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Abstract

In this paper, we introduce and study the existence and uniqueness theorem of the solution for
the fractional Newell-Whitehead-Segel equation within Caputo-Fabrizio fractional operator. Also,
we propose a new numerical method known as natural reduced differential transform method
(NRDTM) for solving this equation. We confirm our theoretical discussion with two numerical
examples in order to achieve the validity and accuracy of the proposed method. The computations,
associated with these examples, are performed by MATLAB software package.

Keywords: Newell-Whitehead-Segel equation; Caputo-Fabrizio fractional operator; Existence
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1. Introduction

Many researchers have paid attention to study the solutions of the Newell-Whitehead-Segel equa-
tion because it is one of the most important nonlinear partial differential equations that arise nat-
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urally in a number of physical applications, including fluid mechanics, solid-state physics, semi-
conductor physics, nonlinear optics, plasma physics, convection system, relativistic field theory,
and classical mechanics (Hilal et al. (2020), Latif et al. (2020), Mahgoub (2016), Manaa (2011),
Patade et al. (2015), Prakash et al. (2016)).

Recently, the subject of fractional calculus, that is, the theory of integrals and derivatives of any real
or complex arbitrary order, has gained considerable popularity and importance, mainly due to its
applications in diverse fields of science and engineering. The nonlinear partial differential equation
can be modeled with fractional derivatives. Therefore, many definitions of fractional derivatives
have been proposed and used to develop mathematical models for a wide variety of real world
systems (Abu Arqub (2018), Abu Arqub (2019), Abu Arqub et al. (2019), Abu Arqub et al. (2021a),
Abu Arqub et al. (2021b), Ardjouni (2019), Chandola et al. (2021), Djennadi et al. (2021), Hosseini
et al. (2021a), Hosseini et al. (2021b), Owolabi (2018a), Owolabi (2018b), Younus et al. (2020)).

The aim of this study is to prove the existence and uniqueness of the solution for the fractional
Newell-Whitehead-Siegel equation and to use a new numerical method called the natural reduced
differential transform method (NRDTM) to get an approximate analytical solution to this equation.

The NRDTM is one of the important numerical methods for obtaining approximate analytical so-
lutions of fractional partial differential equations. The properties of this method are the ability to
combine two different methods: the natural transform method and the reduced differential trans-
form, as well as to provide an approximate solution in the form of a rapidly converging series with
easily computable components and without the need for linearization, discretization, perturbation
or any other restriction.

The rest of the paper is arranged as follows. The main results of the existence and uniqueness of
the solution for the fractional Newell-Whitehead-Segel equation are presented in Section 2. The
fundamental idea of the NRDTM to solve the considered equation is defined in Section 3. The
convergence analysis of the NRDTM is illustrated in Section 4. The performance and efficiency of
the proposed method are demonstrate by solving two important examples in Section 5. Finally, the
conclusion and some important results of the paper are presented in Section 6.

2. Existence and uniqueness results

In this section, we aim to demonstrate the existence and uniqueness of the solution for fractional
Newell-Whitehead-Segel equation within Caputo-Fabrizio fractional operator in the following
form,

Dαt u = auxx + bu− cup, (1)

with the initial condition

u(x, 0) = u0(x), (2)

where Dαt is the Caputo-Fabrizio fractional operator of order 0 < α ≤ 1, a, b and c are real
constants with a, c > 0, p is a positive integer and u = {u(x, t), x ∈ R, t > 0} .
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We transform Equation (1) by applying the Caputo-Fabrizio fractional integral (Losada et al.
(2015)), to obtain

u(x, t)− u(x, 0) = Iα (auxx + bu− cup) . (3)

Equivalently,

u(x, t)− u(x, 0) = 2(1− α)
(2− α)M(α)

(auxx + bu− cup)

+
2α

(2− α)M(α)

t∫
0

(auxx + bu− cup) dτ. (4)

Theorem 2.1.

K(x, t, u, a, b, c, p) satisfy the Lipschitz condition and is contraction if the following inequality

0 < aL2
1 + b+ cpλp−1 ≤ 1, (5)

where

K(x, t, u, a, b, c, p) = auxx + bu− cup. (6)

Proof:

Let u and v be two bounded functions. From Equation (6) and triangular inequality, we have

‖K(x, t, u, a, b, c, p)−K(x, t, v, a, b, c, p)‖ ≤ a ‖uxx − vxx‖+ b ‖u− v‖+ c ‖vp − up‖
≤ a ‖∂xx (u− v)‖+ b ‖u− v‖+ c ‖vp − up‖ . (7)

Because of the assumption that u and v are bounded, there is a positive constant λ1, λ2 > 0 such
that for all (x, t), ‖u‖ ≤ λ1 and ‖v‖ ≤ λ2.

