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Abstract

The main objective of this paper is to investigate the nonparametric estimation of the conditional
density of a scalar response variable Y, given the explanatory variable X taking value in a Hilbert
space when the sample of observations is considered as an independent random variables with
identical distribution (i.i.d.) and are linked with a single functional index structure. First of all,
a kernel type estimator for the conditional density function (cond-df) is introduced. Afterwards,
the asymptotic properties are stated for a conditional density estimator when the observations are
linked with a single-index structure from which we derive an central limit theorem (CLT) of the
conditional density estimator to show the asymptotic normality of the kernel estimate of this model.
As an application the conditional mode in functional single-index model is presented. As an appli-
cation the conditional mode in functional single-index model is presented as well as the asymptotic
(1 — &) confidence interval of the conditional mode function is given for 0 < £ < 1. Simulation
study is also presented to illustrate the validity and finite sample performance of the considered
estimator.

Keywords: Asymptotic normality; Conditional density; Functional single-index process func-
tional random variable; Nonparametric estimation; Small ball probability
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1. Introduction

Statistical analysis of functional variables has considerably grown over the last two decades. In-
deed, an immense innovation on measuring devices has emerged and permitting to monitor several
objects in a continuous way, such as stock market indexes, pollution, climatology, satellite images.
Thus, a new branch of statistics, called functional statistics, has developed to treat observations as
functional random elements. The study of statistical models for functional data has been a subject
of several recent works and developments. The first results on the conditional models were ob-
tained by Ferraty et al. (2006), where these authors established the almost complete convergence
rate of the kernel estimators for the conditional distribution function, the conditional density and
its derivatives, the conditional mode and the conditional quantiles. As a conditional nonparametric
model, regression was one of the first predictive analysis tools. Conditional mode estimation is
useful in prediction setting, it provides an alternative approach to classical regression estimation.
For more recent advances in the topic, see Ezzahrioui and Ould-Said (2010)). In functional statis-
tics, this model was introduced by Cardot et al. (2004). The nonparametric study of this model has
been considered by Ferraty and Vieu (2006).

The ergodic theory has appeared in statistical mechanics, notably in Maxwell’s and Gibbs’s theo-
ries. It is necessary to make a sort of logical transition between the average behavior of the set of
dynamic systems and the temporal average of the behaviors of a single dynamic system. It is de-
rived from an ingenious hypothesis used for a long time without justifying it, and in various forms.
In the context of the ergodic functional case with censored observations the literature is very re-
stricted. We refer to Chaouch and Khardani (2015), who studied the asymptotic properties of the
kernel-type estimator of the conditional quantiles when the response variable is right-censored and
the data are sampled from an underlying stationary ergodic process. The single-index model rep-
resents one of the well-known semi-parametric models, which is very popular in the economics
community as which allow to reduce the dimensionality of the covariate space while offering a
flexibility in describing the relationship between the response and the covariate, through an un-
known link function. The statistical study of these models, in the context of vectorial explanatory
random variables, was initiated by Hérdle and Marron (1985). Hristache et al. (2001) provide both
new theoretical and bibliographic elements. Several authors have worked on simple functional in-
dex models, we can cite Ferraty et al. (2003), Ait-Saidi et al. (2008), Attaoui and Boudiaf (2014)
and Bouchentouf et al. (2014).

The statistical study of single index models have been investigated and developed by several au-
thors from a practical and theoretical point of view. The case of a vector explanatory variable
was studied by Hirdle et al. (1993) and Hristache et al. (2001). The single index models are very
popular in the econometric community because it respond two important preoccupations. The first
concerns dimension reduction since this type of model makes it possible to provide a solution to
the problem of the curse of dimensionality, in the sense that pure nonparametric models are highly
affected by dimensionality effects while semi-parametric ideas are more appealing candidates. The
second is related to the interpretability of the index 6 introduced in these models, for more details
on refer to Cuevas (2014), Goia and Vieu (2016) and Aneiros et al. (2019) for an overview on
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methodological issues on FDA. Therefore, the single functional index model accumulate the ad-
vantages of single index model, and inherits the potential of the functional linear model in terms of
applications. The interested reader, for the semi-parametric and the nonparametric functional mod-
els, may refer Geenens (2011), Ling and Vieu (2018, 2021), Novo et al. (2019a) and Chowdhury
and Chaudhuri (2019) for survey on the topics.

The modelization of functional data, has been developed intensively. The motivation of such sta-
tistical analysis is justified by the recent technological development of the measuring instruments
that offers the opportunity to observe phenomena in an increasingly accurate way, but this accu-
racy obviously generates a large amount of data observed over a finer grid, which can be consid-
ered as observations varying over a continuum. The most theoretical results are obtained under
independence condition. However, in practice, it is rarely that we have an independent identically
distributed observations of functional nature. The functional time series presents the more realistic
situation. Thus, it is really crucial to study the functional statistical models when the usual inde-
pendence condition on the statistical sample is relaxed. In this paper, we consider the problem of
the nonparametric estimation of the regression function in single functional index model when the
data are weakly dependant.

