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Abstract

NanoM open sets aress a union of nano θ semi open sets and nano δ pre open sets. The properties
of nano M open sets with their interior and closure operators are discussed in a previous paper.
In this paper, nanoM-continuous and nanoM-irresolute functions are introduced in a nano topo-
logical spaces along with their continuous and irresolute mappings. Also, nanoM-open and nano
M-closed functions are introduced and compared with their near open and closed mappings in a
nano topological spaces. Further, nanoM homeomorphisms are also discussed in nano topological
spaces. Also, we discuss nano e-Cts, nano e-Irr, nano eo and nano ec functions and nano eHom
in a nano topological space. Some of their properties are also well discussed.

Keywords: Nano M-o set; Nano M-c set; Nano M-Cts; Nano M-Irr; Nano Mof ; Nano
Mcf ; NanoMHom
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1. Introduction and Preliminaries

Lellis Thivagar and Richard (2013) introduced the notion of Nano topology (briefly, NT) by using
theory approximations and boundary region of a subset of an universe in terms of an equivalence
relation on it and also defined Nano closed (briefly, Nc) sets, Nano-interior (briefly, Nint) and
Nano-closure (briefly, Ncl) in a nano topological spaces (briefly, Nts). Richard (2016) discussed
some weak forms of No sets and Nθ open (briefly, Nθo) sets. Some generalizations of almost
contra-super-continuity were made by Ekici (2007).

The notion of e-open sets in topological spaces was introduced by Ekici (2008c), who studied some
of their properties. Also, a-open sets, A∗-sets and decompositions of continuity, super-continuity
Ekici (2008b) and new forms of contra-continuity were studied by Ekici (2008a). The new sets,
called e∗-open sets and (D,S)∗-sets, were introduced by Ekici (2009).

El-Maghrabi and Al-Juhani (2011) initroduced the notion of M -open sets in topological spaces,
and they studied some of their properties. The class of sets, namely M -open sets, are playing
more important roles in topological spaces because of their applications in various fields of Math-
ematics and other real fields. By these motivations, we present the concept of nano M -open sets
(Padma et al. (2019)) and study their properties and applications in nano topological space. The
purpose of this paper is to discuss nanoM-Cts, nanoM-Irr, nanoMo and nanoMc functions
and nanoMHom by using the sets nanoM (respectively, e) open sets.

The definitions and properties needed in this paper are shown in Bhuvaneswari et al. (2016), Lellis
Thivagar and Richard (2013), Lellis Thivagar and Richard (2013), Padma et al. (2019), Panka-
jam and Kavitha (2017), Revathy and Gnanambal (2015), Richard (2016), and Sujatha and Anga-
yarkanni (2019).

Throughout this paper, (U, τR(X)) is a Nts with respect to X where X ⊆ U, R is an equivalence
relation on U. Then, U/R denotes the family of equivalence classes of U by R. All other undefined
notions are from Lashin and Medhat (2015), Lellis Thivagar and Richard (2013), and Pawlak
(2016).

2. Nano M continuous functions

Definition 2.1.

A function h : (U1, τR(P )) → (V1, σR′ (Q)) is said to be NanoM (respectively, δ, δ-pre, δ-semi
and e) continuous (briefly, NM (respectively, Nδ, NδP , NδS and Ne) Cts), if for each Nc set K
of V1, the set h−1(K) is NMc (respectively, Nδc, NδPc, NδSc and Nec) set of U1.

Theorem 2.1.

Let h : (U1, τR(P ))→ (V1, σR′ (Q)) be a mapping. Then,

(i) Every Nδ Cts is N Cts.
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(ii) Every N Cts is NδP Cts.
(iii) Every Nδ Cts is NδS Cts.
(iv) Every Nθ Cts is Nδ Cts.
(v) Every NθS Cts is NM Cts.

(vi) Every Nθ Cts is NθS Cts.
(vii) Every Nθ Cts is N Cts.

(viii) Every NδP Cts is NM Cts.
(ix) Every NδP Cts is Ne Cts.
(x) Every NM Cts is Ne Cts.

(xi) Every NδS Cts is Ne Cts.

Proof:

(i) Let h : (U1, τR(P ))→ (V1, σR′ (Q)) be Nδ Cts and L is a Nc set in V1. Then, h−1(L) is Nδc in
U1. Since every Nδc set is Nc, h−1(L) is Nc set in U1. Therefore, h is N Cts.

(ii) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be N Cts and L is a Nc set in V1. Then, h−1(L) is Nc in
U1. Since every Nc set is NδPc, h−1(L) is NδPc set in U1. Therefore, h is NδP Cts.

(iii) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be Nδ Cts and L is a Nc set in V1. Then, h−1(L) is Nδc
in U1. Since every Nδc set is NδSc, h−1(L) is NδSc set in U1. Therefore, h is NδS Cts.

(iv) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be Nθ Cts and L is a Nc set in V1. Then, h−1(L) is Nθc
in U1. Since every Nθc set is Nδc, h−1(L) is Nδc set in U1. Therefore, h is Nδ Cts.

(v) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NθS Cts and L is a Nc set in V1. Then, h−1(L) is
NθSc in U1. Since every NθSc set is NMc, h−1(L) is NMc set in U1. Therefore, h is NM Cts.

(vi) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be Nθ Cts and L is a Nc set in V1. Then, h−1(L) is Nθc
in U1. Since every Nθc set is NθSc, h−1(L) is NθSc set in U1. Therefore, h is NθS Cts.

(vii) Let h : (U1, τR(P ))→ (V1, σR′ (Q)) be Nθ Cts and L is a Nc set in V1. Then, h−1(L) is Nθc
in U1. Since every Nθc set is Nc, h−1(L) is Nc set in U1. Therefore, h is N Cts.

(viii) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NδP Cts and L is a Nc set in V1. Then, h−1(L) is
NδPc in U1. Since every NδPc set is NMc, h−1(L) is NMc set in U1. Therefore, h is NM Cts.

(ix) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NδP Cts and L is a Nc set in V1. Then, h−1(L) is
NδPc in U1. Since every NδPc set is Nec, h−1(L) is Nec set in U1. Therefore, h is Ne Cts.

(x) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NM Cts and L is a Nc set in V1. Then, h−1(L) is
NMc in U1. Since every NMc set is Nec, h−1(L) is Nec set in U1. Therefore, h is Ne Cts.

(xi) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NδS Cts and L is a Nc set in V1. Then, h−1(L) is
NδSc in U1. Since every NδSc set is Nec, h−1(L) is Nec set in U1. Therefore, h is Ne Cts. �
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The converse of Theorem 2.1 need not be true by the following examples.

Example 2.1.

Let U1 = {La, Lb, Lc, Ld} with U1/R = {{La, Lb}, {Lc, Ld}}, P = {La, Lb}, τR(P ) =
{U1, φ, {La, Lb}}. Define the identity map h : U1 → U1 which is N Cts but not Nδ Cts, and
the set h−1({La, Lb}) = {La, Lb} which is No but not Nδo in U1.

Example 2.2.

