Applications and Applied Mathematics: An International
Journal (AAM)

12-2021

(R1514) Nano Continuous Mappings via Nano M Open Sets

A. Vadivel
Government Arts College (Autonomous); Annamalai University

A. Padma
Annai Women's College

M. Saraswathi

Kandaswamy Kandar's College
G. Saravanakumar
M. Kumarasamy College of Engineering (Autonomous)

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam
Part of the Geometry and Topology Commons

Recommended Citation

Vadivel, A.; Padma, A.; Saraswathi, M.; and Saravanakumar, G. (2021). (R1514) Nano Continuous
Mappings via Nano M Open Sets, Applications and Applied Mathematics: An International Journal (AAM), Vol. 16, Iss. 2, Article 18.
Available at: https://digitalcommons.pvamu.edu/aam/vol16/iss2/18

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu.

Available at http://pvamu.edu/aam

Applications and Applied Mathematics:

Nano Continuous Mappings via Nano \mathcal{M} Open Sets

${ }^{1,2}$ A. Vadivel, ${ }^{3}$ A. Padma, ${ }^{4}$ M. Saraswathi and ${ }^{5}$ G. Saravanakumar
${ }^{1}$ Department of Mathematics $\quad{ }^{2}$ Department of Mathematics Government Arts College (Autonomous)
Karur - 639 005, India
Annamalai University
Annamalai Nagar - 608 002, India
1,2 avmaths@ gmail.com
${ }^{3}$ Department of Mathematics
Annai Women's College
Karur - 639 136, India
cbepadma22@gmail.com
${ }^{4}$ Department of Mathematics
Kandaswamy Kandar's College
P-velur - 638 182, India
vimesh.sarash75@gmail.com
${ }^{5}$ Department of Mathematics
M.Kumarasamy College of Engineering (Autonomous)
Karur - 639 113, India
saravananguru2612@ gmail.com

Received: July 28, 2021; Accepted: October 16, 2021

Abstract

Nano \mathcal{M} open sets aress a union of nano θ semi open sets and nano δ pre open sets. The properties of nano \mathcal{M} open sets with their interior and closure operators are discussed in a previous paper. In this paper, nano \mathcal{M}-continuous and nano \mathcal{M}-irresolute functions are introduced in a nano topological spaces along with their continuous and irresolute mappings. Also, nano \mathcal{M}-open and nano \mathcal{M}-closed functions are introduced and compared with their near open and closed mappings in a nano topological spaces. Further, nano \mathcal{M} homeomorphisms are also discussed in nano topological spaces. Also, we discuss nano e-Cts, nano e-Irr, nano eo and nano ec functions and nano eHom in a nano topological space. Some of their properties are also well discussed.

Keywords: Nano $\mathcal{M}-o$ set; Nano $\mathcal{M}-c$ set; Nano \mathcal{M}-Cts; Nano \mathcal{M}-Irr; Nano Mof; Nano Mcf; Nano MHom

MSC 2010 No.: 54A05, 54C05, 54C10

1. Introduction and Preliminaries

Lellis Thivagar and Richard (2013) introduced the notion of Nano topology (briefly, $\mathfrak{N T}$) by using theory approximations and boundary region of a subset of an universe in terms of an equivalence relation on it and also defined Nano closed (briefly, \mathfrak{N} c) sets, Nano-interior (briefly, \mathfrak{N} int) and Nano-closure (briefly, $\mathfrak{N c l}$) in a nano topological spaces (briefly, $\mathfrak{N} t s$). Richard (2016) discussed some weak forms of $\mathfrak{N} o$ sets and $\mathfrak{N} \theta$ open (briefly, $\mathfrak{N} \theta o$) sets. Some generalizations of almost contra-super-continuity were made by Ekici (2007).

The notion of e-open sets in topological spaces was introduced by Ekici (2008c), who studied some of their properties. Also, a-open sets, A^{*}-sets and decompositions of continuity, super-continuity Ekici (2008b) and new forms of contra-continuity were studied by Ekici (2008a). The new sets, called e^{*}-open sets and $(D, S)^{*}$-sets, were introduced by Ekici (2009).

El-Maghrabi and Al-Juhani (2011) initroduced the notion of M-open sets in topological spaces, and they studied some of their properties. The class of sets, namely M-open sets, are playing more important roles in topological spaces because of their applications in various fields of Mathematics and other real fields. By these motivations, we present the concept of nano M-open sets (Padma et al. (2019)) and study their properties and applications in nano topological space. The purpose of this paper is to discuss nano $\mathcal{M}-C t s$, nano \mathcal{M}-Irr, nano $\mathcal{M o}$ and nano $\mathcal{M c}$ functions and nano $\mathcal{M H o m}$ by using the sets nano \mathcal{M} (respectively, e) open sets.

The definitions and properties needed in this paper are shown in Bhuvaneswari et al. (2016), Lellis Thivagar and Richard (2013), Lellis Thivagar and Richard (2013), Padma et al. (2019), Pankajam and Kavitha (2017), Revathy and Gnanambal (2015), Richard (2016), and Sujatha and Angayarkanni (2019).

Throughout this paper, $\left(U, \tau_{R}(X)\right)$ is a $\mathfrak{N} t s$ with respect to X where $X \subseteq U, R$ is an equivalence relation on U. Then, U / R denotes the family of equivalence classes of U by R. All other undefined notions are from Lashin and Medhat (2015), Lellis Thivagar and Richard (2013), and Pawlak (2016).

2. Nano \mathcal{M} continuous functions

Definition 2.1.

A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is said to be Nano \mathcal{M} (respectively, δ, δ-pre, δ-semi
 of V_{1}, the set $h^{-1}(K)$ is $\mathfrak{N} \mathcal{M} c$ (respectively, $\mathfrak{N} \delta c, \mathfrak{N} \delta \mathcal{P} c, \mathfrak{N} \delta \mathcal{S} c$ and $\mathfrak{N e c}$) set of U_{1}.

Theorem 2.1.

Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be a mapping. Then,
(i) Every $\mathfrak{N} \delta$ Cts is \mathfrak{N} Cts.
(ii) Every $\mathfrak{N C t s}$ is $\mathfrak{N} \delta \mathcal{P} C t s$.
(iii) Every $\mathfrak{N} \delta C t s$ is $\mathfrak{N} \delta \mathcal{S} C t s$.
(iv) Every $\mathfrak{N} \theta$ Cts is $\mathfrak{N} \delta C t s$.
(v) Every $\mathfrak{N} \theta \mathcal{S} C t s$ is $\mathfrak{N M}$ Cts.
(vi) Every $\mathfrak{N} \theta$ Cts is $\mathfrak{N} \theta \mathcal{S}$ Cts.
(vii) Every $\mathfrak{N} \theta C t s$ is $\mathfrak{N} C t s$.
(viii) Every $\mathfrak{N} \delta \mathcal{P} C t s$ is $\mathfrak{N} \mathcal{M}$ Cts.
(ix) Every $\mathfrak{N} \delta \mathcal{P}$ Cts is $\mathfrak{N e}$ Cts.
(x) Every $\mathfrak{N M}$ Cts is $\mathfrak{N e}$ Cts.
(xi) Every $\mathfrak{N} \delta \mathcal{S}$ Cts is $\mathfrak{N e ~ C t s . ~}$

Proof:

(i) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \delta C t s$ and L is a $\mathfrak{N c}$ set in V_{1}. Then, $h^{-1}(L)$ is $\mathfrak{N} \delta c$ in U_{1}. Since every $\mathfrak{N} \delta c$ set is $\mathfrak{N} c, h^{-1}(L)$ is $\mathfrak{N c}$ set in U_{1}. Therefore, h is \mathfrak{N} Cts.
(ii) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} C t s$ and L is a $\mathfrak{N} c$ set in V_{1}. Then, $h^{-1}(L)$ is $\mathfrak{N} c$ in U_{1}. Since every $\mathfrak{N c}$ set is $\mathfrak{N} \delta \mathcal{P} c, h^{-1}(L)$ is $\mathfrak{N} \delta \mathcal{P} c$ set in U_{1}. Therefore, h is $\mathfrak{N} \delta \mathcal{P}$ Cts.
(iii) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \delta C t s$ and L is a $\mathfrak{N} c$ set in V_{1}. Then, $h^{-1}(L)$ is $\mathfrak{N} \delta c$ in U_{1}. Since every $\mathfrak{N} \delta c$ set is $\mathfrak{N} \delta \mathcal{S} c, h^{-1}(L)$ is $\mathfrak{N} \delta \mathcal{S} c$ set in U_{1}. Therefore, h is $\mathfrak{N} \delta \mathcal{S} C t s$.
(iv) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \theta C t s$ and L is a $\mathfrak{N} c$ set in V_{1}. Then, $h^{-1}(L)$ is $\mathfrak{N} \theta c$ in U_{1}. Since every $\mathfrak{N} \theta c$ set is $\mathfrak{N} \delta c, h^{-1}(L)$ is $\mathfrak{N} \delta c$ set in U_{1}. Therefore, h is $\mathfrak{N} \delta C t s$.
(v) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \theta \mathcal{S} C t s$ and L is a $\mathfrak{N c}$ set in V_{1}. Then, $h^{-1}(L)$ is $\mathfrak{N} \theta \mathcal{S} c$ in U_{1}. Since every $\mathfrak{N} \theta \mathcal{S} c$ set is $\mathfrak{N M} c, h^{-1}(L)$ is $\mathfrak{N M} c$ set in U_{1}. Therefore, h is $\mathfrak{N M}$ Cts.
(vi) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \theta C t s$ and L is a $\mathfrak{N} c$ set in V_{1}. Then, $h^{-1}(L)$ is $\mathfrak{N} \theta c$ in U_{1}. Since every $\mathfrak{N} \theta c$ set is $\mathfrak{N} \theta \mathcal{S} c, h^{-1}(L)$ is $\mathfrak{N} \theta \mathcal{S} c$ set in U_{1}. Therefore, h is $\mathfrak{N} \theta \mathcal{S} C t s$.
(vii) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \theta C t s$ and L is a $\mathfrak{N c}$ set in V_{1}. Then, $h^{-1}(L)$ is $\mathfrak{N} \theta c$ in U_{1}. Since every $\mathfrak{N} \theta c$ set is $\mathfrak{N c}, h^{-1}(L)$ is $\mathfrak{N c} c$ set in U_{1}. Therefore, h is $\mathfrak{N} C t s$.
(viii) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \delta \mathcal{P} C t s$ and L is a $\mathfrak{N} c$ set in V_{1}. Then, $h^{-1}(L)$ is $\mathfrak{N} \delta \mathcal{P} c$ in U_{1}. Since every $\mathfrak{N} \delta \mathcal{P} c$ set is $\mathfrak{N M} c, h^{-1}(L)$ is $\mathfrak{N M} c$ set in U_{1}. Therefore, h is $\mathfrak{N M}$ Cts.
(ix) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \delta \mathcal{P} C t s$ and L is a $\mathfrak{N c}$ set in V_{1}. Then, $h^{-1}(L)$ is $\mathfrak{N} \delta \mathcal{P} c$ in U_{1}. Since every $\mathfrak{N} \delta \mathcal{P}_{c}$ set is $\mathfrak{N e c}, h^{-1}(L)$ is $\mathfrak{N e c}$ set in U_{1}. Therefore, h is $\mathfrak{N e}$ Cts.
(x) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N M} C t s$ and L is a $\mathfrak{N c}$ set in V_{1}. Then, $h^{-1}(L)$ is $\mathfrak{N} \mathcal{M} c$ in U_{1}. Since every $\mathfrak{N M}$ c set is $\mathfrak{N e c}, h^{-1}(L)$ is $\mathfrak{N e c}$ set in U_{1}. Therefore, h is $\mathfrak{N e}$ Cts.
(xi) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \delta \mathcal{S} C t s$ and L is a $\mathfrak{N c}$ set in V_{1}. Then, $h^{-1}(L)$ is

The converse of Theorem 2.1 need not be true by the following examples.

Example 2.1.

Let $U_{1}=\left\{L_{a}, L_{b}, L_{c}, L_{d}\right\}$ with $U_{1} / R=\left\{\left\{L_{a}, L_{b}\right\},\left\{L_{c}, L_{d}\right\}\right\}, P=\left\{L_{a}, L_{b}\right\}, \tau_{R}(P)=$ $\left\{U_{1}, \phi,\left\{L_{a}, L_{b}\right\}\right\}$. Define the identity map $h: U_{1} \rightarrow U_{1}$ which is $\mathfrak{N} C t s$ but not $\mathfrak{N} \delta C t s$, and the set $h^{-1}\left(\left\{L_{a}, L_{b}\right\}\right)=\left\{L_{a}, L_{b}\right\}$ which is $\mathfrak{N} o$ but not $\mathfrak{N} \delta o$ in U_{1}.

Example 2.2.