However, in the literature of functional statistics, the single functional index model is strictly lim-
ited in the case where the data is functional (a curve). The first result in this context was given by
Ferraty et al. (2003). They obtained the almost complete convergence of the regression function ()
in the independent and identically distributed (i.i.d.) case. The generalization of this result to the de-
pendent case has been studied by Masry (2005). Shang (2020) uses a Bayesian method to estimate
the bandwidths in the kernel form error density and regression function, under an autoregressive
error structure, and according to empirical studies, the author considered that the single functional
index model gives improved estimation and prediction accuracies compared to any nonparametric
functional regression considered. Novo et al. (2019b) have proposed a new automatic and location-
adaptive procedure for estimating regression in a Functional Single-Index Model (FSIM) based on
k-Nearest Neighbors ideas. Motivated by the analysis of imaging data, Li et al. (2017) proposed
a novel functional varying-coefficient single-index model to carry out the regression analysis of
functional response data on a set of covariates of interest. This method represents a new exten-
sion of varying-coefficient single-index models for scalar responses collected from cross-sectional
and longitudinal studies. By simulation and real data analysis, the authors demonstrated the ad-
vantages of the proposed estimate. Wang et al. (2016) have considered the problem of predicting
the real-valued response variable using explanatory variables containing both multivariate random
variable and random curve. The authors considered the functional partial linear single-index model
in order to treat the multivariate random variable as linear part and the random curve as functional
single-index part, respectively.

These models gave attracted the attention of many researchers as Ait-Saidi et al. (2005, 2008).
Bouchentouf et al. (2014) established a nonparametric estimation of some characteristics of the
the conditional cumulative distribution function and the successive derivatives of the conditional
density of a scalar response variable Y given a Hilbertian random variable X when the observations
are linked with a single-index structure. Attaoui et al. (2011) studied the functional single-index
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model via its conditional density Kernel estimator, and established its pointwise and uniform al-
most complete convergence rates, their results were extended to dependent case by Attaoui (2014).
Furthermore, Ling and Xu (2012) obtained the asymptotic normality of the conditional density
estimator and the conditional mode estimator for the a-mixing dependence functional time series
data.

The main contribution of this work is to generalize the result of Akkal et al. (2021) in case where a
functional parameter @ is present in the model. In this work, we establish the asymptotic properties
of the asymptotic normality for the estimators of conditional density function and conditional mode
of a randomly scalar response given a functional covariate when the data are sampled from a
stationary and ergodic process with single-index structure.

The paper is organized as follows. We present our model and some basic assumptions in Section
2. In Section 3 we state the main results as well as their proofs. As then application, we study
the asymptotic normality of the conditional mode in functional single-index model in Section 4.
Finally, Section 5 illustrates those asymptotic properties through some simulations.

2. Model and some basic assumptions

All along the paper, we will denote by C, C’ or/and Cj , some generic constant in R’ . We consider
that, given the (X, Y;);—1_, be a strictly stationary and ergodic sequence, with the same distribu-
tion as (X,Y’), where Y is a real-valued random variable and X be a functional random variable
(frv), which takes its values in a separable real Hilbert space H with the norm || - || generated by an
inner product < -, - >.

Moreover, we consider dy(-, -) a semi-metric associated with the single index 0 € # defined by
dg(x1,29) := | < 11 — 29,0 > |, for x; and x5 in H.

For a fixed H, let F'(0,y, z) be the conditional cumulative distribution function (cond-cdf) of Y
given < 0, X >=< 0,z >, specifically:

Vy eR, F(0,y,z) =P(Y <y| < X,0 >=< 2,0 >).
Saying that, we are implicitly assuming the existence of a regular version of the conditional distri-
bution and that it’s absolutely continuous with respect to the Lebesgue measure on R, our aim is to

build nonparametric estimates of several functions related with the conditional density of ¥ given
< X,0 >=<x,0 >. Let

Yy R, flylz) =: f(y| <z,0 >),
be the conditional density of Y given < X, 0 >=< x,0 >, for x € H.

In the following, we denote by (0, -, x) the conditional density of Y given < z, 6 > and we define
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-~

the kernel estimator f(6, -, ) of f(0,-, z) by

n

' Y K (bl (< @ = X3,0 >)) H (b (y = 7))
fl0.y,2) = —=— :
Y K(hi(<z—X;,0>))

with the convention 0/0 = 0, where K and H are kernel functions and hx := h,, i (resp. hy =
hy, i) 1s a sequence of bandwidths that decrease to zero as n goes to infinity.

Let,foranyz € H, 1 =1,...,nandy € R,
Ki(b,2) = K(hi| <o — X6 > |), Hi(y) = Hhg'(y - Y))).

Let F; and G; denote o-fields generated by ((< Xi,6>.Y1),...,(< X;,0>,Y;)) and
(< X1,0 >, Y1),...,(< X;,0 >.Y;), < X;41,0 >), respectively. We denote by By(z,h) =
{x € H/0 < | < 2 —x,0 > | < h} be a ball of center z and radius h, and let
dg (z,X;) = | < © — X;,0 > | denote a random variable such that its cumulative distribu-
tion function is given by ¢y, (u) = P (dy (v, X;) <u) = P(X; € By(z,u)). We consider that,
given the o-field F;_;, the conditional cumulative distribution function of dy (z, X;) is defined by
b7 (u) = Pdy (2, X;) < | Fiy) = P(X; € By (2, u) | Fir).

