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Abstract 
 

This article is concerned with establishing some new linearization formulas of the modified Jacobi 
polynomials of certain parameters. We prove that the linearization coefficients involve 
hypergeometric functions of the type  4𝐹𝐹3(1) .  Moreover, we show that the linearization 
coefficients can be reduced in several cases by either utilizing certain standard formulas, and in 
particular Pfaff-Saalschütz identity and Watson’s theorem, or via employing the symbolic 
algebraic algorithms of Zeilberger, Petkovsek, and van Hoeij. New formulas for some definite 
integrals are obtained with the aid of the developed linearization formulas. 

  
Keywords:  Classical Jacobi polynomials; Chebyshev polynomials; linearization coefficients; 

generalized hypergeometric functions; symbolic algebraic computation; recurrenc 
relations; Watson’s theorem 
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1. Introduction 
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The special functions are important in mathematical analysis and its applications (see, for example, 
Srivastava and Sing (2018) and Chaturvedi et al. (2020)). In particular, the Jacobi polynomials are 
crucial in theoretical and applied mathematical analysis. It is well-known that the class of Jacobi 
polynomials includes well-known six subclasses. The polynomials namely, ultraspherical, 
Legendre, and the first and second kinds of Chebyshev polynomials are symmetric Jacobi 
polynomials, while the third and fourth kinds of Chebyshev polynomials are nonsymmetric Jacobi 
polynomials (see, Rainville (1960), Andrews et al. (1999) and Abramowitz and Stegun (2012)). In 
the literature, there is a great concentration on the well-known four kinds of symmetric Jacobi 
polynomials from both theoretical and practical points of view. In this respect, there are several 
studies about ultraspherical polynomials and their various uses. For example, Abd-Elhameed and 
Napoli in (Abd-Elhameed and Napoli (2020)) have employed Legendre polynomials for handling 
some types of odd-order boundary value problems through innovative operational matrices of 
derivatives. Also, Elgindy and Smith-Miles in (Elgindy and Smith-Miles (2013)), treated boundary 
value problems, integral, and integro-differential equations using the ultraspherical integration 
matrices. Moreover, Doha and Abd-Elhameed utilized this kind of polynomials for the sake of 
obtaining numerical solutions of one and two-dimensional second-order differential equations 
(Doha and Abd-Elhameed (2002)). Also, Abd-Elhameed and Youssri in (Abd-Elhameed and 
Youssri (2019)) have developed new spectral solutions of solving fractional Riccati differential 
equations using the second-kind Chebyshev polynomials.  
 
The Chebyshev polynomials of the first and second kinds 𝑇𝑇𝑛𝑛(𝑥𝑥)  and 𝑈𝑈𝑛𝑛(𝑥𝑥)  are the most 
commonly used polynomials among the four kinds of Chebyshev polynomials. In other words, the 
theoretical and practical studies concerning third and fourth kinds 𝑉𝑉𝑛𝑛(𝑥𝑥) and 𝑊𝑊𝑛𝑛(𝑥𝑥) are few if 
compared with the first and second kinds. However, all four kinds of polynomials have their roles. 
𝑈𝑈𝑛𝑛(𝑥𝑥) has important parts in numerical integration. 𝑉𝑉𝑛𝑛(𝑥𝑥) and 𝑊𝑊𝑛𝑛(𝑥𝑥) are helpful in situations in 
which singularities occur at one endpoint (+1 or -1) but not at the other (Mason and Handscomb 
(2003)). Doha and Abd-Elhemeed (Doha and Abd-Elhameed (2014)) have developed new 
formulas for the coefficients of integrated expansions and integrals of Chebyshev polynomials of 
third and fourth kinds. For some other studies about these two classes of Jacobi polynomials, see, 
Doha et al. (2015) and Abd-Elhameed et al. (2016b). 

 
The linearization of orthogonal polynomials and the connection coefficients problems between 
them are very important. In particular, the linearization and connection coefficients problems of 
ultraspherical and Jacobi polynomials have been investigated by many researchers. For some of 
these studies, one can be refereed to Askey and Gasper (1972), Gasper (1970 a), Gasper (1970 b), 
Hylleraas (1962), Rahman (1981) and Chaggara and Koepf (2010)). Other studies for these kinds 
of problems can be found in (Abd-Elhameed (2019), Doha and Abd-Elhameed (2016), Abd-
Elhameed et al. (2016 a), Abd-Elhameed (2015a), Abd-Elhameed (2015 b), Maroni and da Rocha 
(2008), Doha and Ahmed (2004), Doha (2003), Sánchez-Ruiz (2001), Sánchez-Ruiz and Dehesa 
(2001)). Recently, some important nonlinear problems were solved by using some orthogonal 
polynomials. The main idea behind the treatment of the nonlinear terms in these equations was 
based on utilizing some linearization formulas of some orthogonal polynomials. For example, 
Abd-Elhameed in (Abd-Elhameed (2019)) solved a nonlinear Riccati differential equation using a 
specific linearization formula of Chebyshev polynomials of the third kind, while the same author 
in Abd-Elhameed (2021) handled the nonlinear one dimensional Burger's equation based on using 
the linearization formula of Chebyshev polynomials of the sixth kind.  
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The general linearization problem involves two important special problems. The first is the  
Clebsch-Gordan-type problem which is considered as the standard linearization problem, and the 
second is the well-known connection problem between two polynomial sets (see, Abd-Elhameed 
et al. (2016)). 
 
The principal goals of the current paper are three-fold: 
 

(1) Deriving a new linearization formula of Jacobi polynomials of certain parameters. 
(2)  Reducing the linearization coefficients of the derived linearization formula for some 

choices of the involved parameters, and hence deducing some new linearization formulas 
of third and fourth kinds of Chebyshev polynomials. 

(3) Making use of the derived formulas to deduce closed formulas of some new definite 
integrals. 

 
As far as we know, most of the derived formulas in this article are novel. To be more precise, the 
novelty of the paper can be summarized as follows: 
 

(1) The main theorem which gives a linearization formula of certain Jacobi polynomials is 
new. 

(2) The derived special linearization formulas of the main theorem are free of hypergeometric 
functions. 

 
The rest of this paper is as follows. In the following section, we state and prove the basic theorem 
concerning a new linearization formula of certain Jacobi polynomials. In addition, some 
linearization formulas of third and fourth kinds of Chebyshev polynomials are given in simplified 
forms which do not involve any hypergeometric functions. These formulas are derived by using 
standard reduction formulas, or by using some symbolic algebraic algorithms, and in particular, 
the algorithms of Zeilberger, Petkovsek, and van Hoeij. Section 3 is devoted to introducing some 
new definite integrals involving products of Jacobi polynomials of certain parameters based on 
making use of the newly developed linearization formulas. We end the paper with some 
conclusions in Section 4. 
 