Let U1 = V1 = {Ma,Mb,Mc,Md,Me} with U1/R = {{Mc}, {Ma,Mb}, {Md,Me}},
P = {Ma,Mc}, τR(P ) = {U1, φ, {Mc}, {Ma,Mb}, {Ma,Mb,Mc}} and
V1/R

′ = {{Me}, {Ma,Mb}, {Mc,Md}}, Q = {Mc,Me}, τR′ (Q) =
{V1, φ, {Me}, {Mc,Md}, {Mc,Md,Me}} Then, the mapping h : (U1, τR(P )) → (V1, τR′ (Q)) is
defined by

(i) h(Ma) =Md, h(Mb) =Me, h(Mc) =Mc, h(Md) =Ma and h(Me) =Mb is NδP Cts but
not N Cts, the set {Me} is No in V1 but h−1({Me}) = {Mb} is not No in U1.

(ii) h(Ma) = Mc, h(Mb) = h(Me) = Md, h(Mc) = Me and h(Md) = Ma is NδS Cts but not
Nδ Cts, the set {Mc,Md} is No in V1 but h−1({Mc,Md}) = {Ma,Mb,Me} is not Nδo in
U1.

(iii) h(Ma) = Mc, h(Mb) = Md, h(Mc) = Me, h(Md) = Ma and h(Me) = Mb is Nδ Cts but
not Nθ Cts, the set {Me} is No in V1 but h−1({Me}) = {Mc} is not Nθo in U1.

(iv) h(Ma) =Me, h(Mb) =Md, h(Mc) =Mc, h(Md) =Mb and h(Me) =Ma is NM Cts but
not NθS Cts, the set {Me} is No in V1 but h−1({Me}) = {Ma} is not NθSo in U1.

(v) h(Ma) = Mc, h(Mb) = Md, h(Mc) = Me, h(Md) = Ma and h(Me) = Mb is N Cts but
not Nθ Cts, the set {Me} is No in V1 but h−1({Me}) = {Mc} is not Nθo in U1.

Example 2.3.

Let U1 = V1 = W1 = W
′

1 = {Ma,Mb,Mc,Md,Me}
with U1/R = {{Mc}, {Ma,Mb}, {Md,Me}}, P = {Ma,Mc}, τR(P ) = {U1, φ, {Mc},
{Ma,Mb}, {Ma,Mb,Mc}}; V1/R

′
= {{Ma}, {Mb}, {Mc,Md,Me}}, Q = {Mc,Md,Me},

τR′ (Q) = {V1, φ, {Mc,Md,Me}};W1/R
′′
= {{Mc}, {Me}, {Ma,Mb,Md}}, S = {Ma,Mb,Md},

τR′′ (S) = {W1, φ, {Ma,Mb,Md}} and W
′

1/R
′′′

= {{Mb}, {Me}, {Ma,Mc,Md}}, S
′

=
{Ma,Mc,Md} and τR′′′ (S

′
) = {W ′

1, φ, {Ma,Mc,Md}}. Then, the identity mapping

(i) h : (U1, τR(P ))→ (V1, τR′ (Q)) is NθS Cts but not Nθ Cts, the set {Mc,Md,Me} is No in
V1 but h−1({Mc,Md,Me}) = {Mc,Md,Me} is not Nθo in U1.

(ii) h : (U1, τR(P )) → (V1, τR′ (Q)) is NM Cts but not NδP Cts, the set {Mc,Md,Me} is No
in V1 but h−1({Mc,Md,Me}) = {Mc,Md,Me} is not NδPo in U1.

(iii) h : (U1, τR(P ))→ (V1, τR′ (Q)) is Ne Cts but not NδP Cts, the set {Mc,Md,Me} is No in
V1 but h−1({Mc,Md,Me}) = {Mc,Md,Me} is not NδPo in U1.

(iv) g : (U1, τR(P )) → (W1, τR′′ (S)) is Ne Cts but not NM Cts, the set {Ma,Mb,Md} is No
in W1 but g−1({Ma,Mb,Md}) = {Ma,Mb,Md} is not NMo in U1.
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(v) h : (U1, τR(P )) → (W
′

1, τR′′′ (S
′
)) is Ne Cts but not NδS Cts, the set {Ma,Mc,Md} is No

in W ′

1 but h−1({Ma,Mc,Md}) = {Ma,Mc,Md} is not NδSo in U1.

From the above discussions, the following implications hold for any set in Nts.

K → L denotes K implies L, but not conversely

Theorem 2.2.

A function h : (U1, τR(P )) → (V1, σR′ (Q)) is NM Cts if and only if the inverse image of every
No set in V1 is NMo in U1.

Proof:

Let h be NM Cts andO is No in V1. That is, V1−O is Nc in V1. Since h is NM Cts, h−1(V1−O)
is NMc in U1. That is, U1 − h−1(O) is NMc in U1. Therefore, h−1(O) is NMo in U1.

Conversely, let the inverse image of every No set be NMo set. Let C be Nc in V1. Then, V1 − C
is No in V1. Then, h−1(V1 − C) is NMo in U1. That is U1 − h−1(C) is NMo in U1. Therefore,
h−1(C) is NMc in U1. Thus, the inverse image of every Nc set in V1 is NMc in U1. That is, h is
NM Cts on U1.

The maps Nδ Cts, NδP Cts, NδS Cts and Ne Cts satisfy the Theorem 2.2 for their respective
open sets. �

Theorem 2.3.

A function h : (U1, τR(P ))→ (V1, σR′ (Q)) is NMCts if and only if h(NMcl(K)) ⊆ Ncl(h(K))
for every subset K of U1.

Proof:

Let h be NM Cts and K ⊆ U1. Then, h(K) ⊆ V1. Since h be NM Cts and Ncl(h(K)) is Nc in
V1, h−1(Ncl(h(K))) is NMc in U1. Since h(K) ⊆ Ncl(h(K)), h−1(h(K)) ⊆ h−1(Ncl(h(K))),
then K ⊆ h−1(Ncl(h(K))). NMcl(K) ⊆ NMcl[h−1(Nclh(K))] = h−1(Ncl(h(K))). Thus,
NMcl(K) ⊆ h−1(Ncl(h(K))). Therefore, h(NMcl(K)) ⊆ Ncl(h(K)) for every subset K of
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U1.

Conversely, let h(NMcl(K)) ⊆ Ncl(h(K)) for every subset K of U1. If C is Nc in V1
and since h−1(C) ⊆ U1, h(NMcl(h−1(C))) ⊆ Ncl(h(h−1(C))) = Ncl(C) = C. That is,
h(NMcl(h−1(C))) ⊆ C. Thus, NMcl(h−1(C)) ⊆ h−1(C). But h−1(C) ⊆ NMcl(h−1(C)).
Hence, NMcl(h−1(C)) = h−1(C). Therefore, h−1(C) is NMc in U1, for every Nc set C in V1.
Thus h is NM Cts. �

Remark 2.1.

A function h : (U1, τR(P )) → (V1, σR′ (Q)) is NM Cts. Then, h(NMcl(K)) is not necessarily
equal to Ncl(h(K)) where K ⊆ U1. It is shown in the following examples.

Example 2.4.

