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Abstract

The present work concerns the steady and unsteady flow of an incompressible Reiner-Rivlin liquid
in the porous annular region of two concentric rotating cylinders, which is moving parallel to their
axis, about the common axis of these cylinders under uniform magnetic field acted in perpendicular
direction of the axis. The electrically conducting flow of Reiner-Rivlin liquid in the annular porous
region is governed by the Brinkman equation with the consideration that the effective viscosity of
liquid is same as viscosity of the liquid. Analytical expressions for velocity components, pressure
gradient and volumetric flow rate are established. Effects of the magnetic field and other flow
parameters on the axial and rotational velocity components and flow rate are discussed graphically.

Keywords: Reiner-Rivlin liquid; Porous medium; Brinkman equation; Hartmann Number; Flow
rate; Unsteady flow; Reynolds number.

MSC 2020 No.: 76A05, 76S05

1. Introduction

In the modern era, research work in non-linear fluid mechanics has a lot of significance due its
industrial and medical applications. A lot of research work has been carried out to solve problems
which arise in the non-linear fluid mechanics, related to the flow of non-Newtonian fluids like
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paint, coal tar, ligament, etc. With the study of non-Newtonian fluids, researchers have developed
constitutive equations for such fluids which help in explaining the behavior of these fluids. The
interest in the study of non-Newtonian fluids has increased, as more and more non-Newtonian
fluids are being found in nature. One special kind of non-Newtonian fluid is Reiner-Rivlin liquid
whose steady motion has importance due to its applications in petrochemical industries and bio-
fluid mechanics. Reiner (1945) and Rivlin (1948) proposed constitutive relations for Reiner-Rivlin
liquid.

Kapur (1962) studied flows of the non-Newtonian conducting Reiner-Rivlin liquids in the presence
of magnetic fields and observed that cross viscosity does not effect the velocity and magnetic field
though it effects the pressure field. Reiner-Rivlin liquid flow in the channel’s inlet region studied
by Kapur and Gupta (1964). Bagchi (1966) studied the flow through annular region of co-axial
porous cylinder of Reiner-Rivlin liquid. Between a pair of porous concentric circular cylinders
with magnetic field, unsteady flow of viscous conducting liquid was investigated by Mahapatra
(1973). Polar flow past a Reiner-Rivlin fluid sphere was reported by Ramkissoon (1985). The
study of Stokes flow past a Reiner-Rivlin liquid sphere was carried out by Ramkissoon (1989).
Between two inclined porous planes, unsteady, immiscible flow of viscoelastic Reiner-Rivlin flow
was investigated by Sengupta et al. (1992).

Between porous walls of two coaxial circular cylinders, the hydromagnetic flow of Reiner-Rivlin
fluid was investigated by Panja et al. (1996). Sengupta and Kundu (2003) investigated MHD flow
of Reiner-Rivlin liquid with porous walls of coaxial rotating cylinders of rotating boundary. Ap-
plying Happel and Kuwabara boundary conditions, Deo (2004) investigated creeping flow over an
assemblage of porous cylinders. Oscillating Couette flow of a viscoelastic Rivlin Ericksen liq-
uid was investigated by Chakraborty and Panja (2009). Gupta and Deo (2010) studied Stokes
flow of micropolar fluid over a porous sphere under assumption of non-zero boundary condition
for microrotation. Sahoo (2012) studied steady revolving flow of Reiner-Rivlin liquid. Axially-
symmetric creeping flow of micropolar fluid past a sphere covered with thin liquid film was stud-
ied by Gupta and Deo (2013). Wall effects on Reiner-Rivlin liquid spheroid were investigated by
Gupta and Jaiswal (2014). Jaiswal and Gupta (2015) investigated Brinkman flow of viscous fluid
past a Reiner-Rivlin liquid sphere dipped in a saturated porous medium. Deo and Ansari (2016)
investigated axisymmetric creeping flow through assemblage of porous cylindrical shells. Jaiswal
and Gupta (2017) applied cell model technique to report analytical solution of incompressible fluid
through assemblage of immiscible Reiner-Rivlin liquid droplets. Chakraborty (2017) was studied
transient flow of Reiner-Rivlin liquid between two concentric porous cylinders with magnetic fluid.
Das and Sahoo (2018) studied Reiner-Rivlin liquid flow between a pair of infinite rotating co-axial
disks. Jaiswal (2019) worked on Stokes flow of Reiner-Rivlin liquid past a deformed sphere. One
of the most recent works done in spherical geometry related Reiner-Rivlin liquid, is the study of
flow of Reiner-Rivlin liquid spherical particle which is surrounded by a non-Newtonian liquid shell
with permeable medium was investigated by Selvi et al. (2020). Due to lack of sufficient analyti-
cal solutions of MHD Reiner-Rivlin liquid flow problems for cylindrical geometry, motivate us to
carry forward the present research work.

