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Abstract

This study proposes a new family of distributions based on the half logistic distribution. With
the new family, the baseline distributions gain flexibility through additional shape parameters.
The important statistical properties of the proposed family are derived. A new generalization of
the Weibull distribution is used to introduce a location-scale regression model for the censored
response variable. The utility of the introduced models is demonstrated in survival analysis and
estimation of the system reliability. Three data sets are analyzed. According to the empirical results,
it is observed that the proposed family gives better results than other existing models.
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1. Introduction

The several generalizations of the well-known distributions have been proposed in the last decade.
The reason of these generalizations is to add more flexibility to existing distributions by adding one
or more shape parameters. These distributions have found importance application area in survival
analysis because of their flexibility in failure rate modeling. For instance, the odd log-logistic
family (OLL-G) proposed by Gleaton and Lynch (2006) has attracted attention by several authors.
Researchers have introduced several generalizations of the OLL-G family. Cordeiro et al. (2016a)
proposed the Zografos-Balakrishnan odd log-logistic family which is a generalization of the OLL-
G family. Another generalization of the OLL-G family, generalized odd log-logistic family, was
proposed by Cordeiro et al. (2017). Other generalizations of the OLL-G family can be cited as
follows: the beta odd log-logistic generalized family by Cordeiro et al. (2016b), the Kumaraswamy
odd log-logistic family by Alizadeh et al. (2015), a new generalized odd log-logistic family by
Haghbin et al. (2017) and so on.

In this study, our focus is on the half-logistic (HL) distribution because of its tractable properties.
It has simple probability density function (pdf) and cumulative distribution function (cdf). Also, it
has only one parameter which controls the variation of the distribution. However, its flexibility is
very limited to model the various characteristics of the data sets. For instance, it cannot be used
to model left-skewed and bimodal data sets. To remove the drawback of this distribution, some
researchers have proposed different generalization of the HL distribution such as exponentiated
half-logistic-G by Cordeiro et al. (2014) and type I half-logistic-G by Cordeiro (2016c). Here, our
aim is to add more flexibility to the HL distribution by adding shape parameter which help us to
generate bimodal and left-skewed pdf shapes. Also, the HL distribution has drawbacks to model
the lifetime data sets. By means of its new generalization, one can model the different shapes of
the failure rate.

To generate a new family of distributions based on the HL distribution, we use the T-X idea of Alza-
atreh et al. (2013). We call the new family as new type-II half-logistic-G family, shortly NTIIHL-G.
The motivations to generate the NTIIHL-G family can be given as follows: (i) to build a new model
for skewed and heavy-tailed data sets which are commonly seen in financial applications, (ii) to
make the baseline distribution useful for the different failure shapes, (iii) to insert the skewness
into the symmetric distributions for modeling the extremely right (left) skewed data sets.

The other parts of the presented paper can be summarized as follows: The proposed family is
constructed in Section 2. The special cases of the NTIIHL-G family are given in Section 3. The
mathematical properties of the NTIIHL-G family are studied in Section 4. The parameter estima-
tion problem of the NTIIHL-G family is tackled in Section 5. The simulation study is given in
Section 6 to see the asymptotic efficiency of the parameter estimation method. In Section 7, the
location-scale regression model is defined by using the special member of the NTIIHL-G family.
Estimation of the system reliability using a new generated distribution is discussed in Section 8.
The univariate data fitting and application of the proposed regression model are given in Section 9.
The important conclusions of the paper are given in Section 10.
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2. Construction of the new family

Let the random variable X follow a HL distribution. The pdf and cdf of X are, respectively,

f (x) =
2λ exp (−λx)

(1 + exp (−λx))2 , x > 0, (1)

and

F (x) =
1− exp (−λx)

1 + exp (−λx)
,

where λ > 0 is a scale parameter. The pdf (1) has unimodal shape. Therefore, HL distribution
is inadequate model to explain the characteristics of the data. The real data has a non-monotone
hazard rate function (hrf) shapes such as bathtub or reversed-J shapes.

This study proposes a new generalization of the HL distribution, called as NTIIHL-G family of
distributions. Let G (x;φ) and g (x;φ) are the cdf and pdf belonging to the baseline distribution,
respectively. The cdf and pdf of the NTIIHL-G are defined by

F (x) = 1−
∫ − log[ G(x;φ)α

G(x;φ)α+Ḡ(x;φ)α ]

0

2λ e−λ t

[1 + e−λ t]2
dt =

2G(x;φ)αλ

G(x;φ)αλ +
[
G(x;φ)α +G (x;φ)α

]λ , (2)

and

f (x) =
2αλg(x;φ)G(x;φ)αλ−1G (x;φ)α−1 [G(x;φ)α +G (x;φ)α

]λ−1{
G(x;φ)αλ +

[
G(x;φ)α +G (x;φ)α

]λ}2 , (3)

where α > 0 and λ > 0 are the shape parameters, G(x;φ) = 1 − G(x;φ) and φ represents the
vector of parameters for the baseline distribution. From now on, the density (3) is indicated by
X ∼NTIIHL-G(α, λ,φ). When α = 1, we obtain the new type half-logistic-G (NTHL-G) family
as a submodel of the NTIIHL-G family.