Let λ = max{λ1, λ2}. Then, their first order derivative function ∂x satisfies the Lipschitz condition
and there is a number L1 ≥ 0 such that

‖K(x, t, u, a, b, c, p)−K(x, t, v, a, b, c, p)‖ ≤ aL2
1 ‖u− v‖+ b ‖u− v‖+ cpλp−1 ‖v − u‖

≤ (aL2
1 + b+ cpλp−1) ‖u− v‖ . (8)

Taking L = aL2
1 + b+ cpλp−1, we get

‖K(x, t, u, a, b, c, p)−K(x, t, v, a, b, c, p)‖ ≤ L ‖u− v‖ . (9)

Therefore, K(x, t, u, a, b, c, p) satisfy the Lipschitz condition and if 0 < L ≤ 1, then it is a con-
traction, and the theorem is proved. �

Now we can state the main result.
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Theorem 2.2.

If the following condition is provided,

2(1− α)L
(2− α)M(α)

+
2αLt

(2− α)M(α)
< 1, (10)

then, the fractional Newell-Whitehead-Segel equation (1) with the initial condition (2) admits a
unique solution that is continuous.

Proof:

To prove it, using the expression (6), we consider Equation (4),

u(x, t)− u(x, 0) = 2(1− α)
(2− α)M(α)

K(x, t, u, a, b, c, p)

+
2α

(2− α)M(α)

t∫
0

K(x, t, u, a, b, c, p)dτ, (11)

which suggest the following recurrence formula,

u0(x, 0) = u(x, 0) = u0(x), (12)

un(x, t) =
2(1− α)

(2− α)M(α)
K(x, t, un−1, a, b, c, p) +

2α

(2− α)M(α)

t∫
0

K(x, t, un−1, a, b, c, p)dτ.

Let

ũ(x, t) = lim
n−→∞

un(x, t). (13)

Our aim now is to show that ũ(x, t) = u(x, t) is a solution that is continuous. To this end, let us set

Un(x, t) = un(x, t)− un−1(x, t). (14)

It is clear that

un(x, t) =
n∑

m=0

Un(x, t). (15)

In addition, in more detail way, we have

Un(x, t) =
2(1− α)

(2− α)M(α)
(K(x, t, un−1, a, b, c, p)−K(x, t, un−2, a, b, c, p))

+
2α

(2− α)M(α)

t∫
0

(K(x, t, un−1, a, b, c, p)−K(x, t, un−2, a, b, c, p)) dτ. (16)
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Taking the norm on both sides of Equation (16) and triangular inequality gives

‖Un(x, t)‖ = ‖un(x, t)− un−1(x, t)‖

≤ 2(1− α)
(2− α)M(α)

‖K(x, t, un−1, a, b, c, p)−K(x, t, un−2, a, b, c, p)‖

+
2α

(2− α)M(α)

∥∥∥∥∥∥
t∫

0

K(x, t, un−1, a, b, c, p)−K(x, t, un−2, a, b, c, p)dτ

∥∥∥∥∥∥
≤ 2(1− α)

(2− α)M(α)
‖K(x, t, un−1, a, b, c, p)−K(x, t, un−2, a, b, c, p)‖

+
2α

(2− α)M(α)

t∫
0

‖K(x, t, un−1, a, b, c, p)−K(x, t, un−2, a, b, c, p)‖ dτ. (17)

Using Theorem 2.1 yields

‖Un(x, t)‖ ≤
2(1− α)

(2− α)M(α)
L ‖un−1 − un−2‖+

2α

(2− α)M(α)
L

t∫
0

‖un−1 − un−2‖ dτ, (18)

which is equivalent to

‖Un(x, t)‖ ≤
2(1− α)

(2− α)M(α)
L ‖Un−1(x, t)‖+

2α

(2− α)M(α)
L

t∫
0

‖Un−1(x, t)‖ dτ. (19)

The recursive principle applied to Equation (19) gives

‖Un(x, t)‖ ≤
[(

2(1− α)L
(2− α)M(α)

)n
+

(
2αLt

(2− α)M(α)

)n]
u(x, 0), (20)

which proves that the solution exists and is continuous.