In this work, we have investigated incompressible, magnetohydrodynamics flow of Reiner-Rivlin
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1040 S. Deo and S. Kumar

liquid in the annular porous region of two revolving cylinders, under uniform magnetic field acted
in perpendicular direction of the axis. Analytical expressions for velocity components, pressure
gradient and volumetric flow rate of the Reiner-Rivlin liquid within the shell for both steady and
unsteady cases are obtained. Effects of the magnetic field and other flow parameters on the axial
and rotational velocity components and flow rate are discussed.

2. Mathematical formulation

The problem considered in this work related to the steady and unsteady flow of an electrically
conducting Reiner-Rivlin liquid in the annular porous region of two coaxial, concentric rotating
cylinders of radii a∗ and b∗ (a∗ < b∗). It is further assumed that the inner cylinder is revolved
with angular velocity Ω∗

i and the outer cylinder is revolved with angular velocity Ω∗
o, and both

cylinders are moving slowly along the common axis of cylinders. The velocities of inner and
outer cylinders are v∗a∗ and v∗b∗ , respectively, in the direction parallel to the axis of cylinders. The
direction of applied uniform magnetic field B̃∗ is perpendicular to the axis of the cylinders. By
using cylindrical polar co-ordinates (r∗, θ, z∗), having z∗ axis along the common axis of cylinders,
and assuming that v∗r∗ , v

∗
θ , v

∗
z∗ are the velocity components of Reiner-Rivlin liquid in the direction

of r∗,θ,z∗, respectively. All the physical quantities are independent of θ due to symmetry of the flow
and they are also independent of z∗ as the cylinders are of infinite length assumed. The constitutive
equations for Reiner-Rivlin liquid are given by:

T ∗
mn = −P ∗δmn + µ∗d∗mn + µ∗

cd
∗
mgd

∗
gn m,n = 1, 2, 3. (1)

Here, P ∗ denotes pressure, T ∗
mn represents stress tensor, δmn is Kronecker delta symbol, µ∗ and µ∗

c

represent viscosity and cross viscosity of the Reiner- Rivlin liquid, g is dummy index and d∗mn=
v∗m,n + v∗n,m is the strain rate tensor.

Since cylinders are rotating about their common axis and moving slowly along axial direction, so
radial velocity v∗r∗ = 0. For steady case, the equations of motion (Sattar and Waheedullah (2013))
for Reiner-Rivlin liquid are:

∂T ∗
r∗r∗

∂r∗
+
∂T ∗

z∗r∗

∂z∗
+

1

r∗
∂Tθr∗

∂θ
+
T ∗
r∗r∗ − T ∗

θθ

r∗
+ ρ∗

v∗2θ
r∗

= 0, (2)

1

r∗
∂(r∗T ∗

r∗θ)

∂r∗
+
∂T ∗

θz∗

∂z∗
+

1

r∗
∂T ∗

θθ

∂θ
+
T ∗
θr∗

r∗
− µ∗

K∗v
∗
θ − σ∗B∗2v∗θ = 0, (3)

1

r∗
∂(r∗T ∗

r∗z∗)

∂r∗
+

1

r∗
∂T ∗

θz∗

∂θ
+
∂T ∗

z∗z∗

∂z∗
− µ∗

K∗v
∗
z∗ − σ∗B∗2v∗z∗ = 0. (4)

For the unsteady case, the equations of motion for Reiner-Rivlin liquid are:

∂T ∗
r∗r∗

∂r∗
+
∂T ∗

z∗r∗

∂z∗
+

1

r∗
∂Tθr∗

∂θ
+
T ∗
r∗r∗ − T ∗

θθ

r∗
+ ρ∗

v∗2θ
r∗

= 0, (5)

1

r∗
∂(r∗T ∗

r∗θ)

∂r∗
+
∂T ∗

θz∗

∂z∗
+

1

r∗
∂T ∗

θθ

∂θ
+
T ∗
θr∗

r∗
− µ∗

K∗v
∗
θ − σ∗B∗2v∗θ = ρ∗

∂v∗θ
∂t∗

, (6)

1

r∗
∂(r∗T ∗

r∗z∗)

∂r∗
+

1

r∗
∂T ∗

θz∗

∂θ
+
∂T ∗

z∗z∗

∂z∗
− µ∗

K∗v
∗
z∗ − σ∗B∗2v∗z∗ = ρ∗

∂v∗z
∂t∗

. (7)
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Figure 1. Schematic diagram of the problem

Here, ρ∗ and µ∗ are density and viscosity of the liquid, respectively. Also, σ∗ is the electrical
conductivity of the liquid, B∗ = | B̃∗ | and K∗ is the permeability of the porous medium.

