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Abstract

The traditional view of cerebellar processing has been that it plays a role in motor

planning and function, now the cerebellum is also believed to be involved in spatial

learning and cognition. Like the cerebellum’s involvement in cognition the role of

estrogen in cerebellar functioning has only recently been investigated. The cerebellum

normally has low levels of estrogen but aromatase activity is upregulated after brain

injury, increasing estrogen levels. This upregulation after injury suggests that estrogen

could be involved in neuroprotection. This study uses male zebra finches to investigate

the role of the cerebellum in spatial function and the possible role of estrogen in recovery

of function after cerebellar lesion. To test the hypotheses that estrogen aids in recovery

of spatial abilities after cerebellar lesion, we developed a maze for small birds to test

spatial abilities. To examine recovery of function, I made bilateral puncture lesions to the

cerebellum or performed a sham lesion (controls).  I compared sham birds, to birds with

bilateral lesions to the cerebellum, either given  a control vehicle or fed vehicle + letrozole

to block estrogen synthesis. Our findings suggest that the cerebellum is involved in

spatial function and that estrogen improves the outcome of behavioral recovery after

cerebellar lesions.
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Introduction

While the traditional view of the cerebellum has been centered on its involvement

in motor function, recently there is evidence for the involvement of the cerebellum in

cognition (Ebner & Pasalar, 2008; Glickstein & Doron, 2008). For example, there are

correlations between abnormalities of the cerebellum and neurological diseases that cause

cognitive impairments in humans (Steinlin, 2007). Further evidence comes from rodent

studies, where lesioning of the cerebellum has resulted in impairments in cognitive

abilities (Lalonde & Strazielle, 2003; Petrosini, 2007). Although the size and shape of the

cerebellum differs greatly among species, the circuitry and connections of the cerebellum

are conserved. In all vertebrates, the cerebellum has three cell layers; the molecular layer,

granule layer and the Purkinje layer. The granule layer is the input layer and the Purkinje

layer is the output layer. The regular and intricate input and outputs make it an ideal

computer of timing and sequence of behaviors. Because its morphology is conserved,

studies of the cerebellum in one species can be applied to other species (Spence et al.

2009).

Although there are many causes of cerebellar dysfunction both natural and

accidental, one known cause of age related declines in cerebellar function is a reduction

in steroid hormones (Foy et al, 2000). Steroid hormones are known to play a role in

normal brain physiological processes (Moore & Evans, 1999), and may play a role in

repair and recovery of function after damage to the cerebellum (Spence et al, 2009) and

other areas of the brain (Peterson et al, 2001; Peterson et al, 2004; Kelly et al, 2008;

Soderstrom et al., 2009). The role of estrogen in cerebellar fimction has been far less

studied than the role of estrogen in other brain areas. This is due, in part, to the fact that
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under normal conditions there is little estrogen in the cerebellum, and there is no estrogen

receptor alpha in the cerebellum (Ball et al, 1999). Recently, however, a new estrogen

receptor, estrogen receptor beta, was discovered, and it has been found that estrogen

receptor beta is present at low levels in the cerebellum (Ball et al, 1999). Estrogen’s

possible role in neuroplasticity in the cerebellum is particularly interesting because

although there is normally little estrogen in the cerebellum, after traumatic brain injury

aromatase is upregulated. Aromatase is the enzyme that converts androgens to estrogen.

This raises the estrogen levels in the cerebellum around the lesion cite suggesting that

estrogen may play a role in neuroprotection by preventing further cell death around the

lesion (Spence et al, 2009) and in neural repair after lesions (Foy et al, 2000). This

neuroplasticity may then serve to improve behavioral deficits caused by the lesions.

However, the role of estrogen in recovery of function after damage to the cerebellum is

even less well studied than the role of estrogen in repair and regeneration at the neural

level. Thus, in my thesis research, I examined whether lesions of the cerebellum impair

spatial ability and whether estrogen could improve recovery of spatial function after

lesions in zebra finches. While a role of the cerebellum in spatial working memory had

previously been shown in zebra finches (Spence et al, 2009), no study has tested whether

lesions of the zebra finch cerebellum interfere with spatial reference learning and whether

estrogen could improve learning and memory outcomes after such lesions. We used

zebra finches as a model for our studies as their brains are more plastic than mammals as

will be further detailed below (Spence et al, 2009). However, because cerebellar

structure and many functions are conserved, our results should be applicable to other

vertebrate models as well (Spence et al, 2009). I review evidence below that
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demonstrates that the cerebellum is involved in cognition across taxa and that estrogen

plays a role in cerebellar function in a variety of taxa.