The reliability function (rf) and hrf of X are, respectively,

R (x;α, λ, φ) =

[
G(x;φ)α + Ḡ(x;φ)α

]λ −G(x;φ)αλ[
G(x;φ)α + Ḡ(x;φ)α

]λ
+G(x;φ)αλ

,

and,

h(x;α, λ,φ) =
2αλg(x;φ)G(x;φ)αλ−1G (x;φ)α−1

[
G(x;φ)α +G (x;φ)α

]λ−1{
G(x;φ)αλ +

[
G(x;φ)α +G (x;φ)α

]λ}{[
G(x;φ)α + Ḡ(x;φ)α

]λ −G(x;φ)αλ
} . (4)
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Figure 1. NTIIHL-W distribution: pdf (left), hrf (right)

3. Special models of NTIIHL-G

The special members of the NTIIHL-G family of distributions are examined for the famous base-
line distributions such as normal and Weibull distributions.

3.1. The NTIIHL-W distribution

The pdf and cdf of the Weibull distribution are g(x) = a
c

(
x
c

)a−1
exp

(
−
(
x
c

)a) and G(x) = 1 −
exp

(
−
(
x
c

)a) where the parameter c > 0 is scale and a > 0 is the shape parameter. Inserting these
quantities in (3), we have the following pdf for the new type II half logistic-Weibull (NTIIHL-W)
distribution,

f(x;α, λ, a, c) = 2αλ
a

c

(x
c

)a−1(
1− exp

(
−
(x
c

)a))αλ−1

exp
(
−α
(x
c

)a)
×
{(

1− exp
(
−
(x
c

)a))α
+ exp

(
−α
(x
c

)a)}λ−1

×
[(

1− exp
(
−
(x
c

)a))αλ
+
{(

1− exp
(
−
(x
c

)a))α
+ exp

(
−α
(x
c

)a)}λ]−2

,

where x > 0. The pdf and hrf shapes of the NTIIHL-W distribution are displayed in Figure 1. The
pdf of the NTIIHL-W exhibits great flexibility with left and right skewness and bimodal shapes.
Also, this distribution has the following hrf shapes: increasing, decreasing, unimodal and bathtub.
Hemeda and Ahan ul Haq (2020) introduced a different generalization of the Weibull distribution,
called as inverse Rayleigh Weibull (IRW) distribution. Also, Elgarhy et al. (2017) introduced the
exponentiated Weibull exponential (EWE) distribution. However, the IRW and EWE distributions
have only right-skewed pdf shapes. The NTIIHL-W distribution provides more flexibility than the
IRW and EWE distributions (see Figure 1).
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Figure 2. Pdf of NTIIHL-N distribution

3.2. The NTIIHL-N distribution

The several generalizations of the normal distribution have been proposed to add skewness into
normal distribution. The detail information on generalized normal distributions can be found in
Ma and Genton (2004), Arellano-Valle et al. (2010), and Rasekhi et al. (2016). Let φ(.) and Φ(.)
represent the pdf and cdf of the standard normal distribution and z = x−µ

σ
. The pdf of new type II

half logistic-Normal (NTIIHL-N) distribution is

f(x, α, λ, µ, σ) =
2αλφ(z)(Φ(z))αλ−1(Φ(−z))α−1{(Φ(z))α + (Φ(−z))α}λ−1[

(Φ(z))αλ + {(Φ(z))α + (Φ(−z))α}λ
]2 .

Figure 2 displays the pdf of NTIIHL-N distribution. It has unimodal and bimodal shapes.

4. Mathematical properties

This section gives the important statistical properties of the NTIIHL-G family of distributions.

4.1. Asymptotics

Proposition 4.1.

Let a = inf{x|G(x) > 0}, when x→ a, the asymptotics of Equations (2), (3) and (4) are

F (x) ∼ 2G(x)αλ as x→ a,

f(x) ∼ 2αλ g(x)G(x)αλ−1, as x→ a,

h(x) ∼ 2αλ g(x)G(x)αλ−1, as x→ a.
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Proof:

Let a = inf{x|G(x) > 0}, when x → a, [G(x)α + Ḡ(x)α] ∼ 1, hence G(x)αλ +[
G(x)α + Ḡ(x)α

]λ ∼ 1, then F (x) ∼ 2G(x)αλ as x → a. By differentiation from last equa-
tion with respect to x, we obtain

f(x) ∼ 2αλ g(x)G(x)αλ−1, as x→ a,

h(x) ∼ 2αλ g(x)G(x)αλ−1

1− 2G(x)αλ
, as x→ a.