Due to the taken velocity (0, v∗θ(r
∗), v∗z∗(r

∗)) of the liquid, the equation of continuity is satisfied.
Now, we will evaluate components of rate of strain tensor by using the relation

d∗mn = v∗m,n + v∗n,m, m, n = 1, 2, 3, (8)

which come out as
d∗r∗r∗ = d∗θθ = d∗z∗z∗ = d∗θz∗ = d∗z∗θ = 0,

d∗r∗θ = d∗θr∗ = r∗
d

dr∗

(
v∗θ
r∗

)
, d∗r∗z∗ = d∗z∗r∗ =

dv∗z∗

dr∗
.

(9)

Using above values (9), we will obtain expressions for stress components with the help of Equation
(1) as follows:

T ∗
r∗r∗ = −P ∗ + µ∗

c

{
r∗2
(
d

dr∗

(
v∗θ
r∗

))2

+

(
dv∗z∗

dr∗

)2
}
, (10)

T ∗
θθ = −P ∗ + µ∗

cr
∗2
(
d

dr∗

(
v∗θ
r∗

))2

, (11)

T ∗
z∗z∗ = −P ∗ + µ∗

c

(
dv∗z∗

dr∗

)2

, (12)

T ∗
θz∗ = µ∗

cr
∗ d

dr∗

(
v∗θ
r∗

)
dv∗z∗

dr∗
= T ∗

z∗θ, (13)
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T ∗
r∗z∗ = µ∗

(
dv∗z∗

dr∗

)
= T ∗

z∗r∗ , (14)

T ∗
r∗θ = µ∗r∗

d

dr∗

(
v∗θ
r∗

)
= T ∗

θr∗ . . (15)

Here, it is noted that pressure P ∗ of the liquid depends on the time t∗ for unsteady case.

For steady case, with the help of above expressions of stresses (10)-(15), one can write Equations
(2)-(4) in the following form:

µ∗
c

d

dr∗

((
r∗

d

dr∗

(
v∗θ
r∗

))2

+

(
dv∗z∗

dr∗

)2
)

+
µ∗
c

r∗

(
dv∗z∗

dr∗

)2

+ ρ∗
v∗θ

2

r∗
=
dP ∗

dr∗
, (16)

µ∗

r∗
d

dr∗

(
r∗2

d

dr∗

(
v∗θ
r∗

))
− µ∗v∗θ

K∗ − σ
∗B∗2v∗θ + µ∗ d

dr∗

(
v∗θ
r∗

)
= 0, (17)

−µ
∗v∗z∗

K∗ − σ
∗B∗2v∗z∗ +

µ∗

r∗
d

dr∗

(
r∗
dv∗z∗

dr∗

)
= 0. (18)

Similarly, for unsteady case from Equations (5)− (7), we obtain:

µ∗
c

∂

∂r∗

((
r∗

∂

∂r∗

(
v∗θ
r∗

))2

+

(
∂v∗z∗

∂r∗

)2
)

+
µ∗
c

r∗

(
∂v∗z∗

∂r∗

)2

+ ρ∗
v∗θ

2

r∗
=
∂P ∗

∂r∗
, (19)

µ∗

r∗
∂

∂r∗

(
r∗2

∂

∂r∗

(
v∗θ
r∗

))
− µ∗v∗θ

K∗ − σ
∗B∗2v∗θ + µ∗ ∂

∂r∗

(
v∗θ
r∗

)
= ρ∗

∂v∗θ
∂t∗

, (20)

−µ
∗v∗z∗

K∗ − σ
∗B∗2v∗z∗ +

µ∗

r∗
∂

∂r∗

(
r∗
∂v∗z∗

∂r∗

)
= ρ∗

∂v∗z
∂t∗

. (21)

Introduced are the following non-dimensional quantities,

r =
r∗

a∗
, vθ =

v∗θ
V ∗ , vz =

v∗z∗

V ∗ , P =
P ∗

µ∗V ∗/a∗
, t =

ρ∗V ∗2t∗

µ∗ ,

K =
K∗

a∗2
, Ωi =

Ω∗
i

V ∗/a∗
, Ωo =

Ω∗
o

V ∗/a∗
, ` =

b∗

a∗
,

(22)

where V ∗ represents characteristic velocity and a∗ represents characteristic length.