To prove that

u(x, t) = lim
n−→∞

un(x, t), (21)

is the solution of Equations (1) and (2), we let

Vn(x, t) = ũ(x, t)− un(x, t), n ∈ N. (22)

Consequently, from (13), the difference Vn(x, t) between ũ(x, t) and un(x, t) should tend to zero
as n −→∞. Indeed,

ũ(x, t)− un(x, t) =
2(1− α)

(2− α)M(α)
(K(x, t, u, a, b, c, p)−K(x, t, un, a, b, c, p))

+
2α

(2− α)M(α)

t∫
0

(K(x, t, u, a, b, c, p)−K(x, t, un, a, b, c, p)) dτ. (23)
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Using Theorem 2.1, we obtain

‖ũ(x, t)− un(x, t)‖ ≤
2(1− α)

(2− α)M(α)
‖K(x, t, u, a, b, c, p)−K(x, t, un, a, b, c, p)‖

+
2α

(2− α)M(α)

t∫
0

‖K(x, t, u, a, b, c, p)−K(x, t, un, a, b, c, p)‖ dτ

≤ 2(1− α)L
(2− α)M(α)

‖u− un‖+
2αL

(2− α)M(α)
‖u− un‖

t∫
0

dτ

≤ 2(1− α)L
(2− α)M(α)

‖Vn‖+
2αLt

(2− α)M(α)
‖Vn‖ . (24)

So indeed, when n −→∞, then Vn −→ 0, and the right hand side gives

lim
n−→∞

un(x, t) = ũ(x, t). (25)

With the above, we can take u(x, t) = ũ(x, t) as a solution to the Equations (1) and (2) that is
continuous. In reality,

u(x, t) − 2(1− α)
(2− α)M(α)

K(x, t, u, a, b, c, p)− 2α

(2− α)M(α)

t∫
0

K(x, t, u, a, b, c, p)dτ

= Vn(x, t) +
2(1− α)

(2− α)M(α)
(K(x, t, un−1, a, b, c, p)−K(x, t, u, a, b, c, p))

+
2α

(2− α)M(α)

t∫
0

(K(x, t, un−1, a, b, c, p)−K(x, t, u, a, b, c, p)) dτ, (26)

hence, the application of the Lipschitz condition to K, we have∥∥∥∥∥∥u(x, t)− 2(1− α)
(2− α)M(α)

K(x, t, u, a, b, c, p)− 2α

(2− α)M(α)

t∫
0

K(x, t, u, a, b, c, p)dτ

∥∥∥∥∥∥
≤ ‖Vn(x, t)‖+

[
2(1− α)L

(2− α)M(α)
+

2αLt

(2− α)M(α)

]
‖Vn−1(x, t)‖ . (27)

Taking the limit when n −→∞ and considering the initial condition, we have

u(x, t) = u(x, 0) +
2(1− α)

(2− α)M(α)
K(x, t, u, a, b, c, p)

+
2α

(2− α)M(α)

t∫
0

K(x, t, u, a, b, c, p)dτ. (28)
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Finally, for the uniqueness, we consider u and v be two different solutions to the Equations (1) and
(2). Then, the Lipschitz condition for K gives

‖u(x, t)− v(x, t)‖ ≤ 2(1− α)L
(2− α)M(α)

‖u(x, t)− v(x, t)‖

+
2αLt

(2− α)M(α)
‖u(x, t)− v(x, t)‖ . (29)

This leads to

‖u(x, t)− v(x, t)‖
(
1− 2(1− α)L

(2− α)M(α)
− 2αLt

(2− α)M(α)

)
≤ 0. (30)

Therefore, ‖u(x, t)− v(x, t)‖ = 0, if

2(1− α)L
(2− α)M(α)

− 2αLt

(2− α)M(α)
< 1, (31)

and the theorem is proved. �

3. Fundamental idea of the NRDTM

In this section, we consider the fractional Newell-Whitehead-Segel equation within Caputo-
Fabrizio fractional operator in order to demonstrate the fundamental idea of the NRDTM.

Theorem 3.1.

Consider the fractional Newell-Whitehead-Segel equation (1) with the initial condition (2). Then,
the NRDTM-solution of equations (1) and (2) is given in the form of infinite series as follows,

u(x, t) =
∞∑
k=0

Uk(x), (32)

where Uk(x) is the reduced differential transformed function of u(x, t).

