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Abstract

The present study investigates the existence and linear stability of the equilibrium points in the
restricted problem of 2+2 bodies including the effect of small perturbations ε1 and ε2 in the Coriolis
and centrifugal forces respectively. The less massive primary is considered as a straight segment
and the more massive primary a point mass. The equations of motion of the infinitesimal bodies are
derived. We obtain fourteen equilibrium points of the model, out of which six are collinear and rest
non-collinear with the centers of the primaries. The position of the equilibrium points are affected
by the small perturbation in centrifugal force, length and mass parameters, but there is no impact
of small perturbation in Coriolis force on them. In addition, the obtained results are applied to
Earth-22 Kalliope-dual satellite system. For this system, we calculate collinear and non-collinear
equilibrium points and observed that the number of non-collinear equilibrium points depends on
ε2. Furthermore, for a set of values of the parameters ε1 and ε2, we have checked the stability of all
the equilibrium points and concluded that all the equilibrium points are found to be unstable. The
permissible regions of motion for the Earth-22 Kalliope-dual satellite system are also studied.

Keywords: Restricted 2 + 2 body problem; Equilibrium points; Coriolis and centrifugal forces;
Straight segment; Zero velocity curves
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1. Introduction

In celestial mechanics, the general three-body problem is to describe the motion of the three mas-
sive bodies moving under the mutual gravitational attraction. The restricted three-body problem is
a kind of general three-body problem, in which the mass of one of the participating bodies is very
small in comparison to the mass of other two bodies. It is an oldest and fascinating problem in
the theory of astronomy that deals with the motion of an infinitesimal mass under the gravitational
effect of the two massive bodies (called primaries). This problem holds five points of equilibrium,
three are collinear and two non-collinear with the centers of the primary bodies. The non-collinear
ones form an equilateral triangle with the centers of the primary bodies. The collinear equilibrium
points are always unstable, whereas the non-collinear equilibrium points are stable for a critical
value of the mass parameter 0 < µ < µc, where µc = 0.0385209 (Szebehely (1967b)).

The various generalizations of the restricted three-body problem have been solved so far by many
researchers in this field. Szebehely (1967a) investigated the restricted three-body problem includ-
ing the effect of small perturbations in the Coriolis and centrifugal forces. His linear stability in-
vestigation of the equilibrium points involved the effect of small perturbation in the Coriolis force
by keeping centrifugal force unperturbed. He observed that under the effect of small perturbation
in the Coriolis force ε, the collinear equilibrium points remain unstable; however, the non-collinear
ones are stable for 0 < µ < µc, where µc = µ0 +

(
16/3
√

69
)
ε and µ0 = 0.03852.

Bhatnagar and Hallan (1978) examined the effect of small perturbations in the Coriolis and cen-
trifugal forces on the existence and linear stability of the equilibrium points of the restricted
three-body problem. They observed that the positions of the collinear and non-collinear equi-
librium points are affected by the small perturbation in the centrifugal force, whereas the small
perturbation in Coriolis force has no impact on them. They also investigated the stability of
the equilibrium points and concluded that the collinear equilibrium points are remain unstable,
while the non-collinear equilibrium points are stable for the condition 0 ≤ µ < µc, where
µc = µ0 + 4 (36ε− 19ε′) /27

√
69, µ0 = 0.03852, ε and ε′ are the small perturbations in Coriolis

and centrifugal forces respectively. Recently, the different perturbations in the restricted three-body
problem have been studied by Kushvah (2008), Abouelmagd et al. (2013), Abouelmagd (2013),
Abouelmagd and Guirao (2016).

In the solar system, the celestial bodies are not perfect spheres; they are either in the form of
oblate, triaxial, or elongated in shape (like asteroids such as 216 Kleopatra and 22 Kalliope). In
recent studies, many researchers have devoted their work to study the motion of the infinitesimal
body near the small and irregular shaped celestial bodies. More recently, Kumar et al. (2019) stud-
ied the effect of the straight segment on the existence and stability of the equilibrium points in the
Robe’s restricted three-body problem (Robe (1977)). They obtained two collinear, infinite number
of non-collinear and two out-of-plane equilibrium points and also discussed the parametric evolu-
tion on the equilibrium points. They also checked the linear stability of the equilibrium points and
concluded that the collinear equilibrium points are conditionally stable, whereas the non-collinear
and out-of-plane equilibrium points are unstable for all the values of the parameters involved in the
model.
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Researchers have worked on several variants of Robe’s model, including the effect of small pertur-
bations in the Coriolis and centrifugal forces, to examine the positions and stability of the equilib-
rium points. Some are Singh and Omale (2015), Kaur et al. (2020a), Kaur et al. (2020b), and Kaur
et al. (2021). Recently, the existence and the stability of the equilibrium points in the restricted
four-body problem (in which the motion of the test particle is studied under the gravitational effect
of three massive bodies) was investigated under the effect of small perturbations in the Coriolis
and centrifugal forces (Singh and Vincent (2015), Suraj et al. (2017), and Suraj et al. (2019)).

Similar to the restricted three-body problem, the restricted 2 + 2 body problem describes the mo-
tion of two infinitesimal bodies under the gravitational attraction of the two massive bodies and
their mutual gravitational attraction. The restricted three-body problem to the problem of n + v
bodies was initially carried out by Whipple and Szebehely (1984). In their study, they discussed
the motion of the v infinitesimal bodies under the gravitational attraction of the n primary bod-
ies. Further, Whipple (1984) studied the particular case of the problem of Whipple and Szebehely
(1984) by taking n = v = 2. He obtained fourteen equilibrium points, six collinear and eight non-
collinear and also discussed the linear stability of the obtained equilibrium points. Croustalloudi
and Kalvouridis (2013) studied the effect of the involved parameters on the equilibrium points and
their attracting regions in the restricted problem of 2 + 2 bodies. The equilibrium points, regions
of motion of the infinitesimal bodies and the stability of the equilibrium points in the restricted
problem of 2 + 2 bodies by considering the shape of the primary bodies have been studied by
Kalvouridis and Mavraganis (1995), Kalvouridis (1997), and Prasad and Ishwar (1996).