Then, the non-dimensional form of equations of motion (16)− (18) for steady flow are:

dP

dr
= S

d

dr

((
r
d

dr

(vθ
r

))2

+

(
dvz
dr

)2
)

+ S
1

r

(
dvz
dr

)2

+Re
v2θ
r
, (23)

1

r

d

dr

[
(r)2

d

dr

(vθ
r

)]
− ξ2vθ +

d

dr

(vθ
r

)
= 0, (24)

1

r

d

dr

(
r
dvz
dr

)
− ξ2vz = 0. (25)
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For unsteady flow, the non-dimensional form of equations of motion (19)− (21) are:

∂P

∂r
= S

∂

∂r

((
r
∂

∂r

(vθ
r

))2

+

(
∂vz
∂r

)2
)

+ S
1

r

(
∂vz
∂r

)2

+Re
v2θ
r
, (26)

1

r

∂

∂r

[
(r)2

∂

∂r

(vθ
r

)]
− ξ2vθ +

∂

∂r

(vθ
r

)
= R2

e

∂vθ
∂t

, (27)

1

r

d

dr

(
r
dvz
dr

)
− ξ2vz = R2

e

∂vz
∂t

. (28)

Here, S=µ∗
cV

∗

µ∗a∗ , is a non-dimensional number, H=
√

σ∗

µ∗B
∗a∗, is the Hartmann number, Re=ρ∗V ∗a

µ∗ , is

the Reynolds number of the liquid and ξ2 = 1
K

+H2.

3. Analytical solution

For steady flow, expressions of velocity components are obtained by solving ordinary differen-
tial equations (24) and (25). These equations can be expressed in the form of modified Bessel’s
differential equations of order one and zero, respectively, as:

d2vθ
dr2

+
1

r

dvθ
dr
−
(

1

r2
+ ξ2

)
vθ = 0, (29)

d2vz
dr2

+
1

r

dvz
dr
− ξ2vz = 0. (30)

The general solutions of Equations (29) and (30) are, respectively,

vθ = A1I1(ξr) + A2K1(ξr), (31)
vz = C1I0(ξr) + C2K0(ξr), (32)

where I0, I1 and K0, K1 are modified Bessel’s functions of first and second kinds of order zero and
one, respectively.

Using expressions of velocities (31)− (32), we find the expression for the pressure gradient by the
Equation (23) as given below:

dP

dr
= (

(
S

4r3

)
((ξrI0(ξr)− 2I1(ξr) + ξrI2(ξr))A1 − (ξrK0(ξr) + 2K1(ξr) + ξrK2(ξr)A2)

× ((−2ξrI0(ξr) + (4 + 3ξ2r2)I1(ξr) + ξr(−2I2(ξr) + ξrI3(ξr)))A1 + (2ξrK0(ξr)

+ (4 + 3ξ2r2)K1(ξr) + ξr(2K2(ξr) + ξrK3(ξr)))A2) + ξ2r2S(I1(ξr)C1

−K1(ξr)C2)((ξrI0(ξr) + I1(ξr) + ξrI2(ξr))C1 + (ξrK0(ξr)−K1(ξr)

+ ξrK2(ξr))C2) + r2(I1(ξr)A1 +K1(ξr)A2)
2Re)). (33)

For unsteady flow, to obtain analytical expressions for velocity components, we will apply the
method of separation of variables. Expressions of velocity components are obtained by solving

6
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partial differential equations (27) and (28). These equations can be expressed in the form as:

∂2vθ
∂r2

+
1

r

∂vθ
∂r
−
(

1

r2
+ ξ2

)
vθ = Re

2∂vθ
∂t

, (34)

∂2vz
∂r2

+
1

r

∂vz
∂r
− ξ2vz = Re

2∂vz
∂t

. (35)

The solutions of Equations (34) and (35) are, respectively,

vθ = e
− δ21t

R2
e [M1I1(η1r) +M2K1(η1r)], (36)

vz = e
− δ22t

R2
e [N1I0(η2r) +N2K0(η2r)], (37)

where η1 =
√

(ξ2 − δ21) and η2 =
√

(ξ2 − δ22). Here, M1,M2, N1 andN2 are arbitrary constants,
and δ1 and δ2 are separation constants.

Using expressions of velocities (36)− (37), we find the expression for the pressure gradient by the
equation (33) as given below:

∂P

∂r
= (−2Se

−2δ21t

R2
e ((M1(2I1(η1r)− η1rI0(η1r))) +M2(2K1(η1r) + η1rK0(η1r))))

× (((M1(η
2
1r

2 + 6)I1(η1r))− 3η1rI0(η1r)) +M2((η
2
1r

2 + 6)K1(η1r) + 3η1rK0(η1r)))/r

+ (4Se
−2δ21t

R2
e (M1(2I1(η1r)− η1rI0(η1r)) +M2(2K1(η1r) + η1rK0(η1r)))

2)/r

+Ree
−2δ21t

R2
e (M1I1(η1r) +M2K1(η1r))

2/r + η32Se
−2δ22t

R2
e (N1(I0(η2r) + I2(η2r))

+N2(K0(η2r) +K2(η2r)))(N1I1(η2r)−N2K1(η2r))

+ η22Se
−2δ22t

R2
e (N1I1(η2r)−N2K1(η2r))

2/r. (38)

It is observed that pressure gradient depends on the ratio of cross viscosity to viscosity of the
Reiner-Rivlin liquid and Reynolds number.