2. Some Linearization Formulas of the Modified Jacobi Polynomials for 

Certain Parameters 
 

This section is concerned with developing our main results. In the following, we will give some 
new linearization formulas of Jacobi polynomials of certain choices of their parameters. 
From now on, we denote by 𝑃𝑃𝑖𝑖

(𝜇𝜇,𝜈𝜈)(𝑥𝑥) the normalized Jacobi polynomials that satisfy: 
 𝑃𝑃𝑖𝑖

(𝜇𝜇,𝜈𝜈)(1) = 1, (see, Abd-Elhameed (2015 a)). 
  
Theorem 2.1. 
 
Let 𝑖𝑖 be a nonnegative integer. For 𝜆𝜆, 𝜇𝜇, 𝜈𝜈 > −1, the following linearization formula holds: 
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𝑅𝑅𝑖𝑖
�𝜆𝜆,12�(𝑥𝑥)𝑅𝑅𝑖𝑖

�𝜆𝜆+1,−12�(𝑥𝑥) = �
2𝑖𝑖

𝑘𝑘=0

�2𝑖𝑖
𝑘𝑘 � �𝜆𝜆 + 3

2�𝑘𝑘
(𝜇𝜇 + 1)𝑘𝑘(2𝑖𝑖 + 2𝜆𝜆 + 3)𝑘𝑘

(𝜆𝜆 + 2)𝑘𝑘(2𝜆𝜆 + 2)𝑘𝑘(𝑘𝑘 + 𝜇𝜇 + 𝜈𝜈 + 1)𝑘𝑘
 

 

                                    × 4𝐹𝐹3 �
𝑘𝑘 − 2𝑖𝑖,𝑘𝑘 + 𝜆𝜆 + 3

2 ,𝑘𝑘 + 2𝑖𝑖 + 2𝜆𝜆 + 3,𝑘𝑘 + 𝜇𝜇 + 1
𝑘𝑘 + 𝜆𝜆 + 2,𝑘𝑘 + 2𝜆𝜆 + 2,2𝑘𝑘 + 𝜇𝜇 + 𝜈𝜈 + 2

�  1�  𝑅𝑅𝑘𝑘
(𝜇𝜇,𝜈𝜈)(𝑥𝑥). 

 
 
 
 
(1) 
 

  
Proof: 
 
At first, and with the aid of the hypergeometric form of the modified Jacobi polynomials 𝑅𝑅𝑖𝑖

(𝜇𝜇,𝜈𝜈)(𝑥𝑥), 
one can write (see, Rahman (1981)). 
 

 𝑅𝑅𝑖𝑖
�𝜆𝜆,12�(𝑥𝑥)𝑅𝑅𝑖𝑖

�𝜆𝜆+1,−12�(𝑥𝑥) =  2𝐹𝐹1 �
−𝑖𝑖, 𝑖𝑖 + 𝜆𝜆 + 3

2
𝜆𝜆 + 1

  �
1 − 𝑥𝑥

2
�    2𝐹𝐹1 �

−𝑖𝑖, 𝑖𝑖 + 𝜆𝜆 + 3
2

𝜆𝜆 + 2
  �

1 − 𝑥𝑥
2

�,   (2) 

 
and in virtue of a sauitable transformation formula (see, Bateman et al. (1953)), equation (2) can 
be turned into 

𝑅𝑅𝑖𝑖
�𝜆𝜆,12�(𝑥𝑥)𝑅𝑅𝑖𝑖

�𝜆𝜆+1,−12�(𝑥𝑥) =  3𝐹𝐹2 �
−2𝑖𝑖, 2𝑖𝑖 + 2𝜆𝜆 + 3, λ + 3

2
2𝜆𝜆 + 2, λ + 2

  �
1 − 𝑥𝑥

2
�. (3) 

   
Making use of Lemma 1 that employed in Abd-Elhameed (2015 a) (see, p. 589 in Abd-Elhameed 
(2015 a)) that derived by Fields and Wimp (1961), and with suitable choices of the involved 
parameters, enables one to obtain the following relation 
  

        3𝐹𝐹2 �
−2𝑖𝑖, 2𝑖𝑖 + 2𝜆𝜆 + 3, λ + 3

2
2𝜆𝜆 + 2, λ + 2

  �
1 − 𝑥𝑥

2
� 

 

                 = �
2𝑖𝑖

𝑘𝑘=0

�2𝑖𝑖
𝑘𝑘 � �𝜆𝜆 + 3

2�𝑘𝑘
(𝜇𝜇 + 1)𝑘𝑘(2𝑖𝑖 + 2𝜆𝜆 + 3)𝑘𝑘

(𝜆𝜆 + 2)𝑘𝑘(2𝜆𝜆 + 2)𝑘𝑘(𝑘𝑘 + 𝜇𝜇 + 𝜈𝜈 + 1)𝑘𝑘
 

 

×  4𝐹𝐹3 �
𝑘𝑘 − 2𝑖𝑖, 𝑘𝑘 + 𝜆𝜆 + 3

2 , 𝑘𝑘 + 2𝑖𝑖 + 2𝜆𝜆 + 3,𝑘𝑘 + 𝜇𝜇 + 1
𝑘𝑘 + 𝜆𝜆 + 2,𝑘𝑘 + 2𝜆𝜆 + 2,2𝑘𝑘 + 𝜇𝜇 + 𝜈𝜈 + 2

 � 1� 

 

                          ×  2𝐹𝐹1 �
−𝑘𝑘,𝑘𝑘 + 𝜇𝜇 + 𝜈𝜈 + 1

𝜇𝜇 + 1
�

1 − 𝑥𝑥
2

�,     

 
(4) 

 
which immediately yields 
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𝑅𝑅𝑖𝑖
(𝜆𝜆,12)

(𝑥𝑥) 𝑅𝑅𝑖𝑖
(𝜆𝜆+1,−12)

𝑥𝑥) = �
2𝑖𝑖

𝑘𝑘=0

�2𝑖𝑖
𝑘𝑘 � �𝜆𝜆 + 3

2�𝑘𝑘
(𝜇𝜇 + 1)𝑘𝑘(2𝑖𝑖 + 2𝜆𝜆 + 3)𝑘𝑘

(𝜆𝜆 + 2)𝑘𝑘(2𝜆𝜆 + 2)𝑘𝑘(𝑘𝑘 + 𝜇𝜇 + 𝜈𝜈 + 1)𝑘𝑘
 

× 4𝐹𝐹3 �
𝑘𝑘 − 2𝑖𝑖,𝑘𝑘 + 𝜆𝜆 + 3

2 ,𝑘𝑘 + 2𝑖𝑖 + 2𝜆𝜆 + 3,𝑘𝑘 + 𝜇𝜇 + 1
𝑘𝑘 + 𝜆𝜆 + 2,𝑘𝑘 + 2𝜆𝜆 + 2,2𝑘𝑘 + 𝜇𝜇 + 𝜈𝜈 + 2

 �1�  𝑅𝑅𝑘𝑘
(𝜇𝜇,𝜈𝜈)(𝑥𝑥).  

 

 
Theorem 2.1 is now proved. 

 
Corollary 2.1. 
 