Let V, be a fixed neighborhood of x in H, Si will be a fixed compact subset of R. Now, consider
the following basic assumptions that are necessary in deriving the main result of this paper.

(H1) For x € H, there exists a sequence of nonnegative random functionals (f; 1);>1 bounded by
a sequence of deterministic quantities (b;(f, z));>1, a sequence of random functions (g; .. )i>1.
a deterministic nonnegative bounded functional f; and a nonnegative real function ¢ tending to
zero, as its argument tends to 0, such that
@) Fou(h) = 6(h)f1(6,) + o(¢(h)) as h — 0.

(ii) Foranyi € N, F{;’l(h) =¢(h)fi1(0,x) + gip.(h) with g; 9 .(h) = 045 (¢(h)) as h — 0,
gio(h)/¢(h) almost surely bounded and n=* 7" gfﬁx(h) = 04.5.(¢7(h)) as n — oo,
forj =1,2.

(i) n~ 'Y, 51(9,35) — f(0, ), almost surely when n — oo, for j = 1,2.

(iv) There exists a nondecreasing bounded function 7y such that, uniformly in s € [0, 1],

1
o(hs)/p(h) = 1o(s) +o(1),as h — 0, and for j = 1,2, / (K9 (1)) 7o(t)dt < oo.
0
(v) n! Zbi(é’,x) — D(0, 1) < coasn — 0.
i=1

(H2) The conditional density f(6,y, x) satisfies the Holder condition, that is:

V(y1,92) € Sr X Sk, V(x1,22) € Ny x N,y

|f(0,y1,21) = f(0,3,32)] < Coollzr — 2™ + 11 — 32/"), by >0, by > 0.
(H3) The kernel H is a positive bounded function such that V(t,, ;) € R?, |H(t;) — H(ty)| <

C|t —tzy,/HQ(t)dt < ooand/|t|b2H(t)dt < o0.
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(H4) The kernel K is a positive bounded function supported on [0, 1] and is differentiable on [0, 1]
with derivative such that: 3C, Cy, —oc0 < O] < K'(t) < Cy < 0,for0 <t < 1.
(HS) Foranym > 1land 7 =0, 1,

E [(hi B (g (v = Y0))" | G| = [ (i B (i (v = ¥0)) " < X0 5]
(H6) Forany ' € H and m > 2,

sup |gm(9,x/,t)| = sup |E[Hm(h;Il(t —T))| < Xp,0 >=< z,0 >|| < o0,
tESk tESk

and ¢,,(0, 2", t) is continuous in N, uniformly on :

sup sup |gm(9,xl,t) — gm(0,z,t)| = o(1).
tESk &' € By (x,h)

=(sh
(H7) There exists a function /3y . () such that lim Go.s(shi) = [p.(s), for Vs € [0, 1].
n—+4o00 ¢9 x(h}()

(H8) The bandwidth hj and hy, small ball probability ¢y ,(hx) satistfying

logn

(i) lim hg =0, hm hg =0and lim =0.

n—-+4oo n—-+4oo nhHgbg w(hK)

(ii) hH\/nthbgm hK — 0, asn — oo.

(iii) nh3 gb(,x(hK) — 0, as n— oo.

3. Main result
In this section the asymptotic normality of the estimator f(@, -,x) in the single functional index
model is established.

Theorem 3.1.
Under Assumptions we have (H1)-(H8)-(ii) for all x € H,
nhH¢9,m(hK)

a%(0,y, )

where 02(6,y, © _%(‘”—2:’3 H2(t)dt with oy (0, 2) = K'(1) — [1(KY) (w)Bs.0(u)du, | =
(a1(0,x))2 f1(0,x) 0 ’
1,2.

(ﬂa%m—fwywolﬁNmJ»amw+m,

D e
” — ” means the convergence in distribution.

Proof:

In order to establish the asymptotic normality of fA(O .y, x), we need further notations and defini-
tions. First we consider the following decomposition,

Qn(0,y, )er“fn(ﬁ,y,ﬂf:)+
fD(Hvx)

Ful0,y,2) — f(0,y,2) = B,(8,y, ),

https://digitalcommons.pvamu.edu/aam/vol16/iss2/4
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where

Qu(0, ) = (v (O.9.2) = F(0.9.2)) = FO.p.2) (Fol0,0) = fo(0.2)) . (1)

and
~ - (0, y,x
Ry (60.9.2) = ~B,(0..2) (F(0.2) — Fp(0.2)) Bulb..2) = 00D gy 1,
fD(ea .T)
with
1
- 1
fp(0,z) = WZE Ki(0, )| Fia].
= _ i K0, 2)Hi(y) < _ 2 K0, @)
Iny.2) =S E ) P T SRR e
Then, the proof of Theorem 3.1 can be deduced from the following Lemmas. n
Lemma 3.1.

Assume that assumptions (H2)(i)(ii)(iv) and (H4) hold true. For any real numbers 1 < j < 24§
with d > 0, as n — oo, we have

mgfj m%emu;ﬂ:%ﬁﬂam+ow(ﬁ@gv.
(i) o5 [KJ(Q z)] = a; f1(0,z) + o(1).