In Example 2.3, h : (U1, τR(P )) → (V1, τR′ (Q)) is NM Cts. Let A = {Ma} ⊂ U1. Then,
NMcl(A) = h(NMcl({Ma})) = h({Ma}) = {Ma}. But Nclh(A) = Ncl({Ma}) = {Ma,Mb}.
Thus h(NMcl(A)) 6= Ncl(h(A)), even though h is NM cts. That is equality does not hold.

Theorem 2.4.

A function h : (U1, τR(P )) → (V1, σR′ (Q)) is NM Cts if and only if NMcl(h−1(L1)) ⊆
h−1(Ncl(L1)) for every subset L1 of V1.

Proof:

If h is NM Cts and L1 ⊆ V1. Ncl(L1) is Nc in V1, and hence, h−1(Ncl(L1)) is NMc in
U1. Therefore, NMcl(h−1(N cl(L1))) = h−1(Ncl(L1)). Since L1 ⊆ Ncl(L1), h−1(L1) ⊂
h−1(Ncl(L1)). Therefore, NMcl(h−1(L1)) ⊂ NMcl(h−1(Ncl(L1))) = h−1(Ncl(L1)). That is,
NMcl(h−1(L1)) ⊆ h−1(Ncl(L1)).

Conversely, let NMcl(h−1(L1)) ⊆ h−1(Ncl(L1)) for every subset L1 of V1. If L1 is Nc in
V1, then Ncl(L1) = L1. By assumption, NMcl(h−1(L1)) ⊆ h−1(Ncl(L1)) = h−1(L1). Thus,
NMcl(h−1(L1)) ⊆ h−1(L1). But h−1(L1) ⊆ NMcl(h−1(L1)). Therefore, NMcl(h−1(L1)) =
h−1(L1). Hence, h−1(L1) is NMc in U1, for every Nc set L1 in V1. Therefore, h is NM Cts on
U1.

The maps Nδ Cts, NδP Cts NδS Cts and Ne Cts satisfy the Theorems 2.3 and 2.4 for their
respective closures. �

Remark 2.2.

A function h : (U1, τR(P ))→ (V1, σR′ (Q)) is NM Cts. Then, NMcl(h−1(L)) is not necessarily
equal to h−1(Ncl(L)) where L ⊆ V1. It is shown in the following examples.

Example 2.5.

In Example 2.3, h : (U1, τR(P )) → (V1, τR′ (Q)) is NM Cts. Let B = {Ma} ⊂ V1.

6
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Then, NMclh−1(B) = NMclh−1({Ma}) = NMcl({Ma}) = {Ma}. But h−1(Ncl(B)) =
h−1(Ncl({Ma})) = h−1({Ma,Mb}) = {Ma,Mb}. Thus, NMcl(h−1(B)) 6= h−1(Ncl(B)), even
though h is NM cts. That is, equality does not hold.

Theorem 2.5.

A function h : (U1, τR(P )) → (V1, σR′ (Q)) is NM Cts if and only if h−1(Nint(K1)) ⊆
NMint(h−1(K1)) for every subset K1 of V1.

Proof:

If h is NM Cts and K1 ⊆ V1. Nint(K1) is No in V1, and hence, h−1(Nint(K1)) is NMo in
U1. Therefore, NMint (h−1(Nint(K1))) = h−1(Nint(K1)). Also, Nint(K1) ⊆ K1, implies that
h−1(Nint(K1)) ⊆ h−1(K1). Therefore, NMint(h−1(Nint(K1))) ⊆ NMint(h−1(K1)). That is,
h−1(Nint(K1)) ⊆ NMint(h−1(K1)).

Conversely, let h−1(Nint(K1)) ⊆ NMint(h−1(K1)) for every subset K1 of V1. If K1 is No in V1,
then Nint(K1) = K1. By assumption, h−1(Nint(K1)) ⊆ NMint(h−1(K1)). Thus, h−1(K1) ⊆
NMint(h−1(K1)). But NMint(h−1(K1)) ⊆ h−1(K1). Therefore, NMint(h−1(K1)) =
h−1(K1). That is, h−1(K1) is NMo in U1, for every No set K1 in V1. Therefore, h is NM Cts on
U1. �

Remark 2.3.

A function h : (U1, τR(P )) → (V1, σR′ (Q)) is NM Cts. Then h−1(Nint(L1)) is not necessarily
equal to NMint(h−1(L1)) where L1 ⊆ V1. It is shown in the following examples.

Example 2.6.

In Example 2.3, h : (U1, τR(P )) → (V1, τR′ (Q)) is NM Cts. Let B = {Mc} ⊂ V1. Then,
NMint(h−1(B)) = NMinth−1({Mc}) = NMint({Mc}) = {Mc}. But h−1(Nint(B)) =
h−1(Nint({Mc})) = h−1({φ}) = φ. Thus, NMint(h−1(B)) 6= h−1(Nint(B)), even though
h is NM cts. That is, equality does not hold.

Theorem 2.6.

In a Nts (U1, τR(P )), if the collection of NMO(U1, P ) is Nc under arbitrary union and let
h : (U1, τR(P )) → (V1, σR′ (Q)) be a function. Then, the function h is NM Cts if and only if
for each x ∈ U1 and each No set O in V1 with h(x) ∈ O ∃ NMo set G in U1 3 x ∈ G &
h(G) ⊂ O.

Proof:

Let x ∈ U1 andO be a No set in V1 with h(x) ∈ O, then x ∈ h−1(O). Since h is NM Cts, h−1(O)
is a NMo set in U1. Put G = h−1(O). Then, x ∈ G and h(G) = h(h−1(O)) ⊂ O.

Conversely, let x ∈ U1 and O be a No set in V1 containing h(x). By hypothesis, there exists a
NMo set Gx in U1 3 x ∈ Gx and h(Gx) ⊂ O. This implies x ∈ Gx ⊂ h−1(O), which implies

7

Vadivel et al.: Nano Continuous Mappings via Nano M Open Sets

Published by Digital Commons @PVAMU, 2021



1106 A. Vadivel et al.

h−1(O) is NMNbd(x). Since x is arbitrary, h−1(O) is NMNbd of each its points. Which implies
h−1(O) is a NMo set in U1. Therefore, h is NM Cts. �

Theorem 2.7.

In a Nts (U1, τR(P )), if the collection of NMO(U1, X) is Nc under arbitrary union and let
h : (U1, τR(P )) → (V1, σR′ (Q)) be a function. Then, the function h is NM Cts if and only if
∀ x ∈ U1, the inverse of every NNbd of h(x) is NMNbd(x).

Proof:

Let x ∈ U1 and H be a NNbd of h(x). There exists a No set O in V1 3 h(x) ∈ O ⊂ H , and hence,
x ∈ h−1(O) ⊂ h−1(H). Since h is NM Cts and h−1(O) is NMo set in U1, therefore, h−1(H) is
NMNbd(x).

Conversely, let x ∈ U1 and O be a No set in V1 containing h(x). This implies O is NNbd of h(x).
By hypothesis, h−1(O) is NMNbd(x). Since x is arbitrary, h−1(O) is NMNbd of each of its
point. Hence, h−1(O) is a NMo set in U1. Therefore, h is NM Cts.