A new variant of the Robe’s restricted three-body problem to the Robe’s restricted problem of 2+2
bodies initially studied by Kaur and Aggarwal (2012). They considered two infinitesimal bodies
inside the more massive primary and studied the existence and linear stability of the equilibrium
points. They obtained four collinear and infinite number of non-collinear equilibrium points. They
also concluded that all the equilibrium points are unstable for all the values of the involved param-
eters. Furthermore, the existence and stability of the equilibrium points in the perturbed Robe’s
restricted problem of 2 + 2 bodies including the effect of small perturbations in the Coriolis and
centrifugal forces have been studied by Kaur et al. (2016).

More recently, the effect of length parameter on the existence and linear stability of the equilibrium
points in the restricted 2 + 2 body problem has been investigated by Kumar et al. (2020). They ob-
tained fourteen equilibrium points, six collinear and eight non-collinear. They also discussed how
the length parameter affects the positions and stability of the equilibrium points. The Coriolis and
centrifugal forces arise due the rotation of the coordinate system and these forces affect the nature
of motion of the infinitesimal bodies. Thus, so far, many researchers have worked on restricted
2 + 2 body problem, but nobody has studied the effect of length parameter and small perturba-
tions in the Coriolis and centrifugal forces simultaneously. Therefore, motivated by the work of
Szebehely (1967a), Whipple (1984), and Kumar et al. (2020), we have considered the restricted
2 + 2 body problem under the combined effect of straight segment and small perturbations in the
Coriolis and centrifugal forces. This work can be applied to the study of two infinitesimal bodies
in the Earth-Asteroid system or Jupiter-Asteroid system. Thus, the considered model has practical
applications in the field of astrophysics and astronomy.

3
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This paper is divided into six sections. In Section 2, we describe the dynamical system and de-
termine the equations of motion of the two infinitesimal bodies. Section 3 comprises the collinear
and non-collinear equilibrium points of the dynamical system. The linear stability analysis of the
equilibrium points is discussed in the Section 4. The application of the presented model is studied
in Section 5. In Sections 6 and 7, the results of the problem are discussed with comparative study
to other researchers.

2. Characterization of the dynamical system and equations of motion

Let S1 and S2 be two primary bodies of massesm1 andm2 respectively wherem1 > m2. The more
massive primary S1 is considered as a point mass and the less massive body S21S22 with center at
S2 and length 2l is in a shape of a straight segment. In this setup, the line joining the centers of the
primaries S1 and S2 is considered as X−axis and their common center of mass is set as the origin
of the coordinate system. Both primaries are moving in circular orbits about their common center
of mass with the same angular velocity ω. The line passing through origin and perpendicular to the
plane of motion of S1 and S2 is considered as Y−axis. The Z−axis is the line that passes through
origin and perpendicular to XY−plane. The XY−plane is moving in the anticlockwise direction
about Z−axis. Further, we consider a rotating coordinate system Oxy that rotates with the angular
velocity ω (which is same as that of the primaries). The coordinate systemOxyz initially coincides
with the inertial coordinate system OXY Z.

We consider two infinitesimal bodies S3 and S4 with masses m3 and m4 respectively (Figure 1).
Here infinitesimal means the masses of S3 and S4 are very very small in comparison to the primary
bodies S1 and S2, such that S3 and S4 do not influence the motion of S1 and S2, but are influenced
by them. In this section, we determine the equations of motion of the infinitesimal bodies S3 and
S4 under the gravitational effect of primary bodies and their mutual gravitational attraction.

Now, to make units dimensionless, we take sum of the masses of S1 and S2 and the distance be-
tween them as one unit. Also, the unit of time is chosen in such a way, that makes the gravitational
constant G unity. Furthermore, the mass parameters are considered as

m2

m1 +m2

= µ,
m3

m1 +m2

= µ3,
m4

m1 +m2

= µ4.

Therefore, m1 = 1− µ, m2 = µ, m3 = µ3 and m4 = µ4.

Here, we introduce the small perturbations in the Coriolis and centrifugal forces in the terms of α1

and α2, respectively, where α1 = 1 + ε1 and α2 = 1 + ε2, |ε1| << 1, |ε2| << 1. The unperturbed
values of α1 and α2 are unity. Thus, the equations of motion of the infinitesimal bodies S3 and S4

under the effect of small perturbations in the Coriolis and centrifugal forces in the dimensionless
rotating coordinate system are

ẍj − 2nα1ẏj = Ωxj

ÿj + 2nα1ẋj = Ωyj

z̈j = Ωzj

 j = 3, 4, (1)

4
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Figure 1. The configuration of the restricted problem of 2+2 bodies in xy-plane when the less massive body is a straight
segment

where

Ω (xj, yj, zj) =
4∑
j=3

µj

[
α2

2
n2
(
x2j + y2j

)
+

(1− µ)

rj1
+
µ

2l
log

(
rj21 + rj22 + 2l

rj21 + rj22 − 2l

)
+

1

2

µ7−j

r34

]
,

r2j1 =(xj − µ)2 + y2j + z2j , r
2
j21 = {xj − (µ− 1− l)}2 + y2j + z2j ,

r2j22 ={xj − (µ− 1 + l)}2 + y2j + z2j , r
2
34 = (x3 − x4)2 + (y3 − y4)2 + (z3 − z4)2,

α1 =1 + ε1, |ε1| << 1, α2 = 1 + ε2, |ε2| << 1.

Here, n is the mean motion of the primaries; and l is the dimensionless half length of the less
massive body S2; Ωxj

, Ωyj and Ωzj are the partial derivatives of Ω with respect to xj , yj and zj ,
respectively; the dot represents the differentiation with respect to time. ε1 and ε2 are the small
perturbations in the Coriolis and centrifugal forces, respectively.

2.1. Mean motion of the primaries

The gravitational force between the primary bodies S1 and S2 is given by

FS1S2
= G

m1m2

(d1 + d2)2 − l2
,

where d1 = OS1 and d2 = OS2.

Since the bodies S1 and S2 are moving in circular orbits around their common center of mass O,
therefore

m1d1n
2 = G

m1m2

(d1 + d2)2 − l2
= m2d2n

2, (2)

On simplifying Equation (2), we get

(d1 + d2)n
2 = G

(m1 +m2)

(d1 + d2)2 − l2
.