Proof:

To prove it, we consider the fractional Newell-Whitehead-Segel equation (1) with the initial con-
dition (2).

Take the natural transform on two sides of (1) and using the natural transform of the Caputo-
Fabrizio fractional derivative (Zhou et al. (2021)) to get

N+ [u] =
1

s
u0(x) +

s− α(s− v)
s

N+ [auxx + bu− cup] . (33)

Then, we apply the inverse natural transform on two sides of (33), and we have

u = u0(x) +N−1
(
s− α(s− v)

s
N+ [auxx + bu− cup]

)
. (34)
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Now, we apply the reduced differential transform method (Keskin et al. (2009)) to Equation (34).
We get the following recurrence relation,

U0(x) = u0(x), (35)

Uk+1(x) = N−1
(
s− α(s− v)

s
N+

[
a
∂2

∂x2
Uk(x) + bUk(x)− cAk(x)

])
, (36)

where Ak(x) is transformed form of the nonlinear terms up.

The first nonlinear terms are as follows,

A0 = Up
0 , (37)

A1 = pUp−1
0 U1, (38)

A2 = pUp−1
0 U2 +

p(p− 1)

2!
Up−2
0 U2

1 , (39)

A3 = pUp−1
0 U3 + p(p− 1)Up−2

0 U1U2 +
p(p− 1)(p− 2)

3!
Up−3
0 U3

1 , (40)

...

and so on.

From Equations (35) and (36), we have

U0(x) = u0(x), (41)

U1(x) = N−1
(
s− α(s− v)

s
N+

[
a
∂2

∂x2
U0(x) + bU0(x)− cA0(x)

])
, (42)

U2(x) = N−1
(
s− α(s− v)

s
N+

[
a
∂2

∂x2
U1(x) + bU1(x)− cA1(x)

])
, (43)

U3(x) = N−1
(
s− α(s− v)

s
N+

[
a
∂2

∂x2
U2(x) + bU2(x)− cA2(x)

])
, (44)

U4(x) = N−1
(
s− α(s− v)

s
N+

[
a
∂3

∂x3
U3(x) + bU3(x)− cA3(x)

])
, (45)

...

and so on.

Hence, the NRDTM-solution of Equations (1) and (2) is given as

u(x, t) =
∞∑
k=0

Uk(x). (46)

The proof is complete. �

4. Convergence analysis of the NRDTM

In this section, we study the convergence of the NRDTM when it is used in Equations (1) and (2).
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Theorem 4.1.

The series solution
∞∑
k=0

Uk(x), given in Equation (32), converges if ∃0 < δ < 1 such that

‖Uk+1‖ ≤ δ ‖Uk‖ ,∀k ∈ N∪{0} . (47)

Proof:

Let (C[l], ‖ . ‖) be the Banach space of all continuous functions on l with the norm ‖Uk(x)‖. Also
assume that ‖U0(x)‖ < η0, where η0 is a positive number. Define the sequence of partial sums
{Sn}∞n=0 as

Sn = U0 + U1 + U2 + ...+ Un. (48)

We want to prove that {Sn}∞n=0 is a Cauchy sequence in this Banach space. To achieve this goal,
we take

‖Sn+1 − Sn‖ = ‖Un+1‖ ≤ δ ‖Un‖ ≤ δ2 ‖Un−1‖ ≤ ... ≤ δn+1 ‖U0‖ ≤ δn+1η0. (49)

For every n,m ∈ N, n ≥ m, we get

‖Sn − Sm‖ = ‖(Sn − Sn−1) + (Sn−1 − Sn−2) + ...+ (Sm+1 − Sm)‖
≤ ‖(Sn − Sn−1)‖+ ‖(Sn−1 − Sn−2)‖+ ...+ ‖(Sm+1 − Sm)‖
≤ δn ‖U0‖+ δn−1 ‖U0‖+ ...+ δm+1 ‖U0‖
≤
(
δn−m−1 + δn−m−2 + ...+ 1

)
δm+1 ‖U0‖

≤
(
1− δn−m

1− δ

)
δm+1 ‖U0‖ , (50)

and because 0 < δ < 1, we get

lim
n,m→∞

‖Sn − Sm‖ = 0. (51)

Therefore, {Sn}∞n=0 is a Cauchy sequence in the Banach space (C[l], ‖ . ‖). Then, the series

solution
∞∑
k=0

Uk(x), defined in Equation (32), converges and completes the proof. �

If the series
∞∑
k=0

Uk(x) converges then it is an exact solution of the fractional Newell-Whitehead-

Segel equation (1).