�

Proposition 4.2.

When x→∞, the asymptotics of Equations (2), (3) and (4) are

1− F (x) ∼ λ

2
Ḡ(x)α, as x→∞,

f(x) ∼ αλ

2
g(x) Ḡ(x)α−1, as x→∞,

h(x) ∼ α g(x)

Ḡ(x)
, as x→∞.

The above quantities are useful to examine the effects of the parameters on the tails of the distri-
bution.

Proof:

When x → ∞, [G(x)α + Ḡ(x)α] ∼ 1 and G(x)αλ +
[
G(x)α + Ḡ(x)α

]λ ∼ 2, then 1 − F (x) ∼
1 − G(x)αλ. Also 1 − tαλ ∼ αλ(1 − t) as t → 1 . Then, 1 − F (x) ∼ αλ Ḡ(x) as x → ∞. By
differentiation from last equation with respect to x, we obtain

f(x) ∼ αλ g(x), as x→∞,
h(x) ∼ g(x)

Ḡ(x)
, as x→∞.

�

4.2. Quantile function

Generating random variables from a continuous probability distribution are done by the quantile
function (qf). Therefore, it is important to obtain the qf in explicit form. The qf is the solution of
equation F (x) = U where U ∼ U(0, 1). The qf of the NTIIHL-G is

XU = QG

 U
1

αλ

U
1

αλ +
{

[1 + (1− U)]
1

λ − U 1

λ

} 1

α

 .

6
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Figure 3. The skewness (left) and kurtosis (right) values of the NTIIHL-W distribution

The Bowley’s skewness and Moors’s kurtosis measures are defined based on the quantiles of the
distribution. These measures are given, respectively, by

S =
Q(1/4) +Q(3/4)− 2Q(1/2)

Q(3/4)−Q(1/4)
, K =

Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
.

Based on the above quantities, the skewness and kurtosis values of the NTIIHL-W distribution are
plotted in Figure 3. The shape and scale parameters of the baseline distribution, Weibull, are taken
as a = 9 and c = 2, respectively. From Figure 3, we conclude that when the parameter α increases,
the skewness decreases and kurtosis increases; when the parameter λ increases, skewness and
kurtosis decreases. Note that the parameter λ has no critical effect on the skewness measure of the
NTIIHL-W distribution.

4.3. Useful expansions

For the simplification, we use g(x;φ) = g(x) and G(x;φ) = G(x). Firstly, we define the pdf and
cdf of the Exponentiated-G (“Exp-G”) distribution which are given by

Hγ(x) = G(x)γ and hγ(x) = γ g(x)G(x)γ−1,

respectively. This model is known as the Lehmann type I distribution and denoted as Expγ(G).
Now, an expansion for the cdf of the NTIIHL-G family is obtained. The power series for the
quantity uλ (λ > 0 real, 0 < u < 1) is

uλ =
∞∑
k=0

sk(λ)uk,

7
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where

sk(λ) =
∞∑
j=k

(−1)k+j

(
λ

j

)(
j

k

)
.

Using power series, we have (α > 0)

2G(x)αλ =
∞∑
k=0

akG(x)k,

where ak = 2 sk(αλ) and

G(x)αλ +
[
G(x)α + Ḡ(x)α

]λ
=
∞∑
k=0

bkG(x)k,

where bk = sk(αλ) + hk(α, λ). We have the following equation from the ratio of the two power
series given above

F (x) =

∑∞
k=0 akG(x)k∑∞
k=0 bkG(x)k

=
∞∑
k=0

ck Πk(x), (5)

where Πk(x) = G(x)k is the Exp-G cdf, c0 = a0

b0
and the coefficients ck’s (for k ≥ 1) can be

determined by

ck =
1

b0

[
ak −

1

b0

k∑
r=1

br ck−r

]
.

Differentiating (5), we have the pdf of X which is given by

f(x) =
∞∑
k=0

ck+1 πk+1(x), (6)

where πk+1(x) = (k+ 1) g(x)G(x)k is the Exp-G density function with power parameter (k+ 1).
Equation (6) shows that the NTIIHL-G can be expressed as a linear combination of the Exp-G
densities. Using this property, several properties of the NTIIHL-G can be obtained easily. One can
refer to the following studies for the properties of the Exp-G densities: Mudholkar and Srivastava
(1993) and Mudholkar et al. (1995), Gupta et al. (1998), Gupta and Kundu (1999), Nadarajah
(2005), Shirke and Kakade (2006), Nadarajah and Gupta (2007) and Nadarajah and Kotz (2006).

