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Abstract

In this paper, a novel type of polynomial is defined which is equipped with an auxiliary parameter
a. These polynomials are a combination of the Chebyshev polynomials of the second kind. The
approximate solution of each equation is assumed as the sum of these polynomials, and then,
with the help of the collocation points, the unknown coefficients of each polynomial, as well as
auxiliary parameter, is obtained optimally. Now, by placing the optimal value of a in polynomials,
the polynomials are obtained without auxiliary parameter, which is the restarted step of the present
method. The time discretization is performed on fractional partial differential equations by L1
method. In the following, the convergence theorem of the method is proved.
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882 S. Abbasbandy and J. Hajishafieiha

1. Introduction

Fractional calculus is often considered a branch of mathematical analysis which deals with integral-
differential equations. This branch of mathematics has a nearly 300-year history, which can be
traced back to L’Hopital’s letter to Leibnitz, in which he asked Leibnitz about a non-integer or-
der derivative. Many applications of fractional calculus in various fields of engineering, physics,
medicine, etc., are known and used: nuclear reactor dynamic (Ray (2015)), thermo-elasticity
(Povstenko (2015)), biological tissues (Bueno-Orovio et al. (2014)), El Nino chaotic dynamical
system (Samko et al. (1993)), Ebola epidemic model (Area et al. (2015)), cancer tumor model-
ing (Iyiola and Zaman (2014); Ghanbari et al. (2020)). Fractional calculus is often considered
a branch of mathematical analysis which deals with integral-differential equations. This branch
of mathematics has a nearly 300-year history, which can be traced back to L’Hopital’s letter to
Leibnitz, in which he asked Leibnitz about a non-integer order derivative. Many applications of
fractional calculus in various fields of engineering, physics, medicine, etc., are known and used:
nuclear reactor dynamic (Ray (2015)), thermo-elasticity (Povstenko (2015)), biological tissues
(Bueno-Orovio et al. (2014)), El Nino chaotic dynamical system (Samko et al. (1993)), Ebola
epidemic model (Area et al. (2015)), and cancer tumor modeling (Iyiola and Zaman (2014);
Ghanbari et al. (2020)).

Many analytical and numerical methods have been used to solve fractional differential equations,
including: variational iteration method (Drăgănescu (2006)), neural network method (Anastas-
siou (2018)), reproducing kernel method (Arqub and Momani (2019)), Hermite wavelets meth-
ods (Kumar et al. (2021a)), homotopy analysis method (Ray (2015)), pseudo-spectral method
(Ejlali and Hosseini (2017)), Genocchi polynomials (Kumar et al. (2021b)), Bernstein poly-
nomials (Asgari and Ezzati (2017); Entezari et al. (2019); Mirzaee and Samadyar (2017);
Kumar et al. (2020)), q-transform analysis (Abelman et al. (2017)), and Inverse fractional Shehu
transform method (Khalouta and Kadem (2019)).

In this paper, we present a new method for the numerical solution of the time-space fractional
diffusion equation. A novel type of polynomial is defined which is equipped with an auxiliary
parameter (Abbasbandy (2017)). These polynomials are a combination of the Chebyshev polyno-
mials of the second kind. The approximate solution of each equation is assumed as the sum of
these polynomials and then, with the help of the collocation points, the unknown coefficients of
each polynomial, as well as auxiliary parameter, are obtained optimally. The time discretization is
performed on fractional partial differential equations by the minimization method.

In Section 2, the basic concepts are defined. In Section 3, the Caputo derivative discretization and
the method implementation are explained. The convergence theorems of the method are expressed
along with proof in Section 4. The numerical results of the present method are displayed in two
practical examples in Section 5.
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2. Basic Concepts

Various types of fractional derivatives and integrals have been introduced in mathematics to date,
including: Riemann, Liouville, Riesz, Letnikov, Grünwald, Weyl, Marchaud, and Caputo. In this
paper, the Caputo and Riemann-Liouville fractional derivatives have been used.

