℎ
𝑘𝑘2

2 (𝑆𝑆0 + 𝜎𝜎𝑉𝑉0) − 𝑐𝑐

𝑏𝑏2� 𝛾𝛾3
2 − 𝛽𝛽𝑒𝑒

𝑘𝑘1
2 (𝑆𝑆0 + 𝜎𝜎𝑉𝑉0)�

. 

 
Obviously, 𝝍𝝍𝟎𝟎

𝑇𝑇 𝐷𝐷2𝒇𝒇(𝑃𝑃0, 𝜂𝜂∗)(𝑽𝑽𝟎𝟎,𝑽𝑽𝟎𝟎) ≠ 0 under the condition (21) and hence system (2) near 𝑃𝑃0 =
(𝑆𝑆0,𝑉𝑉0, 0,0) has a trans-critical bifurcation.   
 
Now, to find the left eigenvector 𝚽𝚽𝟎𝟎 = (𝜙𝜙10,𝜙𝜙20,𝜙𝜙30,𝜙𝜙40) that satisfy 𝚽𝚽𝟎𝟎𝑽𝑽𝟎𝟎 = 1, we have to 
solve the solve  𝚽𝚽𝟎𝟎𝐽𝐽0 = 𝟎𝟎. Straightforward computation gives that 𝚽𝚽𝟎𝟎 = (0,0,𝜎𝜎1∅40,∅40), where 
𝜎𝜎1 = 𝐾𝐾1𝜇𝜇2

𝛽𝛽𝑒𝑒(𝑆𝑆0+𝜎𝜎𝑉𝑉0)
> 0. Since we have 𝚽𝚽𝟎𝟎𝑽𝑽𝟎𝟎 = 1 we get that 𝑣𝑣40 = 𝑐𝑐3̅3 < 0; ∅40 = 1

𝑐𝑐3̅3+𝑐𝑐4̅4
< 0.  

 
Now by using the backward theorem given by Castillo-Chavez and Song (2004), system (2) 
undergoes a backward bifurcation around the disease free equilibrium point provided the following 
quantities are positive.  
 
 𝑎𝑎 = ∑ ∅𝑘𝑘0𝑣𝑣𝑖𝑖0𝑣𝑣𝑗𝑗0

𝜕𝜕2𝑓𝑓𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

4
𝑘𝑘,𝑖𝑖,𝑗𝑗=1 (𝑃𝑃0, 𝜂𝜂∗) 

 𝑏𝑏 = ∑ ∅𝑘𝑘0𝑣𝑣𝑖𝑖0
𝜕𝜕2𝑓𝑓𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝜂𝜂

4
𝑘𝑘,𝑖𝑖=1 (𝑃𝑃0, 𝜂𝜂∗) 

 
Therefore, direct computation gives that 
 

 
𝑎𝑎 = 𝜎𝜎1∅40 𝑣𝑣402 �2𝛾𝛾1𝛾𝛾3

𝛽𝛽ℎ 
𝐾𝐾2

+ 2𝛾𝛾1
𝛽𝛽𝑒𝑒 
𝐾𝐾1

+ 2𝛾𝛾2𝛾𝛾3
𝜎𝜎𝜎𝜎ℎ 
𝐾𝐾2

+ 2𝛾𝛾2
𝜎𝜎𝜎𝜎𝑒𝑒 
𝐾𝐾1

                              

                          +𝛾𝛾32 �−2 𝛽𝛽ℎ (𝑆𝑆0+𝜎𝜎𝑉𝑉0)
𝐾𝐾22

+ 2 𝑐𝑐
𝑏𝑏2
� − 2 𝛽𝛽𝑒𝑒 (𝑆𝑆0+𝜎𝜎𝑉𝑉0)

𝐾𝐾12
� ,

 

𝑏𝑏 = 𝛾𝛾3 𝑣𝑣40∅40 > 0. 
 