3.1. Boundary conditions

The values of arbitrary constants A1, A2, C1, C2,M1,M2, N1, N2 are appearing in the above ex-
pressions of velocity components (31), (32) and (36), (37) for both steady and unsteady cases,
respectively can be determined by applying following boundary conditions:

Conditions at the boundary of inner cylinder (r= 1):
For steady case

vθ = Ωi, vz = va. (39)

For unsteady case at t = 0

vθ = Ωi, vz = va, (40)

7
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where Ωi is non-dimensional angular velocity of inner cylinder and va=
v∗a∗
V ∗ , is the non-dimensional

velocity of inner cylinder in the direction parallel to the axis of cylinders.

Conditions at the boundary of outer cylinder (r= `):
For steady case

vθ = Ωo`, vz = vb. (41)

For unsteady case at t = 0

vθ = Ωo`, vz = vb, (42)

where Ωo is non-dimensional angular velocity of outer cylinder and vb=
v∗b∗
V ∗ is the non-dimensional

velocity of outer cylinder in the direction parallel to the axis of cylinders.

3.2. Determination of arbitrary constants

For steady case, applying conditions (39) and (41) in the Equations (31) and (32), we get:

A1 =
−ΩiK1(`ξ) + `ΩoK1(ξ)

41

, A2 =
ΩiI1(`ξ)− `ΩoI1(ξ)

41

, (43)

C1 =
−vbK0(ξ) + vaK0(`ξ)

42

, C2 =
vbI0(ξ)− vaI0(`ξ)

42

, (44)

where

41 = I1(`ξ)K1(ξ)−K1(`ξ)I1(ξ), 42 = I0(ξ)K0(`ξ)−K0(ξ)I0(`ξ).

Thus, substituting these values of constants in equations (31) and (32), we get analytical expres-
sions for velocity components of the liquid.

Also, for unsteady case using conditions (40) and (42) in Equations (36) and (37), we obtain

M1 =
−ΩiK1(`η1) + `ΩoK1(η1)

43

, M2 =
ΩiI1(`η1)− `ΩoI1(η1)

43

, (45)

N1 =
−vbK0(η2) + vaK0(`η2)

44

, N2 =
vbI0(η0)− vaI0(`η2)

44

, (46)

where

43 = I1(`η1)K1(η1)−K1(`η1)I1(η1), 44 = I0(η2)K0(`η2)−K0(η2)I0(`η2).

Therefore, inserting these values of constants in Equations (36) and (37), we get velocity compo-
nents of the liquid.

8
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4. Flow Rate

The volumetric flow rate of the Reiner-Rivlin liquid flowing through porous annular region of
cylinders for both cases (steady flow and unsteady flow) can be evaluated using the formula

Q∗ = 2π

∫ b

a

v∗z∗r
∗dr∗. (47)

Non-dimensional volumetric flow rate (Q) is given by

Q =
Q∗

a∗2V ∗ = 2π

∫ `

1

vzrdr. (48)

For steady case, inserting expression of the axial velocity in Equation (48) and on integration, one
can find that

Q = 2π
C1(−I1(ξ) + `I1(ξ`)) + C2(K1(ξ)− `K1(ξ`))

ξ
. (49)

By putting values of constants C1 andC2 in Equation (49), we get:

Q = 2π
(−1 + ξI1(ξ)K0(ξ`) + ξI0(ξ`)K1(ξ))va

ξ2(I0(ξ`)K0(ξ)− I0(ξ)K0(ξ`))

+
(−1 + ξ`I1(ξ`)K0(ξ) + ξ`I0(ξ)K1(ξ`))vb

ξ2(I0(ξ`)K0(ξ)− I0(ξ)K0(ξ`))
.

(50)

For unsteady case, substituting expression of axial velocity in Equation (48) and then on integra-
tion, we obtain

Q =
2πe

− δ22t

R2
e

η2
(N1(−I1(η2) + `I1(η2`)) +N2(K1(η2)− `K1(η2`))) . (51)

By substituting values of constants N1andN2 in Equation (51), we get:

Q = 2πe
− δ22t

R2
e

(
(−1 + η2I1(η2)K0(η2`) + η2I0(η2`)K1(η2))va

η22(I0(η2`)K0(η2)− I0(η2)K0(η2`))

+
(−1 + η2`I1(η2`)K0(η2) + η2`I0(η2)K1(η2`))vb

η22(I0(η2`)K0(η2)− I0(η2)K0(η2`))

)
.