In this paper, we present a new method for the numerical solution of the following time-space
fractional diffusion equation (Li and Zeng (2015)):CD

γ
0,tU =

(
L(α)U

)
(x, t) + g(x, t), (x, t) ∈ (a, b)× (0, T ],

U(x, 0) = ϕ0(x), x ∈ (a, b),
U(a, t) = 0, U(b, t) = 0, t ∈ (0, T ],

(1)

where L(α) = c(x, t)RLD
α
a,x+d(x, t)RLD

α
x,b, 0 < γ 6 1, 0 < α < 2 and c, d > 0. Also, CD

γ
0,t is the

Caputo fractional derivative of order α, RLDα
a,x and RLD

α
x,b are the left and right Riemann-Liouville

derivatives of order α (Li and Zeng (2015)).

For solving Equation (1), a novel class of functions, a-polynomials, are used. These functions are
defined as

A0(t) = 1, An(t) = atUn−1(t) + Un(t), n > 1,

where Un is the second kind of Chebyshev polynomial and a is an auxiliary real parameter (see
Abbasbandy (2017), Hajishafieiha and Abbasbandy (2020b), and Hajishafieiha and Abbasbandy
(2020a) for more properties).

3. Method of solution

In this section, we first implement the time discretization scheme by L1 method on Equation (1).
Then, at each point tk, the approximate solution is approximated by the sum of the a-polynomials.
This approximation is obtained by meshing the spatial points at the point tk. In other words, at any
point, tk, a nonlinear equations system is obtained by the collocation method, which by solving the
system, the unknown coefficients in the series of the approximate solution are obtained. Finally, by
interpolating points (xi, tk, u(xi, tk)) with cubic B-spline polynomials, the approximate solution
of the problem is obtained on the domain (a, b)× [0, T ].

3.1. Discretization of time

The approximation of the finite difference for the Caputo derivative by the L1 method is studied
by Li and Zeng (2015). This method is conditionally stable. In this method,

CD
γ
0,tf(t)

∣∣
t=tk

=
k−1∑
j=0

bk−j−1(fj+1 − fj) +O(∆t2−γ), 0 < γ < 1, (2)

where bj = ∆t−γ

Γ(2−γ)

[
(j + 1)1−γ − j1−γ]. To discrete the interval [0, T ], suppose

tk = kτ, k = 0, 1, 2, · · · ,M,

3
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884 S. Abbasbandy and J. Hajishafieiha

where τ = T
M

, T is final time. Using the L1 finite difference method, for time discretization, we
use (2) instead of CD

γ
0,tf(t):

CD
γ
0,tU(t)

∣∣
t=tk

=
k−1∑
j=0

bk−j−1(uj+1 − uj) =L(α)uk+1 + gk+1, (3)

where uk+1 = u(x, tk+1) and gk+1 = g(x, tk+1). Now, for each point tk, a nonlinear equations
system is obtained.

3.2. Method implementation

To implement the proposed method, first uk+1 is approximated as follows:

uk+1 ∼=
N∑
n=0

ck+1
n An(x).

By replacing the above approximation per tk in (3), discretization on the spatial domain [a, b], and
the initial and boundary conditions of this problem, a nonlinear equations system with N +2 equa-
tions and N + 2 unknowns cj+1

n , n = 0, 1, 2, · · · , N and the unknown parameter a are obtained.
To obtain a, we can minimize the L2 norm of the residual in the augmented nonlinear system
by the least squares method. Now we put the parameter a in a-polynomials and then with these
polynomials we repeat the method with one unknown (a) less. Finally, by interpolating points
(xi, tk, u(xi, tk)) with cubic B-spline polynomials, the approximate solution of the problem is ob-
tained on the domain (a, b)× [0, T ].