Now, since 𝑎𝑎 > 0 under the sufficient condition (21b), hence the backward bifurcation is occurred 
around the disease free equilibrium point and hence the proof is complete.          ■ 

Theorem 8.  

Assume that the condition (10a) holds while (10b) is violated then system (2) near the endemic 
equilibrium point 𝑃𝑃1 has a saddle-node bifurcation at 𝜇𝜇2 = 𝜇𝜇2∗ provided that 
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  𝜁𝜁1𝜓𝜓41𝑎𝑎�11 +  𝜁𝜁2𝜓𝜓41𝑎𝑎�21 +  𝜁𝜁3𝜓𝜓41𝑎𝑎�31 ≠ 0,                       (23) 

 
where 𝜇𝜇2∗ ,  𝜁𝜁𝑖𝑖 , 𝜓𝜓41,𝑎𝑎�𝑖𝑖1, 𝑖𝑖 = 1,2,3 are given in the proof. 

Proof:  

According to the characteristic equation of 𝐽𝐽(𝑃𝑃1) that given by equation (12), there is a zero 
eigenvalue and hence 𝑃𝑃1 will be nonhyperbolic point provided that 𝐴𝐴4 = 0. Straightforward 
computation shows that this is (i.e., 𝐴𝐴4 = 0) equivalent to that 

 
𝜇𝜇2∗ = −𝑑𝑑43(𝑑𝑑34Γ3+𝑑𝑑24Γ9+𝑑𝑑14Γ6)

(𝑑𝑑33Γ3+𝑑𝑑23Γ9+𝑑𝑑13Γ6) , 
 

where 𝑑𝑑𝑖𝑖𝑖𝑖 and 𝐴𝐴4 represent the elements of 𝐽𝐽(𝑃𝑃1) and their determinant that given in equation (12) 
respectively, while Γ3, Γ6, and Γ9 are given in equation (12). Therefore, the Jacobain matrix of 
system (2) around the point 𝑃𝑃1 and 𝜇𝜇2 = 𝜇𝜇2∗, which denoted by 𝐽𝐽1 = 𝐽𝐽1(𝑃𝑃1,𝜇𝜇2∗) =
�𝑑̃𝑑𝑖𝑖𝑖𝑖(𝑃𝑃1, 𝜇𝜇2∗)�4×4

, follows directly from equation (11).  

Let 𝑽𝑽𝟏𝟏 = (𝑣𝑣11, 𝑣𝑣21, 𝑣𝑣31, 𝑣𝑣41)𝑇𝑇 be an eigenvector corresponding to the zero eigenvalue, say 
𝜆𝜆1(𝜇𝜇2∗) = 0, then  𝐽𝐽1𝑽𝑽𝟏𝟏 = 𝟎𝟎 gives that 
 

 𝑽𝑽𝟏𝟏 = �

𝜌𝜌1 𝑣𝑣41
𝜌𝜌2 𝑣𝑣41
𝜌𝜌3 𝑣𝑣41
𝑣𝑣41

�,    

 
where 𝑣𝑣41 ≠ 0 be any real number. While,  
 

𝜌𝜌1 =  −𝑑𝑑�12𝜌𝜌2+𝑑𝑑�13𝜌𝜌2+𝑑𝑑�14
𝑑𝑑�11

,  

𝜌𝜌2 = − �𝑑𝑑�11𝑑𝑑�23−𝑑𝑑�13𝑑𝑑�21�𝜌𝜌3+�𝑑𝑑�11𝑑𝑑�24−𝑑𝑑�14𝑑𝑑�21�
Γ3

,  

𝜌𝜌3 = −Γ9�𝑑𝑑�11𝑑𝑑�24−𝑑𝑑�14𝑑𝑑�21�−Γ3(𝑑𝑑�11𝑑𝑑�34−𝑑𝑑�14𝑑𝑑�31)
Γ3�𝑑𝑑�11𝑑𝑑�33−𝑑𝑑�13𝑑𝑑�31�+Γ9(𝑑𝑑�11𝑑𝑑�23−𝑑𝑑�13𝑑𝑑�21)

. 
 