Let $U_{1}=V_{1}=\left\{M_{a}, M_{b}, M_{c}, M_{d}, M_{e}\right\}$ with $U_{1} / R=\left\{\left\{M_{c}\right\},\left\{M_{a}, M_{b}\right\},\left\{M_{d}, M_{e}\right\}\right\}$, $P=\left\{M_{a}, M_{c}\right\}, \tau_{R}(P)=\left\{U_{1}, \phi,\left\{M_{c}\right\},\left\{M_{a}, M_{b}\right\},\left\{M_{a}, M_{b}, M_{c}\right\}\right\}$ and $V_{1} / R^{\prime}=\left\{\left\{M_{e}\right\},\left\{M_{a}, M_{b}\right\},\left\{M_{c}, M_{d}\right\}\right\}, \quad Q \quad=\quad\left\{M_{c}, M_{e}\right\}, \quad \tau_{R^{\prime}}(Q)=$ $\left\{V_{1}, \phi,\left\{M_{e}\right\},\left\{M_{c}, M_{d}\right\},\left\{M_{c}, M_{d}, M_{e}\right\}\right\}$ Then, the mapping $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \tau_{R^{\prime}}(Q)\right)$ is defined by
(i) $h\left(M_{a}\right)=M_{d}, h\left(M_{b}\right)=M_{e}, h\left(M_{c}\right)=M_{c}, h\left(M_{d}\right)=M_{a}$ and $h\left(M_{e}\right)=M_{b}$ is $\mathfrak{N} \delta \mathcal{P} C t s$ but not $\mathfrak{N C t s}$, the set $\left\{M_{e}\right\}$ is $\mathfrak{N o}$ in V_{1} but $h^{-1}\left(\left\{M_{e}\right\}\right)=\left\{M_{b}\right\}$ is not $\mathfrak{N} o$ in U_{1}.
(ii) $h\left(M_{a}\right)=M_{c}, h\left(M_{b}\right)=h\left(M_{e}\right)=M_{d}, h\left(M_{c}\right)=M_{e}$ and $h\left(M_{d}\right)=M_{a}$ is $\mathfrak{N} \delta \mathcal{S}$ Cts but not $\mathfrak{N} \delta C t s$, the set $\left\{M_{c}, M_{d}\right\}$ is $\mathfrak{N o}$ in V_{1} but $h^{-1}\left(\left\{M_{c}, M_{d}\right\}\right)=\left\{M_{a}, M_{b}, M_{e}\right\}$ is not $\mathfrak{N} \delta o$ in U_{1}.
(iii) $h\left(M_{a}\right)=M_{c}, h\left(M_{b}\right)=M_{d}, h\left(M_{c}\right)=M_{e}, h\left(M_{d}\right)=M_{a}$ and $h\left(M_{e}\right)=M_{b}$ is $\mathfrak{N} \delta$ Cts but not $\mathfrak{N} \theta$ Cts, the set $\left\{M_{e}\right\}$ is $\mathfrak{N o}$ in V_{1} but $h^{-1}\left(\left\{M_{e}\right\}\right)=\left\{M_{c}\right\}$ is not $\mathfrak{N} \theta o$ in U_{1}.
(iv) $h\left(M_{a}\right)=M_{e}, h\left(M_{b}\right)=M_{d}, h\left(M_{c}\right)=M_{c}, h\left(M_{d}\right)=M_{b}$ and $h\left(M_{e}\right)=M_{a}$ is $\mathfrak{N M}$ Cts but not $\mathfrak{N} \theta \mathcal{S}$ Cts, the set $\left\{M_{e}\right\}$ is $\mathfrak{N o}$ in V_{1} but $h^{-1}\left(\left\{M_{e}\right\}\right)=\left\{M_{a}\right\}$ is not $\mathfrak{N} \theta \mathcal{S} o$ in U_{1}.
(v) $h\left(M_{a}\right)=M_{c}, h\left(M_{b}\right)=M_{d}, h\left(M_{c}\right)=M_{e}, h\left(M_{d}\right)=M_{a}$ and $h\left(M_{e}\right)=M_{b}$ is \mathfrak{N} Cts but not $\mathfrak{N} \theta$ Cts, the set $\left\{M_{e}\right\}$ is $\mathfrak{N o}$ in V_{1} but $h^{-1}\left(\left\{M_{e}\right\}\right)=\left\{M_{c}\right\}$ is not $\mathfrak{N} \theta o$ in U_{1}.

Example 2.3.

Let $U_{1}=V_{1}=W_{1}=W_{1}^{\prime}=\left\{M_{a}, M_{b}, M_{c}, M_{d}, M_{e}\right\}$ with $U_{1} / R=\left\{\left\{M_{c}\right\},\left\{M_{a}, M_{b}\right\},\left\{M_{d}, M_{e}\right\}\right\}, P=\left\{M_{a}, M_{c}\right\}, \tau_{R}(P)=\left\{U_{1}, \phi,\left\{M_{c}\right\}\right.$, $\left.\left\{M_{a}, M_{b}\right\},\left\{M_{a}, M_{b}, M_{c}\right\}\right\} ; V_{1} / R^{\prime}=\left\{\left\{M_{a}\right\},\left\{M_{b}\right\},\left\{M_{c}, M_{d}, M_{e}\right\}\right\}, Q=\left\{M_{c}, M_{d}, M_{e}\right\}$, $\tau_{R^{\prime}}(Q)=\left\{V_{1}, \phi,\left\{M_{c}, M_{d}, M_{e}\right\}\right\} ; W_{1} / R^{\prime \prime}=\left\{\left\{M_{c}\right\},\left\{M_{e}\right\},\left\{M_{a}, M_{b}, M_{d}\right\}\right\}, S=\left\{M_{a}, M_{b}, M_{d}\right\}$, $\tau_{R^{\prime \prime}}(S)=\left\{W_{1}, \phi,\left\{M_{a}, M_{b}, M_{d}\right\}\right\}$ and $W_{1}^{\prime} / R^{\prime \prime \prime}=\left\{\left\{M_{b}\right\},\left\{M_{e}\right\},\left\{M_{a}, M_{c}, M_{d}\right\}\right\}, S^{\prime}=$ $\left\{M_{a}, M_{c}, M_{d}\right\}$ and $\tau_{R^{\prime \prime \prime}}\left(S^{\prime}\right)=\left\{W_{1}^{\prime}, \phi,\left\{M_{a}, M_{c}, M_{d}\right\}\right\}$. Then, the identity mapping
(i) $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \tau_{R^{\prime}}(Q)\right)$ is $\mathfrak{N} \theta \mathcal{S}$ Cts but not $\mathfrak{N} \theta C t s$, the set $\left\{M_{c}, M_{d}, M_{e}\right\}$ is $\mathfrak{N o}$ in V_{1} but $h^{-1}\left(\left\{M_{c}, M_{d}, M_{e}\right\}\right)=\left\{M_{c}, M_{d}, M_{e}\right\}$ is not $\mathfrak{N} \theta o$ in U_{1}.
(ii) $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \tau_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M} C t s$ but not $\mathfrak{N} \delta \mathcal{P} C t s$, the set $\left\{M_{c}, M_{d}, M_{e}\right\}$ is $\mathfrak{N o}$ in V_{1} but $h^{-1}\left(\left\{M_{c}, M_{d}, M_{e}\right\}\right)=\left\{M_{c}, M_{d}, M_{e}\right\}$ is not $\mathfrak{N} \delta \mathcal{P} o$ in U_{1}.
(iii) $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \tau_{R^{\prime}}(Q)\right)$ is $\mathfrak{N e}$ Cts but not $\mathfrak{N} \delta \mathcal{P} C t s$, the set $\left\{M_{c}, M_{d}, M_{e}\right\}$ is $\mathfrak{N o}$ in V_{1} but $h^{-1}\left(\left\{M_{c}, M_{d}, M_{e}\right\}\right)=\left\{M_{c}, M_{d}, M_{e}\right\}$ is not $\mathfrak{N} \delta \mathcal{P}_{o}$ in U_{1}.
(iv) $g:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(W_{1}, \tau_{R^{\prime \prime}}(S)\right)$ is $\mathfrak{N e}$ Cts but not $\mathfrak{N M}$ Cts, the set $\left\{M_{a}, M_{b}, M_{d}\right\}$ is $\mathfrak{N o}$ in W_{1} but $g^{-1}\left(\left\{M_{a}, M_{b}, M_{d}\right\}\right)=\left\{M_{a}, M_{b}, M_{d}\right\}$ is not $\mathfrak{N M}$ o in U_{1}.
(v) $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(W_{1}^{\prime}, \tau_{R^{\prime \prime \prime}}\left(S^{\prime}\right)\right)$ is $\mathfrak{N e}$ Cts but not $\mathfrak{N} \delta \mathcal{S} C t s$, the set $\left\{M_{a}, M_{c}, M_{d}\right\}$ is $\mathfrak{N o}$ in W_{1}^{\prime} but $h^{-1}\left(\left\{M_{a}, M_{c}, M_{d}\right\}\right)=\left\{M_{a}, M_{c}, M_{d}\right\}$ is not $\mathfrak{N} \delta \mathcal{S} o$ in U_{1}.

From the above discussions, the following implications hold for any set in $\mathfrak{N} t s$.

Theorem 2.2.

A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M}$ Cts if and only if the inverse image of every $\mathfrak{N o}$ set in V_{1} is $\mathfrak{N M o}$ in U_{1}.

Proof:

Let h be $\mathfrak{N M} C t s$ and O is $\mathfrak{N o}$ in V_{1}. That is, $V_{1}-O$ is $\mathfrak{N c}$ in V_{1}. Since h is $\mathfrak{N M}$ Cts, $h^{-1}\left(V_{1}-O\right)$ is $\mathfrak{N M} c$ in U_{1}. That is, $U_{1}-h^{-1}(O)$ is $\mathfrak{N M} c$ in U_{1}. Therefore, $h^{-1}(O)$ is $\mathfrak{N M}$ o in U_{1}.

Conversely, let the inverse image of every $\mathfrak{N o}$ set be $\mathfrak{N M}$ o set. Let C be $\mathfrak{N c}$ in V_{1}. Then, $V_{1}-C$ is $\mathfrak{N o}$ in V_{1}. Then, $h^{-1}\left(V_{1}-C\right)$ is $\mathfrak{N M}$ o in U_{1}. That is $U_{1}-h^{-1}(C)$ is $\mathfrak{N} \mathcal{M o}$ in U_{1}. Therefore, $h^{-1}(C)$ is $\mathfrak{N M} c$ in U_{1}. Thus, the inverse image of every $\mathfrak{N c}$ set in V_{1} is $\mathfrak{N} \mathcal{M} c$ in U_{1}. That is, h is $\mathfrak{N M}$ Cts on U_{1}.

The maps $\mathfrak{N} \delta C t s, \mathfrak{N} \delta \mathcal{P} C t s, \mathfrak{N} \delta \mathcal{S} C t s$ and $\mathfrak{N e} C t s$ satisfy the Theorem 2.2 for their respective open sets.

Theorem 2.3.

A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M} C t s$ if and only if $h(\mathfrak{N M} \mathcal{M}(K)) \subseteq \mathfrak{N c l}(h(K))$ for every subset K of U_{1}.

Proof:

Let h be $\mathfrak{N M} C t s$ and $K \subseteq U_{1}$. Then, $h(K) \subseteq V_{1}$. Since h be $\mathfrak{N M} C t s$ and $\mathfrak{N c l}(h(K))$ is $\mathfrak{N c}$ in $V_{1}, h^{-1}(\mathfrak{N c l}(h(K)))$ is $\mathfrak{N M} c$ in U_{1}. Since $h(K) \subseteq \mathfrak{N c l}(h(K)), h^{-1}(h(K)) \subseteq h^{-1}(\mathfrak{N} c l(h(K)))$, then $K \subseteq h^{-1}(\mathfrak{N c l}(h(K))) . \mathfrak{N M} \operatorname{Mcl}(K) \subseteq \mathfrak{N M c l}\left[h^{-1}(N c l h(K))\right]=h^{-1}(\mathfrak{N c l}(h(K)))$. Thus, $\mathfrak{N M c l}(K) \subseteq h^{-1}(\mathfrak{N c l}(h(K)))$. Therefore, $h(\mathfrak{N} \mathcal{M c l}(K)) \subseteq \mathfrak{N c l}(h(K))$ for every subset K of
U_{1}.
 and since $h^{-1}(C) \subseteq U_{1}, h\left(\mathfrak{N M} \operatorname{cl}\left(h^{-1}(C)\right)\right) \subseteq \mathfrak{N} c l\left(h\left(h^{-1}(C)\right)\right)=\mathfrak{N} c l(C)=C$. That is, $h\left(\mathfrak{N} \mathcal{M c l}\left(h^{-1}(C)\right)\right) \subseteq C$. Thus, $\mathfrak{N} \mathcal{M c l}\left(h^{-1}(C)\right) \subseteq h^{-1}(C)$. But $h^{-1}(C) \subseteq \mathfrak{N} \mathcal{M c l}\left(h^{-1}(C)\right)$.
 Thus h is $\mathfrak{N M}$ Cts.

Remark 2.1.

A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M}$ Cts. Then, $h(\mathfrak{N} \mathcal{M} c l(K))$ is not necessarily equal to $\mathfrak{N c l}(h(K))$ where $K \subseteq U_{1}$. It is shown in the following examples.

Example 2.4.

In Example 2.3, $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \tau_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M}$ Cts. Let $A=\left\{M_{a}\right\} \subset U_{1}$. Then, $\mathfrak{N} \mathcal{M c l}(A)=h\left(\mathfrak{N} \mathcal{M c l}\left(\left\{M_{a}\right\}\right)\right)=h\left(\left\{M_{a}\right\}\right)=\left\{M_{a}\right\} . \operatorname{But} \mathfrak{N c l h}(A)=\mathfrak{N} c l\left(\left\{M_{a}\right\}\right)=\left\{M_{a}, M_{b}\right\}$. Thus $h(\mathfrak{N M} \operatorname{cl}(A)) \neq \mathfrak{N c l}(h(A))$, even though h is $\mathfrak{N M}$ cts. That is equality does not hold.