(i) e (BRI (6,2)))* = b 756, ) + of1).

Proof:

See the proof of Lemma 1 in Laib and Louani (2010). =

Lemma 3.2.

Under assumptions (H1) and (H4), we have

lim fp(6,2) = lim fp(f,2) =1 as. 2)
n—oo n—oo
Proof:
The proof of this Lemma is the same of Lemma 3 and Lemma 5 in Laib and Louani (2011). =
Lemma 3.3.

Under assumptions (H1)-(H5), we have
lim B,(0,y,x) = lim R,(0,y,z) =0 as. )
n—oo n—oo
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Proof:

Observe that R,, (0,t, x) is negligible and fD(Q, x) converges almost surely towards 1, as n — oo.

Concerning B,,(0,y,x), it is a direct consequence of Equation (13) given in Lemma 6.2 from
Chaouch and Khardani (2015).

Concerning R, (0,y, z), making use of Lemma 6.1(ii) in Chaouch and Khardani (2015), we find
that fD(Q, x) converges almost surely to 1, as n — oco. In addition, using the proof of Lemma 6.2
in Chaouch and Khardani (2015), we obtain easily that R,, (6, ¢, z) converges almost surely to zero
when n tends to infinity. Therefore, the asymptotic normality of 2.2 tR:0v.2) (i1 pe provided

fD (va)
by the term @), (0, ¢, x) , which is treated in Lemma 3.4. =

Lemma 3.4.

Under conditions of Theorem 3.1, we have

Vnhido(hi)Qu(0,y, 1) —2> N(0,0%(0, y, 2)).
Proof:

Let’s denote

1/2 0.z
ot = (¢9(hK’) (Hy) — hirf (6,9, 2)) 00

nhH

and define

It is easy to see that

(nhH¢9(hK)) Qn 6 Y, T ng

Thus, the &,,;, 1 < i < n forms a triangular array of stationary martingale differences with respect
to the o-field F;_;. By apply the central limit theorem for discrete-time arrays of real-valued mar-
tingales (Hall and Heyde (1980)), the asymptotic normality of @Q),,(6,y, x) can be obtained if we
establish the following statements:

@ D E[E|Fia] — o*(0,y,2).
=1
(b) nE [£21¢,. 5] =0(1) for Ve >0.

Proof of part (a) observe that

ZE [CZ%LE—l] - Z gml‘/—:l 1| < Z <m|~Fz 1
i=1 i=

https://digitalcommons.pvamu.edu/aam/vol16/iss2/4
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Then, similar to the proof of Equation (3) and using Lemma 3.1, we have

L (o)) e o .
B6u17]l = g () B @) E) ~ (6,0 ]
1 do(hic)\"?
(Kl(é’,x))( nhy ) E[K.(6.
E [(Hily) — huf(6,y,2)| < 6,X, >] | Fii]

< C (hb: + %) (M)W (?f(f,’;)) T Oas. <%(g<)>> '

Thus, by (H1)(ii)-(iii), we get

n

> " (ElGuil Firt]) = Ous. (hardo(huc) (Wl + hl)?) .

=1
Hence, the statement of (a) follows if we show that

Z]E ]El —>a(9y, x), as n — oo.

By assumption (H5) we have

(h
ZE 2| Fie 1 = nhn (¢0K1K9 ) ZE{K2 (0, x) )—th(Q,y,:v))2 |.7-"i_1}

_ ¢9 hK

Thus, by the properties of condmonal expectation and (HS) for 7 = 0 and m = 2, we obtain that

Z E [CZIL}—Z—I] = ‘/I,n(ev Y, [L‘) + ‘/Q,n(e’ Y, CL’),

where
(h
Vin(0,y,2) = nhH(%Kf{@x ZE[KQGx ( Hi )l <0, >)
—(E(Hi(y)] < 0, X >))?)|Fia].
and
Van(0,9,7) = ol SV B [0, 2)B{(Hily) — hagf (0,9, 2))]| < 0, X, =P Fis

It should be noted that the second term is negligible: V5 ,,(6,y,2) — 0, asn — oc. Indeed, we
used conditions (H2) and (H3), we get

E<HZ(97y7x) - th(97y7 )’ < 9 X >) < O@th fR hbl + |U’b2hb2)

and Lemma 3.1, in order to get our result.
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For V) ,,, notice that by changing variables, and by assumptions (H2)-(H3), we have

(Y

B <0.%>) = [ 12 (2

<hH/H [0,y —uhy,z)— f(8,y,z)]du

) £(0,v,2)dv

+hyf(0,y, ) /R H?(u)du

< h}fl”/ ]u|b2H2(u)du+th(9,y,x)/Hz(u)du
R R
which implies that

- hH(o(l) +f(9,y,x)</RH2(U)dU)),
1

h—E(HQ( y)| <0, X; >) —>f(9,y,x)/H2(u)du, as  n — oo. 4)
H R

Similarly, as n — oo, we have
1 _
E(Hi(t)] < 6, X; >) = /H(t v)f(@,v,x)dv
hy
/H f(0,t —uhy,x)du — f(e,t,x)/H(u)du. )

Then, by Equations (4)-(5) and Lemma 3.1, we arrive at
Po(hi)

Vi, y,x) = n(E(K1(6 x)))2f(9,y,x)AHQ(u)du;E[Kf(Q,x)|E_1]
041 f199y7x /H2 as  n— oo.