It is clear that under the condition (10a), we obtain that 𝑑̃𝑑33 < 0 and hence the quantities 𝜌𝜌1,𝜌𝜌2 are 
nonzero quantities and  𝜌𝜌3 is positive. Similarly, let 𝝍𝝍𝟏𝟏 = (𝜓𝜓11,𝜓𝜓21,𝜓𝜓31,𝜓𝜓41)𝑇𝑇 be an eigenvector 
corresponding to 𝜆𝜆1(𝜇𝜇2∗) = 0 for of the matrix 𝐽𝐽1

𝑇𝑇 , hence 𝐽𝐽1
𝑇𝑇𝝍𝝍𝟏𝟏 = 𝟎𝟎 gives that 

 

 𝝍𝝍𝟏𝟏 = �

 𝜁𝜁1𝜓𝜓41
 𝜁𝜁2𝜓𝜓41
 𝜁𝜁3𝜓𝜓41
 𝜓𝜓41

�, 

 
where 𝜓𝜓41 ≠ 0 be any real number. while  
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 𝜁𝜁1 = − (𝑑𝑑�21 𝜁𝜁2+𝑑𝑑�31 𝜁𝜁3)

𝑑𝑑�11
,  

 𝜁𝜁2 = − (𝑑𝑑�11𝑑𝑑�32−𝑑𝑑�12𝑑𝑑�31) 𝜁𝜁3
Γ3

, 

 𝜁𝜁3 = − 𝑑𝑑�11𝑑𝑑�44Γ3
Γ3�𝑑𝑑�11𝑑𝑑�34−𝑑𝑑�14𝑑𝑑�31�+Γ9�𝑑𝑑�11𝑑𝑑�24−𝑑𝑑�14𝑑𝑑�21�

. 

 
Moreover, since 

 
 𝑑𝑑𝒇𝒇

𝑑𝑑𝜇𝜇2
= 𝒇𝒇𝜇𝜇2 =  (0,0, 0,−𝐵𝐵)T → 𝒇𝒇𝜇𝜇2(𝑃𝑃1, 𝜇𝜇2∗) = (0,0,0,−𝐵𝐵∗)T. 

 
Then, 𝝍𝝍𝟏𝟏

𝑇𝑇𝒇𝒇𝜇𝜇2(𝑃𝑃1,𝜇𝜇2∗) = −𝜓𝜓41𝐵𝐵∗ ≠ 0, which leads according to Sotomayer's theorem to that 
system (2) near the endemic equilibrium point 𝑃𝑃1 has a saddle node bifurcation if the following 
further condition holds 𝝍𝝍𝟏𝟏