4.4. General properties

The moments play important role to characterize the distributions such as their dispersion, skew-
ness and kurtosis measures. The rth moment of X is given by

µ′r = E(Xr) =

∫ ∞
−∞

xr f (x) dx.

8

Applications and Applied Mathematics: An International Journal (AAM), Vol. 16 [2021], Iss. 2, Art. 3

https://digitalcommons.pvamu.edu/aam/vol16/iss2/3



AAM: Intern. J., Vol. 16, Issue 2 (December 2021) 831

Using (6), we have

µ′r =
∞∑
k=0

ck+1E(Y r
k+1),

where

E
(
Y r
γ

)
= γ

∫ ∞
−∞

xr g (x)G (x)γ−1 dx.

The above quantity can be numerically calculated based on the baseline qf such as QG(u;φ) =
G−1(x;φ) as E(Y n

α ) = α
∫ 1

0
QG(u;φ)n uα−1du. For r = 1 we have E(X) = µ. For the NTIIHL-

W model, we have

µ′r =
∞∑

k,h=0

ck+1
(k + 1) (−1)h

(1/c)r (h+ 1)(r+a)/a

(
k

h

)
Γ
(

1 +
r

a

)
, ∀ r > −a.

The moment generating function (mgf) of the NTIIHL-W,MX (t) is obtained from (6) asMX (t) =
∞∑
j=0

ck+1 τ (t, k) ,where τ (t, k) =
∫ 1

0
exp [tQG (u)] ukdu and QG(u) is the qf corresponding to

G (x;φ), i.e., QG(u) = G−1(u;φ). The mgf of the NTIIHL-W is

MX (t) =
∞∑

k,r,h=0

ck+1
(k + 1) (−1)h tr

(1/c)r r! (h+ 1)(r+a)/a

(
k

h

)
Γ
(

1 +
r

a

)
, ∀ r > −a.

The rth incomplete moment of X is defined by mr(y) =
∫ y
−∞ x

r f(x)dx. Using (6), it is possible

to define that mr(y) =
∞∑
k=0

ck+1 mr,k(y), where mr,γ(y) = E(Y r
γ ) =

∫ G(y;ϕ)

0
Qr
G(u;φ)uγ−1 du.

For the NTIIHL-W model we have

mr(y) =
∞∑

k,h=0

ck+1
(k + 1) (−1)h

(1/c)r (h+ 1)(r+a)/a

(
k

h

)
γ

(
1 +

r

a
,

(
1

ct

)a)
, ∀ r > −a.

Additionally, we compute the mean and variance of the NTIIHL-W distribution computationally
for the parameters a = 9 and c = 2. The effects of the parameters α and λ on the mean and variance
of the NTIIHL-W distributions are investigated. Figure 4 displays the mean and variance values of
the NTIIHL-W distribution. As seen from these results, it is clear that the when α increases, the
mean and variance decrease; when the parameter λ increases, the mean increases and the variance
decreases.

5. Maximum Likelihood Estimation

Assume that the random sample, x1, . . . , xn, follows the NTIIHL-G family with the unknown
parameters α, λ and φ, where φ is a q × 1 baseline parameter vector. Let Ψ =(α, λ, φᵀ)ᵀ be a
(q + 2)×1 parameter vector. Based on these definitions, the log-likelihood function of the NTIIHL-
G family is

9
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Figure 4. The mean (left) and variance (right) of the NTIIHL-W distribution

` = n log (2) + n log (α) + n log λ+
n∑
i=1

log g(xi;φ) + (αλ− 1)
n∑
i=1

logG(xi;φ)

+ (α− 1)
n∑
i=1

logG (xi;φ) + (λ− 1)
n∑
i=1

log si − 2
n∑
i=1

log zi, (7)

where si =
[
G(xi;φ)α +G (xi;φ)α

]
and zi = G(xi;φ)αλ + sλi . The log-likelihood function in

(7) is maximized using the optim function of the R software. The other choice is to take partial
derivatives of (7) with respect to the parameters and obtain the maximum likelihood estimators
(MLEs) of the parameters of the NTIIHL-G family based on the joint solution of these score
vectors. The score vector components, say U (Ψ) = ∂`

∂Ψ
= ( ∂`

∂α
, ∂`
∂λ
, ∂`
∂ φr

)ᵀ = (Uα, Uλ, Uφr)
ᵀ, are

given by

Uα =
n

α
+ λ

n∑
i=1

logG(xi;φ) +
n∑
i=1

logG (xi;φ) + (λ− 1)
n∑
i=1

ti
si
− 2

n∑
i=1

di
zi
,

Uλ =
n

λ
+ α

n∑
i=1

logG(xi;φ) +
n∑
i=1

log si − 2
n∑
i=1

pi
zi
,

and (for r = 1, ..., q)

Uφr =
n∑
i=1

g′r (xi;φ)

g(xi;φ)
+ (αλ− 1)

n∑
i=1

G′r (xi;φ)