Proof of part (b). The definition of &,; implies that nlE [fi¢1[|£m>s\]} < AnE |:C72u‘1[\<m'>€ /2‘]} , where
1,4 is an indicator function of a set A. Let a > 1 and b > 1 such that 1/a + 1/b = 1. By Holder
and Markov inequalities, one can write, for all € > 0,

E - 2a
E [C3Lc. >e/2n] < %

Taking Cj a positive constant and 2a = 2 + ¢ (with ¢ as in (A6)), we obtain

ANE (2 1¢,5e/21] < ol (0,2)E ([|Hily) = hia (6. y, 2)| K (6,2))
< Gol (0, 2)B((Ki(6, )

E [|Hi(y) — hu f(0.y,2)**"] < 0, >] ).

https://digitalcommons.pvamu.edu/aam/vol16/iss2/4 10
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(dolhi) (2+6)/2 .
where I'(0, z) = ( o ) B 0.2

By changing variables, we get

y— v 246
i (H( o ) — th(H,y,x)) f(0,v,z)dv

< C’/H2+5 (H> f(0,v,z)dv
R hu
+hi F(0,y, @)

= Chy / H?P(u) f(0,y — uhg, x)du
R
+hi 200,y )
—hir [ B () (6.~ b 2)du
R

+REE 200, y, ),

E “Hz(y) — hgf0,y,2)]*"| < 6, X, >} — /

(2+)/2
4nE ¢ 1yc, se21] < Co <—¢9(hK)> 572 -
n by (E(K (0, x)))%+°

E (KEH(Q, x) {/ H2+6(u)f(¢9, y — uhgy, z)du + h}jéf”‘s(@, Y, x)})
R

do(hi)\*H? nE(EF(6,2))
=€ ( > WP (E(KL (0, )2+

n
Thus, by Lemma 3.1, it follows that

_ M. fl(Q,ZE) + 0(1)
AnE [R 1y o] < Colnhyd(hy)) /2 —2s
nE (Gl oera] < Colnhund ()™ Ta%s s =50

= O((nhuo(hi))~*"?). L]

4. Application: The conditional mode in functional single-index model

The main objective of this section is to establish the asymptotic normality of the conditional mode
estimator of Y given < X,0 >=< x,0 > denoted by My(z). We estimate the conditional mode
My(x) with a random variable Mjy(x) such that

~

]\//79(37) = argsup f(0,y,x), (6)

yESR

where My(z) = arg sup f(0,y,x), Sg is a fixed compact subset of R.
YESR
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Let’s note that in the remainder of our paper we will consider any value ]\/4\9 satisfying (6).

In order to present the estimation of the conditional mode in the functional single-index model, we
introduce the following additional smoothness condition.

(Ul) f(#,-,x) is twice continuously differentiable around the point Mpy(z)
with f1(0, My(z),z) = 0 and f@(0,-,z) is uniformly continuous on S such that
@0, My(z),z) # 0, where f9)(0, - 2) (j = 1,2) is the jth order derivative of the conditional
density f(0,y,z).

(U2) Ve >0,dn>0.,Vy € Sg

|My(x) —y| > e = [f(0, Mp(x),2) — f(0,y,2)] > 7.
(U3) The conditional density function f (6, y, z) satisfies: 33, > 0, Y(y1,92) € Sk X Sk,
|f(])(97 Y1, I) - f(j)(07927 $)| < C(|y1 - y2|ﬂo)7 \V/] = 17 2.
(U4) H'and H" are bounded respectively with

/(H'(t))2dt < oo,/|t\*3“H(t)dt < .

Theorem 4.1.
Suppose that hypotheses (H1)-(H8) and (U1)-(U4) are satisfied. If
Tim nhjpa(hic) = oo, )
we have as n — oo,
h3,¢0 2 (hi) —

D 00,0 1) 5;?(;’7 ;)K> (Mg(x) — My(z)) N N(0,1), as n — oo, (8)

where
0 0, M, ,
v (0,x) = 2alf, 2)/16, Molz), 7) ; /(H (t))?dt.
(oa(Q, x) [P0, My(z), x))

Proof:

First, by (6) and (U1), it follows that f()(0, My(z),x) = 0.

Writing the first order Taylor expansion for f(1)(6,y, x) at point My(z) leads to the existence of
some M (x) between My(x) and Mpy(z) such that

nh%qﬁe’z(hK)(j/[\@(x) — My(z)) = _\/Wf(l)(e7 M@(ZE),ZL‘).

—~

f&(0, M (x), x)

In order to prove (8), we only need to show that

/b0 (hie) FO (0, Mo(x), z) = N(0,02(6, 7)), )
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and
F2(0, My (z), x) — FO(0, My(z),x) # 0, in probability, (10)
where
ui(0.0) = 2EDCIDD [ o)2an.