(52)

5. Discussion of results

In this section, we will discuss the effect of magnetic field on the velocity of the Reiner-Rivlin
liquid for both steady and unsteady cases. The influence of velocities of cylinders on the flow rate of
liquid in the porous annular region of cylinders. We will also discuss the effect of Reynolds number
on the velocity of the liquid for unsteady flow. Also, see the influence of Reynolds number on flow
rate of liquid in the porous annular region of cylinders with respect to time during unsteady flow.
For convenience, take the ratio of the radii of cylinders ` = 2 and non-dimensional permeability
K = 100.

9

Deo and Kumar: MHD Reiner-Rivlin Liquid Flow

Published by Digital Commons @PVAMU, 2021



AAM: Intern. J., Vol. 16, Issue 2 (December 2021) 1047

Figure 2(a). Variation of velocity vθ with r for
angular velocities Ωi=2, Ωo=4

Figure 2(b). Variation of velocity vθ with r for angular
velocities Ωi = 2,Ωo = 4 at t = 4

Figure 3(a). Variation of velocity vθ with r for
angular velocities Ωi=0, Ωo=2

Figure 3(b). Variation of velocity vθ with r for angu-
lar velocities Ωi=0, Ωo=2 at t = 4

Figure 4(a). Variation of velocity vθ with r for an-
gular velocities Ωi=2, Ωo=0

Figure 4(b). Variation of velocity vθ with r for angu-
lar velocities Ωi=2, Ωo=0 at t = 4

5.1. Effect of magnetic field on rotational velocity of the liquid

Now, we will discuss the impact of magnetic field on the rotational velocity components of the
liquid for both steady and unsteady cases. To study the behaviour of velocity component in steady
flow field, we take Ωi=2, Ωo=4,K=100 and draw plot between vθ and r for different values ofH =
2, 3, 7 (Figure 2(a)). For fixed permeability of porous region, and fixed values of all parameters with
Ωi<Ωo, the rotational velocity of liquid decreases first and then increases in the annular region
of flow field. Also, it is observed that increasing the value of magnetic field, rotational velocity
decreases.

We will study the effect of magnetic field on rotational velocity for unsteady flow as well, when
t = 4,Ωi = 2,Ωo = 4, Re = 1.5, δ1 = 0.5 for different values of Hartmann number H = 2, 3, 7. It
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is observed that for Ωi < Ωo, the behavior of rotational velocity (Figure 2(b)) for unsteady case at
a constant time is similar to the behavior of rotational velocity (Figure 2(a)) for steady case. But,
the rotational velocity for unsteady case for time t > 0 is lesser in magnitude comparison to the
rotational velocity for the case of steady flow.

Now, when we take Ωi=0, Ωo=2, i.e. inner cylinder is not rotating but outer cylinder is rotating for
different values of Hartmann numbers H , then rotational velocity increases continuously for fixed
magnetic field and it decreases with increasing magnetic field for steady case (Figure 3(a)). Figure-
3(b) narrates the effect of magnetic field on rotational velocity liquid for unsteady case when inner
cylinder is not rotating, i.e., Ωi=0 at fixed time t = 4. It is observed that rotational velocity increases
for fixed magnetic field and decreases with increasing magnetic field at a constant time.

Now, when we take Ωi=2, Ωo=0, i.e., the outer cylinder is not rotating but the inner cylinder is
rotating with different values of H , then rotational velocity decreases continuously for fixed mag-
netic field and it decreases with increasing magnetic field in steady flow field (Figure 4(a)). Figure
4(b) shows the effect of magnetic field on rotational velocity of liquid for unsteady case when
outer cylinder is not rotated, i.e., Ωo = 0 at fixed time t = 4. It is observed that rotational velocity
decreases for fixed magnetic field and decreases with increasing magnetic field at any constant
time.

5.2. Influence of magnetic field on the axial velocity of the liquid

Figure 5(a). Variation of velocity vz with r for
axial velocities va=1, vb=2

Figure 5(b). Variation of velocity vz with r for axial
velocities va=1, vb=2 at t=5

As we have found, the angular velocities of the inner cylinder and the outer cylinder do not affect
the z∗ component of velocity by expression of v∗z∗ . So, rotation of inner and outer cylinders affects
only θ component of velocity of Reiner-Rivlin liquid in both cases. If we take va = 1, vb = 2
with the values of H = 2, 4, 7, then axial velocity of liquid decreases first and then increases
continuously for fixed magnetic field for steady flow field. Also, axial velocity decreases with
increasing magnetic field (Figure 5(a)).
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Figure 6(a). Variation of velocity vz with r for
axial velocities va=0, vb=2