For every nonnegative integer 𝑖𝑖, the following linearization formula holds: 
 

            𝑅𝑅𝑖𝑖
(12,𝜆𝜆)

(𝑥𝑥) 𝑅𝑅𝑖𝑖
(−12 ,𝜆𝜆+1)

(𝑥𝑥) =
(𝜆𝜆 + 1)𝑖𝑖 (𝜆𝜆 + 2)𝑖𝑖

(3
2)𝑖𝑖 (

1
2)𝑖𝑖

 

                      × �
2𝑖𝑖

𝑘𝑘=0

(−1)𝑘𝑘  �2𝑖𝑖
𝑘𝑘 � �𝜆𝜆 + 3

2�𝑘𝑘
(𝜈𝜈 + 1)𝑘𝑘(2𝑖𝑖 + 2𝜆𝜆 + 3)𝑘𝑘

(𝜆𝜆 + 2)𝑘𝑘(2𝜆𝜆 + 2)𝑘𝑘(𝑘𝑘 + 𝜇𝜇 + 𝜈𝜈 + 1)𝑘𝑘
 

×  4𝐹𝐹3 �
𝑘𝑘 − 2𝑖𝑖,𝑘𝑘 + 𝜆𝜆 + 3

2 ,𝑘𝑘 + 2𝑖𝑖 + 2𝜆𝜆 + 3, 𝑘𝑘 + 𝜇𝜇 + 1
𝑘𝑘 + 𝜆𝜆 + 2, 𝑘𝑘 + 2𝜆𝜆 + 2,2𝑘𝑘 + 𝜇𝜇 + 𝜈𝜈 + 2

 � 1�𝑅𝑅𝑘𝑘
(𝜈𝜈,𝜇𝜇)(𝑥𝑥).  

 
Proof: 
 
If 𝑥𝑥 in (1) is replaced by −𝑥𝑥, then the above formula can be easily obtained. 

 
 
2.1. Linearization Formulas of 𝑽𝑽𝒊𝒊(𝒙𝒙) and 𝑾𝑾𝒊𝒊(𝒙𝒙) 
 
Our goal in this section is to obtain some new linearization formulas of Chebyshev polynomials 
of third and fourth kinds 𝑉𝑉𝑖𝑖(𝑥𝑥) and 𝑊𝑊𝑖𝑖(𝑥𝑥). The key idea behind obtaining such formulas is to 
reduce the  4𝐹𝐹3(1) that appears in (1). This reduction can be performed by using some standard 
formulas such as Pfaff-Saalschütz identity and Watson’s theorem, or through utilizing some 
symbolic algebraic algorithms, and in particular the algorithms of Zeilberger, Petkovsek and van 
Hoeij. In this respect, we state and prove the following corollaries. 

  
Corollary 2.2. 
 
If we set 𝜆𝜆 = −1

2
 and 𝜈𝜈 = 1

2
, in relation (1), then the following linearization formula holds: 

 
      𝑉𝑉𝑖𝑖(𝑥𝑥)𝑊𝑊𝑖𝑖(𝑥𝑥)  

(5) 
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= (2𝑖𝑖 + 1)�
2𝑖𝑖

𝑘𝑘=0

(−1)𝑘𝑘 �2𝑖𝑖
𝑘𝑘 �  (2𝑖𝑖 + 2)𝑘𝑘 (𝜇𝜇 + 1)𝑘𝑘  �𝑘𝑘 − 2𝑖𝑖 + 𝜇𝜇 + 1

2�2𝑖𝑖−𝑘𝑘
�3

2�𝑘𝑘
�𝑘𝑘 + 𝜇𝜇 + 3

2�𝑘𝑘
�2𝑘𝑘 + 𝜇𝜇 + 5

2�2𝑖𝑖−𝑘𝑘

 𝑅𝑅𝑘𝑘
�𝜇𝜇,12�(𝑥𝑥). 

    
Proof: 
 
If we substitute by 𝜆𝜆 = −1

2
 and 𝜈𝜈 = 1

2
 in relation (1), and noting the two relations  

  

𝑅𝑅𝑖𝑖
(−12,12)

(𝑥𝑥) = 𝑉𝑉𝑖𝑖(𝑥𝑥),        𝑅𝑅𝑖𝑖
(12,−12)

(𝑥𝑥) =
𝑊𝑊𝑖𝑖(𝑥𝑥)
2𝑖𝑖 + 1

, 
then we get  
 

          𝑉𝑉𝑖𝑖(𝑥𝑥)𝑊𝑊𝑖𝑖(𝑥𝑥) = (2𝑖𝑖 + 1) �
2𝑖𝑖

𝑘𝑘=0

�2𝑖𝑖
𝑘𝑘 � (2𝑖𝑖 + 2)𝑘𝑘(𝜇𝜇 + 1)𝑘𝑘

�3
2�𝑘𝑘

�𝑘𝑘 + 𝜇𝜇 + 3
2�𝑘𝑘

 

               ×  3𝐹𝐹2 �
𝑘𝑘 − 2𝑖𝑖,𝑘𝑘 + 2𝑖𝑖 + 2,𝑘𝑘 + 𝜇𝜇 + 1

𝑘𝑘 + 3
2 , 2𝑘𝑘 + 𝜇𝜇 + 5

2
 � 1�𝑅𝑅𝑘𝑘

�𝜇𝜇,12�(𝑥𝑥). 

 
 
 
(6) 

   
Now, and based on the application of the well-known Pfaff-Saalschütz identity (see, Olver et al. 
(2010)), the  3𝐹𝐹2(1) in (6) reduces to 
 

 3𝐹𝐹2 �
𝑘𝑘 − 2𝑖𝑖,𝑘𝑘 + 2𝑖𝑖 + 2, 𝑘𝑘 + 𝜇𝜇 + 1

𝑘𝑘 + 3
2 , 2𝑘𝑘 + 𝜇𝜇 + 5

2
 � 1� =

(−1)𝑘𝑘 �𝑘𝑘 − 2𝑖𝑖 + 𝜇𝜇 + 1
2�2𝑖𝑖−𝑘𝑘

�2𝑘𝑘 + 𝜇𝜇 + 5
2�2𝑖𝑖−𝑘𝑘

, 

 
and therefore, the following linearization formula holds: 
  

      𝑉𝑉𝑖𝑖(𝑥𝑥)𝑊𝑊𝑖𝑖(𝑥𝑥) 

= (2𝑖𝑖 + 1) �
2𝑖𝑖

𝑘𝑘=0

(−1)𝑘𝑘 �2𝑖𝑖
𝑘𝑘 �  (2𝑖𝑖 + 2)𝑘𝑘 (𝜇𝜇 + 1)𝑘𝑘  �𝑘𝑘 − 2𝑖𝑖 + 𝜇𝜇 + 1

2�2𝑖𝑖−𝑘𝑘
�3

2�𝑘𝑘
  �𝑘𝑘 + 𝜇𝜇 + 3

2�𝑘𝑘
  �2𝑘𝑘 + 𝜇𝜇 + 5

2�2𝑖𝑖−𝑘𝑘

  𝑅𝑅𝑘𝑘
(𝜇𝜇,12)

(𝑥𝑥). 

 
As special cases of (5), the following two linearization formulas of third and fourth kinds of 
Chebyshev polynomials can be obtained. 