G(xi;φ)
+ (α− 1)

n∑
i=1

G′r (xi;φ)

G(xi;φ)

+ (λ− 1)
n∑
i=1

mi,r

si
− 2

n∑
i=1

wi,r
zi
,
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where

ti = logG(xi;φ)
G(xi;φ)−α

+ logG(xi;φ)

G(xi;φ)−α
, g′r (xi;φ) =

∂g (xi;φ)

∂φr
,

di = λ
[

logG(xi;φ)
G(xi;φ)−αλ

+ ti
s1−λ
i

]
, G′ (xi;φ) =

∂G (xi;φ)

∂φr
,

pi = α logG(xi;φ)
G(xi;φ)−αλ

+ log si
s−λi

, mi,r =
G(xi;φ)α−1 −G (xi;φ)α−1

α−1 [G′ (xi;φ)]−1 , and

wi,r = λ
[

G(xi;φ)αλ−1

α−1[G′(xi;φ)]−1 + mi,r

s1−λ
i

]
.

One can obtain the MLE of the parameter vector, Ψ = (α̂, λ̂, φ̂ᵀ)ᵀ, by means of the simultaneous
solution of the score vectors for zero. However, as seen from the score vectors, they contain non-
linear functions which make the solution of the MLE impossible. Therefore, the log-likelihood
function has to be maximized directly.

6. Simulation study

The asymptotic efficiencies of the MLEs of the NTIIHL-N parameters are investigated by means
of a simulation study. The below measures are considered to evaluate the simulation results.

(1) Bias→ B̂iasη(n) = 1
N

∑N
i=1(η̂i − η)

(2) Means square error (MSE)→ M̂SEη(n) = 1
N

∑N
i=1(η̂i − η)2

(3) Average length (AL)→ ALη(n) = 3.919928
N

∑N
i=1 sη̂i

(4) Coverage probability (CP)→ CPη(n) = 1
N

∑N
i=1 I(η̂i − 1.95996sη̂i , η̂i + 1.95996sη̂i) where

η = α, λ, µ, σ and sη̂i is the standard error of the estimated parameter.

We generate random variables from the NTIIHL-N distribution with sample sizes n =
50, 55, . . . , 900. The simulation is repeated N = 1000 times. The simulation is implemented with
the parameters α = 0.5, λ = 2, µ = 0.5, σ = 2. The simulation results are displayed in Figure
5. We expect to see that the estimated biases and MSEs approach the zero for large sample sizes.
Additionally, the estimated CP should be near 0.95 and AL should be a decreasing function of the
sample size. As seen from the results displayed in Figure 5, the estimated biases and MSEs are
near the zero and also CP approach the desired value, 0.95. The estimated ALs always decrease
when the sample size increases. These results verify the consistency property of the MLE method.

7. The log-new type II half-logistic-Weibull (LNTIIHL-W) regression
model

In the last decade, the location-scale regression models have gained attention and have found an
application area in the survival modeling. Now, we introduce a new log location-scale regression

11
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Figure 5. The estimated biases, MSEs, CPs and ALs for the NTIIHL-W distribution

model based on the NTIIHL-W density. Let X be a random variable following the NTIIHL-W
distribution with four parameters α > 0, λ > 0, a > 0 and c > 0, introduced in Section 3.1. Define
a random variable Y = log(X) and re-parametrizations on the parameters of the NTIIHL-W such
as a = 1/σ and c = exp(µ). Then, we have

f (y) = 2αλ
σ exp

[(
y−µ
σ

)
− exp

(
y−µ
σ

)]{
1− exp

[
− exp

(
y−µ
σ

)]}αλ−1(
exp

[
− exp

(
y−µ
σ

)])α−1
×
[{

1− exp
[
− exp

(
y−µ
σ

)]}α
+
(

exp
[
− exp

(
y−µ
σ

)])α]λ−1
×

[{{
1− exp

[
− exp

(
y−µ
σ

)]}αλ
+
[{

1− exp
[
− exp

(
y−µ
σ

)]}α
+
(

exp
[
− exp

(
y−µ
σ

)])α]λ}2
]−1

,

(8)

where y ∈ <, µ ∈ <, σ > 0, α > 0 and λ > 0. The density (8) is called as LNTIIHL-W and
denoted as Y ∼ LNTIIHL-W(α, λ, σ, µ) where µ is the location and σ is the scale parameters. The
pdf shapes of LNTIIHL-W distribution are displayed in Figure 6 which reveals that the distribution
can be used to model bimodal, left skewed and nearly symmetric data sets.