𝑇𝑇 𝐷𝐷2𝒇𝒇(𝑃𝑃1, 𝜇𝜇2∗)(𝑽𝑽𝟏𝟏,𝑽𝑽𝟏𝟏) ≠ 0. Now straightforward computation gives 
that  

 
𝐷𝐷2𝒇𝒇�𝑃𝑃1,𝜇𝜇2

∗�(𝑽𝑽𝟏𝟏,𝑽𝑽𝟏𝟏) = �𝑎𝑎�𝑖𝑖𝑖𝑖�4×1
,  

with 

𝑎𝑎�11 = − 2𝐾𝐾2𝛽𝛽ℎ
(𝐾𝐾2+𝐼𝐼∗)2

𝜌𝜌1𝜌𝜌3 𝑣𝑣412 −
2𝐾𝐾1𝛽𝛽𝑒𝑒

(𝐾𝐾1+𝐵𝐵∗)2 𝜌𝜌1𝑣𝑣41
2 + 2𝐾𝐾2𝛽𝛽ℎ𝑆𝑆∗

(𝐾𝐾2+𝐼𝐼∗)3 𝜌𝜌3
2 𝑣𝑣412 + 2𝐾𝐾1𝛽𝛽𝑒𝑒𝑆𝑆∗

(𝐾𝐾1+𝐵𝐵∗)3 𝑣𝑣41
2, 

𝑎𝑎�21 = − 2𝐾𝐾2𝜎𝜎𝛽𝛽ℎ
(𝐾𝐾2+𝐼𝐼∗)2

𝜌𝜌2𝜌𝜌3 𝑣𝑣412 −
2𝐾𝐾1𝜎𝜎𝜎𝜎𝑒𝑒

(𝐾𝐾1+𝐵𝐵∗)2 𝜌𝜌2 𝑣𝑣412 + 2𝐾𝐾2𝜎𝜎𝛽𝛽ℎ𝑉𝑉∗

(𝐾𝐾2+𝐼𝐼∗)3 𝜌𝜌3
2 𝑣𝑣412 + 2𝐾𝐾1𝜎𝜎𝜎𝜎𝑒𝑒𝑉𝑉∗

(𝐾𝐾1+𝐵𝐵∗)3 𝑣𝑣41
2, 

𝑎𝑎�31 = 2𝐾𝐾2𝛽𝛽ℎ
(𝐾𝐾2+𝐼𝐼∗)2 𝜌𝜌1𝜌𝜌3 𝑣𝑣412 + 2𝐾𝐾1𝛽𝛽𝑒𝑒

(𝐾𝐾1+𝐵𝐵∗)2 𝜌𝜌1𝑣𝑣41
2 + 2𝐾𝐾2𝜎𝜎𝜎𝜎ℎ

(𝐾𝐾2+𝐼𝐼∗)2 𝜌𝜌2𝜌𝜌3 𝑣𝑣412 + 2𝐾𝐾1𝜎𝜎𝜎𝜎𝑒𝑒
(𝐾𝐾1+𝐵𝐵∗)2 𝜌𝜌2 𝑣𝑣412

− � 2𝐾𝐾2𝛽𝛽ℎ
(𝐾𝐾2+𝐼𝐼∗)3

(𝑆𝑆∗ + 𝜎𝜎𝑉𝑉∗) − 2𝑏𝑏𝑏𝑏
(𝑏𝑏+𝐼𝐼∗)3� 𝜌𝜌3

2 𝑣𝑣412 −
2𝐾𝐾1𝛽𝛽𝑒𝑒

(𝐾𝐾1+𝐵𝐵∗)3
(𝑆𝑆∗ + 𝜎𝜎𝑉𝑉∗)𝑣𝑣412

, 

𝑎𝑎�41 = 0. 
 

Therefore, by using condition (23) we obtain that 
 
 𝝍𝝍𝟏𝟏

𝑇𝑇 𝐷𝐷2𝒇𝒇(𝑃𝑃1, 𝜇𝜇2∗)(𝑽𝑽𝟏𝟏,𝑽𝑽𝟏𝟏) =  𝜁𝜁1𝜓𝜓41𝑎𝑎�11 +  𝜁𝜁2𝜓𝜓41𝑎𝑎�21 +  𝜁𝜁3𝜓𝜓41𝑎𝑎�31 ≠ 0. 
 