The maps Nδ Cts, NδP Cts, NδS Cts and Ne Cts satisfy the Theorems 2.6 and 2.7 for their
respective family of open sets. �

Remark 2.4.

The composition of two NM Cts functions need not be NM Cts as seen from the following
example.

Example 2.7.

Let U1 = V1 = W1 = {La, Lb, Lc, Ld, Le} with U1/R = {{Lc}, {La, Lb}, {Ld, Le}}, P = {La,
Lc}, τR(P ) = {U1, φ, {Lc}, {La, Lb}, {La, Lb, Lc}} and V1/R

′
= {{Le}, {La, Lb}, {Lc, Ld}},

Y = {La, Lc, Ld}, σR′ (Q) = {V1, φ, {La, Lb}, {Lc, Ld}, {La, Lb, Lc, Ld}}. Then, the identity
mappings h : (U1, τR(P )) → (V1, σR′ (Q)) and g : (V1, σR′ (Q)) → (W1, σR′ (Q)) are NM Cts
but the composition g ◦ h is not NM Cts. The set {Lc, Ld} is No in V1 but (g ◦ h)−1({Lc, Ld}) =
{Lc, Ld} is not NMo in U1.

Theorem 2.8.

Let h : (U1, τR(P )) → (V1, σR′ (Q)) and g : (V1, σR′ (Q)) → (W1, µR′′ (R)) be any two functions.
If h is a NM Cts and g is N Cts function, then g ◦ h is NM Cts.

Proof:

Let C be any Nc set in W1. As g is N Cts, g−1(C) is Nc in V1. Since h is NM Cts, implies
h−1(g−1(C)) = (g ◦ h)−1(C) is NMc in U1. Therefore, g ◦ h is NM Cts. �
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3. Nano M Irresolute Functions

Definition 3.1.

A function h : (U1, τR(P )) → (V1, σR′ (Q)) is called NanoM (respectively, θ, δ, θ semi, δ pre,
δ semi & e) irresolute (briefly, NMIrr (resp. NθIrr, NδIrr, NθSIrr, NδPIrr, NδSIrr and
NeIrr)) function, if for each NMc (respectively, Nθc, Nδc, NθSc, NδPc, NδSc and N ec)
subset K of V1, the set h−1(K) is NMc (respectively, Nθc, Nδc, NθSc, NδPc, NδSc and N ec)
subset of U1.

Theorem 3.1.

A function h : (U1, τR(P ))→ (V1, σR′ (Q)) is called

(i) NIrr, then h is NS Cts.
(ii) NδPIrr, then h is NδP Cts.

(iii) NMIrr, then h is NM Cts.
(iv) NδSIrr, then h is NδS Cts.

Proof:

(i) Let C be Nc in V1. Then C is NSc in V1, since every Nc set is NSc. By hypothesis, h−1(C) is
NSc. Therefore, h is NS Cts.

(ii) Let C be Nc in V1. Then C is NδPc in V1, since every Nc set is NδPc. By hypothesis, h−1(C)
is NδPc. Therefore, h is NδP Cts.

(iii) Let C be Nc in V1. Then C is NMc in V1, since every Nc set is NMc. By hypothesis, h−1(C)
is NMc. Therefore, h is NM Cts.

(iv) Let C be Nc in V1. Then C is NδSc in V1, since every Nc set is NδSc. By hypothesis, h−1(C)
is NδSc. Therefore, h is NδS Cts. �

Remark 3.1.

The converse of the above theorem need not be true as shown in the following example.

Example 3.1.

Let U1 = V1 = {La, Lb, Lc, Ld, Le} with U1/R = {{Lc}, {La, Lb}, {Ld, Le}}, P = {La, Lc}.
Then, τR(P ) = {U1, φ, {Lc}, {La, Lb}, {La, Lb, Lc}} and V1/R′ = {{Le}, {La, Lb}, {Lc, Ld}},
Y = {La, Lc, Ld}. Then, σR′ (Q) = {V1, φ, {La, Lb}, {Lc, Ld}, {La, Lb, Lc, Ld}}. Define h :
(U1, τR(P )) → (V1, σR′ (Q)) as h(La) = La, h(Lb) = Lb, h(Lc) = Lc, h(Ld) = Le and
h(Le) = Le. Then, h is NM Cts, but h is not NMIrr, since h−1({Lb, Ld, Le}) = {Lb, Ld, Le}
which is not NMo (respectively, not NδPo) in U1 whereas {Lb, Ld, Le} is NMo (respectively,
NδPo in V1.
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Example 3.2.

Let U1 = V1 = {La, Lb, Lc, Ld, Le} with U1/R = {{Le}, {La, Lb}, {Lc, Ld}}, P =
{La, Lc, Ld}. Then, τR(P ) = {U1, φ, {La, Lb}, {Lc, Ld}, {La, Lb, Lc, Ld}}. V1/R

′
=

{{Lc}, {La, Lb}, {Ld, Le}}, Q = {La, Lc}. Then, σR′ (Q) = {V1, φ, {Lc}, {La, Lb},
{La, Lb, Lc}}, Define h : (U1, τR(P )) → (V1, σR′ (Q)) as h(La) = La, h(Lb) = Lb, h(Lc) =
Ld, h(Ld) = Le and h(Le) = Le. Then, h is NδS Cts, but h is not NδSIrr, since
h−1({Lc, Le}) = {Ld, Le} which is not NδSo in U1 whereas {Ld, Le} is NδSo in V1.

Example 3.3.

In Example 3.2, h is N-Cts, but h is not NIrr, since h−1({Lc, Ld}) = {Lc} which is not NδSo
in U1 whereas {Lc, Ld} is NδSo in V1.

Theorem 3.2.

A function h : (U1, τR(P ))→ (V1, σR′ (Q)) is called NMIrr (respectively, NeIrr) if and only if
for every NMo (respectively, Neo) set K in V1, h−1(K) is NMo (respectively, Neo) in U1.

Proof:

This follows from the fact that the complement of NMo (respectively, Neo) set is NMc (respec-
tively, Nec) and vice versa. �

Theorem 3.3.

If h : (U1, τR(P )) → (V1, σR′ (Q)) and g : (V1, σR′ (Q)) → (W1, µR′′ (S)) are both NMIrr, then
g ◦ h : (U1 : τR(P ))→ (W1, µR′′ (S)) is NMIrr.

Proof:

Let K be NMo in W1. Then, g−1(K) is NMo in V1, since g is NMIrr & h−1(g−1(K)) =
(g ◦ h)−1(K) is NMo in U1, since h is NMIrr. Hence g ◦ h is NMIrr. �

The maps NδIrr, NδPIrr, NδSIrr and NeIrr satisfy the Theorem 3.3 for their respective open
sets.

Theorem 3.4.

(i) If h : (U1, τR(P ))→ (V1, σR′ (Q)) is NMIrr and g : (V1, σR′ (Q))→ (W1, µR′′ (S)) is NM
Cts, then g ◦ h : (U1, τR(P ))→ (W1, µR′′ (S)) is NM Cts.

(ii) If h : (U1, τR(P )) → (V1, σR′ (Q)) is NM Cts and g : (V1, σR′ (Q)) → (W1, µR′′ (S)) is N
Cts, then g ◦ h : (U1, τR(P ))→ (W1, µR′′ (S)) is NM Cts.