The sf to density (8) is

s(y) =

[{
1− exp

[
− exp

(
y−µ
σ

)]}α
+
(
exp

[
− exp

(
y−µ
σ

)])α]λ − {1− exp
[
− exp

(
y−µ
σ

)]}αλ[{
1− exp

[
− exp

(
y−µ
σ

)]}α
+
(
exp

[
− exp

(
y−µ
σ

)])α]λ
+
{

1− exp
[
− exp

(
y−µ
σ

)]}αλ .
(9)

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 16 [2021], Iss. 2, Art. 3

https://digitalcommons.pvamu.edu/aam/vol16/iss2/3



AAM: Intern. J., Vol. 16, Issue 2 (December 2021) 835

−15 −10 −5 0 5 10

0
.0

0
0
.0

5
0
.1

0
0
.1

5

y

α=0.4,λ=0.6,µ=5,σ=0.6

α=0.5,λ=0.4,µ=5,σ=0.6

α=0.4,λ=0.5,µ=5,σ=0.7

α=0.4,λ=0.3,µ=5,σ=0.8

α=0.3,λ=0.5,µ=5,σ=0.9

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

y

α=3.0,λ=0.5,µ=0,σ=1.0

α=2.5,λ=0.9,µ=0,σ=1.5

α=2.0,λ=1.3,µ=0,σ=2.0

α=1.5,λ=1.1,µ=0,σ=0.5

α=2.9,λ=0.7,µ=0,σ=0.9

Figure 6. The pdf plots of the LNTIIHL-W distribution

Under the following transformation, Z = (Y − µ)/σ, the corresponding pdf is

f (z) = 2αλ exp [z − exp (z)] {1− exp [− exp (z)]}αλ−1(exp [− exp (z)])α−1

× [{1− exp [− exp (z)]}α + (exp [− exp (z)])α]
λ−1

×
[{
{1− exp [− exp (z)]}αλ + [{1− exp [− exp (z)]}α + (exp [− exp (z)])α]

λ
}2
]−1

.

(10)

Using the density given in (8), LNTIIHL-W regression model is introduced. Let yi be a dependent
variable and xTi = (xi1, ..., xip) be a vector of explanatory variable. Then, the regression model is
given by

yi = xTi β + σzi, i = 1,..., n, (11)

where the error term zi has the density function in (10). The vector βββ = (β1, . . . , βp)
T represents

the regression parameters and σ > 0, α > 0 and λ > 0 are unknown parameters. The location
of the response variable yi is modeled with identity link such as µi = xxxTi βββ. The LNTIIHL-W
regression model contain the following model as its submodel.

• Log-new type half-logistic-Weibull (LNTHL-W) regression model
For α = 1 , the survival function is

s(y) =
1−

{
1− exp

[
− exp

(
y−µ
σ

)]}λ
1 +

{
1− exp

[
− exp

(
y−µ
σ

)]}λ . (12)

Now, we discuss the parameter estimation of the LNTIIHL-W regression model. Let
y1, y2, ..., yn be a random sample from the LNTIIHL-W distribution and it is defined as yi =
min{log(xi), log(ci)}where ci is censoring time and xi is the lifetime. We use two sets, F and C to
identify the log-lifetime and log-censoring, respectively. The log-likelihood function of the model
given in (11) is l(τ ) =

∑
i∈F

li(τ ) +
∑
i∈C

l
(c)
i (τ ). So, the log-likelihood function of the LNTIIHL-W

regression model is
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` (τ ) = r log
(
αλ
σ

)
+
∑
i∈F

(zi − ui) + (αλ− 1)
∑
i∈F

log [{1− exp [−ui]}] + (α− 1)
∑
i∈F

log [(exp [−ui])]

+ (λ− 1)
∑
i∈F

log
[[
{1− exp [−ui]}α + (exp [−ui])α

]]
−
∑
i∈F

log

[[{
{1− exp [−ui]}αλ +

[
{1− exp [−ui]}α + (exp [−ui])α

]λ}2]]
+
∑
i∈C

log
{[
{1− exp [−ui]}α + (exp [−ui])α

]λ − {1− exp [−ui]}αλ
}

−
∑
i∈C

log
{[
{1− exp [−ui]}α + (exp [−ui])α

]λ
+ {1− exp [−ui]}αλ

}
,

(13)

where τ =
(
α, λ, σ,βT

)T
, ui = exp(zi), zi = (yi − xTi β)/σ and r is the number of uncensored

observations. The unknown parameters of the LNTIIHL-W regression model are estimated by
direct maximization of the given log-likelihood.

As mentioned before, LNTHL-W and LNTIIHL-W regression models are nested. So, likelihood
ratio (LR) test can be used to decide which model performs better than other one. The LR test
statistic is defined as w = 2{`(τ̂) − `(τ̃)} where `(τ̂) and `(τ̃) are the estimated log-likelihood
values for the null and alternative models, respectively. Here, we have the following hypothesis:
H0 : α = 1 versus H1 : α 6= 1. For these hypothesis testing, the LR test statistic is distributed as
χ2
k distribution with one degree-of-freedom.