Theorem 2.4.
A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M}$ Cts if and only if $\mathfrak{N M c l}\left(h^{-1}\left(L_{1}\right)\right) \subseteq$ $h^{-1}\left(\mathfrak{N c l}\left(L_{1}\right)\right)$ for every subset L_{1} of V_{1}.

Proof:

 $h^{-1}\left(\mathfrak{N c l}\left(L_{1}\right)\right)$. Therefore, $\mathfrak{N M c l}\left(h^{-1}\left(L_{1}\right)\right) \subset \mathfrak{N} \mathcal{M c l}\left(h^{-1}\left(\mathfrak{N} c l\left(L_{1}\right)\right)\right)=h^{-1}\left(\mathfrak{N c l}\left(L_{1}\right)\right)$. That is, $\mathfrak{N M c l}\left(h^{-1}\left(L_{1}\right)\right) \subseteq h^{-1}\left(\mathfrak{N c l}\left(L_{1}\right)\right)$.

Conversely, let $\mathfrak{N} \mathcal{M c l}\left(h^{-1}\left(L_{1}\right)\right) \subseteq h^{-1}\left(\mathfrak{N c l}\left(L_{1}\right)\right)$ for every subset L_{1} of V_{1}. If L_{1} is \mathfrak{N}_{c} in V_{1}, then $\mathfrak{N c l}\left(L_{1}\right)=L_{1}$. By assumption, $\mathfrak{N} \mathcal{M c l}\left(h^{-1}\left(L_{1}\right)\right) \subseteq h^{-1}\left(\mathfrak{N} c l\left(L_{1}\right)\right)=h^{-1}\left(L_{1}\right)$. Thus, $\mathfrak{N} \mathcal{M c l}\left(h^{-1}\left(L_{1}\right)\right) \subseteq h^{-1}\left(L_{1}\right)$. But $h^{-1}\left(L_{1}\right) \subseteq \mathfrak{N} \mathcal{M} c l\left(h^{-1}\left(L_{1}\right)\right)$. Therefore, $\mathfrak{N} \mathcal{M c l}\left(h^{-1}\left(L_{1}\right)\right)=$ $h^{-1}\left(L_{1}\right)$. Hence, $h^{-1}\left(L_{1}\right)$ is $\mathfrak{N M} c$ in U_{1}, for every $\mathfrak{N c}$ set L_{1} in V_{1}. Therefore, h is $\mathfrak{N M}$ Cts on U_{1}.

The maps $\mathfrak{N} \delta C t s, \mathfrak{N} \delta \mathcal{P} C t s \mathfrak{N} \delta \mathcal{S} C t s$ and $\mathfrak{N e}$ Cts satisfy the Theorems 2.3 and 2.4 for their respective closures.

Remark 2.2.
A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M}$ Cts. Then, $\mathfrak{N} \mathcal{M c l}\left(h^{-1}(L)\right)$ is not necessarily equal to $h^{-1}(\mathfrak{N c l}(L))$ where $L \subseteq V_{1}$. It is shown in the following examples.

Example 2.5.

In Example 2.3, $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \tau_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M}$ Cts. Let $B=\left\{M_{a}\right\} \subset V_{1}$.

Then, $\mathfrak{N M} \operatorname{Mclh}^{-1}(B)=\mathfrak{N} \mathcal{M c l h}^{-1}\left(\left\{M_{a}\right\}\right)=\mathfrak{N} \mathcal{M c l}\left(\left\{M_{a}\right\}\right)=\left\{M_{a}\right\}$. But $h^{-1}(\mathfrak{N c l}(B))=$ $h^{-1}\left(\mathfrak{N c l}\left(\left\{M_{a}\right\}\right)\right)=h^{-1}\left(\left\{M_{a}, M_{b}\right\}\right)=\left\{M_{a}, M_{b}\right\}$. Thus, $\mathfrak{N M c l}\left(h^{-1}(B)\right) \neq h^{-1}(\mathfrak{N} c l(B))$, even though h is $\mathfrak{N M}$ cts. That is, equality does not hold.

Theorem 2.5.

A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M}$ Cts if and only if $h^{-1}\left(\mathfrak{N i n t}\left(K_{1}\right)\right) \subseteq$ $\mathfrak{N} \operatorname{Mint}\left(h^{-1}\left(K_{1}\right)\right)$ for every subset K_{1} of V_{1}.

Proof:

If h is $\mathfrak{N M} C t s$ and $K_{1} \subseteq V_{1} \cdot \mathfrak{N i n t}\left(K_{1}\right)$ is $\mathfrak{N o}$ in V_{1}, and hence, $h^{-1}\left(\mathfrak{N i n t}\left(K_{1}\right)\right)$ is $\mathfrak{N M o}$ in U_{1}. Therefore, $\mathfrak{N M} \operatorname{Mint}\left(h^{-1}\left(\mathfrak{N i n t}\left(K_{1}\right)\right)\right)=h^{-1}\left(\mathfrak{N i n t}\left(K_{1}\right)\right)$. Also, $\mathfrak{N i n t}\left(K_{1}\right) \subseteq K_{1}$, implies that $h^{-1}\left(\mathfrak{N i n t}\left(K_{1}\right)\right) \subseteq h^{-1}\left(K_{1}\right)$. Therefore, $\mathfrak{N M} \operatorname{Mint}\left(h^{-1}\left(\mathfrak{N i n t}\left(K_{1}\right)\right)\right) \subseteq \mathfrak{N M} \operatorname{Mint}\left(h^{-1}\left(K_{1}\right)\right)$. That is, $h^{-1}\left(\mathfrak{N i n t}\left(K_{1}\right)\right) \subseteq \mathfrak{N} \mathcal{M i n t}\left(h^{-1}\left(K_{1}\right)\right)$.

Conversely, let $h^{-1}\left(\mathfrak{N i n t}\left(K_{1}\right)\right) \subseteq \mathfrak{N} \mathcal{M i n t}\left(h^{-1}\left(K_{1}\right)\right)$ for every subset K_{1} of V_{1}. If K_{1} is $\mathfrak{N o}$ in V_{1}, then $\mathfrak{N i n t}\left(K_{1}\right)=K_{1}$. By assumption, $h^{-1}\left(\mathfrak{N i n t}\left(K_{1}\right)\right) \subseteq \mathfrak{N M} \operatorname{Mint}\left(h^{-1}\left(K_{1}\right)\right)$. Thus, $h^{-1}\left(K_{1}\right) \subseteq$ $\mathfrak{N} \mathcal{M i n t}\left(h^{-1}\left(K_{1}\right)\right)$. But $\mathfrak{N} \mathcal{M} \operatorname{int}\left(h^{-1}\left(K_{1}\right)\right) \subseteq h^{-1}\left(K_{1}\right)$. Therefore, $\mathfrak{N} \operatorname{Mint}\left(h^{-1}\left(K_{1}\right)\right)=$ $h^{-1}\left(K_{1}\right)$. That is, $h^{-1}\left(K_{1}\right)$ is $\mathfrak{N M}$ o in U_{1}, for every $\mathfrak{N o}$ set K_{1} in V_{1}. Therefore, h is $\mathfrak{N M}$ Cts on U_{1}.

Remark 2.3.

A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M}$ Cts. Then $h^{-1}\left(\mathfrak{N i n t}\left(L_{1}\right)\right)$ is not necessarily equal to $\mathfrak{N M} \operatorname{Mint}\left(h^{-1}\left(L_{1}\right)\right)$ where $L_{1} \subseteq V_{1}$. It is shown in the following examples.

Example 2.6.

In Example 2.3, $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \tau_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M}$ Cts. Let $B=\left\{M_{c}\right\} \subset V_{1}$. Then, $\mathfrak{N} \mathcal{M i n t}\left(h^{-1}(B)\right)=\mathfrak{N} \mathcal{M i n t} h^{-1}\left(\left\{M_{c}\right\}\right)=\mathfrak{N} \mathcal{M i n t}\left(\left\{M_{c}\right\}\right)=\left\{M_{c}\right\}$. But $h^{-1}(\mathfrak{N i n t}(B))=$ $h^{-1}\left(\mathfrak{N i n t}\left(\left\{M_{c}\right\}\right)\right)=h^{-1}(\{\phi\})=\phi$. Thus, $\mathfrak{N M} \operatorname{Mint}\left(h^{-1}(B)\right) \neq h^{-1}(\mathfrak{N i n t}(B))$, even though h is $\mathfrak{N M}$ cts. That is, equality does not hold.

Theorem 2.6.

In a \mathfrak{N} ts $\left(U_{1}, \tau_{R}(P)\right)$, if the collection of $\mathfrak{N M} O\left(U_{1}, P\right)$ is $\mathfrak{N c}$ under arbitrary union and let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be a function. Then, the function h is $\mathfrak{N M}$ Cts if and only if for each $x \in U_{1}$ and each $\mathfrak{N o}$ set O in V_{1} with $h(x) \in O \exists \mathfrak{N} \mathcal{M} o$ set G in $U_{1} \ni x \in G$ \& $h(G) \subset O$.

Proof:

Let $x \in U_{1}$ and O be a $\mathfrak{N} o$ set in V_{1} with $h(x) \in O$, then $x \in h^{-1}(O)$. Since h is $\mathfrak{N M}$ Cts, $h^{-1}(O)$ is a $\mathfrak{N M}$ o set in U_{1}. Put $G=h^{-1}(O)$. Then, $x \in G$ and $h(G)=h\left(h^{-1}(O)\right) \subset O$.

Conversely, let $x \in U_{1}$ and O be a $\mathfrak{N} o$ set in V_{1} containing $h(x)$. By hypothesis, there exists a $\mathfrak{N M} o$ set G_{x} in $U_{1} \ni x \in G_{x}$ and $h\left(G_{x}\right) \subset O$. This implies $x \in G_{x} \subset h^{-1}(O)$, which implies
$h^{-1}(O)$ is $\mathfrak{N} \mathcal{M} N b d(x)$. Since x is arbitrary, $h^{-1}(O)$ is $\mathfrak{N} \mathcal{M} N b d$ of each its points. Which implies $h^{-1}(O)$ is a $\mathfrak{N M}$ o set in U_{1}. Therefore, h is $\mathfrak{N M}$ Cts.

Theorem 2.7.

In a \mathfrak{N} ts $\left(U_{1}, \tau_{R}(P)\right)$, if the collection of $\mathfrak{N M O}\left(U_{1}, X\right)$ is $\mathfrak{N c}$ under arbitrary union and let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be a function. Then, the function h is $\mathfrak{N M}$ Cts if and only if $\forall x \in U_{1}$, the inverse of every $\mathfrak{N} N b d$ of $h(x)$ is $\mathfrak{N M} \operatorname{Nbd}(x)$.

Proof:

Let $x \in U_{1}$ and H be a $\mathfrak{N N b d}$ of $h(x)$. There exists a $\mathfrak{N} o$ set O in $V_{1} \ni h(x) \in O \subset H$, and hence, $x \in h^{-1}(O) \subset h^{-1}(H)$. Since h is $\mathfrak{N M}$ Cts and $h^{-1}(O)$ is $\mathfrak{N M o}$ set in U_{1}, therefore, $h^{-1}(H)$ is $\mathfrak{N} \mathcal{M} \operatorname{Nbd}(x)$.

Conversely, let $x \in U_{1}$ and O be a $\mathfrak{N o}$ set in V_{1} containing $h(x)$. This implies O is $\mathfrak{N N b d}$ of $h(x)$. By hypothesis, $h^{-1}(O)$ is $\mathfrak{N M} \operatorname{Nbd}(x)$. Since x is arbitrary, $h^{-1}(O)$ is $\mathfrak{N M} N b d$ of each of its point. Hence, $h^{-1}(O)$ is a $\mathfrak{N M}$ o set in U_{1}. Therefore, h is $\mathfrak{N M}$ Cts.

The maps $\mathfrak{N} \delta C t s, \mathfrak{N} \delta \mathcal{P} C t s, \mathfrak{N} \delta \mathcal{S} C t s$ and $\mathfrak{N e}$ Cts satisfy the Theorems 2.6 and 2.7 for their respective family of open sets.

Remark 2.4.

The composition of two $\mathfrak{N M}$ Cts functions need not be $\mathfrak{N M}$ Cts as seen from the following example.

Example 2.7.