 
Corollary 2.3. 
 
For every nonnegative integer i, the following two linearization formulas hold 
  

𝑉𝑉𝑖𝑖(𝑥𝑥)𝑊𝑊𝑖𝑖(𝑥𝑥) = �
2𝑖𝑖

𝑘𝑘=0

𝑉𝑉𝑘𝑘(𝑥𝑥), (7) 
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𝑉𝑉𝑖𝑖(𝑥𝑥)𝑊𝑊𝑖𝑖(𝑥𝑥) = 𝑈𝑈2𝑖𝑖(𝑥𝑥). (8) 

 
Proof: 
 
If we set 𝜇𝜇 = −1

2
, 1
2
, respectively, in relation (5), then linerization formulas (7) and (8) can be 

obtained.   
 
Remark 2.1. 
 
If 𝑥𝑥 in (7) is replaced by −𝑥𝑥, then noting the identity:  𝑉𝑉𝑖𝑖(−𝑥𝑥) = (−1)𝑖𝑖 𝑊𝑊𝑖𝑖(𝑥𝑥), the following 
linearization formula holds:   

  

𝑉𝑉𝑖𝑖(𝑥𝑥) 𝑊𝑊𝑖𝑖(𝑥𝑥) = �
2𝑖𝑖

𝑘𝑘=0

(−1)𝑘𝑘 𝑊𝑊𝑘𝑘(𝑥𝑥). 

 

(9) 

  
Corollary 2.4. 
 
If we set 𝜆𝜆 = −1

2
, 𝜈𝜈 = 𝜇𝜇, and each is replaced by (𝜇𝜇 − 1

2
) in relation (1), then we have 

   

𝑉𝑉𝑖𝑖(𝑥𝑥)𝑊𝑊𝑖𝑖(𝑥𝑥) = Γ(𝜇𝜇)�
𝑖𝑖

𝑘𝑘=0

(−1)𝑖𝑖+𝑘𝑘  �𝑖𝑖𝑘𝑘�  (2𝑘𝑘 + 1) (𝑖𝑖 + 1)𝑘𝑘  �𝜇𝜇 + 1
2�𝑘𝑘

�3
2�𝑘𝑘

 (𝑘𝑘 + 𝜇𝜇)𝑘𝑘 (2𝑘𝑘 + 𝜇𝜇 + 1)𝑖𝑖−𝑘𝑘 Γ(𝑘𝑘 − 𝑖𝑖 + 𝜇𝜇)
 𝐶𝐶2𝑘𝑘

(𝜇𝜇)(𝑥𝑥). (10) 

  
Proof: 
 
Substitution of 𝜆𝜆 = −1

2
, 𝜈𝜈 = 𝜇𝜇 into relation (1) yields 

 

        𝑉𝑉𝑖𝑖(𝑥𝑥)𝑊𝑊𝑖𝑖(𝑥𝑥) = (2𝑖𝑖 + 1) �
2𝑖𝑖

𝑘𝑘=0

�2𝑖𝑖
𝑘𝑘 �  (2𝑖𝑖 + 2)𝑘𝑘(𝜇𝜇 + 1)𝑘𝑘

�3
2�𝑘𝑘

(𝑘𝑘 + 2𝜇𝜇 + 1)𝑘𝑘

                    × 3𝐹𝐹2 �
𝑘𝑘 − 2𝑖𝑖, 𝑘𝑘 + 2𝑖𝑖 + 2,𝑘𝑘 + 𝜇𝜇 + 1

𝑘𝑘 + 3
2 , 2𝑘𝑘 + 2𝜇𝜇 + 2

 � 1�  𝑅𝑅𝑘𝑘
(𝜇𝜇,𝜇𝜇)(𝑥𝑥).  

 

 
 
 
(11) 

   
Now, and by means of Watson’s theorem (see, Olver et al. (2010) ), the  3𝐹𝐹2(1) in (11) can be 
reduced to the form 
 

 3𝐹𝐹2 �
𝑘𝑘 − 2𝑖𝑖,𝑘𝑘 + 2𝑖𝑖 + 2,𝑘𝑘 + 𝜇𝜇 + 1

𝑘𝑘 + 3
2 , 2𝑘𝑘 + 2𝜇𝜇 + 2

 � 1� 
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=

⎩
⎪
⎨

⎪
⎧(−1)𝑖𝑖−

𝑘𝑘
2  2𝑘𝑘−2𝑖𝑖(2𝑖𝑖 − 𝑘𝑘)! �1

2 (𝑘𝑘 + 1) − 𝑖𝑖 + 𝜇𝜇�
𝑖𝑖−𝑘𝑘2

�𝑖𝑖 − 𝑘𝑘
2� ! �𝑘𝑘 + 3

2�𝑖𝑖−𝑘𝑘2
�𝑘𝑘 + 𝜇𝜇 + 3

2�𝑖𝑖−𝑘𝑘2

, 𝑘𝑘  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,

0, 𝑘𝑘  𝑜𝑜𝑜𝑜𝑜𝑜,

 

 
  
and therefore, the following linearization formula holds: 
   

𝑉𝑉𝑖𝑖(𝑥𝑥) 𝑊𝑊𝑖𝑖(𝑥𝑥) = Γ(𝜇𝜇)�
𝑖𝑖

𝑘𝑘=0

(−1)𝑖𝑖+𝑘𝑘  �𝑖𝑖𝑘𝑘�  (2𝑘𝑘 + 1) (𝑖𝑖 + 1)𝑘𝑘  �𝜇𝜇 + 1
2�𝑘𝑘

�3
2�𝑘𝑘

 (𝑘𝑘 + 𝜇𝜇)𝑘𝑘 (2𝑘𝑘 + 𝜇𝜇 + 1)𝑖𝑖−𝑘𝑘 Γ(𝑘𝑘 − 𝑖𝑖 + 𝜇𝜇)
 𝐶𝐶2𝑘𝑘

(𝜇𝜇)(𝑥𝑥). 

 
 

Corollary 2.5. 
 
For every nonnegative integer i, the following two linerization formula hold 
 

𝑉𝑉𝑖𝑖(𝑥𝑥)𝑊𝑊𝑖𝑖(𝑥𝑥) = 1 + 2 �
𝑖𝑖

𝑘𝑘=1

𝑇𝑇2𝑘𝑘(𝑥𝑥), (12) 

𝑉𝑉𝑖𝑖(𝑥𝑥)𝑊𝑊𝑖𝑖(𝑥𝑥) =
𝜋𝜋
2
�
𝑖𝑖

𝑘𝑘=0

(−1)𝑖𝑖+𝑘𝑘 (4𝑘𝑘 + 1) (𝑘𝑘 + 𝑖𝑖)!

(𝑖𝑖 − 𝑘𝑘)! Γ �𝑘𝑘 − 𝑖𝑖 + 1
2�   Γ �𝑘𝑘 + 𝑖𝑖 + 3

2�
𝑃𝑃2𝑘𝑘(𝑥𝑥). (13) 

 

 
Proof: 
 
Setting 𝜇𝜇 = 0, and 1

2
, respectively in (10) yields the linerization formulas (12) and (13). 