5
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Now, on using dimensionless variables defined earlier, we get n2 = 1 + l2, 0 < l << 1. Here, we
have considered the terms containing l up to second order only. The impact of length parameter on
the mean motion is shown in Figure 2. It is observed that on the increasing values of l, the mean
motion also increases.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.1

1.2

1.3

1.4

length parameter l

m
ea
n
m
o
ti
o
n
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Figure 2. The effect of length parameter on the mean motion

3. Equilibrium points

In this section, we find the equilibrium points of the dynamical system defined in Section 2. The
equilibrium point means where all the derivatives of all orders are zero, that is, we can obtain the
equilibrium points by solving the differential equations ẋj = 0, ẏj = 0, żj = 0, ẍj = 0, ÿj = 0
and z̈j = 0, where j = 3, 4. On substituting these conditions in the equations of motion (1),
the positions of the equilibrium points under the effect of small perturbations in the Coriolis and
centrifugal forces, are obtained by solving the following equations,

Ωxj
= 0, Ωyj = 0, Ωzj = 0, j = 3, 4,

that is,

n2 (1 + ε2)x3 −
(1− µ)(x3 − µ)

r331

− 2µ

[(r321 + r322)2 − 4l2]
×
(
x3 − µ+ 1 + l

r321
+
x3 − µ+ 1− l

r322

)
− µ4(x3 − x4)

r334
= 0,

(3)

n2 (1 + ε2) y3 −
(1− µ)y3

r331
− 2µ

[(r321 + r322)2 − 4l2]

(
y3
r321

+
y3
r322

)
− µ4(y3 − y4)

r334
= 0, (4)

(1− µ)z3
r331

+
2µ

[(r321 + r322)2 − 4l2]

(
z3
r321

+
z3
r322

)
+
µ4(z3 − z4)

r334
= 0, (5)

6
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and

n2 (1 + ε2)x4 −
(1− µ)(x4 − µ)

r341

− 2µ

[(r421 + r422)2 − 4l2]
×
(
x4 − µ+ 1 + l

r421
+
x4 − µ+ 1− l

r422

)
− µ3(x4 − x3)

r334
= 0,

(6)

n2 (1 + ε2) y4 −
(1− µ)y4

r341
− 2µ

[(r421 + r422)2 − 4l2]
×
(
y4
r421

+
y4
r422

)
− µ3(y4 − y3)

r334
= 0, (7)

(1− µ)z4
r341

+
2µ

[(r421 + r422)2 − 4l2]

(
z4
r421

+
z4
r422

)
+
µ3(z4 − z3)

r334
= 0. (8)

On simplifying Equations (5) and (8) (as in Whipple (1984)), it is observed that z3 and z4 both are
zero for all the values of the parameters involved. Therefore, all the equilibrium points will lie in
xy−plane. Thus, we study the motion of the infinitesimal bodies S3 and S4 in xy−plane only.

It is also observed that Equations (3), (4), (6) and (7) are free from ε1 which implies that, the small
perturbation in the Coriolis force will not influence the position of the equilibrium points; however,
the equilibrium points will be influenced by the small perturbation in the centrifugal force.

3.1. Collinear equilibrium points

The collinear equilibrium points are the solutions of the Equations (3), (4), (6), and (7) with y3 =
y4 = 0, that is,

n2 (1 + ε2)x3 −
(1− µ)(x3 − µ)

r331
− 2µ

[(r321 + r322)2 − 4l2]
×
(
x3 − µ+ 1 + l

r321
+
x3 − µ+ 1− l

r322

)
− µ4(x3 − x4)

r334
= 0,

and

n2 (1 + ε2)x4 −
(1− µ)(x4 − µ)

r341
− 2µ

[(r421 + r422)2 − 4l2]
×
(
x4 − µ+ 1 + l

r421
+
x4 − µ+ 1− l

r422

)
− µ3(x4 − x3)

r334
= 0,

with

rj1 = |xj − µ|, rj21 = |xj − (µ− 1− l)|, rj22 = |xj − (µ− 1 + l)|, j = 3, 4.

If either S3 or S4 is absent, the present model reduces to the restricted three-body problem under
the combined effects of straight segment, small perturbations in the Coriolis and centrifugal forces.
Without loss of generality, we take m4 to be zero. Therefore, we have the following equation

n2 (1 + ε2)x3 −
(1− µ)(x3 − µ)

r331

− 2µ

[(r321 + r322)2 − 4l2]
×
(
x3 − µ+ 1 + l

r321
+
x3 − µ+ 1− l

r322

)
= 0.

(9)
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Now, we find the solutions of the Equation (9) (as in Szebehely (1967b)). We observe that Equation
(9) has three real roots xL1

, xL2
and xL3

that lie in the intervals (µ − 2, µ − 1 − l), (µ − 1 + l, µ)
and (µ, µ+ 1), respectively, where

xL1
= µ− 1− ξL1

, xL2
= µ− 1 + ξL2

, xL3
= µ+ ξL3

,

and ξL1
, ξL2

and ξL3
are the real roots of the Equations (10), (11), and (12), respectively.(

1 + ε2 + l2
)
ξ5L1

+ (3− µ)
(
1 + ε2 + l2

)
ξ4L1

+
[
(3− 2µ) (1 + ε2) + 2 (1− µ) l2

]
ξ3L1

−
[
µ+ (µ− 1) ε2 + 2l2

]
ξ2L1
−
[
2µ+ (3− 2µ) l2

]
ξL1
− µ = 0, (10)

(
1 + ε2 + l2

)
ξ5L2
− (3− µ)

(
1 + ε2 + l2

)
ξ4L2

+
[
(3− 2µ) (1 + ε2) + 2 (1− µ) l2

]
ξ3L2

−
[
µ+ (1− µ) ε2 − 2l2

]
ξ2L2

+
[
2µ− (3− 2µ) l2

]
ξL2
− µ = 0, (11)

and (
1 + ε2 + l2

)
ξ5L3

+ (2 + µ)
(
1 + ε2 + l2

)
ξ4L3

+
[
(1 + 2µ) (1 + ε2) + 2µl2

]
ξ3L3

− (1− µ− µε2) ξ2L3
− 2 (1− µ) ξL3

− (1− µ)
(
1− l2

)
= 0. (12)

Thus, for m4 = 0, we obtain three collinear equilibrium points L1 (xL1
, 0), L2 (xL2

, 0) and
L3 (xL3

, 0). It is observed that the positions of these collinear equilibrium points are influenced
by the small perturbation ε2 in the centrifugal force. But there is no impact of small perturbation ε1
in the Coriolis force on the collinear equilibrium points L1, L2 and L3.