Figure 6(b). Variation of velocity vz with r for axial
velocities va=0, vb=2 at t = 5

Figure 7(a). Variation of velocity vz with r for
axial velocities va=2, vb=0

Figure 7(b). Variation of velocity vz with r for axial
velocities va=2, vb=0 at t = 5

Figure 5(b) sketch out the effect of magnetic field on axial velocity component of liquid for un-
steady case when va = 1, vb = 2, Re = 1.5, δ2 = 1/3, t = 5 for various values of Hartmann
number H = 2, 3, 7. It is observed that for va < vb, the behavior of axial velocity (Figure 5(b)) for
unsteady case at a constant time is similar to the behavior of axial velocity (Figure 5(a)) for steady
flow. But the axial velocity for unsteady case for time t > 0 is lesser in magnitude comparison to
the axial velocity for case of steady flow.

Now, when we take va = 0, vb = 2, i.e., the inner cylinder is fixed and the outer cylinder is moving
with several values of H , then axial velocity increases continuously with fixed magnetic field and
axial velocity decreases with increasing the magnetic field for steady flow (Figure 6(a)). Figure
6(b) depicts the influence of magnetic field on axial velocity of liquid for unsteady case when
va = 0, vb = 2, t = 5 with different values of Hartmann number H = 2, 3, 7. It is found that
axial velocity increases continuously with fixed magnetic field and axial velocity decreases with
increasing the Hartmann number at any constant time (Figure 6(b)).

Again, when we take va = 2, vb = 0, then axial velocity decreases continuously with fixed mag-
netic field and axial velocity decreases with increasing the magnetic field for steady case (Figure
7(a)). Figure 7(b) shows the effect of magnetic field on axial velocity of liquid for unsteady case
when va = 2, vb = 0, t = 5 with various values of Hartmann numbers H = 2, 3, 7, then ax-
ial velocity decreases continuously with constant magnetic field and axial velocity decreases with
increasing the magnetic field at any stationary time (Figure 7(b)).
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5.3. Influence of magnetic field on flow rate

Figure 8(a). Variation of flow rate with mag-
netic field for `=2, K=100 when:
(1) va=1, vb=0, (2) va=0, vb=1, (3)
va=1, vb=2, (4) va=2, vb=3

Figure 8(b). Variation of flow rate with magnetic field
for `=2, K=100 when: (1) va=1, vb=0,
(2) va=0, vb=1, (3) va=1, vb=2, (4)
va=2, vb=3 at t = 4

The effect of magnetic field on the flow rate for different values of non-dimensional axial veloc-
ities is discussed under steady flow (Figure 8(a)). It is observed that for fixed axial velocities of
cylinders, flow rate decreases with increasing the magnetic field. It is also seen from the figure that
greater flow rate for outer cylinder axial movement compared to the same value of inner cylinder
axial movement. Also, it is observed that when the difference of axial velocities of cylinders is
same for two different combinations of axial velocities of cylinders, then the flow rate is more for
axial velocity combination for whose outer cylinder axial velocity is greater. So, flow rate increases
more rapidly with increasing axial velocity of the outer cylinder in comparison to increasing axial
velocity of the inner cylinder.

Figure 8(b) elaborates the effect of magnetic field on the flow rate for different values of unsteady
axial velocities. It is observed that the behavior of flow rate for unsteady case at constant time is
similar to the behavior of flow rate for steady case (Figure 8(a)). But, the flow rate for unsteady
case in magnitude for time t > 0 is lesser than the flow rate for steady case.

5.4. Influence of Reynolds number on rotational velocity of the liquid

Figure 9 discusses the influence of Reynolds number on the rotational velocity of liquid during
unsteady case when Ωi = 2,Ωo = 4, δ1 = 0.5, t = 1 for different values of Reynolds number
Re = 1, 1.5, 5. It is observed that rotational velocity of liquid increases with increasing Re at any
instant.
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Figure 9. Variation of velocity vθ with r for angular velocities Ωi = 2,Ωo = 4 at t = 1

5.5. Influence of Reynolds number on axial velocity of the liquid

Figure 10. Variation of velocity vz with r for angular velocities va = 2, vb = 4 at t = 1.5

Figure 10 shows effect of Reynolds number on the axial velocity of liquid in unsteady flow field
when va = 2, vb = 4, δ2 = 1/3, t = 1.5 for different values of Reynolds number Re = 1, 1.5, 5. It
is found that axial velocity of liquid increases with increasing Reynolds number at any instant.
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5.6. Influence of time on the rotational velocity of the liquid

Figure 11. Variation of velocity vθ with time for angular velocities Ωi = 2,Ωo = 4

Here, we will discuss variation of rotational velocity of liquid with respect to time when Ωi =
2,Ωo = 4, Re = 1.5, δ1 = 0.5, H = 2 for various values of r = 1.3, 1.6, 1.8. It is observed that
rotational velocity decreases as time t increases for a fixed position.