Cerebellar Function

Humans. In humans cerebellar abnormalities are associated with a variety of

impairments. In children with cerebellar abnormalities there is a reduction in cognitive

processing and cognitive processing speed (Steinlin, 2007). These children have lower IQ

scores and have problems with visuospatial task (Steinlin, 2007). Patients with fragile X

syndrome and Down’s syndrome have smaller cerebellums than controls. People who

suffer from William’s syndrome, a neurodevelopmental disorder that causes mental

retardation and visual spatial disabilities, have larger cerebellums when compared to

controls (Steinlin, 2007). It is believed that cerebellar defects at birth lead to dyslexia

(Steinlin, 2007). Dyslexic patients have difficulties reading and spelling and adults with

dyslexia have implicit learning complications. However, this disorder is not related to

intelligence level. Researchers believe that dyslexia could be related to defects of the

cerebellum because the cerebellum differs more in dyslexia patients than in controls

(Steinlin, 2007). These neurological disorders support the notion that cerebellar

abnormalities interfere with cognitive function.

Damage to the cerebellum in humans also causes specific deficits in spatial

learning. Patients with damage to the cerebellum have impairments in three spatial tests:

the Raven standard progressive matrices, Ray complex figure, and block design (Lalonde

& Strazielle, 2003). The Raven standard progressive matrices test is a multiple choice test

using graphic designs to test the spatial and cognitive abilities of the test taker
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(Prabhakaran et al., 1997). The Ray complex figure task is a task where the subject has to

draw a figure twice. The first time the figure is drawn by tracing, and the second figure is

drawn from memory to test the visiographic memory of the patient (Liberman et al.

1994; Hubley & Jassal, 2006). The block design task tests spatial ability by putting a set

of blocks together to match a given pattern.

Further support for the cerebellum’s involvement in the learning of spatial task is

shown in chess players. When comparing new chess players to more experienced chess

players, functional magnetic resonance imaging reveals that there is more activity in the

cerebellum of inexperienced players in a figure positioning task (Steinlin, 2007). This

magnetic resonance imaging suggests that the cerebellum is involved in the learmng

process more than the process of recalling strategies from memory because only new

players had this increased activity. This involvement of the cerebellum in learning

strategies is supported by rodent studies that use the Morris water maze (Lalonde &

Strazielle, 2003; Petrosini, 2007).

Rodents. The Morris water maze allows researchers unique ways to study learmng

in mice and rats (Petrosini et al, 1996). The maze can be used to study the development

of spatial strategies, spatial learning and spatial working memory (Lalonde & Strazielle,

2003; Petrosini, 2007). The animal is placed in a large circular tub (2-4 m) of water made

opaque with the addition of dry milk or other methods. A small platform (5-15cm) is

submerged in the tub and the animal must find this hidden platform to escape the water.

In the spatial versions of this maze, no cues that are spatially contiguous with the goal are

provided, thus the animals must use distal cues such as posters on the wall as spatial cues

to triangulate the position of the goal.
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Rat studies with hemicerebellectomized rats and rats with bilateral damage to the

midline cerebellum tested in the Morris water maze show that the cerebellum is involved

in the learning of spatial strategies but not the recall of spatial strategies already learned

(Lalonde & Strazielle, 2003). Additionally, spatial learning deficits appear to be due, in

particular, to deficits in learning the appropriate search strategies rather than in learning

the spatial location of the platform. Rats that were allowed to learn the location of a

platform pre lesion can learn a new location; thus location knowledge is not impaired.

However if rats are not allowed to fully develop search strategies before lesioning, rats

are unable to develop search strategies, beyond pre-operative levels, after lesioning.

To determine the exact role of the cerebellum in learning strategic components of

the Morris water maze, Petrosini (2007) did an ingenious experiment taking advantage of

the fact that rats can learn the location of the hidden platform in the Morris water maze

from observing other rats. In her experiments, rats were allowed to learn by observing

other rats in the Morris water maze who had either fully developed their searching

strategies, or watched rats that had not yet learned the task strategies. Then rats were

lesioned. If the observers saw the full behavior before cerebellar lesioning, the observer

rats showed no deficits in maze completion. If rats were not allowed to observe the full

development of searching strategies before lesioning, they never developed their

searching strategy beyond that of the rat that they observed (Petrosini, 2007). This is

evidence for cerebellar involvement in learning specific procedural elements required to

gain spatial knowledge in the Morris water maze rather than a role in learning spatial

knowledge itself As Petrosini (2007) characterized it, the cerebellum is involved in
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learning “how” not in learning “where”. Another brain region, the hippocampus, is

involved in learning where the hidden platform is located.