We find the collinear equilibrium points for the case when S3 and S4 both are present. We use the
perturbation technique in the terms of small parameters εj, j = 3, 4 to the solutions xL1

, xL2
and

xL3
. Therefore,

x3 =xLk
+ a1ε4 + a2ε

2
4 + a3ε

3
4 + · · · ,

x4 =xLk
+ b1ε3 + b2ε

2
3 + b3ε

3
3 + · · · , k = 1, 2, 3,

where

εj =
µj

(µ3 + µ4)2/3
, j = 3, 4.

Following the same procedure as given in Whipple (1984) and considering only linear terms of ε3
and ε4, six collinear equilibrium points

L1
1((x

11
3 , 0), (x114 , 0)),

L2
1((x

12
3 , 0), (x124 , 0)),

}
around L1,

L1
2((x

21
3 , 0), (x214 , 0)),

L2
2((x

22
3 , 0), (x224 , 0)),

}
around L2,

L1
3((x

31
3 , 0), (x314 , 0)),

L2
3((x

32
3 , 0), (x324 , 0)),

}
around L3,

8
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are obtained. The abscissae of these collinear equilibrium points are

xk13 = xLk
+

µ4

[WLk
xx (µ3 + µ4)2]1/3

, xk14 = xLk
− µ3

[WLk
xx (µ3 + µ4)2]1/3

,

xk23 = xLk
− µ4

[WLk
xx (µ3 + µ4)2]1/3

, xk24 = xLk
+

µ3

[WLk
xx (µ3 + µ4)2]1/3

,

 k = 1, 2, 3,

where

W (x, y) =
1

2
n2α2

(
x2 + y2

)
+

(1− µ)

r31
+
µ

2l
log

(
r321 + r322 + 2l

r321 + r322 − 2l

)
,

n2 = 1 + l2, α2 = 1 + ε2, |ε2| << 1, r231 = (x− µ)2 + y2,

r2321 = {x− (µ− 1− l)}2 + y2, r2322 = {x− (µ− 1 + l)}2 + y2.

Here, W (x, y) is the potential function of the perturbed restricted three-body problem when the
less massive body is a straight segment. And WLk

xx is the second order partial derivative of W with
respect to x calculated at the equilibrium point Lk.

3.2. Non-collinear equilibrium points

The non-collinear equilibrium points are the solutions of the Equations (3), (4), (6), and (7) when
y3 and y4 both are non zero, that is,

n2 (1 + ε2)x3 −
(1− µ)(x3 − µ)

r331

− 2µ

[(r321 + r322)2 − 4l2]
×
(
x3 − µ+ 1 + l

r321
+
x3 − µ+ 1− l

r322

)
− µ4(x3 − x4)

r334
= 0,

(13)

n2 (1 + ε2) y3 −
(1− µ)y3

r331
− 2µ

[(r321 + r322)2 − 4l2]

(
y3
r321

+
y3
r322

)
− µ4(y3 − y4)

r334
= 0, (14)

and

n2 (1 + ε2)x4 −
(1− µ)(x4 − µ)

r341

− 2µ

[(r421 + r422)2 − 4l2]
×
(
x4 − µ+ 1 + l

r421
+
x4 − µ+ 1− l

r422

)
− µ3(x4 − x3)

r334
= 0,

(15)

n2 (1 + ε2) y4 −
(1− µ)y4

r341
− 2µ

[(r421 + r422)2 − 4l2]
×
(
y4
r421

+
y4
r422

)
− µ3(y4 − y3)

r334
= 0. (16)

In the absence of the infinitesimal body S4, the Equations (13), (14), (15), and (16) are reduced to
the following equations

n2 (1 + ε2)x3 −
(1− µ)(x3 − µ)

r331

− 2µ

[(r321 + r322)2 − 4l2]
×
(
x3 − µ+ 1 + l

r321
+
x3 − µ+ 1− l

r322

)
= 0,

(17)

9

Aggarwal et al.: Stability, Zero Velocity Curves in Perturbed Restricted Problem

Published by Digital Commons @PVAMU, 2021



AAM: Intern. J., Vol. 16, Issue 2 (December 2021) 1019

n2 (1 + ε2) y3 −
(1− µ)y3

r331
− 2µ

[(r321 + r322)2 − 4l2]

(
y3
r321

+
y3
r322

)
= 0. (18)

On solving Equations (17) and (18), considering only linear terms of ε2 and up to second order
terms of length parameter l, two non-collinear equilibrium points L4(xL4

, yL4
) and L5(xL5

, yL5
)

are obtained, where

xL4,L5
= µ− 1

2
+

(µ+ 3)

24(µ− 1)
l2, yL4,L5

= ±

[√
3

2
− 1√

3

(
2

3
ε2 +

(23µ− 19)

24(µ− 1)
l2
)]

.

It is clear that the non-collinear equilibrium points L4 and L5 are influenced by the parameters µ,
ε2 and l, whereas the they are independent of the parameter ε1.