4. The convergence theorem

Suppose that Λ = [−1, 1] and L2
ω(Λ) be a function Hilbert space with the standard inner product

and ω(t) =
√

1− t2 is positive weight function. Let N be a positive integer. We will consider the
subspace of L2

ω(Λ) by using the second kind of Chebyshev polynomials as

SN = span {U0, U1, . . . , UN} .
We define L2

ω(Λ)-orthogonal projection as follows:

PN : L2
ω(Λ)→ SN ,

(PNv)(t) =
N∑
i=0

ciUi(t),

such that (PNv − v, ϕ)ω = 0, ∀ϕ ∈SN . To estimate ‖PNv − v‖ω, we have the space interpolation:

Hr
ω,R(Λ) =

{
v| v is measurable and ‖v‖r,ω,R <∞

}
,

where r > 0 is any real number, and

‖v‖r,ω,R =

(
r∑
i=0

∥∥∥∥(t+ 2)
r

2
+id

iv

dti

∥∥∥∥2

ω

)1/2

. (4)

4
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We define the Sturm-Liouville operator of the second-kind Chebyshev polynomials, R, as

R(Un(t)) = −ω−1(t)
d

dt
(ω3(t)

d

dt
Un(t)), (5)

and we know that, Un is the eigenfunction of the singular Sturm-Liouville problem

[(1− t2)
−1/2 d

dt
((1− t2)

3/2 d

dt
) + n(n+ 2)]Un(t) = 0,

for n = 0, 1, 2, . . . (see Hanson and Yakovlev (2002), Chapter 5).

Proposition 4.1.

Rm is a continuous mapping from H2m
ω,R(Λ) to L2

ω(Λ).

Proof:

For showing this, we will prove that

Rmv(t) =
2m∑
k=1

(t+ 2)m+kqk(t)
dkv(t)

dtk
, (6)

where qk is a rational bounded uniformly function on the whole interval Λ. It is proved by induc-
tion. For m = 1, we have

Rv(t) = 3t
dv

dt
− (1− t2)

d2v

dt2

= (t+ 2)2

(
3t

(t+ 2)2

)
dv

dt
+ (t+ 2)3

(
t− 1

(t+ 2)2

)
d2v

dt2
.

Suppose that for m 6 n, the relation (6) is satisfied. One can easily prove that this relation is
established for m = n+ 1. �

Proposition 4.2.

For any real r ≥ 0, v ∈ Hr
ω,R(Λ), v =

∞∑
n=0

v̂nUn(t) then

‖PNv − v‖ω ≤ cN−r‖v‖r,ω,R, (7)

for some real constant c.

Proof:

First, we suppose that r = 2m. It is easy to see that (Un, Um)ω = π
2
δn,m. Hence, by (5) and

5
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integration by parts,

v̂n =
2

π

∫
Λ

v(t)Un(t)ω(t)dt

=
2

πn(n+ 2)

∫
Λ

v(t)RUn(t)ω(t)dη

= − 2

πn(n+ 2)

∫
Λ

v(t)
d

dt
(ω3(t)

d

dt
Un(t))dt

=
2

πn(n+ 2)

∫
Λ

ω3(t)
d

dt
v(t)(

d

dt
Un(t))dt

= − 2

πn(n+ 2)

∫
Λ

d

dt
(ω3(t)

d

dt
v(t))Un(t)dt

=
2

πn(n+ 2)

∫
Λ

Rv(t)Un(t)ω(t)dt

= . . .

=
2

πnm(n+ 2)m

∫
Λ

Rmv(t)Un(t)ω(t)dt.

(8)

Now according to (6) and (8) and the definition of Hr
ω,R(Λ), we have:

‖PNv − v‖2
ω =

∞∑
n=N+1

v̂n ‖Un‖2
ω

6 cN−4m

∞∑
n=N+1

(∫
Λ
Rmv(t)Un(t)ω(t)dt

‖Un‖2
ω

)2

‖Un‖2
ω

6 cN−4m ‖Rmv‖2
ω 6 cN−4m ‖v‖2

r,ω,R .