Let $U_{1}=V_{1}=W_{1}=\left\{L_{a}, L_{b}, L_{c}, L_{d}, L_{e}\right\}$ with $U_{1} / R=\left\{\left\{L_{c}\right\},\left\{L_{a}, L_{b}\right\},\left\{L_{d}, L_{e}\right\}\right\}, P=\left\{L_{a}\right.$, $\left.L_{c}\right\}, \tau_{R}(P)=\left\{U_{1}, \phi,\left\{L_{c}\right\},\left\{L_{a}, L_{b}\right\},\left\{L_{a}, L_{b}, L_{c}\right\}\right\}$ and $V_{1} / R^{\prime}=\left\{\left\{L_{e}\right\},\left\{L_{a}, L_{b}\right\},\left\{L_{c}, L_{d}\right\}\right\}$, $Y=\left\{L_{a}, L_{c}, L_{d}\right\}, \sigma_{R^{\prime}}(Q)=\left\{V_{1}, \phi,\left\{L_{a}, L_{b}\right\},\left\{L_{c}, L_{d}\right\},\left\{L_{a}, L_{b}, L_{c}, L_{d}\right\}\right\}$. Then, the identity mappings $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ and $g:\left(V_{1}, \sigma_{R^{\prime}}(Q)\right) \rightarrow\left(W_{1}, \sigma_{R^{\prime}}(Q)\right)$ are $\mathfrak{N M}$ Cts but the composition $g \circ h$ is not $\mathfrak{N M}$ Cts. The set $\left\{L_{c}, L_{d}\right\}$ is $\mathfrak{N o}$ in V_{1} but $(g \circ h)^{-1}\left(\left\{L_{c}, L_{d}\right\}\right)=$ $\left\{L_{c}, L_{d}\right\}$ is not $\mathfrak{N M o}$ in U_{1}.

Theorem 2.8.

Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ and $g:\left(V_{1}, \sigma_{R^{\prime}}(Q)\right) \rightarrow\left(W_{1}, \mu_{R^{\prime \prime}}(R)\right)$ be any two functions. If h is a $\mathfrak{N M} C t s$ and g is $\mathfrak{N C t s}$ function, then $g \circ h$ is $\mathfrak{N M}$ Cts.

Proof:

Let C be any $\mathfrak{N c}$ set in W_{1}. As g is $\mathfrak{N} C t s, g^{-1}(C)$ is $\mathfrak{N c}$ in V_{1}. Since h is $\mathfrak{N M}$ Cts, implies $h^{-1}\left(g^{-1}(C)\right)=(g \circ h)^{-1}(C)$ is $\mathfrak{N} \mathcal{M} c$ in U_{1}. Therefore, $g \circ h$ is $\mathfrak{N} \mathcal{M}$ Cts.

3. Nano \mathcal{M} Irresolute Functions

Definition 3.1.

A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is called Nano \mathcal{M} (respectively, θ, δ, θ semi, δ pre, δ semi \& e) irresolute (briefly, $\mathfrak{N M} \operatorname{Irr}$ (resp. $\mathfrak{N} \theta \operatorname{Irr}, \mathfrak{N} \delta \operatorname{Irr}, \mathfrak{N} \theta \mathcal{S} I r r, \mathfrak{N} \delta \mathcal{P} \operatorname{Irr}, \mathfrak{N} \delta \mathcal{S}$ Irr and $\mathfrak{N e I r r})$) function, if for each $\mathfrak{N M} c$ (respectively, $\mathfrak{N} \theta c, \mathfrak{N} \delta c, \mathfrak{N} \theta \mathcal{S} c, \mathfrak{N} \delta \mathcal{P} c, \mathfrak{N} \delta \mathcal{S} c$ and \mathfrak{N} ec) subset K of V_{1}, the set $h^{-1}(K)$ is $\mathfrak{N M} c$ (respectively, $\mathfrak{N} \theta c, \mathfrak{N} \delta c, \mathfrak{N} \theta \mathcal{S} c, \mathfrak{N} \delta \mathcal{P} c, \mathfrak{N} \delta \mathcal{S} c$ and $\mathfrak{N} e c$) subset of U_{1}.

Theorem 3.1.

A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is called
(i) $\mathfrak{N I r r}$, then h is $\mathfrak{N S}$ Cts.
(ii) $\mathfrak{N} \delta \mathcal{P}$ Irr, then h is $\mathfrak{N} \delta \mathcal{P}$ Cts.
(iii) $\mathfrak{N M I r r}$, then h is $\mathfrak{N M}$ Cts.
(iv) $\mathfrak{N} \delta \mathcal{S}$ Irr, then h is $\mathfrak{N} \delta \mathcal{S}$ Cts.

Proof:

(i) Let C be \mathfrak{N}_{c} in V_{1}. Then C is $\mathfrak{N S} c$ in V_{1}, since every $\mathfrak{N c}$ set is $\mathfrak{N S} c$. By hypothesis, $h^{-1}(C)$ is $\mathfrak{N S} c$. Therefore, h is $\mathfrak{N S}$ Cts.
(ii) Let C be $\mathfrak{N} c$ in V_{1}. Then C is $\mathfrak{N} \delta \mathcal{P} c$ in V_{1}, since every $\mathfrak{N c}$ set is $\mathfrak{N} \delta \mathcal{P} c$. By hypothesis, $h^{-1}(C)$ is $\mathfrak{N} \delta \mathcal{P} c$. Therefore, h is $\mathfrak{N} \delta \mathcal{P}$ Cts.
(iii) Let C be $\mathfrak{N} c$ in V_{1}. Then C is $\mathfrak{N} \mathcal{M} c$ in V_{1}, since every $\mathfrak{N c}$ set is $\mathfrak{N} \mathcal{M} c$. By hypothesis, $h^{-1}(C)$

(iv) Let C be $\mathfrak{N} c$ in V_{1}. Then C is $\mathfrak{N} \delta \mathcal{S} c$ in V_{1}, since every $\mathfrak{N c}$ set is $\mathfrak{N} \delta \mathcal{S} c$. By hypothesis, $h^{-1}(C)$ is $\mathfrak{N} \delta \mathcal{S} c$. Therefore, h is $\mathfrak{N} \delta \mathcal{S} C t s$.

Remark 3.1.

The converse of the above theorem need not be true as shown in the following example.

Example 3.1.

Let $U_{1}=V_{1}=\left\{L_{a}, L_{b}, L_{c}, L_{d}, L_{e}\right\}$ with $U_{1} / R=\left\{\left\{L_{c}\right\},\left\{L_{a}, L_{b}\right\},\left\{L_{d}, L_{e}\right\}\right\}, P=\left\{L_{a}, L_{c}\right\}$. Then, $\tau_{R}(P)=\left\{U_{1}, \phi,\left\{L_{c}\right\},\left\{L_{a}, L_{b}\right\},\left\{L_{a}, L_{b}, L_{c}\right\}\right\}$ and $V_{1} / R^{\prime}=\left\{\left\{L_{e}\right\},\left\{L_{a}, L_{b}\right\},\left\{L_{c}, L_{d}\right\}\right\}$, $Y=\left\{L_{a}, L_{c}, L_{d}\right\}$. Then, $\sigma_{R^{\prime}}(Q)=\left\{V_{1}, \phi,\left\{L_{a}, L_{b}\right\},\left\{L_{c}, L_{d}\right\},\left\{L_{a}, L_{b}, L_{c}, L_{d}\right\}\right\}$. Define $h:$ $\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ as $h\left(L_{a}\right)=L_{a}, h\left(L_{b}\right)=L_{b}, h\left(L_{c}\right)=L_{c}, h\left(L_{d}\right)=L_{e}$ and $h\left(L_{e}\right)=L_{e}$. Then, h is $\mathfrak{N M}$ Cts, but h is not $\mathfrak{N M I r r}$, since $h^{-1}\left(\left\{L_{b}, L_{d}, L_{e}\right\}\right)=\left\{L_{b}, L_{d}, L_{e}\right\}$ which is not $\mathfrak{N} \mathcal{M} o$ (respectively, not $\mathfrak{N} \delta \mathcal{P} o$) in U_{1} whereas $\left\{L_{b}, L_{d}, L_{e}\right\}$ is $\mathfrak{N M}$ (respectively, $\mathfrak{N} \delta \mathcal{P} o$ in V_{1}.

Example 3.2.

Let $U_{1}=V_{1}=\left\{L_{a}, L_{b}, L_{c}, L_{d}, L_{e}\right\}$ with $U_{1} / R=\left\{\left\{L_{e}\right\},\left\{L_{a}, L_{b}\right\},\left\{L_{c}, L_{d}\right\}\right\}, P=$ $\left\{L_{a}, L_{c}, L_{d}\right\}$. Then, $\tau_{R}(P)=\left\{U_{1}, \phi,\left\{L_{a}, L_{b}\right\},\left\{L_{c}, L_{d}\right\},\left\{L_{a}, L_{b}, L_{c}, L_{d}\right\}\right\} . V_{1} / R^{\prime}=$ $\left\{\left\{L_{c}\right\},\left\{L_{a}, L_{b}\right\},\left\{L_{d}, L_{e}\right\}\right\}, Q=\left\{L_{a}, L_{c}\right\}$. Then, $\sigma_{R^{\prime}}(Q)=\left\{V_{1}, \phi,\left\{L_{c}\right\},\left\{L_{a}, L_{b}\right\}\right.$, $\left.\left\{L_{a}, L_{b}, L_{c}\right\}\right\}$, Define $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ as $h\left(L_{a}\right)=L_{a}, h\left(L_{b}\right)=L_{b}, h\left(L_{c}\right)=$ $L_{d}, h\left(L_{d}\right)=L_{e}$ and $h\left(L_{e}\right)=L_{e}$. Then, h is $\mathfrak{N} \delta \mathcal{S} C t s$, but h is not $\mathfrak{N} \delta \mathcal{S}$ Irr, since $h^{-1}\left(\left\{L_{c}, L_{e}\right\}\right)=\left\{L_{d}, L_{e}\right\}$ which is not $\mathfrak{N} \delta \mathcal{S}_{o}$ in U_{1} whereas $\left\{L_{d}, L_{e}\right\}$ is $\mathfrak{N} \delta \mathcal{S}_{o}$ in V_{1}.

Example 3.3.

In Example 3.2, h is \mathfrak{N}-Cts, but h is not $\mathfrak{N I r r}$, since $h^{-1}\left(\left\{L_{c}, L_{d}\right\}\right)=\left\{L_{c}\right\}$ which is not $\mathfrak{N} \delta \mathcal{S}_{o}$ in U_{1} whereas $\left\{L_{c}, L_{d}\right\}$ is $\mathfrak{N} \delta \mathcal{S} o$ in V_{1}.

Theorem 3.2.

A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is called $\mathfrak{N M} \operatorname{Irr}$ (respectively, $\mathfrak{N e I r r}$) if and only if for every $\mathfrak{N} \mathcal{M} o$ (respectively, $\mathfrak{N e o}$) set K in $V_{1}, h^{-1}(K)$ is $\mathfrak{N M}$ (respectively, $\mathfrak{N e o}$) in U_{1}.

Proof:

This follows from the fact that the complement of $\mathfrak{N M}$ (respectively, $\mathfrak{N e o}$) set is $\mathfrak{N M}$ (respectively, $\mathfrak{N e c) ~ a n d ~ v i c e ~ v e r s a . ~}$

Theorem 3.3.

If $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ and $g:\left(V_{1}, \sigma_{R^{\prime}}(Q)\right) \rightarrow\left(W_{1}, \mu_{R^{\prime \prime}}(S)\right)$ are both $\mathfrak{N M}$ Irr, then $g \circ h:\left(U_{1}: \tau_{R}(P)\right) \rightarrow\left(W_{1}, \mu_{R^{\prime \prime}}(S)\right)$ is $\mathfrak{N M}$ Irr.

Proof:

Let K be $\mathfrak{N M}$ o in W_{1}. Then, $g^{-1}(K)$ is $\mathfrak{N M}$ o in V_{1}, since g is $\mathfrak{N M} \operatorname{Irr} \& h^{-1}\left(g^{-1}(K)\right)=$ $(g \circ h)^{-1}(K)$ is $\mathfrak{N M o}$ in U_{1}, since h is $\mathfrak{N M}$ Irr. Hence $g \circ h$ is $\mathfrak{N M I r r}$.

The maps $\mathfrak{N} \delta \operatorname{Irr}, \mathfrak{N} \delta \mathcal{P} \operatorname{Irr}, \mathfrak{N} \delta \mathcal{S} \operatorname{Irr}$ and $\mathfrak{N e I r r}$ satisfy the Theorem 3.3 for their respective open sets.

Theorem 3.4.

(i) If $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M}$ Irr and $g:\left(V_{1}, \sigma_{R^{\prime}}(Q)\right) \rightarrow\left(W_{1}, \mu_{R^{\prime \prime}}(S)\right)$ is $\mathfrak{N M}$ Cts, then $g \circ h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(W_{1}, \mu_{R^{\prime \prime}}(S)\right)$ is $\mathfrak{N M}$ Cts.
(ii) If $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M}$ Cts and $g:\left(V_{1}, \sigma_{R^{\prime}}(Q)\right) \rightarrow\left(W_{1}, \mu_{R^{\prime \prime}}(S)\right)$ is \mathfrak{N} Cts, then $g \circ h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(W_{1}, \mu_{R^{\prime \prime}}(S)\right)$ is $\mathfrak{N M}$ Cts.

Proof:

(i) Let K be $\mathfrak{N} o$ in W_{1}. Then, $g^{-1}(K)$ is $\mathfrak{N M} o$ in V_{1}, since g is $\mathfrak{N \mathcal { M C t s } \& h ^ { - 1 } (g ^ { - 1 } (K)) =}$ $(g \circ h)^{-1}(K)$ is $\mathfrak{N M}$ o in U_{1}, since h is $\mathfrak{N M}$ Irr. Hence $g \circ h$ is $\mathfrak{N M C t s . ~}$
(ii) Let K be $\mathfrak{N} o$ in W_{1}. Then, $g^{-1}(K)$ is $\mathfrak{N o}$ in V_{1}, since g is $\mathfrak{N C t s \& ~} h^{-1}\left(g^{-1}(K)\right)=(g \circ$

The other respective functions satisfy Theorem 3.4 for their respective open sets.