Numerous studies have shown that damage to the hippocampus prevents learning

the location of a platform in the Morris water maze (Bast et al, 2009). In contrast, to the

cerebellum lesioned rats, rats with hippocampus lesion will learn to search for the

platform and even develop strategies to locate the platform quickly. But they will never

be as fast at locating the platform as unlesioned controls because they do not directly

approach the platform using spatial knowledge. This can be exemplified by training rats

with hippocampal lesions and controls to locate the platform in a room with moveable

distal cues then performing a “probe” trial. In the probe trial, the cues are rotated

1 SOdegrees, and the platform is removed. Control rats will persistently search for the

platform 180 degrees opposite the original platform location while hippocampal lesioned

rats will attempt their search strategy (such as searching one foot fi*om the edge of the

pool wall) and will then swim randomly with no persistent search of the previously

correct quadrant. Once a rat has learned how to locate a platform in the Morris water

maze and is then given a cerebellar lesion, it will not exhibit problems learning a new

spatial location in the Morris water maze and will preferentially search for the platform in

the previously correct quadrant during probe trials (Bast et al, 2009).

One reason for cerebellar related deficits in learning the Morris water maze is the

possible interruption of vestibular cue processing. The vestibular system gives animals a

sense of balance and spatial orientation. Vestibular inputs along with visual inputs allow

animals to calculate angular movements to reach a specific goal location. Under normal

conditions the cerebellum mediates vestibular input to the medial temporal lobe.
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However, the lesions of the cerebellum may interrupt this pathway causing spatial

learning deficits (Lalonde & Strazielle, 2003).

Birds. Several studies in birds have shown correlations between behaviors and

morphological characteristics of the cerebellum. For example, tool use is associated

with complex cerebellar foliation patterns and the increases in the size of these folds

when compared with birds that do not use tools. Given that tool use requires both

cognition and spatial function, experimental studies are needed to further investigate the

cerebellum’s role in both cognitive and spatial aspects of tool use (Iwaniuk et al, 2006;

2007). In a previous study, it was found that zebra finches show deficits in spatial

working memory after bilateral lesions to the medial cerebellar nuclei in a plus maze

task. The plus maze is a four arm maze made like plus symbol (+). In Spence et al. (2009)

each arm of the maze had a cup with seeds in it. Three of them were covered with

parafilm, which only allowed the bird access to food in one cup. The goal of this task is

for birds to use spatial knowledge to find the cup with available food and working

memory to avoid re-entries into incorrect arms. Lesioned birds made significantly more

errors in arm choice while searching for food. In addition, lesioned birds showed no

difference in the time to complete the task between the first and last day of the study,

while control birds had significantly shorter latencies to complete the task when

comparing the first and last days of testing. This showed that lesions to the medial

cerebellar nucleus of zebra finches slows learning of the spatial working memory in the

plus maze (Spence et al, 2009).

Estrogen and Repair of the Cerebellum
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As reviewed above, damage to the cerebellum or alterations in morphology in

humans, rodents, and birds are associated with deficits in a number of visual-spatial.

spatial working memory, and spatial neglect types of task, suggesting a prominent role

for the cerebellum in spatial learning. While damage to the cerebellum or disorders

associated with morphological abnormalities can lead to such deficiencies, there is also

evidence suggesting that estrogen treatment may improve such symptoms and withdrawal

of estrogen may increase such symptoms. There are many pathways by which estrogen

could result in such behavioral changes but to review them would be beyond the scope of

this paper. Thus I touch only lightly on mechanisms below.

Estrogen and Neuroplasticity

Studies of estrogen’s role in neuroprotection have mainly been done in the

hippocampus as this learning and memory region is highly plastic. Thousands of studies

have shown that estrogen is involved in normal fimctioning, neuroprotection, and repair

of the central nervous system with the majority of these studies done in the hippocampus