<a1(9, x)>2

In fact, because the continuity of the function f(6,y, z) and by (U2) and the definitions of ]\/4\9(:13)
and My(x), we have, for all ¢ > 0, In(e) > 0 such that:

P (|My(w) — My(w)| 2 ) <P (|f<e, My(), @) = F(0, My(a), )| > 77(5))

+2 (1703t 0) - 10,500 = 22 ) .y
Thus, similar to Ferraty and Vieu (2006), by (H1)-(H4) and (HS8)-(1), we have f(@,y,x) —
f(6,y, x) in probability, which implies that J/\/Fe(l’) — My () in probability by (11) as n — oo.
Similarly, the methodology can be also applied to obtain f*(0,y,2) — f®(6,y,z) in prob-
ability as n — oo by (H1), (H4), (H8), (U3) and (U4). Therefore, (10) is valid by the fact that
@8, y, z) is uniformly continuous with respect to y on Sg. Next, we prove (9). In fact, since

FO0, My(a), ) = ——— (6, My(a). ) ~ EF (6, My(a), )

fD<07 JZ)
1
——— (V0. My(2),2) — EFP 0. My(w). ) . (12)
fD (97 l')
By (U1), (U3)-(U4), (7) and (12), similar to the proof of Lemmas, Lemma 3.3 and Lemma 3.4
respectively, (9) follows directly. Then, the proof of Theorem 4.1 is completed. n

4.1. Application and Confidence bands

The asymptotic variances 02(6,y,x) and v*(, z) in Theorem 3.1 and Corollary 4.1 depend on
some unknown quantities including «ay, ag, ¢(u), My(x) and f(0, My(x),x). So, Ma(z), and

— ~

f(6, My(zx), x) should be replaced by their respective estimators My(x), and f (6, My(x), x).

Because the unknown functions «;; := (6, x) and f(6,y, z) intervening in the expression of the
variance. So we need to estimate the quantities o1 (6, x), co(6, x) and f (0, y, x), respectively.

By the assumptions (H1)-(H4) we know that o;(6, x) can be estimated by &;(¢, x) which is defined
as:

aj(H,x) = —< ZKZ(G,J;), where (ﬁgw(h) = 521{‘<I,Xi,9>|<h},
=1

nge(h) =

with 1, being the indicator function.
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By applying the kernel estimator of f(6,y, z) given above, the quantity o2(6,y,z) can be esti-

mated finally by:
Af@ y
(0, y,z) = ’ /H2

so we can derive the following corollary.

Corollary 4.1.

Under the assumptions of Theorem 3.1, we have as n — oo

nhH;b\G,z(hK>

1) (F10,0.0) = 10.0.0)) 2> N0.1).

Proof:

Observe that

a1(6, ) nhHah(hK)
Vaa(0, ) 9 LY, T
_ al(evm) 012(0,1') nthSG,w(hK)f(eayvx)
o (97 I) a2(97 I) f(97 Y, x)nhH¢9,x(hK)
a1(0 x) nhHgng(hK)

\/0429(]3 an

Via Theorem 3.1, we have

\j;(mei nhH?GJ(hK) (f(é’,y,x) - f(G,y,:B)> — N (0, 1).

Next, by Laib and Louani (2010), we can prove that

5= (f(G,y,:v) - f(9,y,x)>

(f(&y,w) - f(9,y,:v)) :

59,30 (h'K) P

a1(0, ) SN ai(0, ), a6, x) SN as(0, x), and — 1, as n— oc.
¢9,x(hK)

Therefore, we obtain

&1(8,x) OfQ(G,I) nhHa@,mUlK)f(e?wa)
ar(0,x)\/ax(0,2) \ f(0,y, 2)nhude.(hi)
This yields the proof of Corollary 4.1. n

— 1, asn — oo.

Finally, in order to show the asymptotic (1 — &) confidence interval of My(x), we need to consider
the estimator of (6, ) as follows:

(6, 2)f(6, My(x), )
(@16.2)72)(6, My(x), 2))

22(0, ) = _ / (H'(t))2dt.
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Thus, the following corollary is obtained.

Corollary 4.2.

Under conditions of Theorem 4.1, as n — oo we have

nhd; 0.0 (hic)

2(0,z) (Mﬁ( ) — My(z)) — N(O, 1).

Proof:
Observe that
E,:al(Q,x)f(2)(87]\/4\9(x),x)\/fhzgﬁﬁ@(hK) TE () — M
5,(0, ) ﬂ&MM@w><9@) o)
a1(0,2)\/2(0, 1) | nh3,¢g0(hi) £(8, M(z), z) f (0, My(z), x)
a(0,2)\/Q2(0,2) \| F(0, My(x), z)nh3,¢p.4(hic) [P (0, My(2), )

041(9 z) ”th%x(hK)

\/042(9 z) \| f(0, My(z), )

Making use of Theorem 4.1, we obtain

a(6, x) nhi‘ngg:ﬁ(h;{)

Vas (0, x) f(0, My(x),x)

Further, by considering Lemma 3.3, (10) and (11), we obtain

FE6, Mya), 2) (My(x) = My(x)

N——

120, My(x), @) (My(w) = Ma(w)) — N (0, 1).