4. Nano \mathcal{M} closed functions

Definition 4.1.

A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is said to be Nano \mathcal{M} closed (respectively, θ closed, δ closed, θ semi closed, δ pre closed, δ semi closed and e closed) function (briefly, $\mathfrak{N M c f}$ (re-
 (respectively, $\mathfrak{N} \theta c, \mathfrak{N} \delta c, \mathfrak{N} \theta \mathcal{S} c, \mathfrak{N} \delta \mathcal{P} c, \mathfrak{N} \delta \mathcal{S} c$ and $\mathfrak{N e c}$) set in V_{1} whenever K is $\mathfrak{N c}$ in U_{1}.

Definition 4.2.

A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is said to be Nano \mathcal{M} open (respectively, θ open, δ open, θ semi open, δ pre open, δ semi open and e open) function (briefly, $\mathfrak{N M}$ of (respectively, $\mathfrak{N} \theta o f, \mathfrak{N} \delta o f, \mathfrak{N} \theta \mathcal{S} o f, \mathfrak{N} \delta \mathcal{P} o f, \mathfrak{N} \delta \mathcal{S}$ of and $\mathfrak{N e o f}$)) if the direct image $h(K)$ is $\mathfrak{N} \mathcal{M o}$ (respectively, $\mathfrak{N} \theta o, \mathfrak{N} \delta o, \mathfrak{N} \theta \mathcal{S} o, \mathfrak{N} \delta \mathcal{P} o, \mathfrak{N} \delta \mathcal{S}_{o}$ and $\mathfrak{N e o}$) set in V_{1} whenever K is $\mathfrak{N} o$ in U_{1}.

Theorem 4.1.

A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$,
(i) Every $\mathfrak{N} \theta c f$ is $\mathfrak{N} c f$.
(ii) Every $\mathfrak{N} \theta c f$ is $\mathfrak{N} \delta c f$.
(iii) Every $\mathfrak{N} \delta c f$ is $\mathfrak{N} c f$.
(iv) Every $\mathfrak{N} \theta c f$ is $\mathfrak{N} \theta \mathcal{S} c f$.
(v) Every $\mathfrak{N c f}$ is $\mathfrak{N} \delta \mathcal{P} c f$.
(vi) Every $\mathfrak{N} \delta c f$ is $\mathfrak{N} \delta \mathcal{S} c f$.
(vii) Every $\mathfrak{N} \theta \mathcal{S} c f$ is $\mathfrak{N M} c f$.
(viii) Every $\mathfrak{N} \delta \mathcal{P} c f$ is $\mathfrak{N} \mathcal{M c} f$.
(ix) Every $\mathfrak{N} \delta \mathcal{P} c f$ is $\mathfrak{N e c f}$.
(x) Every $\mathfrak{N} \delta \mathcal{S} c f$ is $\mathfrak{N e c f}$.
(xi) Every $\mathfrak{N M}$ Mf is $\mathfrak{N e c f .}$

Proof:

(i) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \theta c f$ and L is a $\mathfrak{N c}$ set in U_{1}. Then, $h(L)$ is $\mathfrak{N} \theta c$ in V_{1}. Since every $\mathfrak{N} \theta c$ set is $\mathfrak{N c}, h(L)$ is $\mathfrak{N c}$ set in V_{1}. Therefore, h is $\mathfrak{N} c f$.
(ii) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \theta c f$ and L is a $\mathfrak{N c}$ set in U_{1}. Then, $h(L)$ is $\mathfrak{N} \theta c$ in V_{1}. Since every $\mathfrak{N} \theta c$ set is $\mathfrak{N} \delta c, h(L)$ is $\mathfrak{N} \delta c$ set in V_{1}. Therefore, h is $\mathfrak{N} \delta c f$.
(iii) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \delta c f$ and L is a $\mathfrak{N c}$ set in U_{1}. Then, $h(L)$ is $\mathfrak{N} \delta c$ in V_{1}. Since every $\mathfrak{N} \delta c$ set is $\mathfrak{N c}, h(L)$ is $\mathfrak{N} c$ set in V_{1}. Therefore, h is $\mathfrak{N} c f$.
(vi) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \theta c f$ and L is a $\mathfrak{N c}$ set in U_{1}. Then, $h(L)$ is $\mathfrak{N} \theta c$ in V_{1}. Since every $\mathfrak{N} \theta c$ set is $\mathfrak{N} \theta \mathcal{S} c, h(L)$ is $\mathfrak{N} \theta \mathcal{S} c$ set in V_{1}. Therefore, h is $\mathfrak{N} \theta \mathcal{S} c f$.
(v) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} c f$ and L is a $\mathfrak{N c}$ set in V_{1}. Then, $h(L)$ is $\mathfrak{N} c$ in U_{1}. Since every $\mathfrak{N c}$ set is $\mathfrak{N} \delta \mathcal{P} c, h(L)$ is $\mathfrak{N} \delta \mathcal{P} c$ set in U_{1}. Therefore, h is $\mathfrak{N} \delta \mathcal{P} c f$.
(vi) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \delta c f$ and L is a $\mathfrak{N c}$ set in U_{1}. Then, $h(L)$ is $\mathfrak{N} \delta c$ in V_{1}. Since every $\mathfrak{N} \delta c$ set is $\mathfrak{N} \delta \mathcal{S} c, h(L)$ is $\mathfrak{N} \delta \mathcal{S} c$ set in V_{1}. Therefore, h is $\mathfrak{N} \delta \mathcal{S} c f$.
(vii) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \theta \mathcal{S} c f$ and L is a $\mathfrak{N c}$ set in U_{1}. Then, $h(L)$ is $\mathfrak{N} \theta \mathcal{S} c$ in V_{1}. Since every $\mathfrak{N} \theta \mathcal{S} c$ set is $\mathfrak{N} \mathcal{M} c, h(L)$ is $\mathfrak{N} \mathcal{M} c$ set in V_{1}. Therefore, h is $\mathfrak{N} \mathcal{M} c f$.
(viii) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \delta \mathcal{P} c f$ and L is a $\mathfrak{N c}$ set in U_{1}. Then, $h(L)$ is $\mathfrak{N} \delta \mathcal{P} c$ in V_{1}. Since every $\mathfrak{N} \delta \mathcal{P} c$ set is $\mathfrak{N} \mathcal{M} c, h(L)$ is $\mathfrak{N} \mathcal{M} c$ set in V_{1}. Therefore, h is $\mathfrak{N} \mathcal{M} c f$.
(ix) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \delta \mathcal{P} c f$ and L is a $\mathfrak{N} c$ set in U_{1}. Then, $h(L)$ is $\mathfrak{N} \delta \mathcal{P} c$ in V_{1}. Since every $\mathfrak{N} \delta \mathcal{P} c$ set is $\mathfrak{N e c}, h(L)$ is $\mathfrak{N e c}$ set in V_{1}. Therefore, h is $\mathfrak{N e c f}$.
(x) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \delta \mathcal{S} c f$ and L is a $\mathfrak{N c}$ set in U_{1}. Then, $h(L)$ is $\mathfrak{N} \delta \mathcal{S} c$ in V_{1}. Since every $\mathfrak{N} \delta \mathcal{S} c$ set is $\mathfrak{N e c , h (L)}$ is $\mathfrak{N e c}$ set in V_{1}. Therefore, h is $\mathfrak{N e c f .}$
(xi) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \mathcal{M} c f$ and L is a $\mathfrak{N c}$ set in U_{1}. Then, $h(L)$ is $\mathfrak{N M} c$ in V_{1}. Since every $\mathfrak{N M} c$ set is $\mathfrak{N e c , h (L)}$ is $\mathfrak{N e c}$ set in V_{1}. Therefore, h is $\mathfrak{N e c f .}$

From the above discussions, the following implications are hold for any set in $\mathfrak{N} t s$.

Note: $K \rightarrow L$ denotes K implies L, but not conversely

Example 4.1.

Let $U_{1}=V_{1}=\left\{L_{a}, L_{b}, L_{c}, L_{d}\right\}$ with $U_{1} / R=\left\{\left\{L_{a}, L_{b}\right\},\left\{L_{c}, L_{d}\right\}\right\}, P=\left\{L_{a}, L_{b}\right\}, \tau_{R}(P)=$ $\left\{U_{1}, \phi,\left\{L_{a}, L_{b}\right\}\right\}$. Define the identity map $h: U_{1} \rightarrow V_{1}$ is $\mathfrak{N c f}$ but not $\mathfrak{N} \delta c f$. The set $\left\{L_{c}, L_{d}\right\}$ is $\mathfrak{N c}$ in U_{1} but $h\left(\left\{L_{c}, L_{d}\right\}\right)=\left\{L_{c}, L_{d}\right\}$ which is not $\mathfrak{N} \delta c$ in V_{1}.

Example 4.2.

Let $U_{1}=V_{1}=\left\{M_{a}, M_{b}, M_{c}, M_{d}, M_{e}\right\}$ with $U_{1} / R=\left\{\left\{M_{e}\right\},\left\{M_{a}, M_{b}\right\},\left\{M_{c}, M_{d}\right\}\right\}$, $P=\left\{M_{c}, M_{e}\right\}, \tau_{R}(P)=\left\{U_{1}, \phi,\left\{M_{e}\right\},\left\{M_{c}, M_{d}\right\},\left\{M_{c}, M_{d}, M_{e}\right\}\right\}$ and $V_{1} / R^{\prime}=\left\{\left\{M_{c}\right\},\left\{M_{a}, M_{b}\right\},\left\{M_{d}, M_{e}\right\}\right\}, \quad Q=\left\{M_{a}, M_{c}\right\}, \quad \tau_{R^{\prime}}(Q)=$ $\left\{V_{1}, \phi,\left\{M_{c}\right\},\left\{M_{a}, M_{b}\right\},\left\{M_{a}, M_{b}, M_{c}\right\}\right\}$. Then, the mapping $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \tau_{R^{\prime}}(Q)\right)$ is defined by
(i) $h\left(M_{a}\right)=M_{c}, h\left(M_{b}\right)=M_{d}, h\left(M_{c}\right)=M_{e}, h\left(M_{d}\right)=M_{a}$ and $h\left(M_{e}\right)=M_{b}$ is $\mathfrak{N} c f$
 $h\left(\left\{M_{a}, M_{b}\right\}\right)=\left\{M_{c}, M_{d}\right\}$ is not $\mathfrak{N} \theta c$ in V_{1}.
(ii) $h\left(M_{a}\right)=M_{d}, h\left(M_{b}\right)=M_{e}, h\left(M_{c}\right)=M_{c}, h\left(M_{d}\right)=M_{a}$ and $h\left(M_{e}\right)=M_{b}$ is $\mathfrak{N} \delta \mathcal{P} c f$ but not $\mathfrak{N} c f$. The set $\left\{M_{a}, M_{b}, M_{e}\right\}$ is $\mathfrak{N} c$ in U_{1} but $h\left(\left\{M_{a}, M_{b}, M_{e}\right\}\right)=\left\{M_{b}, M_{d}, M_{e}\right\}$ is not $\mathfrak{N} c$ in V_{1}.
(iii) $h\left(M_{a}\right)=M_{c}, h\left(M_{b}\right)=h\left(M_{e}\right)=M_{d}, h\left(M_{c}\right)=M_{e}$ and $h\left(M_{d}\right)=M_{a}$ is $\mathfrak{N} \delta \mathcal{S} c f$ but not $\mathfrak{N} \delta c f$. The set $\left\{M_{a}, M_{b}\right\}$ is $\mathfrak{N} c$ in U_{1} but $h\left(\left\{M_{a}, M_{b}\right\}\right)=\left\{M_{c}, M_{d}\right\}$ is not $\mathfrak{N} \delta c$ in V_{1}.
(iv) $h\left(M_{a}\right)=M_{e}, h\left(M_{b}\right)=M_{d}, h\left(M_{c}\right)=M_{c}, h\left(M_{d}\right)=M_{b}$ and $h\left(M_{e}\right)=M_{a}$ is $\mathfrak{N M} c f$ but not $\mathfrak{N} \theta \mathcal{S} c f$. The set $\left\{M_{a}, M_{b}\right\}$ is $\mathfrak{N c}$ in U_{1} but $h\left(\left\{M_{a}, M_{b}\right\}\right)=\left\{M_{d}, M_{e}\right\}$ is not $\mathfrak{N} \theta \mathcal{S} c$ in V_{1}.

Example 4.3.