Next, we put r = 2m+ 1. From (ωU ′n, ω)ω = 0 and integration by part, we have:

v̂n =
2

πnm(n+ 2)m

∫
Λ

Rmv(t)Un(t)ω(t)dt

= − 2

πnm+1(n+ 2)m+1

∫
Λ

Rmv(t)
d

dt
(ω3(t)

d

dt
Un(t))dt

= − 2

πnm+1(n+ 2)m+1

∫
Λ

d

dt
(Rmv(t))

d

dt
Un(t)ω3(t)dt.

(9)

6
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Now using (ωU ′n, ωU
′
m)ω = 1

2
n(n+ 2)δn,m, and (6), the following inequality is obtained:

‖PNv − v‖2
ω =

∞∑
n=N+1

v̂2
n ‖Un‖

2
ω

=
∞∑

n=N+1

4

π2(n(n+ 2))2m+2

(∫
Λ

d

dt
(Rmv(t))

d

dt
Un(t)ω3(t)dt

)2

=
∞∑

n=N+1

4

π2(n(n+ 2))2m+2

(∫
Λ

d
dt

(Rmv(t)) d
dt
Un(t)ω3(t)dt∥∥ d

dt
Un
∥∥2

ω3

)2 ∥∥∥∥ ddtUn
∥∥∥∥2

ω3

6 cN−2(2m+1)

∞∑
n=N+1

(∫
Λ

d
dt

(Rmv(t)) d
dt
Un(t)ω3(t)dt∥∥ d

dt
Un
∥∥2

ω3

)2 ∥∥∥∥ ddtUn
∥∥∥∥2

ω3

6 cN−2(2m+1)

∥∥∥∥ ddt(Rmv)

∥∥∥∥2

ω3

6 cN−2(2m+1)

∥∥∥∥ ddt(Rmv)(t+ 2)
7/2

∥∥∥∥2

ω

6 cN−2(2m+1) ‖v‖2
r,ω,R .

The general result follows from the previous results and space interpolation. �

Theorem 4.1.

For any real r > 0, y ∈ Hr
ω,R(Λ), we have:

‖yN − y‖ω 6 ãc(N − 2)−r‖y‖r,ω,R. (10)

Proof:

Using An(t) = (1 + a
2
)Un(t) + a

2
Un−2(t), and Proposition (4.2), we get the following inequality:

‖yN − y‖ω =

∥∥∥∥∥
∞∑

i=N+1

ciUi(t)

∥∥∥∥∥
ω

=

∥∥∥∥∥
∞∑

i=N+1

ci((1 +
a

2
)Ui(t) +

a

2
Ui−2(t))

∥∥∥∥∥
ω

6
∣∣∣1 +

a

2

∣∣∣ ∥∥∥∥∥
∞∑

i=N+1

ciUi(t)

∥∥∥∥∥
ω

+
∣∣∣a
2

∣∣∣ ∥∥∥∥∥
∞∑

i=N+1

ciUi−2(t)

∥∥∥∥∥
ω

6
∣∣∣1 +

a

2

∣∣∣ c′N−r‖y‖r,ω,R︸ ︷︷ ︸
Equation (7)

+
∣∣∣a
2

∣∣∣ c′′(N − 2)−r‖y‖r,ω,R︸ ︷︷ ︸
Equation (7)

6 ãc(N − 2)−r‖y‖r,ω,R.

where ã = max{|1 + a
2
|, |a

2
|}, c = max{c′, c′′}. �

This theorem shows that the a-polynomial approximation has exponential convergence. The similar
theorems which have been proved in this section can be seen in Guo et al. (2002) for the Chebyshev
polynomials of the first kind.
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Figure 1. Graph of the exact and numerical solutions in Example 5.1 at τ = 0.01, N = 15, (γ, α) = (0.8, 1.8) and
T = 1

5. Numerical results

In this section, two examples of this problem are analyzed numerically. These examples are a
special type of the fractional telegraph equation (Zhao and Li (2012)). We use the Chebyshev-
Gauss-Lobato (CGL) collocation points to provide the numerical solution. We also use the L2

error norm to compare the error of the proposed method with other methods.