     
Remark 2.2. 
 
The three linearization formulas (7), (9) and (12) lead to the following three well-known 
trigonometric identities: 
 

�
2𝑖𝑖

𝑘𝑘=0

cos��𝑘𝑘 +
1
2
� 𝜃𝜃� =

sin((2𝑖𝑖 + 1)𝜃𝜃)

2 sin �𝜃𝜃2�
, 

 

�
2𝑖𝑖

𝑘𝑘=0

(−1)𝑘𝑘 sin��𝑘𝑘 +
1
2
� 𝜃𝜃� =

sin((2𝑖𝑖 + 1)𝜃𝜃)

2 cos �𝜃𝜃2�
, 
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1 + 2 �
𝑖𝑖

𝑘𝑘=1

cos(2𝑘𝑘𝑘𝑘) =
sin((2𝑖𝑖 + 1)𝜃𝜃)

sin𝜃𝜃
. 

 
2.2. Some Other Linearization Formulas of 𝑽𝑽𝒊𝒊(𝒙𝒙) and 𝑾𝑾𝒊𝒊(𝒙𝒙) 
 
In this subsection, we give some other linearization formulas of products of Chebyshev 
polynomials of third and fourth kinds in reduced forms. The results are given in the following two 
corollaries. 

  
Corollary 2.6. 
 
For the case 𝜆𝜆 = −1

2
, 𝜈𝜈 = 𝜇𝜇 + 1, the following linearization formula is obtained:  

 

      𝑉𝑉𝑖𝑖(𝑥𝑥)𝑊𝑊𝑖𝑖(𝑥𝑥) =
√𝜋𝜋  Γ �𝜇𝜇 + 1

2�
22𝜇𝜇+1 Γ(𝜇𝜇 + 1) 

× ��
𝑖𝑖

𝑚𝑚=0

(−1)𝑚𝑚+𝑖𝑖 (𝑚𝑚 + 𝑖𝑖)! Γ(2 𝑚𝑚 + 2 𝜇𝜇 + 2)

(2𝑚𝑚)! (𝑖𝑖 − 𝑚𝑚)!Γ �𝑚𝑚 − 𝑖𝑖 + 𝜇𝜇 + 1
2� Γ �𝑚𝑚 + 𝑖𝑖 + 𝜇𝜇 + 3

2�
𝑅𝑅2 𝑚𝑚

(𝜇𝜇,𝜇𝜇+1)(𝑥𝑥)

+ �
𝑖𝑖−1

𝑚𝑚=0

(−1)𝑚𝑚+𝑖𝑖+1(𝑚𝑚 + 𝑖𝑖 + 1)! Γ(2𝑚𝑚 + 2𝜇𝜇 + 3)

(2𝑚𝑚 + 1)! (𝑖𝑖 − 𝑚𝑚 − 1)! Γ �𝑚𝑚 − 𝑖𝑖 + 𝜇𝜇 + 3
2� Γ �𝑚𝑚 + 𝑖𝑖 + 𝜇𝜇 + 5

2�
𝑅𝑅2 𝑚𝑚+1

(𝜇𝜇,𝜇𝜇+1)(𝑥𝑥)� .

 

 

 
 
 
 
 
 
 
 
(14) 

Proof: 
 
If we substitute by 𝜆𝜆 = −1

2
, 𝜈𝜈 = 𝜇𝜇 + 1, then the linearization formula (1) is turned into 

 

𝑉𝑉𝑖𝑖(𝑥𝑥)𝑊𝑊𝑖𝑖(𝑥𝑥) = (2𝑖𝑖 + 1)�
2𝑖𝑖

𝑘𝑘=0

�2𝑖𝑖
𝑘𝑘 � (2𝑖𝑖 + 2)𝑘𝑘(𝜇𝜇 + 1)𝑘𝑘

�3
2�𝑘𝑘

(𝑘𝑘 + 2𝜇𝜇 + 2)𝑘𝑘
 

 

                   ×  3𝐹𝐹2 �
𝑘𝑘 − 2𝑖𝑖,𝑘𝑘 + 2𝑖𝑖 + 2,𝑘𝑘 + 𝜇𝜇 + 1

𝑘𝑘 + 3
2 , 2𝑘𝑘 + 2𝜇𝜇 + 3

 � 1�  𝑅𝑅𝑘𝑘
(𝜇𝜇,𝜇𝜇+1)(𝑥𝑥). 

 
 
 
 
(15) 

 
Now, if we set 

𝐻𝐻𝑗𝑗,𝑖𝑖,𝜇𝜇 =  3𝐹𝐹2 �
𝑘𝑘 − 𝑗𝑗,−𝑗𝑗 + 4𝑖𝑖 + 2, 𝜇𝜇 − 𝑗𝑗 + 2𝑖𝑖 + 1

−𝑗𝑗 + 2𝑖𝑖 + 3
2 , 2𝜇𝜇 − 2𝑗𝑗 + 4𝑖𝑖 + 3

 � 1�, 

  
then with the aid of the celebrated algorithm of Zeilberger (Koepf (2014)), via the Maple software, 
and in particular, sumrecursion command, the following recurrence relation of order two is 
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satisfied by 𝐻𝐻𝑗𝑗,𝑖𝑖,𝜇𝜇: 
  

      (1 − 𝑗𝑗)(2𝜇𝜇 − 𝑗𝑗 + 2)(𝑗𝑗 − 4𝑖𝑖 − 3)(2𝜇𝜇 − 2𝑗𝑗 + 4𝑖𝑖 + 3) 
                       × (2𝜇𝜇 − 𝑗𝑗 + 4𝑖𝑖 + 4) 𝐻𝐻𝑗𝑗−2,𝑖𝑖,𝜇𝜇 − (2𝑗𝑗 − 4𝑖𝑖 − 5) 

× (−6𝜇𝜇 − 2𝑗𝑗2 + 4𝜇𝜇 𝑗𝑗 + 8 𝑗𝑗 𝑖𝑖 + 8𝑗𝑗 − 16𝑖𝑖2 − 8 𝜇𝜇 𝑖𝑖 − 24 𝑖𝑖 − 9) 
                       × (2𝜇𝜇 − 2𝑗𝑗 + 4𝑖𝑖 + 5)𝐻𝐻𝑗𝑗−1,𝑖𝑖,𝜇𝜇 + (2𝑗𝑗 − 4𝑖𝑖 − 5)(2𝑗𝑗 − 4𝑖𝑖 − 3) 
                       × (2𝜇𝜇 − 2𝑗𝑗 + 4𝑖𝑖 + 3)(2𝜇𝜇 − 2𝑗𝑗 + 4𝑖𝑖 + 5)2 𝐻𝐻𝑗𝑗,𝑖𝑖,𝜇𝜇 
       = 0.   