Let $U_{1}=V_{1}=W_{1}=W_{1}^{\prime}=\left\{M_{a}, M_{b}, M_{c}, M_{d}, M_{e}\right\}$ with $U_{1} / R=$ $\left\{\left\{M_{a}\right\},\left\{M_{b}\right\},\left\{M_{c}, M_{d}, M_{e}\right\}\right\}, \quad P \quad=\quad\left\{M_{c}, M_{d}, M_{e}\right\}, \quad \tau_{R}(P) \quad=$ $\left\{U_{1}, \phi,\left\{M_{c}, M_{d}, M_{e}\right\}\right\} ; V_{1} / R^{\prime}=\left\{\left\{M_{c}\right\},\left\{M_{a}, M_{b}\right\},\left\{M_{d}, M_{e}\right\}\right\}, Q=\left\{M_{a}, M_{c}\right\}, \tau_{R^{\prime}}(Q)=$ $\left\{V_{1}, \phi,\left\{M_{c}\right\},\left\{M_{a}, M_{b}\right\},\left\{M_{a}, M_{b}, M_{c}\right\}\right\} ; W_{1} / R^{\prime \prime}=\left\{\left\{M_{c}\right\},\left\{M_{e}\right\},\left\{M_{a}, M_{b}, M_{d}\right\}\right\}, S=$ $\left\{M_{a}, M_{b}, M_{d}\right\}, \tau_{R^{\prime \prime}}(S)=\left\{W_{1}, \phi,\left\{M_{a}, M_{b}, M_{d}\right\}\right\}$ and $W_{1}^{\prime} / R^{\prime \prime \prime}=\left\{\left\{M_{b}\right\},\left\{M_{e}\right\},\left\{M_{a}, M_{c}, M_{d}\right\}\right\}$ $S^{\prime}=\left\{M_{a}, M_{c}, M_{d}\right\}, \tau_{R^{\prime \prime \prime}}\left(Z^{\prime}\right)=\left\{U_{1}, \phi,\left\{M_{a}, M_{c}, M_{d}\right\}\right\}$. Then, the identity mappings
(i) $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \tau_{R^{\prime}}(Q)\right)$ is $\mathfrak{N} \theta \mathcal{S} c f$ but not $\mathfrak{N} \theta c f$. The set $\left\{M_{a}, M_{b}\right\}$ is $\mathfrak{N} c$ in U_{1} but $h\left(\left\{M_{a}, M_{b}\right\}\right)=\left\{M_{a}, M_{b}\right\}$ is not $\mathfrak{N} \theta c$ in V_{1}.
(ii) $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \tau_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M} c f$ but not $\mathfrak{N} \delta \mathcal{P} c f$. The set $\left\{M_{a}, M_{b}\right\}$ is $\mathfrak{N} c$ in U_{1} but $h\left(\left\{M_{a}, M_{b}\right\}\right)=\left\{M_{a}, M_{b}\right\}$ is not $\mathfrak{N} \delta \mathcal{P} c$ in V_{1}.
(iii) $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \tau_{R^{\prime}}(Q)\right)$ is $\mathfrak{N e c f}$ but not $\mathfrak{N} \delta \mathcal{P} c f$. The set $\left\{M_{a}, M_{b}\right\}$ is $\mathfrak{N c}$ in U_{1} but $h\left(\left\{M_{a}, M_{b}\right\}\right)=\left\{M_{a}, M_{b}\right\}$ is not $\mathfrak{N} \delta \mathcal{P} c$ in V_{1}.
(iv) $g:\left(W_{1}^{\prime}, \tau_{R^{\prime \prime \prime}}\left(S^{\prime}\right)\right) \rightarrow\left(V_{1}, \tau_{R^{\prime}}(Q)\right)$ is $\mathfrak{N e c f}$ but not $\mathfrak{N} \delta \mathcal{S} c f$. The set $\left\{M_{b}, M_{e}\right\}$ is $\mathfrak{N c}$ in W_{1}^{\prime} but $g\left(\left\{M_{b}, M_{e}\right\}\right)=\left\{M_{b}, M_{e}\right\}$ is not $\mathfrak{N} \delta \mathcal{S} c$ in V_{1}.
(v) $h:\left(W_{1}, \tau_{R^{\prime \prime}}(S)\right) \rightarrow\left(V_{1}, \tau_{R^{\prime}}(Q)\right)$ is $\mathfrak{N e c f}$ but not $\mathfrak{N M} c f$. The set $\left\{M_{c}, M_{e}\right\}$ is $\mathfrak{N} c$ in W_{1} but $h\left(\left\{M_{c}, M_{e}\right\}\right)=\left\{M_{c}, M_{e}\right\}$ is not $\mathfrak{N M} c$ in V_{1}.

Theorem 4.2.

A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M} c$ if and only if $h(K)$ is $\mathfrak{N M o}$ in V_{1} for every $\mathfrak{N o}$ set K in U_{1}.

Proof:

Suppose $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is $\mathfrak{N M} c f$ and O is a $\mathfrak{N o}$ set in U_{1}. Then, $U_{1}-O$ is $\mathfrak{N} c$ in U_{1}. By hypothesis $h\left(U_{1}-O\right)=V_{1}-h(O)$ is a $\mathfrak{N M} c$ set in V_{1}, and hence, $h(O)$ is $\mathfrak{N M o}$ in V_{1}.

Conversely, if C is $\mathfrak{N c}$ set in U_{1}, then $U_{1}-C$ is a $\mathfrak{N o}$ set in U_{1}. By hypothesis $h\left(U_{1}-C\right)=V_{1}-h(C)$ is $\mathfrak{N M}$ o set in V_{1}, implies $h(C)$ is $\mathfrak{N M} c$ in V_{1}. Therefore, h is $\mathfrak{N M c f}$.

Theorem 4.3.

A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is a $\mathfrak{N M} c f$ if and only if $\mathfrak{N M c l}(h(K)) \subseteq h(\mathfrak{N c l}(K))$ for every subset K of U_{1}.

Proof:

Suppose h is $\mathfrak{N M} c$ and $K \subseteq U_{1}$. Then, $h(\mathfrak{N c l}(K))$ is $\mathfrak{N} \mathcal{M} c$ in V_{1}. Since $h(K) \subseteq h(\mathfrak{N c l}(K))$, we get $\mathfrak{N M} \operatorname{clh}(K) \subseteq \mathfrak{N} \mathcal{M} \operatorname{clh}(\mathfrak{N c l}(K))=h(\mathfrak{N c l}(K))$. Hence, $\mathfrak{N} \mathcal{M c l}(h(K)) \subseteq h(\mathfrak{N c l}(K))$.

Conversely, let C is any $\mathfrak{N c}$ set in U_{1}. Then, $\mathfrak{N c l}(C)=C$. Therefore, $h(C)=h(\mathfrak{N c l}(C))$. By
 $\mathfrak{N} \mathcal{M c l h}(C)$ is always true. This shows $\mathfrak{N} \mathcal{M} \operatorname{clh}(C)=h(C)$. Therefore, $h(C)$ is $\mathfrak{N M c}$ in V_{1} and hence h is $\mathfrak{N M}$.

Theorem 4.4.

Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be a function and $\mathfrak{N M} O\left(U_{1}, P\right)$ is closed under arbitrary union. The following statements are equivalent:
(i) h is $\mathfrak{N M o f}$.
(ii) For each subset K of $U_{1}, h(\mathfrak{N i n t}(K)) \subseteq \mathfrak{N M} \operatorname{Mint}(h(K))$.
(iii) For each $x \in U_{1}$, the image of every $\mathfrak{N N b d}$ of x is $\mathfrak{N M} N b d$ of $h(x)$

Proof:

(i) \Rightarrow (ii): Suppose (i) holds and $K \subseteq U_{1}$. Then, $\mathfrak{N i n t}(K)$ is $\mathfrak{N o}$ set in U_{1}. By (i), $h(\mathfrak{N i n t}(K))$ is a $\mathfrak{N M}$ o set in V_{1}. Therefore, $\mathfrak{N M} \operatorname{Mint}(h(\mathfrak{N} \operatorname{int}(K)))=h(\mathfrak{N i n t}(K))$. Since $h(\mathfrak{N i n t}(K)) \subseteq h(K)$, implies $\mathfrak{N M} \operatorname{Mint}(h(\mathfrak{N i n t}(K))) \subseteq \mathfrak{N} \mathcal{M} \operatorname{Mint}(h(K))$. That is $h(\mathfrak{N i n t}(K)) \subseteq \mathfrak{N M} \operatorname{Mint}(h(K))$.
 G in $U_{1} \ni x \in G \subset X$. By (ii), $h(G)=h(\mathfrak{N i n t}(G)) \subseteq \mathfrak{N M} \operatorname{Mint}(h(G))$. But $\mathfrak{N M i n t}(h(G)) \subseteq$ $h(G)$ is always true. Therefore, $h(G)=\mathfrak{N M} \operatorname{Mint}(h(G))$, and hence, $h(G)$ is $\mathfrak{N M o}$ set in V_{1}. Further $h(x) \in h(G) \subset h(X)$, this implies, $h(X)$ is $\mathfrak{N M} \mathcal{M} b d$ of $h(x)$ in V_{1}. Hence (iii) holds.
(iii) \Rightarrow (i): Suppose (iii) holds. Let G be any $\mathfrak{N o}$ set in U_{1} and $x \in G$ then $y=h(x) \in h(G)$. By (iii), $\forall y \in h(G), \exists \mathfrak{N M} N b d K_{y}$ of y in V_{1}. Since K_{y} is $\mathfrak{N M N b d}$ of $y, \exists \mathfrak{N M}$ o set H_{y} in $V_{1} \ni$ $y \in H_{y} \subset K_{y}$. Therefore, $h(G)=\cup\left\{H_{y}: y \in h(G)\right\}$, which is union of $\mathfrak{N M} \mathcal{M}$ o sets, and hence,

Theorem 4.5.

A function $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is $\mathfrak{N} \mathcal{M} c$ if and only if for each subset S of V_{1} and \forall \mathfrak{N}_{o} set G in U_{1} containing $h^{-1}(S)$, there exists a $\mathfrak{N} \mathcal{M} o$ set H of $V_{1} \ni S \subseteq H$ and $h^{-1}(H) \subseteq G$.

Proof:

Let $S \subseteq V_{1}$ be a \mathfrak{N} o subset of U_{1} containing $h^{-1}(S)$. Let h is a $\mathfrak{N M} c f$ and $U_{1}-G$ is $\mathfrak{N} c$ in U_{1}, therefore, $h\left(U_{1}-G\right)$ is a $\mathfrak{N} \mathcal{M} c$ set in V_{1}. Then, take $H=V_{1}-h\left(U_{1}-G\right)$ implies $H=h(G)$ where H is $\mathfrak{N M}$ o set in V_{1}. Since $h^{-1}(S) \subseteq G, S \subseteq h(G), S \subseteq H$. Therefore, $h\left(U_{1}-G\right)=$ $V_{1}-H \Rightarrow h\left(U_{1}-G\right) \subseteq V_{1}-S$ and $h^{-1}(H) \subseteq h^{-1}\left(V_{1}-h\left(U_{1}-G\right)\right) \subseteq U_{1}-\left(U_{1}-G\right)=G$. Thus, H is $\mathfrak{N M o}$ set in V_{1} such that $S \subseteq H$ and $h^{-1}(H) \subseteq G$.

Conversely, let G be a $\mathfrak{N} c$ set in U_{1}. Then $U_{1}-G$ is a $\mathfrak{N o}$ set in U_{1}. Take $S=V_{1}-h(G)$ to be a subset of $V_{1}, h^{-1}(S)=h^{-1}\left(V_{1}-h(G)\right) \subseteq U_{1}-G$. By hypothesis, there is a $\mathfrak{N M}$ Mo set H of $V_{1} \ni$ $V_{1}-h(G) \subseteq H \& h^{-1}(H) \subseteq U_{1}-G$. Therefore, $V_{1}-H \subseteq h(G) \subseteq h\left(U_{1}-h^{-1}(H)\right) \subseteq V_{1}-H$,
 $\mathfrak{N} \mathcal{M} c f$.

Theorem 4.6.

If $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is a $\mathfrak{N M} c f$, then for each $\mathfrak{N} c$ set K of V_{1} and each $\mathfrak{N} o$ set G of U_{1} containing $h^{-1}(K)$, there exists $H \in \mathfrak{N} \mathcal{M} O\left(V_{1}, Q\right)$ containing K such that $h^{-1}(H) \subseteq G$.

Proof:

Suppose h is $\mathfrak{N} \mathcal{M} c f$. Let K be any $\mathfrak{N} c$ set of V_{1} and G is a $\mathfrak{N o}$ set in U_{1} containing $h^{-1}(K)$. By Theorem 4.5, $\exists \mathfrak{N} \mathcal{M}$ o set F of $V_{1} \ni K \subseteq F$ and $h^{-1}(F) \subseteq G$. Since K is $\mathfrak{N c}$ and F is a $\mathfrak{N M}$ o set containing K, then $K \subseteq \mathfrak{N} \mathcal{M i n t}(F)$. Put $H=\mathfrak{N} \mathcal{M i n t}(F)$. Then $K \subseteq H \in \mathfrak{N} \mathcal{M} O\left(V_{1}, Q\right)$ and $h^{-1}(H) \subseteq G$.

Theorem 4.7.

Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ and $g:\left(V_{1}, \tau_{R^{\prime}}(Q)\right) \rightarrow\left(W_{1}, \mu_{R^{\prime \prime}}(R)\right)$ be any two functions. Then, $g \circ h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(W_{1}, \sigma_{R^{\prime \prime}}(R)\right)$ is a $\mathfrak{N M} c f$ if h is $\mathfrak{N} c$ and g is a $\mathfrak{N M} c f$.

Proof:

 $g(h(F))=(g \circ h)(F)$ is a $\mathfrak{N M} c$ set in W_{1}. Hence $g \circ h$ is a $\mathfrak{N} \mathcal{M} c f$.

Theorem 4.8.

Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ and $g:\left(V_{1}, \tau_{R^{\prime}}(Q)\right) \rightarrow\left(W_{1}, \mu_{R^{\prime \prime}}(R)\right)$ be any two functions such that $g \circ h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(W_{1}, \sigma_{R^{\prime \prime}}(R)\right)$ be a $\mathfrak{N} \mathcal{M} c f$. Then, the following results hold.
(i) If h is \mathfrak{N}-Cts surjection, then g is a $\mathfrak{N M} c f$.
(ii) If g is $\mathfrak{N M} \operatorname{Irr}$ and injective, then h is a $\mathfrak{N M c f}$.

Proof:

(i) Suppose F_{1} is a $\mathfrak{N c} c$ set in V_{1}. Since h is a $\mathfrak{N} C t s$ function, $h^{-1}\left(F_{1}\right)$ is a $\mathfrak{N} c$ set in U_{1}. Therefore, $(g \circ h)\left(h^{-1}\left(F_{1}\right)\right)=g\left(F_{1}\right)$ is a $\mathfrak{N} \mathcal{M} c$ set in W_{1}. Hence, g is a $\mathfrak{N M} c f$.
(ii) Suppose F_{1} is $\mathfrak{N c}$ set in U_{1}. Then, $(g \circ h)\left(F_{1}\right)$ is a $\mathfrak{N M} c$ set in W_{1}. Since g is a $\mathfrak{N M}$ Irr function, this implies $g^{-1}\left((g \circ h)\left(F_{1}\right)\right)=h\left(F_{1}\right)$ is a $\mathfrak{N} \mathcal{M} c$ set in V_{1}. Hence, h is a $\mathfrak{N} \mathcal{M} c f$.

5. Nano \mathcal{M} Homeomorphisms

Definition 5.1.

Let $\left(U_{1}, \tau_{R}(P)\right)$ and $\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be \mathfrak{N} ts and let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime \prime}}(Q)\right)$ be a bijective function. If both the function h and the inverse function h^{-1} are nano \mathcal{M} (respectively, θ, δ, θ semi, δ pre, δ semi and e) Cts (briefly, $\mathfrak{N M}$ (respectively, $\mathfrak{N} \theta, \mathfrak{N} \delta, \mathfrak{N} \theta \mathcal{S}, \mathfrak{N} \delta \mathcal{P}, \mathfrak{N} \delta \mathcal{S}$ and $\mathfrak{N e) ~}$ Cts), then h is called $\mathfrak{N M}$ (respectively, $\mathfrak{N} \theta, \mathfrak{N} \delta, \mathfrak{N} \theta \mathcal{S}, \mathfrak{N} \delta \mathcal{P}, \mathfrak{N} \delta \mathcal{S}$ and $\mathfrak{N e}$) homeomorphism (briefly, $\mathfrak{N M}$ (respectively, $\mathfrak{N} \theta, \mathfrak{N} \delta, \mathfrak{N} \theta \mathcal{S}, \mathfrak{N} \delta \mathcal{P}, \mathfrak{N} \delta \mathcal{S}$ and $\mathfrak{N e}$) Hom). Equivalently, if h both $\mathfrak{N} \mathcal{M}$ (respectively, $\mathfrak{N} \theta, \mathfrak{N} \delta, \mathfrak{N} \theta \mathcal{S}, \mathfrak{N} \delta \mathcal{P}, \mathfrak{N} \delta \mathcal{S}$ and $\mathfrak{N e}$) Cts and $\mathfrak{N} \mathcal{M} o$ (respectively, $\mathfrak{N} \theta o, \mathfrak{N} \delta o$, $\mathfrak{N} \theta \mathcal{S}_{o}, \mathfrak{N} \delta \mathcal{P}_{o}, \mathfrak{N} \delta \mathcal{S}_{o}$ and $\mathfrak{N e o}$) then h is called $\mathfrak{N} \mathcal{M}$ (respectively, $\mathfrak{N} \theta, \mathfrak{N} \delta, \mathfrak{N} \theta \mathcal{S}, \mathfrak{N} \delta \mathcal{P}, \mathfrak{N} \delta \mathcal{S}$ and $\mathfrak{N e}$)Hom.

The family of all $\mathfrak{N} \mathcal{M} H$ om's in U_{1} is denoted by $\mathfrak{N} \mathcal{M} H\left(U_{1}, P\right)$.

Theorem 5.1.

Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$,
(i) Every $\mathfrak{N} \theta$ Hom is $\mathfrak{N H o m}$.
(ii) Every $\mathfrak{N} \theta$ Hom is $\mathfrak{N} \delta H o m$.
(iii) Every $\mathfrak{N} \delta H o m$ is $\mathfrak{N H o m}$.
(iv) Every $\mathfrak{N H o m}$ is $\mathfrak{N} \delta \mathcal{P}$ Hom.
(v) Every $\mathfrak{N} \theta \mathcal{S}$ Hom is $\mathfrak{N M H o m}$.
(vi) Every $\mathfrak{N} \delta \mathcal{P}$ Hom is $\mathfrak{N M}$ Hom.
(vii) Every $\mathfrak{N} \delta \mathcal{P}$ Hom is $\mathfrak{N e H o m}$.
(viii) Every $\mathfrak{N} \delta \mathcal{S H o m}$ is $\mathfrak{N e H o m}$.
(ix) Every $\mathfrak{N M H o m}$ is $\mathfrak{N e H o m}$.
but not conversely.

Proof:

(i) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \theta H o m$. Then, h and h^{-1} are $\mathfrak{N} \theta C t s$ and h is bijection. Since every $\mathfrak{N} \theta C t s$ function is $\mathfrak{N} C t s$, we have h and h^{-1} are $\mathfrak{N} C t s$. Therefore, h is $\mathfrak{N H o m}$.
(ii) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \theta$ Hom. Then, h and h^{-1} are $\mathfrak{N} \theta$ Cts and h is
bijection. Since every $\mathfrak{N} \theta C t s$ function is $\mathfrak{N} \delta C t s$, we have h and h^{-1} are $\mathfrak{N} \delta C t s$. Therefore, h is $\mathfrak{N} \delta H o m$.
(iii) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \delta H o m$. Then, h and h^{-1} are $\mathfrak{N} \delta C t s$ and h is bijection. Since every $\mathfrak{N} \delta C t s$ function is $\mathfrak{N} C t s$, we have h and h^{-1} are $\mathfrak{N} C t s$. Therefore, h is $\mathfrak{N H o m}$.
(iv) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N H o m}$. Then, h and h^{-1} are $\mathfrak{N} C t s$ and h is bijection. Since every $\mathfrak{N} C t$ s function is $\mathfrak{N} \delta \mathcal{P} C t s$, we have h and h^{-1} are $\mathfrak{N} \delta \mathcal{P} C t s$. Therefore, h is $\mathfrak{N} \delta \mathcal{P}$ Hom.
(v) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \theta \mathcal{S H o m}$. Then, h and h^{-1} are $\mathfrak{N} \theta \mathcal{S} C t s$ and h is bijection. Since every $\mathfrak{N} \theta \mathcal{S} C t s$ function is $\mathfrak{N} \mathcal{M} C t s$, we have h and h^{-1} are $\mathfrak{N M} C t s$. Therefore, h is $\mathfrak{N M H o m}$.
(vi) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \delta \mathcal{P} H o m$. Then, h and h^{-1} are $\mathfrak{N} \delta \mathcal{P} C t s$ and h is bijection. Since every $\mathfrak{N} \delta \mathcal{P} C t s$ function is $\mathfrak{N} \mathcal{M}$ Cts, we have h and h^{-1} are $\mathfrak{N} \mathcal{M}$ Cts. Therefore, h is $\mathfrak{N M H o m}$.
(vii) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \delta \mathcal{P}$ Hom. Then, h and h^{-1} are $\mathfrak{N} \delta \mathcal{P} C t s$ and h is bijection. Since every $\mathfrak{N} \delta \mathcal{P} C t s$ function is $\mathfrak{N e}$ Cts, we have h and h^{-1} are $\mathfrak{N e}$ ets. Therefore, h is $\mathfrak{N e H o m}$.
(viii) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N} \delta \mathcal{S} H o m$. Then, h and h^{-1} are $\mathfrak{N} \delta \mathcal{S} C t s$ and h is bijection. Since every $\mathfrak{N} \delta \mathcal{S}$ Cts function is $\mathfrak{N e}$ Cts, we have h and h^{-1} are $\mathfrak{N e}$ ets. Therefore, h is $\mathfrak{N e H o m}$.
(ix) Let $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ be $\mathfrak{N M H o m}$. Then, h and h^{-1} are $\mathfrak{N M}$ Cts and h is bijection. Since every $\mathfrak{N M}$ Cts function is $\mathfrak{N e}$ Cts, we have h and h^{-1} are $\mathfrak{N e}$ ets. Therefore, h is $\mathfrak{N e H o m}$.

From the above discussions, the following implications hold for any set in $\mathfrak{N t s}$.

Note: $K \rightarrow L$ denotes K implies L, but not conversely.

Example 5.1.

Let $U_{1}=V_{1}=\left\{M_{a}, M_{b}, M_{c}, M_{d}, M_{e}\right\}$ with $U_{1} / R=\left\{\left\{M_{c}\right\},\left\{M_{a}, M_{b}\right\},\left\{M_{d}, M_{e}\right\}\right\}$ and $X=$ $\left\{M_{a}, M_{c}\right\}$. Then, $\tau_{R}(X)=\left\{U_{1}, \phi,\left\{M_{c}\right\},\left\{M_{a}, M_{b}\right\},\left\{M_{a}, M_{b}, M_{c}\right\}\right\}$. Then, the identity map h : $\left(U_{1}, \tau_{R}(X)\right) \rightarrow\left(V_{1}, \tau_{R}(X)\right)$ is $\mathfrak{N H o m}$ (respectively, $\mathfrak{N \delta H o m , ~} \mathfrak{N} \mathcal{M H o m}$), but h is not $\mathfrak{N} \theta$ Hom (respectively, $\mathfrak{N} \theta H o m, \mathfrak{N} \theta \mathcal{S} H o m$), since
(i) $h^{-1}\left(\left\{M_{c}\right\}\right)=\left\{M_{c}\right\}$ which is not $\mathfrak{N} \theta o$ (respectively, $\mathfrak{N} \theta o$) in U_{1} whereas $\left\{M_{c}\right\}$ is $\mathfrak{N} o$ (respectively, $\mathfrak{N o) ~ i n ~} V_{1}$.
(ii) $h^{-1}\left(\left\{M_{a}, M_{b}\right\}\right)=\left\{M_{a}, M_{b}\right\}$ which is not $\mathfrak{N} \theta \mathcal{S} o$ in U_{1} whereas $\left\{M_{a}, M_{b}\right\}$ is $\mathfrak{N o}$ in V_{1}.

Example 5.2.

Let $U_{1}=V_{1}=\left\{M_{a}, M_{b}, M_{c}, M_{d}, M_{e}\right\}$ with $U_{1} / R=\left\{\left\{M_{a}\right\},\left\{M_{b}\right\},\left\{M_{c}, M_{d}, M_{e}\right\}\right\}$ and $X=\left\{M_{c}, M_{d}, M_{e}\right\}$. Then, $\tau_{R}(X)=\left\{U_{1}, \phi,\left\{M_{c}, M_{d}, M_{e}\right\}\right\}$. Then, the identity map h : $\left(U_{1}, \tau_{R}(X)\right) \rightarrow\left(V_{1}, \tau_{R}(X)\right)$ is $\mathfrak{N H o m}$, but h is not $\mathfrak{N} \delta H o m$, since $h^{-1}\left(\left\{M_{c}, M_{d}, M_{e}\right\}\right)=$ $\left\{M_{c}, M_{d}, M_{e}\right\}$ which is not $\mathfrak{N} \delta o$ in U_{1} whereas $\left\{M_{c}, M_{d}, M_{e}\right\}$ is $\mathfrak{N} o$ in V_{1}.

Example 5.3.

Let $U_{1}=V_{1}=\left\{M_{a}, M_{b}, M_{c}, M_{d}, M_{e}\right\}$ with $U_{1} / R=\left\{\left\{M_{a}\right\},\left\{M_{b}\right\},\left\{M_{c}, M_{d}, M_{e}\right\}\right\}$ and $X=\left\{M_{a}, M_{c}, M_{d}\right\}$. Then, $\tau_{R}(X)=\left\{U_{1}, \phi,\left\{M_{a}\right\},\left\{M_{c}, M_{d}, M_{e}\right\},\left\{M_{a}, M_{c}, M_{d}, M_{e}\right\}\right\}$, $V_{1} / R^{\prime}=\left\{\left\{M_{e}\right\},\left\{M_{a}, M_{b}\right\},\left\{M_{c}, M_{d}\right\}\right\}$ and $Y=\left\{M_{a}, M_{c}\right\}$. Then, $\sigma_{R^{\prime}}(Y)=$ $\left\{V_{1}, \phi,\left\{M_{c}\right\},\left\{M_{a}, M_{b}\right\},\left\{M_{a}, M_{b}, M_{c}\right\}\right\}$. Define $h:\left(U_{1}, \tau_{R}(X)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Y)\right)$ as $h\left(M_{a}\right)=$ $M_{a}, h\left(M_{b}\right)=M_{d}, h\left(M_{c}\right)=M_{c}, h\left(M_{d}\right)=M_{b}$ and $h\left(M_{e}\right)=M_{e}$. Then, h is $\mathfrak{N} \delta \mathcal{P} H o m$, but h is not $\mathfrak{N H o m}$, since $h^{-1}\left(\left\{M_{c}\right\}\right)=\left\{M_{c}\right\}$ which is not $\mathfrak{N} o$ in U_{1} whereas $\left\{M_{c}\right\}$ is \mathfrak{N}_{o} in V_{1}.