8. Estimation of System Reliability using NTIIHL-W model

The hrf is used to measure the item’s tendency to fail. Several probability distributions are used
for system reliability estimations. Due to its simplicity, the exponential and Weibull distributions
are commonly used for modeling lifetime data. In this section, we investigate the usefulness of the
NTIIHL-W distribution in terms of the estimation of the system reliability. Let T represents the
lifetime of units, the rf and hrf of the NTIIHL-W distribution are given, respectively,

R (t;α, λ, a, c) =
[{1− d}α + (d)α]

λ − {1− d}αλ

[{1− d}α + (1− d)α]
λ

+ {1− d}αλ
, (14)

and

h (t;α, λ, a, b) = 2αλ
{
a
c

(
t
c

)a−1
d
}
{1− d}αλ−1(d)α−1

×[{1− d}α + (d)α]
λ−1
{
{1− d}αλ + [{1− d}α + (d)α]

λ
}−1

×
{

[{1− d}α + (d)α]
λ − {1− d}αλ

}−1

,

(15)

where d = exp
[
−
(
t
c

)a], α > 0, λ > 0, a > 0 are the shape parameters and c > 0 is the scale
parameter. Under the normal system conditions, the mean-time-between-failure (MTBF) repre-
sents the estimated elapsed time between failures. The MTBF of the NTIIHL-W distribution can

14
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Table 1. Parameter estimates and fitting summary of the models

Models Parameter Estimates (Standard Errors) p-value AIC BIC

Exponential 0.002 0.656 1196.20 1198.66
(c) (0.0002)
Weibull 1.170 400.930 0.720 1195.26 1195.40
(a, c) (0.103) (38.729)
NTIIHL-W 0.168 0.278 21.540 887.200 0.980 1181.96 1191.78
(α, λ, a, c) (0.049) (0.073) (1.658) (1.916)

be given by,

MTBF =
∞∫
0

tF (t)dt =
∞∫
0

R (t)dt

=
∞∫
0

[{1−exp[−( tc)
a

]}α+(exp[−( tc)
a

])
α

]
λ
−{1−exp[−( tc)

a

]}αλ

[{1−exp[−( tc)
a

]}α+(1−exp[−( tc)
a

])
α

]
λ
+{1−exp[−( tc)

a

]}αλ .
(16)

Hereby, we demonstrate the usefulness of the NTIIHL-W distribution in terms of the estimation
of the system reliability by means of real data application. The MLE method is used to estimate
the parameters of the NTIIHL-W distribution for modeling the failure data set of software. The
data set can be found in Lyu (1996). The data set contains 86 observations and represents the
time-between-failures (time unit in miliseconds) of a software which can be also found in reliaR
R package.

We compare the performance of NTIIHL-W distribution with Weibull and exponential distribu-
tions. The parameter estimations and fitting summary of the used models are given in Table 1.
We use Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) as well as
Kolmogorov-Smirnov (K-S) test with corresponding p-value to decide the best model. The re-
ported results in Table 1 indicate that NTIIHL-W distribution provides better fits than the Weibull
and exponential distributions based on the and AIC and BIC values. Additionally, the p-value of
the K-S test is the highest for the NTIIHL-W distribution.

MTBF value is calculated as 375.052 by using the Equation (16) for the NTIIHL-W distribution.
We present the plots of the fitted density, hrf and rf with the probability-probability (P-P) plot for
the NTIIHL-W model in Figure 7. It is clear that NTIIHL-W provides superior fits to used data set.

9. Applications

9.1. Turbocharger failure time

We compare the NTIIHL-W model with Kw-Weibull (Cordiero et al., 2010), Beta-Weibull (Lee
et al., 2007), Generalized Modified Weibull (Carrasco et al., 2008) and (P-A-L) Extended Weibull
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Figure 7. Fitted plots of NTIIHL-W distribution

Table 2. Summary statistics of the data set

Data set Mean Median SD Skewness Kurtosis
Turbocharger failure time 6.2 6.5 1.9 -0.66 2.64

(Al-Zahrani et al., 2015), Type I half-logistic-Weibull (Cordeiro et al., 2016c) and Exponentiated
half-Logistic weibull (Cordeiro et al., 2014) Distributions. The following measures are considered
to decide the best model: AIC, Consistent Akaike Information Criterion (CAIC), BIC, Hannan-
Quinn information criterion (HQIC). The model with the smallest values of these measures is
chosen as the best model. The descriptive statistics of the used data set is given in Table 2.