 
 
(16) 

 
with the following initial conditions 
  

𝐻𝐻0,𝑖𝑖,𝜇𝜇 = 1,    𝐻𝐻1,𝑖𝑖,𝜇𝜇 =
1

4𝑖𝑖 + 2𝜇𝜇 + 1
, 

 
which has the following exact solution: 
 

𝐻𝐻𝑗𝑗,𝑖𝑖,𝜇𝜇 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ (−1)

𝑗𝑗
2  𝑗𝑗! �1 − 𝑗𝑗

2 + 𝜇𝜇�𝑗𝑗
2

2𝑗𝑗   (𝑗𝑗2)! �−𝑗𝑗 + 2𝑖𝑖 + 3
2�𝑗𝑗

2
�−𝑗𝑗 + 2𝑖𝑖 + 𝜇𝜇 + 3

2�𝑗𝑗
2

, 𝑗𝑗  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,

(−1)
𝑗𝑗−1
2  (𝑗𝑗 + 1)! �− 𝑗𝑗

2 + 𝜇𝜇 + 1�𝑗𝑗−1
2

2𝑗𝑗+1 (𝑗𝑗 + 1
2 )! �−𝑗𝑗 + 2𝑖𝑖 + 3

2�𝑗𝑗−1
2
�−𝑗𝑗 + 2𝑖𝑖 + 𝜇𝜇 + 3

2�𝑗𝑗+1
2

, 𝑗𝑗  𝑜𝑜𝑜𝑜𝑜𝑜,

 (17) 

 
and therefore, the, 3𝐹𝐹2(1) in (15) has the following reduction formula 
 

         3𝐹𝐹2 �
𝑘𝑘 − 2𝑖𝑖,𝑘𝑘 + 2𝑖𝑖 + 2,𝑘𝑘 + 𝜇𝜇 + 1

𝑘𝑘 + 3
2 , 2𝑘𝑘 + 2𝜇𝜇 + 3

 � 1� 

          

        =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧(−1)𝑖𝑖−

𝑘𝑘
2  2𝑘𝑘−2𝑖𝑖(2𝑖𝑖 − 𝑘𝑘)! �1

2 (𝑘𝑘 + 1) − 𝑖𝑖 + 𝜇𝜇�
𝑖𝑖−𝑘𝑘2

�𝑖𝑖 − 𝑘𝑘
2� ! �𝑘𝑘 + 3

2�𝑖𝑖−𝑘𝑘2
�𝑘𝑘 + 𝜇𝜇 + 3

2�𝑖𝑖−𝑘𝑘2

,    𝑘𝑘  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,

(−1)𝑖𝑖−(𝑘𝑘+12 )  2𝑘𝑘−2𝑖𝑖−1(−𝑘𝑘 + 2𝑖𝑖 + 1)!  �𝑘𝑘2 − 𝑖𝑖 + 𝜇𝜇 + 1�
𝑖𝑖−(𝑘𝑘+12 )

�𝑖𝑖 − (𝑘𝑘 − 1
2 )� ! �𝑘𝑘 + 3

2�𝑖𝑖−(𝑘𝑘+12 )
�𝑘𝑘 + 𝜇𝜇 + 3

2�𝑖𝑖−(𝑘𝑘−12 )

, 𝑘𝑘  𝑜𝑜𝑜𝑜𝑜𝑜.

  

 
 
 
 
(18) 

 
The last reduction formula enables one to write the linearization formula (15) in the form 
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    𝑉𝑉𝑖𝑖(𝑥𝑥)𝑊𝑊𝑖𝑖(𝑥𝑥) =
√𝜋𝜋 Γ �𝜇𝜇 + 1

2�
22𝜇𝜇+1Γ(𝜇𝜇 + 1) 

 

× ��
𝑖𝑖

𝑚𝑚=0

(−1)𝑚𝑚+𝑖𝑖 (𝑚𝑚 + 𝑖𝑖)! Γ(2 𝑚𝑚 + 2 𝜇𝜇 + 2)

(2𝑚𝑚)! (𝑖𝑖 − 𝑚𝑚)! Γ �𝑚𝑚 − 𝑖𝑖 + 𝜇𝜇 + 1
2� Γ �𝑚𝑚 + 𝑖𝑖 + 𝜇𝜇 + 3

2�
  𝑅𝑅2𝑚𝑚

(𝜇𝜇,𝜇𝜇+1)(𝑥𝑥) 

 

                 + �
𝑖𝑖−1

𝑚𝑚=0

(−1)𝑚𝑚+𝑖𝑖+1 (𝑚𝑚 + 𝑖𝑖 + 1)! Γ(2𝑚𝑚 + 2𝜇𝜇 + 3)

(2𝑚𝑚 + 1)! (𝑖𝑖 − 𝑚𝑚 − 1)! Γ �𝑚𝑚 − 𝑖𝑖 + 𝜇𝜇 + 3
2� Γ �𝑚𝑚 + 𝑖𝑖 + 𝜇𝜇 + 5

2�
 𝑅𝑅2𝑚𝑚+1

(𝜇𝜇,𝜇𝜇+1)(𝑥𝑥)�, 

 
and this completes the proof of Corollary 2.6.  

  
Remark 2.3. 
 
It is worthy to note that the recurrence relation (16) can be solved exactly through any suitable 
symbolic algorithms to obtain (17). For this purpose, the algorithms of Petkovsek (Koepf 
(2014)(Chapter 9)), or the improved version of van Hoeij (van Hoeij (1999)) may be used.  

  
Corollary 2.7. 
 
For the case 𝜆𝜆 = −1

2
, 𝜈𝜈 = 3

2
, the following linearization formula holds: 

 

      𝑉𝑉𝑖𝑖(𝑥𝑥) 𝑊𝑊𝑖𝑖(𝑥𝑥) =
1
2

 (2𝑖𝑖 + 1) Γ �𝜇𝜇 +
1
2
� 

 

× �
2𝑖𝑖

𝑘𝑘=0

(−1)𝑘𝑘 �2𝑖𝑖
𝑘𝑘 � (2𝑖𝑖 + 2)𝑘𝑘(𝜇𝜇 + 1)𝑘𝑘(2𝑘𝑘(2𝑘𝑘 + 2𝜇𝜇 + 5) − 16𝑖𝑖(𝑖𝑖 + 1) + 6𝜇𝜇 + 3)

(2𝑘𝑘 + 3) �3
2�𝑘𝑘

�𝑘𝑘 + 𝜇𝜇 + 5
2�𝑘𝑘

�2𝑘𝑘 + 𝜇𝜇 + 7
2�2𝑖𝑖−𝑘𝑘

Γ �𝑘𝑘 − 2𝑖𝑖 + 𝜇𝜇 + 3
2�

𝑅𝑅𝑘𝑘
(𝜇𝜇,32)

(𝑥𝑥). 