Proof:

(i) Let K be No in W1. Then, g−1(K) is NMo in V1, since g is NMCts & h−1(g−1(K)) =
(g ◦ h)−1(K) is NMo in U1, since h is NMIrr. Hence g ◦ h is NMCts.
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(ii) Let K be No in W1. Then, g−1(K) is No in V1, since g is NCts & h−1(g−1(K)) = (g ◦
h)−1(K) is NMo in U1, since h is NMCts. Hence g ◦ h is NMCts. �

The other respective functions satisfy Theorem 3.4 for their respective open sets.

4. Nano M closed functions

Definition 4.1.

A function h : (U1, τR(P )) → (V1, σR′ (Q)) is said to be NanoM closed (respectively, θ closed,
δ closed, θ semi closed, δ pre closed, δ semi closed and e closed) function (briefly, NMcf (re-
spectively, Nθcf , Nδcf , NθScf , NδPcf , NδScf and Necf )) if the direct image h(K) is NMc
(respectively, Nθc, Nδc, NθSc, NδPc, NδSc and Nec) set in V1 whenever K is Nc in U1.

Definition 4.2.

A function h : (U1, τR(P )) → (V1, σR′ (Q)) is said to be Nano M open (respectively, θ open, δ
open, θ semi open, δ pre open, δ semi open and e open) function (briefly, NMof (respectively,
Nθof , Nδof , NθSof , NδPof , NδSof and Neof )) if the direct image h(K) is NMo (respec-
tively, Nθo, Nδo, NθSo, NδPo, NδSo and Neo) set in V1 whenever K is No in U1.

Theorem 4.1.

A function h : (U1, τR(P ))→ (V1, σR′ (Q)),

(i) Every Nθcf is Ncf .
(ii) Every Nθcf is Nδcf .

(iii) Every Nδcf is Ncf .
(iv) Every Nθcf is NθScf .
(v) Every Ncf is NδPcf .

(vi) Every Nδcf is NδScf .
(vii) Every NθScf is NMcf .

(viii) Every NδPcf is NMcf .
(ix) Every NδPcf is Necf .
(x) Every NδScf is Necf .

(xi) Every NMcf is Necf .

Proof:

(i) Let h : (U1, τR(P ))→ (V1, σR′ (Q)) be Nθcf and L is a Nc set in U1. Then, h(L) is Nθc in V1.
Since every Nθc set is Nc, h(L) is Nc set in V1. Therefore, h is Ncf .

(ii) Let h : (U1, τR(P ))→ (V1, σR′ (Q)) be Nθcf and L is a Nc set in U1. Then, h(L) is Nθc in V1.
Since every Nθc set is Nδc, h(L) is Nδc set in V1. Therefore, h is Nδcf .
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(iii) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be Nδcf and L is a Nc set in U1. Then, h(L) is Nδc in
V1. Since every Nδc set is Nc, h(L) is Nc set in V1. Therefore, h is Ncf .

(vi) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be Nθcf and L is a Nc set in U1. Then, h(L) is Nθc in
V1. Since every Nθc set is NθSc, h(L) is NθSc set in V1. Therefore, h is NθScf .

(v) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be Ncf and L is a Nc set in V1. Then, h(L) is Nc in U1.
Since every Nc set is NδPc, h(L) is NδPc set in U1. Therefore, h is NδPcf .

(vi) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be Nδcf and L is a Nc set in U1. Then, h(L) is Nδc in
V1. Since every Nδc set is NδSc, h(L) is NδSc set in V1. Therefore, h is NδScf .

(vii) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NθScf and L is a Nc set in U1. Then, h(L) is NθSc
in V1. Since every NθSc set is NMc, h(L) is NMc set in V1. Therefore, h is NMcf .

(viii) Let h : (U1, τR(P ))→ (V1, σR′ (Q)) be NδPcf and L is a Nc set in U1. Then, h(L) is NδPc
in V1. Since every NδPc set is NMc, h(L) is NMc set in V1. Therefore, h is NMcf .

(ix) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NδPcf and L is a Nc set in U1. Then, h(L) is NδPc
in V1. Since every NδPc set is Nec, h(L) is Nec set in V1. Therefore, h is Necf .

(x) Let h : (U1, τR(P ))→ (V1, σR′ (Q)) be NδScf and L is a Nc set in U1. Then, h(L) is NδSc in
V1. Since every NδSc set is Nec, h(L) is Nec set in V1. Therefore, h is Necf .

(xi) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NMcf and L is a Nc set in U1. Then, h(L) is NMc
in V1. Since every NMc set is Nec, h(L) is Nec set in V1. Therefore, h is Necf . �

From the above discussions, the following implications are hold for any set in Nts.

Note: K → L denotes K implies L, but not conversely

Example 4.1.

Let U1 = V1 = {La, Lb, Lc, Ld} with U1/R = {{La, Lb}, {Lc, Ld}}, P = {La, Lb}, τR(P ) =
{U1, φ, {La, Lb}}. Define the identity map h : U1 → V1 is Ncf but not Nδcf . The set {Lc, Ld} is
Nc in U1 but h({Lc, Ld}) = {Lc, Ld} which is not Nδc in V1.
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Example 4.2.

Let U1 = V1 = {Ma,Mb,Mc,Md,Me} with U1/R = {{Me}, {Ma,Mb}, {Mc,Md}},
P = {Mc,Me}, τR(P ) = {U1, φ, {Me}, {Mc,Md}, {Mc,Md,Me}} and
V1/R

′ = {{Mc}, {Ma,Mb}, {Md,Me}}, Q = {Ma,Mc}, τR′ (Q) =
{V1, φ, {Mc}, {Ma,Mb}, {Ma,Mb,Mc}}. Then, the mapping h : (U1, τR(P )) → (V1, τR′ (Q))
is defined by

(i) h(Ma) = Mc, h(Mb) = Md, h(Mc) = Me, h(Md) = Ma and h(Me) = Mb is Ncf
(respectively, Nδcf ) but not Nθcf (respectively, Nθcf ). The set {Ma,Mb} is Nc in U1 but
h({Ma,Mb}) = {Mc,Md} is not Nθc in V1.

(ii) h(Ma) = Md, h(Mb) = Me, h(Mc) = Mc, h(Md) = Ma and h(Me) = Mb is NδPcf but
not Ncf . The set {Ma,Mb,Me} is Nc in U1 but h({Ma,Mb,Me}) = {Mb,Md,Me} is not
Nc in V1.

(iii) h(Ma) = Mc, h(Mb) = h(Me) = Md, h(Mc) = Me and h(Md) = Ma is NδScf but not
Nδcf . The set {Ma,Mb} is Nc in U1 but h({Ma,Mb}) = {Mc,Md} is not Nδc in V1.

(iv) h(Ma) = Me, h(Mb) = Md, h(Mc) = Mc, h(Md) = Mb and h(Me) = Ma is NMcf but
not NθScf . The set {Ma,Mb} is Nc in U1 but h({Ma,Mb}) = {Md,Me} is not NθSc in V1.

Example 4.3.