Hence, the proof is complete.                             ■ 
 
7. Numerical simulation 

 
In this section an investigation to the long-time behavior of the solution of system (1) is performed. 
The objective is to demonstrate the analytical findings numerically and study the effect of varying 
the parameters on the dynamical behavior of the system. In order to solve system (1) numerically 
and then plot the time series of the obtained solution the following hypothetical set of parameters 
values is adopted. 
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 𝐴𝐴 = 500,𝐾𝐾1 = 50,𝐾𝐾2 = 50, 𝑐𝑐 = 0.75, 𝑏𝑏 = 0.1,𝛽𝛽𝑒𝑒 = 0.1,𝛽𝛽ℎ = 0.1
𝛾𝛾1 = 0.2, 𝛾𝛾2 = 0.1, 𝜇𝜇1 = 0.01,𝜎𝜎 = 0.3,𝑑𝑑 = 0.3, 𝜂𝜂 = 0.1, 𝜇𝜇2 = 0.4 .                            (24) 

 
Furthermore different sets of initial values are choosing and then solve the system numerically. It 
is obtain that the system (1) approaches asymptotically to the endemic equilibrium point as shown 
in Figure 1. 
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Figure 1:  Time series of the solution of system (1) for the data in equation (24). (a) 𝑆𝑆(𝑡𝑡) versus 
time. (b) 𝑉𝑉(𝑡𝑡) versus time. (c) 𝐼𝐼(𝑡𝑡) versus time. (d) 𝑅𝑅(𝑡𝑡) versus time. (e) 𝐵𝐵(𝑡𝑡) versus 
time.   

 
It is clear from Figure 1 that system (1) has a globally asymptotically stable endemic equilibrium 
point (1825.16, 2206.3, 1480.43, 74.59, 370.1), for the data given by equation (24), where 𝑅𝑅0 =
8.777 > 1, which confirm our obtained analytical findings.  

Now for the data (24) with 𝐴𝐴 = 100, 50, 20 the values of basic reproduction numbers are 
respectively given by 𝑅𝑅0 = 1.755, 0.8777, 0.351 and the solution of system (1) plotted in Figure 
(2). While, for the data (24) with A = 60 and η = 0.1, 0.01, it is observed that the values of basic 
reproduction numbers are R0 = 1.05324, 0.863657 respectively, and then the solution of system 
(1) is drawn in Figure 3. 
 

 

  

Figure 2:  Time series of the solution of system (1) for the data given by equation (24). (a) When 
𝐴𝐴 = 100 with R0 = 1.7554 > 1. (b) When 𝐴𝐴 = 50 with R0 = 0.8777 < 1. (c) When 
𝐴𝐴 = 20 with R0 = 0.35108 < 1. 
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backward bifurcation. On the other hand, the system (1) approaches to endemic equilibrium point 
(447.31, 583.87, 286.89, 74.56, 71.72) for 𝐴𝐴 = 100 with R0 = 1.7554 > 1. However, it 
approaches to disease free equilibrium point (709.6, 1290.3, 0, 0, 0) for 𝐴𝐴 = 20 with R0 =
0.35108 < 1. 
 
Similarly, Figure (3) demonstrates that system (1) undergoes a backward bifurcation as the 
parameter 𝜂𝜂 passes through 0.01, as shown in Figure (3b), which is confirmed our obtained 
analytical findings too.  
 

  
Figure 3:  Time series of the solution of system (1) for the data given by equation (24), which 

approaches asymptotically to endemic equilibrium point. (a) When 𝐴𝐴 = 60 with R0 =
1.05324 > 1. (b) When 𝐴𝐴 = 60 and η = 0.01 with R0 = 0.863657 < 1. 

 

 