Theorem 4.2.

Suppose that the series solution
∞∑
k=0

Uk(x), converges to the solution u(x, t). If the truncated series
m∑
k=0

Uk(x) is used as an approximation to the solution u(x, t), then the maximum absolute truncated

9
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error is computed as ∥∥∥∥∥u(x, t)−
m∑
k=0

Uk(x)

∥∥∥∥∥ ≤ 1

1− δ
δm+1 ‖U0‖ . (52)

Proof:

According to Theorem (4.1), by following the inequality equation (50), we have

‖Sn − Sm‖ ≤
(
1− δn−m

1− δ

)
δm+1 ‖U0‖ , (53)

for n ≥ m. Also, since 0 < δ < 1, we have 1− δn−m < 1, therefore, the inequality equation (53)
can be changed to

‖Sn − Sm‖ ≤
1

1− δ
δm+1 ‖U0‖ . (54)

It is evident when n→∞, Sn → u(x, t). Thus, the inequality equation (52) is obtained.

This completes the proof. �

5. Examples

In this section, we discuss two important examples to demonstrate the performance and efficiency
of the NRDTM.

Example 5.1.

Consider the following linear fractional Newell-Whitehead-Segel equation

Dαt u = uxx − 2u, (55)

with the initial condition

u(x, 0) = ex, (56)

where Dαt is the Caputo-Fabrizio fractional operator of order 0 < α ≤ 1.

For α = 1, the exact solution of Equations (55) and (56) is (Latif et al. (2020))

u(x, t) = ex−t.

Following the description of the NRDTM presented in Section 3, the following recurrence relation
is obtained

U0(x) = ex, (57)

Uk+1(x) = N−1
(
s− α(s− v)

s
N+

[
∂2

∂x2
Uk(x)− 2Uk(x)

])
. (58)
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904 A. Khalouta

From Equations (57) and (58), we obtain

U0(x) = ex, (59)
U1(x) = −ex (1− α + αt) , (60)

U2(x) = ex
(
(1− α)2 + 2α(1− α)t+ α2 t

2

2!

)
, (61)

U3(x) = −ex
(
(1− α)3 + 3α(1− α)2t+ 3α2(1− α)t

2

2!
+ α3 t

3

3!

)
, (62)

...

and so on.

So, the NRDTM-solution of Equations (55) and (56) is given by

u(x, t) =
∞∑
k=0

Uk(x) = U0(x) + U1(x) + U2(x) + U3(x) + ... (63)

In particular when α→ 1, we get the solution in the form

u(x, t) = ex
(
1− t+ t2

2!
− t3

3!
+ ...

)
, (64)

which converge rapidly to the exact solution

u(x, t) = ex−t. (65)
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Figure 1. 3D Plots graphs of the 4−term NRDTM-approximate solutions and exact solution for Equations (55) and (56)
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Figure 2. 2D Plots graphs of the 4−term NRDTM-approximate solutions and exact solution for Equations (55) and (56)
when x = 1

Table 1. The numerical values of the exact solution and 4−term NRDTM-approximate solutions for different values of
α when x = 1

t α = 0.75 α = 0.85 α = 0.95 α = 1 Exact solution |uexact − uNRDTM |
0.01 2.1521 2.3448 2.5655 2.6912 2.6912 1.1304× 10−9

0.02 2.1382 2.3273 2.5424 2.6645 2.6645 1.8050× 10−8

0.03 2.1242 2.3098 2.5194 2.6379 2.6379 9.1194× 10−8

0.04 2.1104 2.2924 2.4967 2.6117 2.6117 2.8765× 10−7

0.05 2.0965 2.2752 2.4742 2.5857 2.5857 7.0087× 10−7

Example 5.2.

Consider the following nonlinear fractional Newell-Whitehead-Segel equation

Dαt u = uxx + 2u− 3u2, (66)

with the initial condition

u(x, 0) = λ, (67)

where Dαt is the Caputo-Fabrizio fractional operator of order 0 < α ≤ 1.