Example 5.4.

Let $U_{1}=V_{1}=\left\{M_{a}, M_{b}, M_{c}, M_{d}, M_{e}\right\}$ with $U_{1} / R=\left\{\left\{M_{a}\right\},\left\{M_{b}\right\},\left\{M_{c}, M_{d}, M_{e}\right\}\right\}$ and $X=\left\{M_{a}, M_{c}, M_{d}\right\}$. Then, $\tau_{R}(X)=\left\{U_{1}, \phi,\left\{M_{a}\right\},\left\{M_{c}, M_{d}, M_{e}\right\},\left\{M_{a}, M_{c}, M_{d}, M_{e}\right\}\right\}$, $V_{1} / R^{\prime}=\left\{\left\{M_{c}\right\},\left\{M_{a}, M_{b}\right\},\left\{M_{d}, M_{e}\right\}\right\}$ and $Y=\left\{M_{a}, M_{c}\right\}$. Then, $\sigma_{R^{\prime}}(Y)=$ $\left\{V_{1}, \phi,\left\{M_{c}\right\},\left\{M_{a}, M_{b}\right\},\left\{M_{a}, M_{b}, M_{c}\right\}\right\}$. Then, the identity map $h:\left(U_{1}, \tau_{R}(X)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Y)\right)$ is $\mathfrak{N M H H o m}$, but h is not $\mathfrak{N} \delta \mathcal{P} H o m$, since $h^{-1}\left(\left\{M_{a}, M_{b}\right\}\right)=\left\{M_{a}, M_{b}\right\}$ which is not $\mathfrak{N} \delta \mathcal{P} o$ in U_{1} whereas $\left\{M_{a}, M_{b}\right\}$ is $\mathfrak{N o}$ in V_{1}.

Example 5.5.

Let $U_{1}=V_{1}=\left\{L_{a}, L_{b}, L_{c}, L_{d}, L_{e}\right\}$ with $U_{1} / R=\left\{\left\{L_{c}\right\},\left\{L_{a}, L_{b}\right\},\left\{L_{d}, L_{e}\right\}\right\}$ and $X=\left\{L_{a}, L_{c}\right\}$. Then, $\tau_{R}(X)=\left\{U_{1}, \phi,\left\{L_{c}\right\},\left\{L_{a}, L_{b}\right\},\left\{L_{a}, L_{b}, L_{c}\right\}\right\}, V_{1} / R^{\prime}=\left\{\left\{L_{e}\right\},\left\{L_{a}, L_{b}\right\},\left\{L_{c}, L_{d}\right\}\right\}$ and $Y=\left\{L_{a}, L_{c}, L_{d}\right\}$. Then, $\sigma_{R^{\prime}}(Y)=\left\{V_{1}, \phi,\left\{L_{a}, L_{b}\right\},\left\{L_{c}, L_{d}\right\},\left\{L_{a}, L_{b}, L_{c}, L_{d}\right\}\right\}$. Then,
(i) the identity map $h:\left(U_{1}, \tau_{R}(X)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Y)\right)$ is $\mathfrak{N e H o m}$, but h is not $\mathfrak{N} \delta \mathcal{S} H o m$, since $h\left(\left\{L_{c}\right\}\right)=\left\{L_{c}\right\}$ which is not $\mathfrak{N} \delta \mathcal{S}_{o}$ in V_{1} whereas $\left\{L_{c}\right\}$ is $\mathfrak{N o}$ in U_{1}.
(ii) the identity map $h:\left(V_{1}, \sigma_{R^{\prime}}(Y)\right) \rightarrow\left(U_{1}, \tau_{R}(X)\right)$ is $\mathfrak{N e H o m}$, but h is not $\mathfrak{N} \delta \mathcal{P} H o m$, since $h\left(\left\{L_{c}, L_{d}\right\}\right)=\left\{L_{c}, L_{d}\right\}$ which is not $\mathfrak{N} \delta \mathcal{P}_{o}$ in V_{1} whereas $\left\{L_{c}, L_{d}\right\}$ is $\mathfrak{N o}$ in U_{1}.

Example 5.6.

Let $U_{1}=V_{1}=\left\{L_{a}, L_{b}, L_{c}, L_{d}, L_{e}\right\}$ with $U_{1} / R=\left\{\left\{L_{c}\right\},\left\{L_{a}, L_{b}\right\},\left\{L_{d}, L_{e}\right\}\right\}$ and $X=\left\{L_{a}\right.$, $\left.L_{c}\right\}$. Then, $\tau_{R}(X)=\left\{U_{1}, \phi,\left\{L_{c}\right\},\left\{L_{a}, L_{b}\right\},\left\{L_{a}, L_{b}, L_{c}\right\}\right\}, V_{1} / R^{\prime}=\left\{\left\{L_{e}\right\},\left\{L_{a}, L_{b}\right\},\left\{L_{c}, L_{d}\right\}\right\}$ and $Y=\left\{L_{a}, L_{c}, L_{d}\right\}$. Then, $\sigma_{R^{\prime}}(Y)=\left\{V_{1}, \phi,\left\{L_{a}, L_{b}\right\},\left\{L_{c}, L_{d}\right\},\left\{L_{a}, L_{b}, L_{c}, L_{d}\right\}\right\}$. Define h : $\left(U_{1}, \tau_{R}(X)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Y)\right)$ as $h\left(L_{a}\right)=L_{c}, h\left(L_{b}\right)=L_{d}, h\left(L_{c}\right)=L_{a}, h\left(L_{d}\right)=L_{b}$ and $h\left(L_{e}\right)=L_{e}$. Then, h is $\mathfrak{N e H o m}$, but h is not $\mathfrak{N M H o m}$, since $h^{-1}\left(\left\{L_{a}, L_{b}\right\}\right)=\left\{L_{c}, L_{d}\right\}$ which is not $\mathfrak{N M}$ o in U_{1} whereas $\left\{L_{a}, L_{b}\right\}$ is $\mathfrak{N o}$ in V_{1}.

Theorem 5.2.

For any bijection $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right.$ the following statements are equivalent:
(i) Inverse of h is $\mathfrak{N M C t s . ~}$
(ii) h is a $\mathfrak{N M o f}$.
(iii) h is a $\mathfrak{N} \mathcal{M} c f$

Proof:

(i) \Rightarrow (ii): Suppose G_{1} is a $\mathfrak{N o}$ set in U_{1}. Then by (i), $\left(h^{-1}\right)^{-1}\left(G_{1}\right)=h\left(G_{1}\right)$ is a $\mathfrak{N} \mathcal{M} o$ set in V_{1}, and hence, h is a $\mathfrak{N M o f \text { . }}$
(ii) \Rightarrow (iii): Suppose F_{1} is $\mathfrak{N c}$ in U_{1}. Then $U_{1}-F_{1}$ is $\mathfrak{N o}$ in U_{1}. By (ii), $h\left(U_{1}-F_{1}\right)=V_{1}-h\left(F_{1}\right)$ is a $\mathfrak{N M}$ o set in V_{1} which implies $h\left(F_{1}\right)$ is a $\mathfrak{N M}$ c set in V_{1}. Therefore, h is $\mathfrak{N M} c f$.
(iii) \Rightarrow (i): Let F_{1} be a $\mathfrak{N c}$ set in U_{1}. By (iii), $h\left(F_{1}\right)=\left(h^{-1}\right)^{-1}\left(F_{1}\right)$ is a $\mathfrak{N} \mathcal{M} c$ set in V_{1}, and hence, the inverse of h is a $\mathfrak{N M C t s}$ function.

Theorem 5.3.

If $h:\left(U_{1}, \tau_{R}(P)\right) \rightarrow\left(V_{1}, \sigma_{R^{\prime}}(Q)\right)$ is bijective and $\mathfrak{N} \mathcal{M C t s}$, then the following statements are equivalent:
(i) h is $\mathfrak{N} \mathcal{M} o$.
(ii) h is a $\mathfrak{N M H o m}$.
(iii) h is a $\mathfrak{N M c}$

Proof:

(i) \Rightarrow (ii): By the assumption h is bijective, $\mathfrak{N} \mathcal{M C t s}$ and $\mathfrak{N M} o$. Then, by definition, h is $\mathfrak{N M}$ Hom.
(ii) \Rightarrow (iii): By the assumption h is bijective and $\mathfrak{N M}$. Then, by Theorem 5.2, h is $\mathfrak{N M}$ c.
(iii) \Rightarrow (i): By the assumption h is bijective and $\mathfrak{N} \mathcal{M} c$. Then, by Theorem 5.2, h is $\mathfrak{N} \mathcal{M} o$.

6. Conclusion

In this paper, we have studied many interesting notions on various forms of nano \mathcal{M} open sets such as nano \mathcal{M}-continuous and nano \mathcal{M}-irresolute functions in a nano topological spaces along with their continuous and irresolute mappings. Also discussed were nano \mathcal{M}-open and nano \mathcal{M}-closed functions, and these were compared with their near open and closed mappings in a nano topological spaces. Finally, we discussed nano \mathcal{M} homeomorphisms in nano topological spaces and studied some of their properties. In future work, nano \mathcal{M} open sets can be applied in an application field of real-life experience.

Zadeh (1965) introduced the concept of a fuzzy set (FS) to the world. In FS theory, the membership value of each element in a set is specified by a real number from the closed interval of $[0,1]$. Later, Atanassov (1989) defined the notion of an intuitionistic fuzzy set (IFS) as an extension of FS. In IFS theory, the elements are assumed to posses both membership and non-membership values with the condition that their sum does not exceed unity. Also, Atanassov (1989) established some properties of IFS.

Lellis Thivagar and Richard (2013) introduced the notion of Nano topology (briefly, $\mathfrak{N T}$) by using theory approximations and boundary region of a subset of an universe in terms of an equivalence relation on it and also defined Nano closed (briefly, \mathfrak{N} c) sets, Nano-interior (briefly, \mathfrak{N} int) and Nano-closure (briefly, $\mathfrak{N c l}$) in a nano topological spaces (briefly, $\mathfrak{N t s}$).

Acknowledgment:

The authors would like to thank the editors and the anonymous reviewers for their valuable comments and suggestions which have helped immensely in improving the quality of the paper.

REFERENCES

Atanassov, K. T. (1989). More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 33, No. 01, pp. 37-45.
Bhuvaneswari, K. and Ezhilarasi, A. (2016). Nano semi generalized irresolute maps in Nano topological spaces, International Journal of Mathematical Archive, Vol. 7, No. 3, pp. 68-75.
Ekici, E. (2007). Some generalizations of almost contra-super-continuity, Filomat, Vol. 21, No. 2, pp. 31-44.
Ekici, E. (2008a). New forms of contra-continuity, Carpathian Journal of Mathematics, Vol. 24, No. 1, pp. 37-45.
Ekici, E. (2008b). On a-open sets, A^{*}-sets and decompositions of continuity and super-continuity, Annales Univ. Sci. Budapest. Eötvös Sect. Math., Vol. 51, pp. 39-51.

Ekici, E. (2008c). On e-open sets, $D P^{*}$-sets and $D P \epsilon^{*}$-sets and decompositions of continuity, Arabian Journal for Science and Engineering, Vol. 33, No. 2A, pp. 269-282.
Ekici, E. (2009). On e^{*}-open sets and $(D, S)^{*}$-sets, Mathematica Moravica, Vol. 13, No. 1, pp. 29-36.
El-Maghrabi, A. I. and Al-Juhani, M. A. (2011). M-open sets in topological spaces, Pioneer J. Math. Sci., Vol. 4, No. 2, pp. 213-230.
Lashin, E. F. and Medhat, T. (2015). Topological reduction of information systems, Chaos, Solitons and Fractals, Vol. 25, pp. 277-286.
Lellis Thivagar, M. and Richard, C. (2013). On nano continuity, Mathematical Theory and Modelling, Vol. 3, No. 7, pp. 32-37.
Lellis Thivagar, M. and Richard, C. (2016). On nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, Vol. 1, pp. 31-37.
Padma, A., Saraswathi, M., Vadivel, A. and Saravanakumar, G. New notions of nano M-open sets, Malaya Journal of Matematik, Vol. S, No. 1, pp. 656-660.
Pankajam, V. and Kavitha, K. (2017). δ open sets and δ nano continuity in δ nano topological space, International Journal of Innovative Science and Research Technology, Vol. 2, No. 12, pp. 110-118.
Pawlak, Z. (1982). Rough sets, International Journal of Computer and Information Sciences, Vol. 11, pp. 341-356.
Revathy, A. and Gnanambal, I. (2015). On nano β open sets, Int. Jr. of Engineering, Contemporary Mathematics and Sciences, Vol. 1, No. 2, pp. 1-6.
Richard, C. (2013). Studies on nano topological spaces, Ph.D Thesis, Madurai Kamaraj University. Sujatha, M. and Angayarkanni, M. (2019). New notions via nano θ open sets with an application in diagnosis of Type - II diabetics, Adalya Journal, Vol. 8, No. 10, pp. 643-651.
Zadeh, L.A. (1965). Fuzzy sets, Information and Control, Vol. 08, No. 03, pp. 338-353.