Following the procedure of Whipple (1984) when S3 and S4 both are present, the solutions of the
Equations (3), (4), (6), and (7) are obtained as

xk1j = xLk
+

αkµ7−j

[(µ3 + µ4)2(WLk
xy αk +WLk

yy )]
1

3 (1 + α2
k)

1

2

,

yk1j = yLk
− µ7−j

[(µ3 + µ4)2(WLk
xy αk +WLk

yy )]
1

3 (1 + α2
k)

1

2

,

xk2j = xLk
− αkµ7−j

[(µ3 + µ4)2(WLk
xy αk +WLk

yy )]
1

3 (1 + α2
k)

1

2

,

yk2j = yLk
+

µ7−j

[(µ3 + µ4)2(WLk
xy αk +WLk

yy )]
1

3 (1 + α2
k)

1

2

,

for j = 3, 4; k = 4 at L4 and k = 5 at L5, and

xk3j = xLk
+

βkµ7−j[
(µ3 + µ4)2

(
WLk
xx + W

Lk
xy

βk

)] 1

3
(

1 + 1
β2
k

) 1

2

,

yk3j = yLk
− µ7−j[

(µ3 + µ4)2
(
WLk
xx + W

Lk
xy

βk

)] 1

3
(

1 + 1
β2
k

) 1

2

,

xk4j = xLk
− βkµ7−j[

(µ3 + µ4)2
(
WLk
xx + W

Lk
xy

βk

)] 1

3
(

1 + 1
β2
k

) 1

2

,

yk4j = yLk
+

µ7−j[
(µ3 + µ4)2

(
WLk
xx + W

Lk
xy

βk

)] 1

3
(

1 + 1
β2
k

) 1

2

,

for j = 3, 4; k = 4 at L4 and k = 5 at L5, where

αk =
(−1)k+1 + (−1)k

√
1 + 12(µ− 1/2)2

2
√

3(µ− 1/2)
, βk =

(−1)k+1 − (−1)k
√

1 + 12(µ− 1/2)2

2
√

3(µ− 1/2)
.

Here, WLk

xy , WLk

yy and WLk

xx are the second order partial derivatives of W calculated at the non-
collinear equilibrium points Lk, k = 4, 5. Thus, for the restricted problem of 2+2 bodies under the
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combined effect of straight segment, small perturbations in Coriolis and centrifugal forces, eight
non-collinear equilibrium points are obtained and denoted as follows:

Lp4
(
(x4p3 , y

4p
3 ), (x4p4 , y

4p
4 )
)
99K about L4

Lp5
(
(x5p3 , y

5p
3 ), (x5p4 , y

5p
4 )
)
99K about L5

}
p = 1, 2, 3, 4.

Out of eight non-collinear equilibrium points, four lie around L4 and remaining lie around L5.

Hence, for the present dynamical system fourteen equilibrium points are obtained, which is in
contrast to the restricted three-body problem (Szebehely (1967b)) where five equilibrium points
exist.

4. Stability of the equilibrium points

In this section, we investigate the linear stability of the equilibrium points obtained in Section 3.
To check the stability, we displace the infinitesimal body a little from an equilibrium point. If the
infinitesimal body oscillates about the equilibrium point, we say such a point a stable equilibrium
point. However, if the motion of an infinitesimal body is a rapid departure from the equilibrium
point, it is called as unstable equilibrium point.

Without loss of generality, we determine the stability of the infinitesimal body S3. Let E (x30, y30)
be one of the equilibrium points corresponding to S3. The small perturbations from the equilibrium
point are considered as ξ3 and η3 in the x and y axes respectively. That is,

x3 = x30 + ξ3, y3 = y30 + η3.

Substituting theses values in the first two equations of Equations (1) and applying Taylor series
expansion and considering only linear terms of ξ3 and η3, we get the system of variational equations
as:

ξ̈3 − 2nα1η̇3 =
1

µ3

(
ξ3Ω

0
x3x3

+ η3Ω
0
x3y3

)
,

η̈3 + 2nα1ξ̇3 =
1

µ3

(
ξ3Ω

0
x3y3 + η3Ω

0
y3y3

)
,

 (19)

where the superscript 0 denotes that the partial derivatives of Ω are evaluated at the equilibrium
point E (x30, y30).

The characteristic equation corresponding to the system of Equations (19) is given by∣∣∣∣∣ λ23 − 1
µ3

Ω0
x3x3

−2nα1λ3 − 1
µ3

Ω0
x3y3

2nα1λ3 − 1
µ3

Ω0
x3y3 λ23 − 1

µ3
Ω0
y3y3

∣∣∣∣∣ = 0,

or

λ43 +

(
4n2α2

1 −
1

µ3

Ω0
x3x3
− 1

µ3

Ω0
y3y3

)
λ23 +

1

µ2
3

(
Ω0
x3x3

Ω0
y3y3 −

(
Ω0
x3y3

)2)
= 0. (20)

The roots of the characteristic Equation (20) have an important role to check the stability of the
equilibrium points. The equilibrium point is said to be stable equilibrium point, if all the four
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roots of the characteristic Equation (20) are either imaginary or complex with negative real parts.
Therefore, for the stable equilibrium point, the following three conditions must be satisfied simul-
taneously: (

4n2α2
1 −

1

µ3

Ω0
x3x3
− 1

µ3

Ω0
y3y3

)
> 0,

1

µ2
3

(
Ω0
x3x3

Ω0
y3y3 −

(
Ω0
x3y3

)2)
> 0,

(
4n2α2

1 −
1

µ3

Ω0
x3x3
− 1

µ3

Ω0
y3y3

)2

− 4

µ2
3

(
Ω0
x3x3

Ω0
y3y3 −

(
Ω0
x3y3

)2)
> 0.

 (21)

5. Application

In this section, we study the application of the present model to the Earth-22 Kalliope-dual satel-
lite system. In this physical model, we consider the more massive primary as the Earth and the
infinitesimal bodies are as satellites. The less massive body is considered as 22 Kalliope. Fur-
thermore, for the the distance between the primary bodies, the minimum orbit intersection dis-
tance (MOID) is considered. The required physical data has been taken from NASA database
(https://ssd.jpl.nasa.gov/sbdb.cgi), Croustalloudi and Kalvouridis (2013) and Kaur et al. (2020a).

(1) Earth-22 Kalliope-dual satellite system:

Mass of the Earth: m1 = 5.97237× 1024 kg, mass of 22 Kalliope: m2 = 8.42× 1018 kg, distance
between Earth and 22 Kalliope = 1.63844 A.U. = 245107135 km, length of 22 Kalliope: 2l = 215
km, mass of S3: m3 = 475 kg, mass of S4: m4 = 245 kg.

In dimensionless system: µ = 1.40982 × 10−6, l = 4.38584 × 10−7, µ3 = 7.95328 × 10−23,
µ4 = 4.10222× 10−23.