Example 5.1.

Take the time-space fractional partial differential equation (1), where c and d are unity constant
functions and (a, b) = (0, 1), T = 1, and ϕ0(x) = 2x4(1−x4). The function g(x, t) will be chosen
so that the exact solution is U(x, t) = (t2+γ + t+ 2)x4(1− x4).

In Tables 1 and 2, the L2 error norm is calculated at τ = 0.01, T = 1 and different values of N
for γ = 0.5 and γ = 0.8, respectively. According to the obtained results, increasing the number
of collocation points reduces the L2 error norm at τ = 0.01 and T = 1 for Γ = 0.5 and γ = 0.8.
Therefore, the convergence theorem proved in the previous section is confirmed. In Table 3, the L2

error norm of the present method is compared with the fractional finite difference method (FFDM)
(Li and Zeng (2015)) at T = 1 and different values N , τ , α and γ. It can be seen that due to the
smaller number of N and the higher value of τ in the proposed method, the error of the proposed
method is still better than the fractional finite difference method.

Figure 1 shows the graph of the exact and numerical solutions at τ = 0.01, N = 15, (γ, α) =
(0.8, 1.8) and T = 1. Figure 2 shows graph of the exact and numerical solutions u(x, t) at τ = 0.01,
N = 15 and (γ, α) = (0.8, 1.8).

Example 5.2.

Take the time-space fractional partial differential equation (1), where c and d are unity constant
functions and (a, b) = (0, 1), T = 1, and ϕ0(x) = 0. The function g(x, t) will be chosen so that

8
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Figure 2. Graph of the exact and numerical solutions u(x, t) in Example 5.1 at τ = 0.01, N = 15 and (γ, α) =
(0.8, 1.8) (Left: Exact solution, Right: Numerical solution)

Figure 3. Graph of the exact and numerical solutions in Example 5.2 at τ = 0.01, N = 20, (γ, α) = (0.5, 1.5) and
T = 1

the exact solution is U(x, t) = (t2.5 + t)x4(1− x4).

In Table 4, the L2 error norm is calculated at τ = 0.01, T = 1 and different values ofN . According
to the obtained results, increasing the number of collocation points reduces the L2 error norm
at τ = 0.01 and T = 1. Therefore, the convergence theorem proved in the previous section is
confirmed. In Table 5, the L2 error norm of the present method is compared with the fractional
finite difference method (Li and Zeng (2015)) at T = 1 and different values N , τ , α and γ. It can
be seen that due to the smaller number of N and the higher value of τ in the proposed method, the
error of the proposed method is still better than the fractional finite difference method.

Figure 3 shows the graph of the exact and numerical solutions at τ = 0.01, N = 20, (γ, α) =
(0.5, 1.5) and T = 1. Figure 4 shows graph of the exact and numerical solutions u(x, t) at τ = 0.01,
N = 20 and (γ, α) = (0.5, 1.5).

9
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Table 1. Results of L2 error norm in Example 5.1 at τ = 0.01, T = 1 and γ = 0.5