Let U1 = V1 = W1 = W
′

1 = {Ma,Mb,Mc,Md,Me} with U1/R =
{{Ma}, {Mb}, {Mc,Md,Me}}, P = {Mc,Md,Me}, τR(P ) =
{U1, φ, {Mc,Md,Me}}; V1/R

′
= {{Mc}, {Ma,Mb}, {Md,Me}}, Q = {Ma, Mc}, τR′ (Q) =

{V1, φ, {Mc}, {Ma,Mb}, {Ma,Mb,Mc}}; W1/R
′′

= {{Mc}, {Me}, {Ma,Mb,Md}}, S =
{Ma,Mb,Md}, τR′′ (S) = {W1, φ, {Ma,Mb,Md}} and W ′

1/R
′′′
= {{Mb}, {Me}, {Ma,Mc,Md}}

S
′
= {Ma,Mc,Md}, τR′′′ (Z

′
) = {U1, φ, {Ma,Mc,Md}}. Then, the identity mappings

(i) h : (U1, τR(P )) → (V1, τR′ (Q)) is NθScf but not Nθcf . The set {Ma,Mb} is Nc in U1 but
h({Ma,Mb}) = {Ma,Mb} is not Nθc in V1.

(ii) h : (U1, τR(P )) → (V1, τR′ (Q)) is NMcf but not NδPcf . The set {Ma,Mb} is Nc in U1

but h({Ma,Mb}) = {Ma,Mb} is not NδPc in V1.
(iii) h : (U1, τR(P )) → (V1, τR′ (Q)) is Necf but not NδPcf . The set {Ma,Mb} is Nc in U1 but

h({Ma,Mb}) = {Ma,Mb} is not NδPc in V1.
(iv) g : (W

′

1, τR′′′ (S
′
)) → (V1, τR′ (Q)) is Necf but not NδScf . The set {Mb,Me} is Nc in W ′

1

but g({Mb,Me}) = {Mb,Me} is not NδSc in V1.
(v) h : (W1, τR′′ (S)) → (V1, τR′ (Q)) is Necf but not NMcf . The set {Mc,Me} is Nc in W1

but h({Mc,Me}) = {Mc,Me} is not NMc in V1.

Theorem 4.2.

A function h : (U1, τR(P )) → (V1, σR′ (Q)) is NMc if and only if h(K) is NMo in V1 for every
No set K in U1.
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Proof:

Suppose h : (U1, τR(P )) → (V1, σR′ (Q)) is NMcf and O is a No set in U1. Then, U1 − O is Nc
in U1. By hypothesis h(U1−O) = V1−h(O) is a NMc set in V1, and hence, h(O) is NMo in V1.

Conversely, ifC is Nc set inU1, thenU1−C is a No set inU1. By hypothesis h(U1−C) = V1−h(C)
is NMo set in V1, implies h(C) is NMc in V1. Therefore, h is NMcf . �

Theorem 4.3.

A function h : (U1, τR(P ))→ (V1, σR′ (Q)) is a NMcf if and only if NMcl(h(K)) ⊆ h(Ncl(K))
for every subset K of U1.

Proof:

Suppose h is NMc and K ⊆ U1. Then, h(Ncl(K)) is NMc in V1. Since h(K) ⊆ h(Ncl(K)), we
get NMclh(K) ⊆ NMclh(Ncl(K)) = h(Ncl(K)). Hence, NMcl(h(K)) ⊆ h(Ncl(K)).

Conversely, let C is any Nc set in U1. Then, Ncl(C) = C. Therefore, h(C) = h(Ncl(C)). By
hypothesis NMclh(C) ⊆ h(Ncl(C)) = h(C), which implies NMclh(C) ⊆ h(C). But h(C) ⊆
NMclh(C) is always true. This shows NMclh(C) = h(C). Therefore, h(C) is NMc in V1 and
hence h is NMc. �

Theorem 4.4.

Let h : (U1, τR(P )) → (V1, σR′ (Q)) be a function and NMO(U1, P ) is closed under arbitrary
union. The following statements are equivalent:

(i) h is NMof .
(ii) For each subset K of U1, h(Nint(K)) ⊆ NMint(h(K)).

(iii) For each x ∈ U1, the image of every NNbd of x is NMNbd of h(x)

Proof:

(i)⇒ (ii): Suppose (i) holds and K ⊆ U1. Then, Nint(K) is No set in U1. By (i), h(Nint(K)) is
a NMo set in V1. Therefore, NMint(h(Nint(K))) = h(Nint(K)). Since h(Nint(K)) ⊆ h(K),
implies NMint(h(Nint(K))) ⊆ NMint(h(K)). That is h(Nint(K)) ⊆ NMint(h(K)).

(ii)⇒ (iii): Suppose (ii) holds. Let x ∈ U1 and X be an arbitrary NNbd of x in U1. Then, ∃No set
G in U1 3 x ∈ G ⊂ X . By (ii), h(G) = h(Nint(G)) ⊆ NMint(h(G)). But NMint(h(G)) ⊆
h(G) is always true. Therefore, h(G) = NMint(h(G)), and hence, h(G) is NMo set in V1.
Further h(x) ∈ h(G) ⊂ h(X), this implies, h(X) is NMNbd of h(x) in V1. Hence (iii) holds.

(iii)⇒ (i): Suppose (iii) holds. Let G be any No set in U1 and x ∈ G then y = h(x) ∈ h(G). By
(iii), ∀ y ∈ h(G), ∃ NMNbd Ky of y in V1. Since Ky is NMNbd of y, ∃ NMo set Hy in V1 3
y ∈ Hy ⊂ Ky. Therefore, h(G) = ∪{Hy : y ∈ h(G)}, which is union of NMo sets, and hence,
h(G) is NMo in V1. Therefore, h is NMof . �

14

Applications and Applied Mathematics: An International Journal (AAM), Vol. 16 [2021], Iss. 2, Art. 18

https://digitalcommons.pvamu.edu/aam/vol16/iss2/18



AAM: Intern. J., Vol. 16, Issue 2 (December 2021) 1113

Theorem 4.5.

A function h : (U1, τR(P )) → (V1, σR′ (Q)) is NMc if and only if for each subset S of V1 and ∀
No set G in U1 containing h−1(S), there exists a NMo set H of V1 3 S ⊆ H and h−1(H) ⊆ G.

Proof:

Let S ⊆ V1 be a No subset of U1 containing h−1(S). Let h is a NMcf and U1 − G is Nc in U1,
therefore, h(U1 − G) is a NMc set in V1. Then, take H = V1 − h(U1 − G) implies H = h(G)
where H is NMo set in V1. Since h−1(S) ⊆ G, S ⊆ h(G), S ⊆ H . Therefore, h(U1 − G) =
V1 − H ⇒ h(U1 − G) ⊆ V1 − S and h−1(H) ⊆ h−1(V1 − h(U1 − G)) ⊆ U1 − (U1 − G) = G.
Thus, H is NMo set in V1 such that S ⊆ H and h−1(H) ⊆ G.