 
(19)

  

   
Proof: 
 
The substitution of 𝜆𝜆 = −1

2
, 𝜈𝜈 = 3

2
 into relation (1), leads to the linearization formula 

 

             𝑉𝑉𝑖𝑖(𝑥𝑥)𝑊𝑊𝑖𝑖(𝑥𝑥) = (2𝑖𝑖 + 1)�
2𝑖𝑖

𝑘𝑘=0

�2𝑖𝑖
𝑘𝑘 � (2𝑖𝑖 + 2)𝑘𝑘(𝜇𝜇 + 1)𝑘𝑘

�3
2�𝑘𝑘

�𝑘𝑘 + 𝜇𝜇 + 5
2�𝑘𝑘

 

                                                              × 3𝐹𝐹2 �
𝑘𝑘 − 2𝑖𝑖,𝑘𝑘 + 2𝑖𝑖 + 2, 𝑘𝑘 + 𝜇𝜇 + 1

𝑘𝑘 + 3
2 , 2𝑘𝑘 + 𝜇𝜇 + 7

2
 � 1�  𝑅𝑅𝑘𝑘

�𝜇𝜇,32�(𝑥𝑥). 

 
(20) 

 
Now, if we set 
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𝐺𝐺𝑗𝑗,𝑖𝑖,𝜇𝜇 =  3𝐹𝐹2 �
−𝑗𝑗,−𝑗𝑗 + 4𝑖𝑖 + 2, 𝜇𝜇 − 𝑗𝑗 + 2𝑖𝑖 + 1

−𝑗𝑗 + 2𝑖𝑖 + 3
2 , 𝜇𝜇 − 2𝑗𝑗 + 4𝑖𝑖 + 7

2
 � 1�, 

 
then the application of Zeilberger’s algorithm enables one to obtain the following recurrence 
relation of order one which is satisfied by 𝐺𝐺𝑗𝑗,𝑖𝑖,𝜇𝜇:  
 

   (2𝜇𝜇 − 2𝑗𝑗 + 3)(2𝑗𝑗 − 4𝑖𝑖 − 5)(2 𝑗𝑗(2 𝜇𝜇 + 8 𝑖𝑖 + 5) − 4𝑗𝑗2 − (2 𝜇𝜇 + 1)(4 𝑖𝑖 + 3)) 
× (2𝜇𝜇 − 2 𝑗𝑗 + 8 𝑖𝑖 + 7)𝐺𝐺𝑗𝑗−1,𝑖𝑖,𝜇𝜇 + (2𝑗𝑗 − 4𝑖𝑖 − 3) × (2𝜇𝜇 − 4 𝑗𝑗 + 8𝑖𝑖 + 7)(2𝜇𝜇 − 4𝑗𝑗 + 8𝑖𝑖 + 9) 

    × (2 𝑗𝑗(2 𝜇𝜇 + 8 𝑖𝑖 + 9 − 10 𝜇𝜇 − 4 𝑗𝑗2) − 4 (2 𝜇𝜇 + 5)𝑖𝑖 − 17)𝐺𝐺𝑗𝑗,𝑖𝑖,𝜇𝜇 = 0,   𝐺𝐺0,𝑖𝑖,𝜇𝜇 = 1, 
 
which can be exactly solved to give 
 

    3𝐹𝐹2 �
−𝑗𝑗,−𝑗𝑗 + 4𝑖𝑖 + 2, 𝜇𝜇 − 𝑗𝑗 + 2𝑖𝑖 + 1

−𝑗𝑗 + 2𝑖𝑖 + 3
2 , 𝜇𝜇 − 2𝑗𝑗 + 4𝑖𝑖 + 7

2
 � 1� 

=
(−1)𝑗𝑗(−𝑗𝑗 + 𝜇𝜇 + 3

2)𝑗𝑗−1

2(2𝑗𝑗 − 4𝑖𝑖 − 3)(−2𝑗𝑗 + 4𝑖𝑖 + 𝜇𝜇 + 7
2)𝑗𝑗

× �2𝑗𝑗(2𝜇𝜇 + 8𝑖𝑖 + 5) − 4𝑗𝑗2 − (2𝜇𝜇 + 1)(4𝑖𝑖 + 3)�. 

 
Accordingly, the 3𝐹𝐹2(1) in (20) is equivalent to 
 

               3𝐹𝐹2 �
𝑘𝑘 − 2𝑖𝑖,𝑘𝑘 + 2𝑖𝑖 + 2,𝑘𝑘 + 𝜇𝜇 + 1

𝑘𝑘 + 3
2 , 2𝑘𝑘 + 𝜇𝜇 + 7

2
 �1� 

=
(−1)𝑘𝑘 Γ(μ + 1

2)(2𝑘𝑘(2𝑘𝑘 + 2𝜇𝜇 + 5) − 16𝑖𝑖(𝑖𝑖 + 1) + 6𝜇𝜇 + 3)

2(2𝑘𝑘 + 3) �2𝑘𝑘 + 𝜇𝜇 + 7
2�2𝑖𝑖−𝑘𝑘

Γ(k − 2i + μ + 3
2)

, 

 
 
(21) 

 
and hence, the following linearization formula holds:  
 

  𝑉𝑉𝑖𝑖(𝑥𝑥) 𝑊𝑊𝑖𝑖(𝑥𝑥) =
1
2

 (2𝑖𝑖 + 1)Γ �𝜇𝜇 +
1
2
� 

× �
2𝑖𝑖

𝑘𝑘=0

(−1)𝑘𝑘 �2𝑖𝑖
𝑘𝑘 � (2𝑖𝑖 + 2)𝑘𝑘(𝜇𝜇 + 1)𝑘𝑘(2 𝑘𝑘 (2𝑘𝑘 + 2𝜇𝜇 + 5) − 16𝑖𝑖(𝑖𝑖 + 1) + 6𝜇𝜇 + 3)

(2𝑘𝑘 + 3) �3
2�𝑘𝑘

�𝑘𝑘 + 𝜇𝜇 + 5
2�𝑘𝑘

�2𝑘𝑘 + 𝜇𝜇 + 7
2�2𝑖𝑖−𝑘𝑘

Γ �𝑘𝑘 − 2𝑖𝑖 + 𝜇𝜇 + 3
2�

𝑅𝑅𝑘𝑘
�𝜇𝜇,32�(𝑥𝑥). 

  
3. New Formulas for Some Definite Integrals 

 
In this section, we are interested in presenting some applications to the derived linearization 
formulas. We will introduce some new formulas for definite integrals involving three products of 
Jacobi polynomials of certain parameters by means of applying the developed linearization 
formulas in the previous section. 
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Theorem 3.1. 
 