N a α = 1.2 a α = 1.5 a α = 1.8

5 0.99991 4.2673e-4 1.00002 5.8764e-4 1.00024 7.3510e-4

10 0.99997 4.6334e-7 0.99996 1.8147e-7 1.00205 9.2696e-8

15 1 4.7099e-7 1 1.8452e-7 0.99997 9.4210e-8

20 1 4.7593e-7 1 1.8606e-7 1 9.5839e-8

25 1 4.7812e-7 1 1.8778e-7 1 9.6071e-8

Table 2. Results of L2 error norm in Example 5.1 at τ = 0.01, T = 1 and γ = 0.8

N a α = 1.2 a α = 1.5 a α = 1.8

5 0.99989 4.2674e-4 0.99997 5.8772e-4 1.00012 7.3520e-4

10 0.99997 3.8232e-6 0.99997 1.5454e-6 1.00208 8.2271e-7

15 1 3.8856e-6 0.99997 1.6222e-6 0.99997 8.3611e-7

20 1 3.9240e-6 1 1.6360e-6 1 8.5072e-7

25 1 3.9428e-6 1 1.5606e-6 1 8.5274e-7

Table 3. Comparison of L2 error norm of the present method in Example 5.1 with fractional finite difference method
(FFDM) at T = 1 and different values N , τ , α and γ

Method N τ (γ, α) a (γ, α) a
(0.5, 1.5) (0.8, 1.8)

FFDM 8 10−3 6.3601e-4 - 5.9009e-4 -

Present method 5 10−2 5.8764e-4 1.00002 7.3520e-4 1.00012

FFDM 16 10−3 2.2826e-4 - 1.6719e-4 -

Present method 10 10−2 1.8147e-7 0.99996 8.2271e-7 1.002081

FFDM 32 10−3 6.5588e-5 - 4.3810e-5 -

Present method 15 10−2 1.8452e-7 1 8.3611e-7 0.99997

FFDM 64 10−3 1.7418e-5 - 1.1180e-5 -

Present method 20 10−2 1.8778e-7 1 8.5072e-7 11

6. Conclusion

In this paper, a-polynomials are used to numerically solve a specific type of fractional partial dif-
ferential equations. The results obtained from the proposed method were compared with other
methods used to solve them in different tables. In solving the time-space fractional diffusion equa-
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Table 4. Results of L2 error norm in Example 5.2 at τ = 0.01 and T = 1

N (γ, α) a (γ, α) a (γ, α) a
(0.2, 1.2) (0.5, 1.5) (0.8, 1.8)

5 2.0981e-4 -1.94639 2.8872e-4 -1.98183 3.6056e-4 -1.98034

10 5.0059e-8 -2.47892 1.8147e-7 -2.48306 6.2429e-7 -1.75972

15 5.0886e-8 -1.84856 1.8452e-7 -1.87973 6.3448e-7 -1.68443

20 5.1440e-8 -1.69363 1.8714e-7 -1.51669 6.4589e-7 -1.68385

25 5.1731e-8 -1.50459 1.8719e-7 -1.38683 6.4743e-7 -1.36792

Table 5. Comparison of L2 error norm of the present method in Example 5.2 with fractional finite difference method
(FFDM) at T = 1 and different values N , τ , α and γ

Method N τ (γ, α) a (γ, α) a
(0.5, 1.5) (0.8, 1.8)

FFDM 8 10−3 3.0921e-4 - 2.9140e-4 -

Present method 5 10−2 2.8872e-4 -1.98183 3.6056e-4 -1.98034

FFDM 16 10−3 1.1228e-4 - 8.2738e-5 -

Present method 10 10−2 1.8147e-7 -2.48306 6.2429e-7 -1.75972

FFDM 32 10−3 3.2374e-5 - 2.1694e-5 -

Present method 15 10−2 1.8452e-7 -1.87973 6.3448e-7 -1.68443

FFDM 64 10−3 8.6250e-6 - 5.5311e-6 -

Present method 20 10−2 1.8714e-7 -1.51669 6.4589e-7 -1.68385

Figure 4. Graph of the exact and numerical solutions u(x, t) in Example 5.2 at τ = 0.01, N = 20 and (γ, α) =
(0.5, 1.5) (Left: Exact solution, Right: Numerical solution)

tions, due to the choice of the small number of collocation points and the higher value of τ than the
other method, the proposed method shows less error and more advantage. The simplicity of using
a-polynomials in fractional derivatives could be one of the advantages of the proposed method,
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which creates less complexity to solve.
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