 
Clearly, according to the Figure (4a) for the data given by equation (24) with 𝐴𝐴 = 60, 𝐾𝐾1 = 1000 
and 𝐾𝐾2 = 50, the value of basic reproduction number is less than 1 (𝑅𝑅0 = 0.853125 < 1) but the 
solution of the system (1) still staled at the endemic equilibrium point 
(428, 639.41, 156.69, 74.95, 39.17), which indicates to occurrence of backward bifurcation too. 
Moreover, increasing the value of 𝐾𝐾2 up to 73 reduced the value of basic reproduction number to 
𝑅𝑅0 = 0.58768 < 1, then the backward bifurcation disappeared, and the solution of the system (1) 
approached to the disease-free equilibrium point (2128.94, 3870.78, 0, 0, 0), as shown in Figure 
(4b). Finally, for the same parameters set used in Figure (4b) with changing the initial value from 
(40, 20, 10, 15, 30) to (80, 60, 50, 55, 70) the solution approached again to another endemic 
equilibrium point (464.11, 706.73, 153.37, 74.95, 38.34), as shown in Figure (4c), which 
indicates to occurrence of backward bifurcation too. This is happened due to the possibility of 
existence of both the disease free equilibrium point and many endemic equilibrium points 
simultaneously, in case of 𝑅𝑅0 < 1 due to the higher order polynomial degree given in equation (6), 
for different sets of parameters values. 
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Finally, other parameters values are also varying and the solution of system (1) is determined and 
plotted. Similar results are also obtained to that demonstrated above, which indicates the higher 
sensitivity of system (1) for changing the parameter values.  
 

  

 
Figure 4:  Time series of the solution of system (1) for the data given by equation (24) with 𝐴𝐴 =

60, 𝐾𝐾1 = 1000. (a) When 𝐾𝐾2 = 50 with R0 = 0.853125 < 1. (b) When 𝐾𝐾2 = 73 
with R0 = 0.58768 < 1. (c) When 𝐾𝐾2 = 73 with R0 = 0.58768 < 1, starting from 
different initial value. 

 
 
8. Dissection             

 In this paper, a mathematical model of Cholera with saturated treatment function and dose-
response functions as incident rates was proposed and studied. It is assumed that a portion of the 
imperfect vaccine population becomes infected too through contact with an infected person or with 
contaminated environment resources. The existence of the disease-free equilibrium point and 
endemic equilibrium point is discussed with the help of a basic reproduction number. It is observed 
that the endemic equilibrium point exists uniquely for the system (2) provided that the conditions 
(7a), which assumes a basic reproduction number is greater than unity, and (7b) are satisfied 
simultaneously. Otherwise, the system (2) may or may not have at least one endemic point. 
Different mathematical tools have been used to study stability, such as the linearization technique, 
the Lyapunov method, and Li and Muldowney geometrical approach. Furthermore, it is well 
known that the disease is endemic if the infected population remains above a certain positive level 
for a sufficiently large time. Therefore, this definition of the endemic concept has been 
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characterized with the help of the notion of uniform persistence using the Freedman and Waltman 
approach. 

The local bifurcation around the equilibrium points is investigated using the Sotomayer theorem. 
While backward bifurcation is investigated using Castillo-Chavez and Song theorem. It is observed 
that, under certain conditions, the system (2) undergoes a trans-critical bifurcation near the disease-
free equilibrium point, while it has a saddle-node bifurcation near an endemic equilibrium point. 
Finally, numerical simulation is used to investigate the global dynamics and demonstrate the 
results of the analytical findings. 

9. Conclusion 
 
It is well known that having a basic reproduction number (𝑅𝑅0) below unity eradicates the disease. 
But in the proposed model (1), 𝑅𝑅0 < 1 is not sufficient to eliminate the Cholera from the 
population, and the Cholera may be still persistent, this is due high possibility of the existence of 
a number of endemic equilibrium point when 𝑅𝑅0 < 1. Hence, it’s important to find another 
threshold value less than one, and then 𝑅𝑅0 should be reduced below this value to eliminate the 
Cholera from the population. It is observed that the model is very sensitive to varying in the values 
of the parameters especially those responses on the concentration of the Vibrio cholerae in the 
environment or infected population (𝐾𝐾1,𝐾𝐾2); liberation rate of Vibrio cholerae by infected 
population (𝜂𝜂) and death rate of Vibrio cholerae (𝜇𝜇2) that depends on the (𝜂𝜂) too. Accordingly, we 
conclude that the basic reproduction number is not enough to describe whether Cholera will 
disappear or not and suggest that we should pay more attention to the initial state of Cholera. 
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