Let 𝑖𝑖,𝑚𝑚 be positive integers. The following identity holds: 
 

�
−1

−1
(1 − 𝑥𝑥)𝜇𝜇 (1 + 𝑥𝑥)𝜈𝜈 𝑅𝑅𝑖𝑖

�𝜆𝜆,12�(𝑥𝑥)𝑅𝑅𝑖𝑖
�𝜆𝜆+1,−12 �

(𝑥𝑥)𝑅𝑅𝑚𝑚
(𝜇𝜇,𝜈𝜈)(𝑥𝑥)𝑑𝑑𝑑𝑑 

 

=
𝑚𝑚!  �2𝑖𝑖

𝑚𝑚�  22𝜆𝜆+𝜇𝜇+𝜈𝜈+2 Γ �𝑚𝑚 + 𝜆𝜆 + 3
2�  Γ(𝑚𝑚 + 𝜈𝜈 + 1)

√𝜋𝜋 Γ(2𝑖𝑖 + 2𝜆𝜆 + 3)
 

 
× Γ(𝑚𝑚 + 2𝑖𝑖 + 2 𝜆𝜆 + 3) Γ(𝜆𝜆 + 1) Γ(𝜆𝜆 + 2) Γ(𝜇𝜇 + 1) 

 

                               ×  4𝐹𝐹�3 �
𝑚𝑚 − 2𝑖𝑖,𝑚𝑚 + 𝜆𝜆 + 3

2 ,𝑚𝑚 + 2𝑖𝑖 + 2𝜆𝜆 + 3,𝑚𝑚 + 𝜇𝜇 + 1
𝑚𝑚 + 𝜆𝜆 + 2,𝑚𝑚 + 2𝜆𝜆 + 2,2𝑚𝑚 + 𝜇𝜇 + 𝜈𝜈 + 2

 �1�. 

 

 

 

 

 

 
(22) 

 
where the notation  𝑝𝑝𝐹𝐹�𝑞𝑞 denotes the regularized generalized hypergeometric function (see Abd-
Elhameed (2015 a)).  
 
Proof: 
 
The result in (22) can be followed if we multiply both sides of formula (1) by 
 

(1 − 𝑥𝑥)𝜇𝜇 (1 + 𝑥𝑥)𝜈𝜈 𝑅𝑅𝑚𝑚
(𝜇𝜇,𝜈𝜈)(𝑥𝑥), 

 
integrate over (−1,1), and make use of the orthogonality relation of 𝑅𝑅𝑚𝑚

(𝜇𝜇,𝜈𝜈)(𝑥𝑥). 
 
Now, since the  4𝐹𝐹�3 in identity (22) can be written in several reduced forms for certain choices of 
the parameters involved as implemented in Section 2, so some integrals can be written in explicit 
forms free of any hypergeometric functions. The results are given in the following corollary. 

  
Corollary 3.1. 
 
For all nonnegative integers 𝑚𝑚 and 𝑖𝑖, the following integrals formulas are valid 
 

                          �
1

−1
 √𝑥𝑥 + 1  (1 − 𝑥𝑥)𝜇𝜇𝑉𝑉𝑖𝑖(𝑥𝑥) 𝑊𝑊𝑖𝑖(𝑥𝑥) 𝑅𝑅𝑚𝑚

�𝜇𝜇,12�(𝑥𝑥) 𝑑𝑑𝑑𝑑 

=
(−1)𝑚𝑚 𝜋𝜋 2

1
2−𝜇𝜇Γ(2𝜇𝜇 + 1)  (𝑚𝑚 + 2𝑖𝑖 + 1)!

(2𝑖𝑖 − 𝑚𝑚)! Γ �𝑚𝑚 − 2𝑖𝑖 + 𝜇𝜇 + 1
2� Γ �𝑚𝑚 + 2𝑖𝑖 + 𝜇𝜇 + 5

2�
, 

 
 
(23) 
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�
1

−1

(1 − 𝑥𝑥2)𝜇𝜇−
1
2 𝑉𝑉𝑖𝑖(𝑥𝑥)𝑊𝑊𝑖𝑖(𝑥𝑥)𝐶𝐶2𝑚𝑚

(𝜇𝜇)(𝑥𝑥)𝑑𝑑𝑑𝑑 =
(−1)𝑖𝑖+𝑚𝑚 𝜋𝜋 21−2𝜇𝜇 Γ(2𝜇𝜇) (𝑚𝑚 + 𝑖𝑖)!

(𝑖𝑖 − 𝑚𝑚)!  Γ(𝑚𝑚− 𝑖𝑖 + 𝜇𝜇)Γ(𝑚𝑚 + 𝑖𝑖 + 𝜇𝜇 + 1), 
(24) 

 

�
1

−1
 (1 − 𝑥𝑥)𝜇𝜇  (1 + 𝑥𝑥)𝜇𝜇+1𝑉𝑉𝑖𝑖(𝑥𝑥) 𝑊𝑊𝑖𝑖(𝑥𝑥) 𝑅𝑅𝑚𝑚

(𝜇𝜇,𝜇𝜇+1)(𝑥𝑥) 𝑑𝑑𝑑𝑑 =
𝜋𝜋 Γ(2 𝜇𝜇 + 1)

22 𝜇𝜇  

×

⎩
⎪⎪
⎨

⎪⎪
⎧ (−1)

𝑚𝑚
2+𝑖𝑖(𝑖𝑖 + 𝑚𝑚

2 )!

(𝑖𝑖 − 𝑚𝑚
2 )!   Γ �1

2 (𝑚𝑚 + 1) − 𝑖𝑖 + 𝜇𝜇� Γ �1
2 (𝑚𝑚 + 3) + 𝑖𝑖 + 𝜇𝜇�

, 𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,

(−1)
𝑚𝑚+1
2 +𝑖𝑖(𝑖𝑖 + 𝑚𝑚 + 1

2 )!

(𝑖𝑖 − (𝑚𝑚 + 1
2 ))!Γ �𝑚𝑚2 − 𝑖𝑖 + 𝜇𝜇 + 1� Γ �𝑚𝑚2 + 𝑖𝑖 + 𝜇𝜇 + 2�

, 𝑚𝑚  𝑜𝑜𝑜𝑜𝑜𝑜,

  

 
 
 
 
 
 
(25) 

 

  �
1

−1
 (1 − 𝑥𝑥)𝜇𝜇  (1 + 𝑥𝑥)

3
2𝑉𝑉𝑖𝑖(𝑥𝑥) 𝑊𝑊𝑖𝑖(𝑥𝑥) 𝑅𝑅𝑚𝑚

(𝜇𝜇,32)
(𝑥𝑥) 𝑑𝑑𝑑𝑑 

                    

=
𝜋𝜋(−1)𝑚𝑚𝛤𝛤(2𝜇𝜇 + 1) (𝑚𝑚 + 2𝑖𝑖 + 1)! (6𝜇𝜇 + 2𝑚𝑚(2𝜇𝜇 + 2𝑚𝑚 + 5) − 16 𝑖𝑖(𝑖𝑖 + 1) + 3))

2𝜇𝜇+
1
2 (2𝑖𝑖 − 𝑚𝑚)!𝛤𝛤 �𝑚𝑚 − 2𝑖𝑖 + 𝜇𝜇 + 3

2�  𝛤𝛤 �𝑚𝑚 + 2𝑖𝑖 + 𝜇𝜇 + 7
2�

. 

 
 
 
 
(26) 

 
Proof: 
 
The proof of Corollary 3.1 can be followed as an immediate consequence of formulas (5), (10), 
(14) and (19).  

  
4. Conclusion 
 
We have developed some new linearization formulas of Jacobi polynomials of special parameters. 
Some transformation formulas and some other standard formulas serve in the derivation of some 
linearization formulas. Furthermore, Some symbolic algebra such as Zeilberger, Petkovsek, and 
van Hoeij algorithms are also utilized. 
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