For the Earth-22 Kalliope-dual satellite system, we calculate the position and stability of the equi-
librium points, by taking different values of small perturbations in Coriolis and centrifugal forces
ε1 and ε2, respectively.

Table 1. The abscissae of the collinear equilibrium points L1
1

(
(x113 , 0), (x114 , 0)

)
and L2

1

(
(x123 , 0), (x124 , 0)

)
about

L1 for the Earth-22 Kalliope-dual satellite system

L1
1 L2

1

ε2 x113 x114 x123 x124
-0.04 −1.015689989 −1.015690021 −1.015690011 −1.015689979

-0.02 −1.010849990 −1.010850019 −1.010850010 −1.010849981

0.02 −1.006069993 −1.006070013 −1.006070007 −1.006069987

0.04 −1.005049994 −1.005050011 −1.005050006 −1.005049989

The effect of small perturbation in the centrifugal force on the position of the collinear equilibrium
points L1

1, L
2
1, L

1
2, L

2
2, L1

3 and L2
3 are calculated for the different values of ε2 = −0.04, −0.02,
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Table 2. The abscissae of the collinear equilibrium points L1
2

(
(x213 , 0), (x214 , 0)

)
and L2

2

(
(x223 , 0), (x224 , 0)

)
about

L2 for the Earth-22 Kalliope-dual satellite system

L1
2 L2

2

ε2 x213 x214 x223 x224
-0.04 −0.9949379942 −0.9949380112 −0.9949380058 −0.9949379888

-0.02 −0.9939249933 −0.9939250130 −0.9939250067 −0.9939249870

0.02 −0.9893629904 −0.9893630185 −0.9893630096 −0.9893629815

0.04 −0.9850039894 −0.9850040206 −0.9850040106 −0.9850039794

Table 3. The abscissae of the collinear equilibrium points L1
3

(
(x313 , 0), (x314 , 0)

)
and L2

3

(
(x323 , 0), (x324 , 0)

)
about

L3 for the Earth-22 Kalliope-dual satellite system

L1
3 L2

3

ε2 x313 x314 x323 x324
-0.04 1.0137000120 1.0136999770 1.0136999880 1.0137000230

-0.02 1.0067600120 1.0067599770 1.0067599880 1.0067600230

0.02 0.9934210116 0.9934209776 0.9934209884 0.9934210224

0.04 0.9870120115 0.9870119777 0.9870119885 0.9870120223

Table 4. The positions of the non-collinear equilibrium points Lp
4

(
(x4p3 , y4p3 ), (x4p4 , y4p4 )

)
, p = 1, 2, 3, 4 about L4 for

the Earth-22 Kalliope-dual satellite system

ε2 (x4p3 , y4p3 ) (x4p4 , y4p4 )

-0.04 (x413 , y413 ) (−0.4999990059, 0.8814209898) (x414 , y414 ) (−0.4999990114, 0.8814209802)

(x423 , y423 ) (−0.4999989941, 0.8814210102) (x424 , y424 ) (−0.4999998986, 0.8814210198)

(x433 , y433 ) (∗, ∗) (x434 , y434 ) (∗, ∗)
(x443 , y443 ) (∗, ∗) (x444 , y444 ) (∗, ∗)

-0.02 (x413 , y413 ) (−0.4999990059, 0.8737229898) (x414 , y414 ) (−0.4999990114, 0.8737229803)

(x423 , y423 ) (−0.4999989941, 0.8737230102) (x424 , y424 ) (−0.4999989886, 0.8737230197)

(x433 , y433 ) (∗, ∗) (x434 , y434 ) (∗, ∗)
(x443 , y443 ) (∗, ∗) (x444 , y444 ) (∗, ∗)

0.02 (x413 , y413 ) (−0.4999990058, 0.8583269900) (x414 , y414 ) (−0.4999990112, 0.8583269805)

(x423 , y423 ) (−0.4999989942, 0.8583270100) (x424 , y424 ) (−0.4999989888, 0.8583270195)

(x433 , y433 ) (−0.4999988659, 0.8583269226) (x434 , y434 ) (−0.4999987400, 0.8583268499)

(x443 , y443 ) (−0.4999991341, 0.8583270774) (x444 , y444 ) (−0.4999992600, 0.8583271501)

0.04 (x413 , y413 ) (−0.4999990058, 0.8506289900) (x414 , y414 ) (−0.4999990112, 0.8506289807)

(x423 , y423 ) (−0.4999989942, 0.8506290100) (x424 , y424 ) (−0.4999989888, 0.8506290193)

(x433 , y433 ) (−0.4999988935, 0.8506289385) (x434 , y434 ) (−0.4999987935, 0.8506288808)

(x443 , y443 ) (−0.4999991065, 0.8506290615) (x444 , y444 ) (−0.4999992065, 0.8506291192)

0.02 and 0.04, that are shown in Tables 1, 2 and 3. It is observed that, the small perturbation in
centrifugal force has a substantial effect on the position of the collinear equilibrium points. On the
increasing values of ε2 from −0.04 to 0.04, the abscissae of four collinear equilibrium points L1

1,
L2
1, L1

2 and L2
2 increase, whereas the abscissae of remaining collinear equilibrium points L1

3 and L2
3

decrease.

Furthermore, we study the effect of small perturbation in centrifugal force on the position of the
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Table 5. The positions of the non-collinear equilibrium points Lp
5

(
(x5p3 , y5p3 ), (x5p4 , y5p4 )

)
, p = 1, 2, 3, 4 about L5 for

the Earth-22 Kalliope-dual satellite system

ε2 (x5p3 , y5p3 ) (x5p4 , y5p4 )

-0.04 (x513 , y513 ) (−0.4999989941,−0.8814210102) (x514 , y514 ) (−0.4999998986,−0.8814210198)

(x523 , y523 ) (−0.4999990059,−0.8814209898) (x524 , y524 ) (−0.4999990114,−0.8814209802)

(x533 , y533 ) (∗, ∗) (x534 , y534 ) (∗, ∗)
(x543 , y543 ) (∗, ∗) (x544 , y544 ) (∗, ∗)

-0.02 (x513 , y513 ) (−0.4999989941,−0.8737230102) (x514 , y514 ) (−0.4999989886,−0.8737230197)