0(0,2)/2x(0,5) | i) 0, Molw),2) JO6, Mol) )
a1(0,2)\/Qa(0,2) \| F(0, My(z), 2)nh?,¢.0(hic) fO (0, Mo(z), )

Hence, the proof is completed. n

Remark 4.1.

Thus, following the corollaries, Corollary 4.1 and Corollary 4.2, the asymptotic (1 — ) confidence
interval of f(0,y,x) and My(z) are given by

a0 — V(0

J(A’x) and My(z) £ 7¢/2 X V(A’I) ,
nhpdg.(hi) nhée.(hi)
where ¢ 5 is the upper £/2 quantile of standard Normal N (0, 1).

]"\(Q,y,x) + Te)2 X

S. Simulation study

To study the behavior of our conditional mode estimator, we consider in this part two examples of
simulation. In the first one, we compare our model FSIM (fonctional single index model) with that

Published by Digital Commons @PVAMU, 2021

15



Applications and Applied Mathematics: An International Journal (AAM), Vol. 16 [2021], Iss. 2, Art. 4
AAM: Intern. J., Vol. 16, Issue 2 (December 2021) 859

of NPFDA (nonparametric functional data analysis) and in the latter, knowing the distribution of
the regression model (the distribution is known and usual), we look to the behavior of our estimator
of the conditional density function with respect to this distribution. Therefore, the best way to know
the behavior of the estimator of conditional density is to compute its mean square error. So, in this
part of paper we compare between the conditional density estimation in the FSIM which is our
model and the conditional density estimation in the NPFDA defined in (13),

hy ZK Hd(< x, X)) H (hy!(y —Y5))
fulzly) = : (13)
ZK higd(z, X))

where we estimate the conditional mode 1 () with a random variable M () such that

M (z) = arg sup f(x|y) and M (x) = argsup f.(x|y).
yESR yGSR
So, we have to compare their respective conditional density estimators by computing and compar-
ing their respective mean square errors for some values of the scalar response Y .

In the following, our purpose consists in assessing the performance, in terms of prediction, of
My () and M (z). For each given predictor (X;)jes in the testing subsample, we are interested in
the prediction of the response variable (Y;);c 7 via the single functional index conditional mode
A//.Tg(x) and the fully nonparametric conditional mode M (x) so as to compare the finite-sample
behavior of the estimator. As assessment tool we consider the mean square error (MSE) defined as
follows:

SSR:%Z(YJ—T@)Q, (14)

where }A/] is a predictor of Y; obtained either semi-parametrically by ]\/4\9(515) or nonparametrically
via M (x).

Furthermore, some tuning parameters have to be specified. The kernel K (-) is chosen to be
the quadratic function defined as K (u) = 2 (1 —wu?) 1, and the cumulative df H (u) =

ffoo % (1—2*) 111 (2)dz.

The semi-metric d(-, -) will be specified according to the choice of the functional space H discussed
in the scenarios below. It is well-known that one of the crucial parameters in semi-parametric
models is the smoothing parameters which are involved in defining the shape of the link function
between the response and the covariate.

Using the result given in Theorem 4.1, the variance of our estimator is obtained as
042(07 [E)f(e, Mg(ﬂf), ZL’)

oV = .
% ¢e.0(hic) (al(ﬁ, 2) [0, My(), x))

https://digitalcommons.pvamu.edu/aam/vol16/iss2/4
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The idea is to choose the parameters iy and hy so that the variance is minimal. Since the variance
(C'V) depends on several unknown parameters that must be estimated, the calculus becomes te-
dious. Thus, by replacing the unknown parameters by their respective estimators a; (6, z), as (6, x),
]\//[\g(x), f,and 59@(}”{), we obtain

ay(0, ) f (6, M,
Uisc, h) = awg min OV (uc, ) = arg min — a0, 2)f (0, A9($)72 .
i N by G (i) (@1 (0,2) (0, My (), )

Now, for simplifying the implementation of our methodology, we take the bandwidths hy ~ hx =
h, where h will be chosen by the cross-validation method on the k-nearest neighbors (see Ferraty
and Vieu (2006), p. 102).

5.1. Simulation 1: case of smooth curves

Let us consider the following regression model, where the covariate is a curve and the response is
a scalar:

T,=R(X;)+e,i=1,...,n,

where ¢; a sequence of i.i.d. random variables normally distributed with a variance equal to 0.1.

The functional covariate X is assumed to be a diffusion process defined on [0, 1] and generated by
the following equation:

X (t) = acos(b+ 7Wt) + csin(d + 7Wt) + (1 — A) sin(xtW), t € [0, 1],

where W, b and d are independent of normal distributions respectively ~~ N (0, 1), ~ A(0, 0.03)
and ~» N/ (0, 0.05). The variables a and ¢ are Bernoulli’s laws Bernoulli B3(0.5). Figure 1 depicts
a sample of 200 curves representing a realization of the functional random variable X.

Take into account of the smoothness of the curves X;(t) (see Figure 1), we choose the distance
deriv, (the semi-metric based on the first derivatives of the curves) in H as:

dana) = ( | 0 (1) — ) at) "

as semi-metric. Then, we consider a nonlinear regression function defined as

R<X>:4log{/(/ wra[ [ x0) dt})}.