The data contains the time-to-failure of turbocharger, given in the work of Xu et al. (2003). Table 3
contains the estimated parameters of the fitted models. The standard errors are given in parentheses.
The results of the model selection criteria are given in Table 4. Since the NTIIHL-W model has
the lowest values of the model selection criteria, we conclude that the proposed distribution is the
best choice for the used data among others. Figure 8(a) displays the histogram of the data with
fitted pdfs of the competitive models. Figure 8(b) displays the fitted functions of the NTIIHL-W
distribution. Especially, Figure 8(b) proves the suitability of the NTIIHL-W distribution for the
used data set. The proposed distribution provides nearly perfect fit for the data.
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Table 3. Estimated parameters of the fitted models

Model Estimates (Standard Error)

NTIIHL-W 0.225, 1.339, 12.503, 7.170
(α, λ, a, c) (0.077), (0.823), (8.126), (0.996)

Kw-W 122.106, 451.971, 0.181, 64.685
(a, b, λ, c) (58.395), (376.933), (0.019), (39.853)

B-W 0.557, 0.066, 0.297, 3.643
(a, b, λ, c) (0.196), (0.011), (0.001), (0.002)

GM-W 0.003, 0.982, 0.510, 0.941
(α, γ, λ, β) (0.001), (1.037), (0.258), (0.247)

PALEW 5.419, 3.756, 0.250, 737.875
(α, β, ν, p) (1.117), (1.180), (0.391), (1194.629)

TIHLW 0.167, 0.271, 3.396
(λ, α, c) (1.828), (0.873), (0.471)

EHLW 0.093, 0.740, 0.262, 4.135
(λ, α, b, c) (0.017), (0.139), (0.004), (0.005)

Table 4. Results of the model selection criteria

Model Goodness of fit criteria

AIC BIC HQIC CAIC

NTIIHL-W 165.064 171.819 167.506 166.206
Kw-W 177.899 184.654 180.342 179.042
B-W 171.908 178.663 174.350 173.050

GM-W 168.163 174.918 170.605 169.306
PALEW 166.196 172.952 168.639 167.339
TIHLW 169.317 174.384 171.149 169.984
EHLW 169.284 176.039 171.727 170.427

9.2. Leukaemia data

This application is on the data set about the length of remission in weeks for two groups of
leukaemia patients, treated and control. The data set were analyzed previously by Cox (1992).
The response variable yi is the log weeks of remission and explanatory variable xi is the treatment
which takes value 1 for drug and 0 for placebo. The aim of is to model the weeks of remission with
the treatment. The following regression model is fitted to data set

yi = β0 + β1xi + σzi,

where yi has the LNTIIHL-W density (8). Table 5 contains the estimated parameters of the fit-
ted regression models. The standard errors are given in (·) and corresponding p-values are in [·].
The regression parameter β1 is found statistically significant at any significance level for all fitted
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Figure 8. (a) Comparison of fitted models on the histogram of the data and (b) fitted functions of NTIIHL-W model

Table 5. The estimated parameters of the fitted regression models

Model α λ σ β0 β1 AIC

LNTIIHL-W 0.251 0.378 0.081 1.645 1.327 98.756
(0.085) (0.001 (0.134) (0.025) (0.025)

[< 0.001] [< 0.001]
LNTHL-W 1.000 3.555 1.429 0.126 1.319 102.573

- (1.146) (0.629) (0.872) (0.321)
[0.885] [< 0.001]

LW - - 0.732 0.981 1.267
(0.108) (0.430) (0.311) 100.128

[0.022] [< 0.001]

regression models. However, the LNTIIHL-W regression model has the lowest value of the AIC
which proves that the LNTIIHL-W regression model is the best model among others. Since the
parameter β1 is statistically significant, we conclude that there is a difference between treatment
groups for the weeks of remission.

Additionally, we perform the LR test to compare the LNTIIHL-W regression model with its sub-
model, LNTHL-W regression model. We test the hypothesis H0 : α = 1 against H1 : α 6= 1. The
LR test statistic is obtained as 5.816 with the corresponding p-value is 0.016 which indicates that
the LNTIIHL-W regression model is better than the LNTHL-W regression model. The suitability
of the fitted LNTIIHL-W regression model is proved graphically in Figure 9. As seen from Figure
9, the proposed regression model provides excellent fit to the estimated Kaplan-Meier curve and it
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Figure 9. (a) Estimated sf and (b) hrf for the LNTIIHL-W regression model

is an evidence for the difference between treatment groups.

10. Conclusion and future work

In this study, a new type II half-logistic-G (NTIIHL-G) family is defined. The proposed family is
applied to different fields such as system reliability and survival analysis. An application on real
data set is given for the estimation of system reliability based on a new extension of the Weibull
distribution. Besides, two applications are also given for survival data analysis with covariates and
without covariates. In the light of the results of these applications, we conclude that the proposed
family work well for survival and system reliability analysis. As a future work of the presented
study, a financial risk model based on the NTIIHL-G family by using the generalized Pareto distri-
bution as a baseline distribution is planned.
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