(x523 , y523 ) (−0.4999990059,−0.8737229898) (x524 , y524 ) (−0.4999990114,−0.8737229803)

(x533 , y533 ) (∗, ∗) (x534 , y534 ) (∗, ∗)
(x543 , y543 ) (∗, ∗) (x544 , y544 ) (∗, ∗)

0.02 (x513 , y513 ) (−0.4999989942,−0.8583270100) (x514 , y514 ) (−0.4999989888,−0.8583270195)

(x523 , y523 ) (−0.4999990058,−0.8583269900) (x524 , y524 ) (−0.4999990112,−0.8583269805)

(x533 , y533 ) (−0.4999991341,−0.8583270774) (x534 , y534 ) (−0.4999992600,−0.8583271501)

(x543 , y543 ) (−0.4999988659,−0.8583269226) (x544 , y544 ) (−0.4999987400,−0.8583268499)

0.04 (x513 , y513 ) (−0.4999989942,−0.8506290100) (x514 , y514 ) (−0.4999989888,−0.8506290193)

(x523 , y523 ) (−0.4999990058,−0.8506289900) (x524 , y524 ) (−0.4999990112,−0.8506289807)

(x533 , y533 ) (−0.4999991065,−0.8506290615) (x534 , y534 ) (−0.4999992065,−0.8506291192)

(x543 , y543 ) (−0.4999988935,−0.8506289385) (x544 , y544 ) (−0.4999987935,−0.8506288808)

eight non-collinear equilibrium points Lp4, Lp5, p = 1, 2, 3, 4. From Tables 4 and 5, we observe that
the small perturbation in centrifugal force has a substantial effect on the number and position of
non-collinear equilibrium points. For ε2 = −0.04 and −0.02, only four non-collinear equilibrium
points exist, two aroundL4 and two aroundL5. However, for ε2 = 0.02 and 0.04 eight non-collinear
equilibrium points exist, four around L4 and four around L5. In Tables 4 and 5, (∗, ∗) represents
the non-collinear equilibrium point does not exist for the corresponding values of ε2.

Table 6. The stability of the equilibrium points L1,2
1 , L1,2

2 , L1,2
3 , Lp

4,5, p = 1, 2, 3, 4 for the Earth-22 Kalliope-dual
satellite system

ε1 → −0.2 −0.1 +0.1 +0.2
ε2 ↓
−0.04 unstable unstable unstable unstable
−0.02 unstable unstable unstable unstable
+0.02 unstable unstable unstable unstable
+0.04 unstable unstable unstable unstable

We have also checked the linear stability of the equilibrium points for the Earth-22 Kalliope-dual
satellite system. The stability of the equilibrium points is influenced by both the parameters ε1 and
ε2. We have determined the roots of the characteristic equation (20) at all the equilibrium points
for a considered set of values of ε1 and ε2. It is observed that for all the equilibrium points, there
always exist a positive real root for the combinations of ε1 = −0.2,−0.1, 0.1, 0.2 and ε2 = −0.04,
−0.02, 0.02, 0.04. It means all the equilibrium points are unstable, that is shown in Table 6.
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5.1. Zero velocity curves

This section is devoted to the study of the permissible regions of motion of the infinitesimal body.
To do so, first we find the Jacobian integral corresponding to Equations (1), that is, obtained as

C = 2Ω (x3, y3, z3, x4, y4, z4)−
4∑
j=3

µj
(
ẋ2j + ẏ2j + ż2j

)
, (22)

where C is the Jacobian constant.

The zero velocity curves are the projection of the zero velocity surfaces onto the xy-plane. These
curves are obtained by 2Ω (x3, y3, x4, y4) = C. The effect of small perturbation ε2 in the centrifugal
force on the Jacobian constant C is determined for the Earth-22 Kalliope-dual satellite system, that
is given in Table 7. In this model, the function Ω is dependent on four variables x3, y3, x4 and y4.
First, we fix the position of the infinitesimal body S4(−0.9850040206, 0) to study the regions of
motion of S3 in two dimensional. In Figure 3, the zero velocity curves are plotted for the Earth-22
Kalliope-dual satellite system and fixed value of ε2 = 0.04. We investigate the effect of Jacobian
constant on the regions of motion of the infinitesimal body S3. In Figure 3, the region with light
blue color is the permissible region and the white region is corresponding to the forbidden region.

Table 7. The Jacobian constant evaluated at the equilibrium points for the Earth-22 Kalliope-dual satellite system

Equilibrium points ε2 = −0.04 ε2 = −0.02 ε2 = +0.02 ε2 = +0.04

L1
1, L

2
1 3.56799× 10−22 3.59274× 10−22 3.64174× 10−22 3.66612× 10−22

L1
2, L

2
2 3.56967× 10−22 3.59352× 10−22 3.64098× 10−22 3.66448× 10−22

L1
3, L

2
3 3.56777× 10−22 3.59238× 10−22 3.6406× 10−22 3.66424× 10−22

L1
4, L

2
4, L

1
5, L2

5 3.56777× 10−22 3.59237× 10−22 3.6406× 10−22 3.66424× 10−22

L3
4, L

4
4, L

3
5, L4

5 · · · · · · · · · · · · 3.6406× 10−22 3.66424× 10−22

In Figure 3 panel (a), the zero velocity curves are plotted for C = 4.979×10−22 and it is observed
that a circular region (with light blue color) is formed around the primarym1 in which the infinites-
imal body can move. All the equilibrium points and less massive primarym2 lie in the white region
in which the infinitesimal body can not move. The zoomed portions of the equilibrium points are
shown in panels (g), (h), (i), (j) and (k). The positions of the infinitesimal bodies S3 and S4 are
shown by solid diamond with black and magenta color respectively. Further, on decreasing the
value of C = 4.243×10−22 (in panel (b)), a circular strip (with white color) is formed that consists
of m2 and fourteen equilibrium points. The circular region around m1 increases, but the infinitesi-
mal body can not move from one primary to other primary. In panel (c), we takeC = 4.125×10−22

and observe that the permissible regions increase, but the infinitesimal body can not move from
m1 to other places.