For α = 1, the exact solution of Equations (66) and (67) is (Latif et al. (2020))

u(x, t) =
−2λe2t

−2 + 3λ(1− e2t)
. (68)

Following the description of the NRDTM presented in Section 3, the following recurrence relation

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 16 [2021], Iss. 2, Art. 7

https://digitalcommons.pvamu.edu/aam/vol16/iss2/7



906 A. Khalouta

is obtained,

U0(x) = λ, (69)

Uk+1(x) = N−1
(
s− α(s− v)

s
N+

[
∂2

∂x2
Uk(x) + 2Uk(x)− 3Ak(x)

])
, (70)

where Ak(x) is transformed form of the nonlinear terms, u2.

From Equations (37)-(40), the first nonlinear terms are given as

A0 = U2
0 , (71)

A1 = 2U0U1, (72)
A2 = 2U0U2 + U2

1 (73)
A3 = 2U0U3 + 2U1U2 (74)

...

and so on.

From Equations (69) and (70), we obtain

U0(x) = λ, (75)
U1(x) = (2λ− 3λ2) (1− α + αt) , (76)

U2(x) = 2(2λ− 3λ2)(1− 3λ)

(
(1− α)2 + 2α(1− α)t+ α2 t

2

2!

)
, (77)

U3(x) = (2λ− 3λ2)
[(
45λ2 − 30λ+ 4

)
(1− α)3 +

(
135λ2 − 90λ+ 12

)
α(1− α)2t

(72λ2 − 48λ+ 6)α2(1− α)t2 + 2(27λ2 − 18λ+ 2)α3 t
3

3!

]
, (78)

...

and so on.

So, the NRDTM-solution of Equations (66) and (67) is given by

u(x, t) =
∞∑
k=0

Uk(x) = U0(x) + U1(x) + U2(x) + U3(x) + ... (79)

In particular when α −→ 1, we get the solution in the form

u(x, t) = λ+(2λ− 3λ2)t+2(2λ− 3λ2)(1− 3λ)
t2

2!
+ 2(2λ− 3λ2)(27λ2− 18λ+2)

t3

3!
+ ... (80)

which converge rapidly to the exact solution

u(x, t) =
−2λe2t

−2 + 3λ(1− e2t)
. (81)

13

Khalouta: Solution for Fractional Newel-Whitehead-Segel Equation

Published by Digital Commons @PVAMU, 2021



AAM: Intern. J., Vol. 16, Issue 2 (December 2021) 907

0
0.5

1

u
(x

,t
)

α=0.9

t x

0.05

0.5
0 0

0.01
0.5

0.02

1

u
(x

,t
)

α=0.95

t x

0.03

0.5
0 0

0.01
0.5

0.02

1

u
(x

,t
)

α=1

t x

0.03

0.5
0 0

0.01
0.5

0.02

1

u
(x

,t
)

Exact solution

t x

0.03

0.5
0 0

Figure 3. 3D Plots graphs of the 4−term NRDTM-approximate solutions and exact solution for Equations (66) and (67)
when λ = 0.01
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Figure 4. 2D Plots graphs of the 4−term NRDTM-approximate solutions and exact solution for Equations (66) and (67)
when λ = 0.01

Table 2. The numerical values of the exact solution and 4−term NRDTM-approximate solutions for different values of
α when λ = 0.01

t α = 0.75 α = 0.85 α = 0.95 α = 1 Exact solution |uexact − uNRDTM |
0.01 0.018850 0.014371 0.011321 0.010199 0.010199 5.2620× 10−11

0.02 0.019252 0.014685 0.011556 0.010402 0.010402 8.4387× 10−10

0.03 0.019659 0.015005 0.011796 0.010609 0.010609 4.2837× 10−9

0.04 0.020071 0.015330 0.012040 0.010819 0.010819 1.3577× 10−8

0.05 0.020488 0.015660 0.012290 0.011034 0.011034 3.3241× 10−8

14

Applications and Applied Mathematics: An International Journal (AAM), Vol. 16 [2021], Iss. 2, Art. 7

https://digitalcommons.pvamu.edu/aam/vol16/iss2/7



908 A. Khalouta

6. Conclusion

This study presents the existence and uniqueness of the solution for the fractional Newell-
Whitehead-Segel equation within Caputo-Fabrizio fractional operator. Moreover, we have devel-
oped NRDTM to obtain approximate solutions of this equation successfully. The approximate
solutions are compared with exact solutions and also with other existing solutions in the literature.
It is observed that the obtained approximate solutions for the first four terms are very precise and
converge very rapidly to the exact solutions. This assures us that the proposed method is reliable,
simple and effective to find approximate solutions of many fractional partial differential equations.
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