Conversely, let G be a Nc set in U1. Then U1 − G is a No set in U1. Take S = V1 − h(G) to be a
subset of V1, h−1(S) = h−1(V1 − h(G)) ⊆ U1 −G. By hypothesis, there is a NMo set H of V1 3
V1− h(G) ⊆ H & h−1(H) ⊆ U1−G. Therefore, V1−H ⊆ h(G) ⊆ h(U1− h−1(H)) ⊆ V1−H ,
that is, h(G) = V1 − H . Since H is NMo set in V1 and so h(G) is NMc in V1. Hence, h is
NMcf . �

Theorem 4.6.

If h : (U1, τR(P ))→ (V1, σR′ (Q)) is a NMcf , then for each Nc set K of V1 and each No set G of
U1 containing h−1(K), there exists H ∈ NMO(V1, Q) containing K such that h−1(H) ⊆ G.

Proof:

Suppose h is NMcf . Let K be any Nc set of V1 and G is a No set in U1 containing h−1(K). By
Theorem 4.5, ∃ NMo set F of V1 3 K ⊆ F and h−1(F ) ⊆ G. Since K is Nc and F is a NMo
set containing K, then K ⊆ NMint(F ). Put H = NMint(F ). Then K ⊆ H ∈ NMO(V1, Q)
and h−1(H) ⊆ G. �

Theorem 4.7.

Let h : (U1, τR(P )) → (V1, σR′ (Q)) and g : (V1, τR′ (Q)) → (W1, µR′′ (R)) be any two functions.
Then, g ◦ h : (U1, τR(P ))→ (W1, σR′′ (R)) is a NMcf if h is Nc and g is a NMcf .

Proof:

Suppose F is a Nc set in U1. Since h is a Ncf , h(F ) is a Nc set in V1. Now g is a NMcf , implies
g(h(F )) = (g ◦ h)(F ) is a NMc set in W1. Hence g ◦ h is a NMcf . �

Theorem 4.8.

Let h : (U1, τR(P )) → (V1, σR′ (Q)) and g : (V1, τR′ (Q)) → (W1, µR′′ (R)) be any two functions
such that g ◦ h : (U1, τR(P ))→ (W1, σR′′ (R)) be a NMcf . Then, the following results hold.

(i) If h is N-Cts surjection, then g is a NMcf .
(ii) If g is NMIrr and injective, then h is a NMcf .
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Proof:

(i) Suppose F1 is a Nc set in V1. Since h is a N Cts function, h−1(F1) is a Nc set in U1. Therefore,
(g ◦ h)(h−1(F1)) = g(F1) is a NMc set in W1. Hence, g is a NMcf .

(ii) Suppose F1 is Nc set in U1. Then, (g ◦ h)(F1) is a NMc set in W1. Since g is a NMIrr
function, this implies g−1((g ◦ h)(F1)) = h(F1) is a NMc set in V1. Hence, h is a NMcf . �

5. Nano M Homeomorphisms

Definition 5.1.

Let (U1, τR(P )) and (V1, σR′ (Q)) be Nts and let h : (U1, τR(P )) → (V1, σR′′ (Q)) be a bijective
function. If both the function h and the inverse function h−1 are nano M (respectively, θ, δ, θ
semi, δ pre, δ semi and e) Cts (briefly, NM (respectively, Nθ, Nδ, NθS, NδP , NδS and Ne)
Cts), then h is called NM (respectively, Nθ, Nδ, NθS, NδP , NδS and Ne) homeomorphism
(briefly, NM (respectively, Nθ, Nδ, NθS, NδP , NδS and Ne) Hom). Equivalently, if h both
NM (respectively, Nθ, Nδ, NθS, NδP , NδS and Ne) Cts and NMo (respectively, Nθo, Nδo,
NθSo, NδPo, NδSo and Neo) then h is called NM (respectively, Nθ, Nδ, NθS, NδP , NδS and
Ne)Hom.

The family of all NMHom’s in U1 is denoted by NMH(U1, P ).

Theorem 5.1.

Let h : (U1, τR(P ))→ (V1, σR′ (Q)),

(i) Every NθHom is NHom.
(ii) Every NθHom is NδHom.

(iii) Every NδHom is NHom.
(iv) Every NHom is NδPHom.
(v) Every NθSHom is NMHom.

(vi) Every NδPHom is NMHom.
(vii) Every NδPHom is NeHom.

(viii) Every NδSHom is NeHom.
(ix) Every NMHom is NeHom.

but not conversely.

Proof:

(i) Let h : (U1, τR(P ))→ (V1, σR′ (Q)) be NθHom. Then, h and h−1 are Nθ Cts and h is bijection.
Since every Nθ Cts function is N Cts, we have h and h−1 are N Cts. Therefore, h is NHom.

(ii) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NθHom. Then, h and h−1 are Nθ Cts and h is
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bijection. Since every Nθ Cts function is Nδ Cts, we have h and h−1 are Nδ Cts. Therefore, h is
NδHom.

(iii) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NδHom. Then, h and h−1 are Nδ Cts and h is
bijection. Since every Nδ Cts function is N Cts, we have h and h−1 are N Cts. Therefore, h is
NHom.

(iv) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NHom. Then, h and h−1 are N Cts and h is bijec-
tion. Since every N Cts function is NδP Cts, we have h and h−1 are NδP Cts. Therefore, h is
NδPHom.

(v) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NθSHom. Then, h and h−1 are NθS Cts and h is
bijection. Since every NθS Cts function is NM Cts, we have h and h−1 are NM Cts. Therefore,
h is NMHom.

(vi) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NδPHom. Then, h and h−1 are NδP Cts and h is
bijection. Since every NδP Cts function is NM Cts, we have h and h−1 are NM Cts. Therefore,
h is NMHom.

(vii) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NδPHom. Then, h and h−1 are NδP Cts and h is
bijection. Since every NδP Cts function is Ne Cts, we have h and h−1 are Ne Cts. Therefore, h
is NeHom.

(viii) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NδSHom. Then, h and h−1 are NδS Cts and h is
bijection. Since every NδS Cts function is Ne Cts, we have h and h−1 are Ne Cts. Therefore, h
is NeHom.

(ix) Let h : (U1, τR(P )) → (V1, σR′ (Q)) be NMHom. Then, h and h−1 are NM Cts and h is
bijection. Since every NM Cts function is Ne Cts, we have h and h−1 are Ne Cts. Therefore, h
is NeHom. �

From the above discussions, the following implications hold for any set in Nts.

Note: K → L denotes K implies L, but not conversely.
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Example 5.1.

Let U1 = V1 = {Ma,Mb,Mc,Md,Me} with U1/R = {{Mc}, {Ma,Mb}, {Md,Me}} and X =
{Ma,Mc}. Then, τR(X) = {U1, φ, {Mc}, {Ma,Mb}, {Ma,Mb,Mc}}. Then, the identity map h :
(U1, τR(X)) → (V1, τR(X)) is NHom (respectively, NδHom, NMHom), but h is not NθHom
(respectively, NθHom, NθSHom), since

(i) h−1({Mc}) = {Mc} which is not Nθo (respectively, Nθo) in U1 whereas {Mc} is No (re-
spectively, No) in V1.

(ii) h−1({Ma,Mb}) = {Ma,Mb} which is not NθSo in U1 whereas {Ma,Mb} is No in V1.