Given X = z,Y ~ N (R(x), 0.2), and thus, the conditional median, the conditional mode
and the conditional mean functions will coincide and will be equal to R ( ), for any fixed x. The
computation of our estimator is based on the observed data (X;, Y;),_, _, ,and the single index 0
which is unknown and has to be estimated.

In practice this parameter can be selected by cross-validation approach (see Ait-Saidi et al. (2008)).
In this passage it may be that one can select the real-valued function ¢ (¢) among the eigenfunctions
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<
)

X(t)
20 25
|

1.5

1.0

Figure 1. A sample of 200 curves X;—1,... 200(t;), tj=1,...,200 € [0,1]

Time

Figure 2. The curves 0;—1 2(¢;), tj=1,... 200 € [0, 1]

of the covariance operator E [( X’ — EX’) < X’ - >3] where X (t) is a diffusion processes defined
on areal interval [a, b] and X" (¢) its first derivative (see Attaoui and Ling (2016)). So for a chosen
training sample £, by applying the principal component analysis (PCA) method, the computa-
tion of the eigenvectors of the covariance operator estimated by its empirical covariance operator:
|—z| Y ier(Xi —EX")Y(X] —EX’), will be the one best approximation of our functional parameter
0. Now, let us denote #* the first eigenfunction corresponding to the first higher eigenvalue of the
empirical covariance operator, which will replace ¢ during the simulation step.

In the following graphs, the covariance operator for £ = {1,...,200} gives the discretization of
the first eigenfunction # (presented by a continuous curve) and all the eigenfunctions 6;(t) (Figure
2 and Figure 3). In this simulation part, we divide our sample of size 200 into two parts. The first
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04

Time

Figure 3. The curves 91‘:17_“’200(153‘), tj=1,...,200 € [0, 1}

one from 1 to 125 will be used to make the simulation and the second from 126 to 200 will serve
us for the prediction.

We follow the following steps:

Step 1. Simulate the responses variables Y;. R -
Step 2. For each j in the test sample J = {126,...,200}, we compute: Y; = Mj.(X;) and
ij = M(Xj)7

Finally, we present the results by plotting the predicted values versus the true values and compute
the sum of squared residuals (SSR) defined by (14).

We see that the sum of squared residuals (SSR) of our method Functional-Single-Index-Model
(FSIM) is less than the one of the Nonparametric-Functional-Data-Analysis (NPFDA). This is
confirmed by the following graphs, when we compare the conditional mode by (FSIM) against the
conditional mode by (NPFDA) (Fig. 4). Our estimator is so acceptable. As intuitively expected,
it is well observed that the mean square errors of our estimator are smaller than that of NPFDA.
Thus, again, the FSIM model produces much more accurate estimation accuracies than NPFDA
model in all criteria.

In order to construct conditional confidence bands we proceed by the following algorithm:

Stepl. < 0%, X7 >,...,< 0%, X9 >, generate independently the variables c1, ..., 999, then
simulate the response variables Y; = (< 0*, X; >) + ¢;, where r(< 0*, X; >) = exp(10(<
0*, X; > —0.05)) and generate independently the variables ¢, . . ., £900.

Step 2. For each i in the training sample, we calculate the estimator: SA/, = ]\/4; (X;).

Step 3. For each X in the test sample J = 126, ..., 200, we set: j, := arg r}élgn do( X, X;).
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NPFDA: Cond. Mode: SSR=

0.034 FSIM: Cond. Mode: SSR= 0.0069

08 1.0 12

0.6

Observed responses

0.4

1.0

0.6

0.4

Observed responses

0.0

| I | I | |
0.0 0.4 0.8 1

Predicted responses

Figure 4. Prediction via the conditional mode by FSIM with error SSSR = 0.0069 against NPFDA with error SSR =

0.034
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Figure 5. The 95% conditional predictive bands. The solid curve connects the true values. The crossed curve joins the

\ L
192 194 196

L
198 200

predicted values. The dashed curves connects the lower and upper predicted values

|
1.0

863

Step 4. For each j in the test sample J = 126,...,200, we define the confidence bands by

Mo (X)) — X <—§(9*;X"*)
[V (%) = mors x (s

>, J\/@(X];) + To.975 X (

’V\(G*?Xj*)

V Lh bo o (hic)

)

We obtain the following figure which gathers asymptotic confidence bands study.
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6. Conclusion

This paper focused on nonparametric estimation of conditional mode in the single functional index
model for dependant stationary ergodic data. Both the asymptotic normality as well as a confidence
interval of the resulted estimator are derived. The proofs are based on a combination of existing
techniques. Our prime aim was to improve the performance of the single-index model for the con-
ditional mode under the ergodic property. Through a series of simulations, our model outperforms
nonparametric functional estimator. Note that this approach is more significant in the presence of
a simple single functional index. The dimensionality of the model is the bias part while the di-
mensionality of the functional space of the explanatory variable is in the dispersion part. Then, the
estimation and forecast accuracies between our FSIM and NPFDA models have been evaluated
and compared. Via empirical analysis, it has been shown that the considered estimator has nice fi-
nite sample behavior for the predication and provides improved estimation and prediction accuracy
compared to the NPFDA estimator.
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