5.7. Influence of time on the axial velocity of the liquid

Figure 12. Variation of velocity vz with time for axial velocities va = 2, vb = 4

Here, we will elaborate variation of axial velocity of liquid with respect to time when va = 2, vb =
4, Re = 1.5, δ2 = 1/3, H = 2 for various values of r = 1.3, 1.6, 1.8. It is observed that axial
velocity decreases with time for a fixed position.
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5.8. Influence of time on flow rate of the liquid

Figure 13. Variation of flow rate Q with time for axial velocities va = 2, vb = 4

Figure 13 shows effect of time t on volumetric flow rate Q when va = 2, vb = 4, δ2 = 1/3, H = 2
for different values of Reynolds number Re = 1.3, 1.6, 1.8. It is noticed from the figure that the
flow rate decreases with increasing time for all values of Re and it increases with increasing the
values of Re.

6. Conclusion

The problem of steady and unsteady flow of a Reiner-Rivlin liquid in the porous annular region of
two concentric rotating cylinders, which is moving parallel to their axes, about the common axis of
these cylinders under uniform magnetic field acted in perpendicular direction of the axis, is studied.
Analytical expressions for velocity components, pressure gradient and flow rate are reported.

• For a constant value of permeability and non-zero angular velocities of inner and outer cylinders,
the rotational velocity of liquid decreases and then increases from a certain point for all values
of magnetic field. Also, it is observed that rotational velocity decreases with increasing mag-
netic field for steady flow, whereas, for unsteady flow it shows the similar variation with lesser
magnitude at a certain time.
• The axial velocity of the liquid is affected by the magnetic field in both steady and unsteady case.

It is observed that with increasing magnetic field, axial velocity decreases in both cases. Also, for
a non-zero constant axial velocities of inner and outer cylinders, the axial velocity of the liquid
decreases and then increases in both cases.
• It is observed that pressure gradient depends on the ratio of cross viscosity to the viscosity of

the Reiner-Rivlin liquid and Reynolds number whereas, velocities are independent from cross
viscosity of the liquid.
• The rotational velocity and axial velocity of the liquid increases with increasing Reynolds number

at a stationary time for unsteady flow. It is also observed that flow rate of the liquid decreases with
increasing magnetic field for both cases.
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• The rotational velocity, axial velocity and flow rate of the liquid are decreases with respect to
time for a constant Reynolds number and at fixed position for unsteady flow.
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Caption of figures

Figure 1: Schematic diagram of the problem

Figure 2(a): Variation of velocity vθ with r for angular velocities Ωi=2, Ωo=4

Figure 2(b): Variation of velocity vθ with r for angular velocities Ωi = 2,Ωo = 4 at t = 4

Figure 3(a): Variation of velocity vθ with r for angular velocities Ωi=0, Ωo=2

Figure 3(b): Variation of velocity vθ with r for angular velocities Ωi=0, Ωo=2 at t = 4

Figure 4(a): Variation of velocity vθ with r for angular velocities Ωi=2, Ωo=0

Figure 4(b): Variation of velocity vθ with r for angular velocities Ωi=2, Ωo=0 at t = 4

Figure 5(a): Variation of velocity vz with r for axial velocities va=1, vb=2

Figure 5(b): Variation of velocity vz with r for axial velocities va=1, vb=2 at t=5

Figure 6(a): Variation of velocity vz with r for axial velocities va=0, vb=2

Figure 6(b): Variation of velocity vz with r for axial velocities va=0, vb=2 at t = 5

Figure 7(a): Variation of velocity vz with r for axial velocities va=2, vb=0

Figure 7(b): Variation of velocity vz with r for axial velocities va=2, vb=0 at t = 5

Figure 8(a): Variation of flow rate with magnetic field for `=2, K=100 when: (1) va=1, vb=0,
(2) va=0, vb=1, (3) va=1, vb=2, (4) va=2, vb=3

Figure 8(b): Variation of flow rate with magnetic field for `=2, K=100 when: (1) va=1, vb=0,
(2) va=0, vb=1, (3) va=1, vb=2, (4) va=2, vb=3 at t = 4

Figure 9: Variation of velocity vθ with r for angular velocities Ωi = 2,Ωo = 4 at t = 1

Figure 10: Variation of velocity vz with r for angular velocities va = 2, vb = 4 at t = 1.5

Figure 11: Variation of velocity vθ with time for angular velocities Ωi = 2,Ωo = 4

Figure 12: Variation of velocity vz with time for axial velocities va = 2, vb = 4

Figure 13: Variation of flow rate Q with time for axial velocities va = 2, vb = 4
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