Example 5.2.

Let U1 = V1 = {Ma,Mb,Mc,Md,Me} with U1/R = {{Ma}, {Mb}, {Mc,Md,Me}} and
X = {Mc,Md,Me}. Then, τR(X) = {U1, φ, {Mc,Md,Me}}. Then, the identity map h :
(U1, τR(X)) → (V1, τR(X)) is NHom, but h is not NδHom, since h−1({Mc,Md,Me}) =
{Mc,Md,Me} which is not Nδo in U1 whereas {Mc,Md,Me} is No in V1.

Example 5.3.

Let U1 = V1 = {Ma,Mb,Mc,Md,Me} with U1/R = {{Ma}, {Mb}, {Mc,Md,Me}} and
X = {Ma, Mc,Md}. Then, τR(X) = {U1, φ, {Ma}, {Mc,Md,Me}, {Ma,Mc,Md,Me}},
V1/R

′ = {{Me}, {Ma, Mb}, {Mc,Md}} and Y = {Ma,Mc}. Then, σR′ (Y ) =
{V1, φ, {Mc}, {Ma,Mb}, {Ma,Mb,Mc}}. Define h : (U1, τR(X)) → (V1, σR′ (Y )) as h(Ma) =
Ma, h(Mb) = Md, h(Mc) = Mc, h(Md) = Mb and h(Me) = Me. Then, h is NδPHom, but h is
not NHom, since h−1({Mc}) = {Mc} which is not No in U1 whereas {Mc} is No in V1.

Example 5.4.

Let U1 = V1 = {Ma,Mb,Mc,Md,Me} with U1/R = {{Ma}, {Mb}, {Mc,Md,Me}} and
X = {Ma,Mc,Md}. Then, τR(X) = {U1, φ, {Ma}, {Mc,Md,Me}, {Ma,Mc,Md,Me}},
V1/R

′ = {{Mc}, {Ma, Mb}, {Md,Me}} and Y = {Ma,Mc}. Then, σR′ (Y ) =
{V1, φ, {Mc}, {Ma,Mb}, {Ma,Mb,Mc}}. Then, the identity map h : (U1, τR(X))→ (V1, σR′ (Y ))
is NMHom, but h is not NδPHom, since h−1({Ma,Mb}) = {Ma,Mb} which is not NδPo in
U1 whereas {Ma,Mb} is No in V1.

Example 5.5.

Let U1 = V1 = {La, Lb, Lc, Ld, Le} with U1/R = {{Lc}, {La, Lb}, {Ld, Le}} and X = {La, Lc}.
Then, τR(X) = {U1, φ, {Lc}, {La, Lb}, {La, Lb, Lc}}, V1/R′ = {{Le}, {La, Lb}, {Lc, Ld}} and
Y = {La, Lc, Ld}. Then, σR′ (Y ) = {V1, φ, {La, Lb}, {Lc, Ld}, {La, Lb, Lc, Ld}}. Then,

(i) the identity map h : (U1, τR(X)) → (V1, σR′ (Y )) is NeHom, but h is not NδSHom, since
h({Lc}) = {Lc} which is not NδSo in V1 whereas {Lc} is No in U1.

(ii) the identity map h : (V1, σR′ (Y )) → (U1, τR(X)) is NeHom, but h is not NδPHom, since
h({Lc, Ld}) = {Lc, Ld} which is not NδPo in V1 whereas {Lc, Ld} is No in U1.
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Example 5.6.

Let U1 = V1 = {La, Lb, Lc, Ld, Le} with U1/R = {{Lc}, {La, Lb}, {Ld, Le}} and X = {La,
Lc}. Then, τR(X) = {U1, φ, {Lc}, {La, Lb}, {La, Lb, Lc}}, V1/R′ = {{Le}, {La, Lb}, {Lc, Ld}}
and Y = {La, Lc, Ld}. Then, σR′ (Y ) = {V1, φ, {La, Lb}, {Lc, Ld}, {La, Lb, Lc, Ld}}. Define h :
(U1, τR(X)) → (V1, σR′ (Y )) as h(La) = Lc, h(Lb) = Ld, h(Lc) = La, h(Ld) = Lb and
h(Le) = Le. Then, h is NeHom, but h is not NMHom, since h−1({La, Lb}) = {Lc, Ld} which
is not NMo in U1 whereas {La, Lb} is No in V1.

Theorem 5.2.

For any bijection h : (U1, τR(P ))→ (V1, σR′ (Q) the following statements are equivalent:

(i) Inverse of h is NMCts.

(ii) h is a NMof .

(iii) h is a NMcf

Proof:

(i)⇒ (ii): Suppose G1 is a No set in U1. Then by (i), (h−1)−1(G1) = h(G1) is a NMo set in V1,
and hence, h is a NMof .

(ii)⇒ (iii): Suppose F1 is Nc in U1. Then U1 − F1 is No in U1. By (ii), h(U1 − F1) = V1 − h(F1)
is a NMo set in V1 which implies h(F1) is a NMc set in V1. Therefore, h is NMcf .

(iii)⇒ (i): Let F1 be a Nc set in U1. By (iii), h(F1) = (h−1)−1(F1) is a NMc set in V1, and hence,
the inverse of h is a NMCts function. �

Theorem 5.3.

If h : (U1, τR(P )) → (V1, σR′ (Q)) is bijective and NMCts, then the following statements are
equivalent:

(i) h is NMo.

(ii) h is a NMHom.

(iii) h is a NMc

Proof:

(i) ⇒ (ii): By the assumption h is bijective, NMCts and NMo. Then, by definition, h is
NMHom.

(ii)⇒ (iii): By the assumption h is bijective and NMo. Then, by Theorem 5.2, h is NMc.

(iii)⇒ (i): By the assumption h is bijective and NMc. Then, by Theorem 5.2, h is NMo. �
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6. Conclusion

In this paper, we have studied many interesting notions on various forms of nanoM open sets such
as nanoM-continuous and nanoM-irresolute functions in a nano topological spaces along with
their continuous and irresolute mappings. Also discussed were nanoM-open and nanoM-closed
functions, and these were compared with their near open and closed mappings in a nano topological
spaces. Finally, we discussed nano M homeomorphisms in nano topological spaces and studied
some of their properties. In future work, nanoM open sets can be applied in an application field
of real-life experience.

Zadeh (1965) introduced the concept of a fuzzy set (FS) to the world. In FS theory, the membership
value of each element in a set is specified by a real number from the closed interval of [0, 1]. Later,
Atanassov (1989) defined the notion of an intuitionistic fuzzy set (IFS) as an extension of FS.
In IFS theory, the elements are assumed to posses both membership and non-membership values
with the condition that their sum does not exceed unity. Also, Atanassov (1989) established some
properties of IFS.

Lellis Thivagar and Richard (2013) introduced the notion of Nano topology (briefly, NT) by using
theory approximations and boundary region of a subset of an universe in terms of an equivalence
relation on it and also defined Nano closed (briefly, Nc) sets, Nano-interior (briefly, Nint) and
Nano-closure (briefly, Ncl) in a nano topological spaces (briefly, Nts).
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