Furthermore, panel (d) is drawn for C = 3.7524× 10−22 and noticed that the size of circular strip
(with white color) decrease. However the connectivity between the primary bodies is not possible.
On further decreasing the value of the Jacobian constant C = 3.67810 × 10−22 in panel (e), we
observe that the permissible regions of motion increase. In the last panel (f), the zero velocity
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Figure 3. The zero velocity curves for the Earth-22 Kalliope-dual satellite system when ε2 = 0.04 and different values
of Jacobian constant (a) C = 4.979 × 10−22 (b) C = 4.243 × 10−22 (c) C = 4.125 × 10−22 (d) C =
3.7524 × 10−22 (e) C = 3.67810 × 10−22 (f) C = 3.66424 × 10−22. (g) The zoomed region of L1,2

1 .
(h) The zoomed region of L1,2

2 . (i) The zoomed region of L1,2
3 . (j) The zoomed region of L1,2,3,4

4 . (k) The
zoomed region of L1,2,3,4

5 . The positions of S3 and S4 are shown by solid diamond with black and magenta
color respectively. The light blue region represents the permissible region, while the white region represents
the forbidden region.

curves are drawn for C = 3.66424 × 10−22 and we observe that the forbidden region disappears
and infinitesimal body can move anywhere in whole xy−plane.
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6. Discussion

In this paper, we have studied the combined effects of straight segment and small perturbations in
the Coriolis and centrifugal forces on the existence and linear stability of the equilibrium points in
the restricted problem of 2 + 2 bodies. We have obtained fourteen equilibrium points L1,2

1 , L1,2
2 ,

L1,2
3 , L1,2,3,4

4 and L1,2,3,4
5 , six collinear and eight non-collinear for the present model. In the absence

of infinitesimal body S4, the present model has five equilibrium points Lk, k = 1, 2, 3, 4, 5. The
equilibrium points L1, L2 and L3 are collinear, while L4 and L5 are non-collinear with the centers
of the primaries S1 and S2. The collinear equilibrium points L1

1 and L2
1 lie in the vicinity of the

collinear equilibrium point L1. For the equilibrium point L1
1, the infinitesimal body S3 lies in the

right side of L1, and S4 lies in the left side of L1. However, in the case of equilibrium point L2
1, the

infinitesimal body S3 lies in the left side of L1, and S4 lies in the right side of L1. Similarly, the
equilibrium points L1

2, L
2
2 and L1

3, L
2
3 lies around the equilibrium points L2 and L3 respectively. The

non-collinear equilibrium points L1,2,3,4
4 and L1,2,3,4

5 lies in the neighborhood of the non-collinear
equilibrium points L4 and L5. All the equilibrium points are influenced by the length, mass and
small perturbation in centrifugal force parameters. The linear stability analysis of the equilibrium
points is also performed, and it is observed that the stability of the equilibrium points depends on
the small perturbations in Coriolis and centrifugal forces, length and mass parameters.

The present model is applied to the Earth-22 Kalliope-dual satellite system including the effect of
small perturbations in Coriolis and centrifugal force. We have observed that the small perturbation
in the centrifugal force has a substantial effect on the existence and position of the equilibrium
points, whereas the small perturbation in the Coriolis force has no impact on them. We have cal-
culated the effect of small perturbation in the centrifugal force on the position of the collinear
equilibrium points for the different values of ε2 = −0.04, −0.02, 0.02 and 0.04 and are shown in
Tables 1, 2 and 3. It is noticed that, on the increasing values of ε2 from−0.04 to 0.04, the abscissae
of four collinear equilibrium points L1

1, L
2
1, L1

2 and L2
2 increase, whereas the abscissae of remain-

ing collinear equilibrium points L1
3 and L2

3 decrease. Further, we have calculated the effect of small
perturbation in the centrifugal force on the existence and positions of the non-collinear equilibrium
points. From Tables 4 and 5, it is observed that for ε2 = −0.04 and −0.02, only four non-collinear
equilibrium points exist, but for ε2 = 0.02 and 0.04, eight non-collinear equilibrium points exist.

For the Earth-22 Kalliope-dual satellite system, the stability of the equilibrium points is also per-
formed. The stability of the equilibrium points depends on both the parameters ε1 and ε2. Therefore,
we have considered a set of values of ε1 and ε2 in their ranges to check the stability, that is shown
in Table 6. We observe that for all the equilibrium points and the combinations of the values of
ε1 = −0.2, −0.1, 0.1, 0.2 and ε2 = −0.04, −0.02, 0.02, 0.04, there always exist one positive real
root of the characteristic equation, which implies the instability of the equilibrium points. The zero
velocity curves of the infinitesimal body S3 for a known value of S4 for the Earth-22 Kalliope-dual
satellite system are are studied. It is observed that the Jacobian constant increases, as we increase
the small perturbation ε2 in centrifugal force. The zero velocity curves are drawn for a fixed value
of ε2 = 0.04 and it is concluded that on decreasing the value of C, the permissible regions of
motion increase, whereas the forbidden regions of motion decrease.
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Our results are different from classical case of the restricted three-body problem (Szebehely
(1967b)) in which five points of equilibrium exist. If we neglect the effect of perturbations in
the Coriolis and centrifugal forces, the results of Kumar et al. (2020) can be obtained. The results
of Whipple (1984) can be obtained by taking ε1 = 0, ε2 = 0 and l = 0 in the present analysis.

7. Conclusion

The effect of small perturbations in the Coriolis and centrifugal forces on the existence and linear
stability of the equilibrium points in the restricted 2 + 2 body problem has been investigated.
Fourteen equilibrium points are obtained for the present model. It is observed that, the position of
the equilibrium points are influenced by the length parameter, mass parameters and perturbation in
the centrifugal force parameter. Whereas, the stability of the equilibrium points is affected by the
small perturbations in Coriolis and centrifugal forces, length and mass parameters. The position of
the equilibrium points and their stability are evaluated numerically for the Earth-22 Kalliope-dual
satellite system. The zero velocity curves are drawn and it is observed that on decreasing the value
of Jacobian constant, the permissible regions of motion increase, while the forbidden regions of
motion decrease. It is also noticed that the Jacobian constant increases, as we increase the small
perturbation in centrifugal force.
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