(Foy et al, 2000). Evidence stems fi*om studies that show a positive correlation between

estrogen treatment and reduced chances of the development of neurodegenerative

diseases (Steinlin, 2007). Furthermore, endogenous or exogenous estrogen reduces the

size of traumatic brain injury (Spence et al, 2009). In addition to the reduction of size of

traumatic brain injury, there is upregulation of aromatase synthesis, the enzyme that

catalyses the conversion of androgens to estrogen (Garcia-Segura  et al, 1998; Spence et

al, 2009), in the region of injury even in brain areas where levels of aromatase are

normally very low (Spence et al, 2009).
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Although, studies of estrogen’s role in cerebellar function are few compared to

those in the hippocampus (Garcia-Segura et al, 1999; Peterson et al, 2001; Peterson et

ai, 2004; Zurkovsky et al, 2006; Soderstrom et al, 2009). In the last 10 years we have

learned a great deal; a number of studies now attest to the possible role of estrogen in

neuroprotection in the cerebellum. For example, estrogen provides neuroprotection

against ethanol withdrawal in mice. Ethanol withdrawal leads to apoptosis of Purkinje

cells. However, following twenty weeks of exposure to ethanol, mice with estrogen

treatment had significantly less loss of Purkinje cells when compared to mice without

estrogen treatment (Jung et al, 2005).

Not only does estrogen protect fi*om damage due to ethanol withdrawal but it

improves cognitive performance of postmenopausal women, and may retard normal loss

of cognitive abilities during aging. A study testing the ability of women to recall

information from paragraph length stories compared women whose ovarian function was

suppressed with control women who had normal ovarian function. This study showed

that women who received estrogen treatments compared to those that were given placebo

performed better in a memory test (Foy et al, 2000).

To highlight the role of estrogen in cerebellar neuroplasticity,  it is ideal to have a

that one can detect even modest levels of modulation,

likely to find that neuroplasticity results in behavioral recovery

when this plasticity is significant. Estrogen-dependent neuroplasticity in the mammalian

cerebellum seems to be less robust than that seen in avian cerebellum. Thus, zebra

finches offer a good model organism to study estrogen dependent neuroplasticity

because of the relatively high neurogenesis that occurs in normal adult songbirds

very plastic cerebellum so

Furthermore, we are more
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(Peterson et al, 2004). Furthermore, because cerebellar morphology is similar across

taxa we can compare results in zebra finches to that in other species. It has been

confirmed that estrogen receptor p is present in the avian cerebellum as in mammals (Ball

et al, 1999). In addition, mammals Purkinje cells are capable of neurosteroidogenesis

only during development; while the avian Purkinje cells are capable of

neurosteroidogenesis throughout life (Sasahara et al, 2007). Although there is little

aromatase expression in the normal zebra finch cerebellum, (Ball et al, 1999; Peterson et

al, 2007) aromatase is upregulated by injury (Spence et al, 2009). In both the zebra

finch and rat brain, blocking aromatase, and thus estrogen synthesis, results in greater

damage at brain injury site (Garcia-Segura et al, 1998; Saldanha et al, 2004; Wynne &

Saldanha, 2004; Ryan et al, 2008; Spence et al, 2009). An increase in aromatase

expression is correlated and believed to be induced by reactive astrocytes as well as

thought to prevent a secondary wave of neurodegeneration after brain injury (Garcia-

Segura et al, 1998; Ryan et al, 2008). Furthermore, in zebra finches, it is known that

aromatase inhibition increases reactive gliosis and increases the number of degenerating

cells at lesion sites (Saldanha et al, 2004; Ryan et al, 2008).

The neural evidence for estrogen’s neuroprotective role in the zebra finch cerebellum is

supported by behavioral outcomes in studies using the plus maze. In the plus maze, birds

given cerebellar lesions and letrozole (blocking endogenous estrogen) plus estrogen

replacement show a linear improvement by day in errors and latency to find the goal

while birds with cerebellar lesions and letrozole without estrogen replacement do not.

Thus, estrogen replacement aided in recovery of function after cerebellar lesion to the

medial cerebellar nucleus (Spence et al, 2009). While this study suggested estrogen
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played a role in recovery of function, it did not specifically examine the role of estrogen

in spatial learning. Thus, I now want to test the role of the avian cerebellum in spatial

learning and examine whether estrogen improves any alterations in learning outcomes

caused by lesions to the cerebellum. In my present study, I helped create a task to

investigate the involvement of the cerebellum in spatial memory and learning without the

need for pre-training. I investigate the role of estrogen in recovery of function using the

aromatase blocker, letrozole, to prevent estrogen synthesis after mechanical lesioning of

the cerebellum. In Experiment 1,1 compared the performance of lesioned animals with

endogenous estrogen, lesioned animals fed letrozole (no endogenous estrogen), and

controls in an effort to better understand the cerebellum’s role in spatial learning and

estrogen’s role in the cerebellum after injury. I predict lesions to the cerebellum will

impair spatial function and that estrogen will aid in recovery of spatial abilities after

cerebellar lesion. In Experiment 1,1 administered letrozole orally which inhibits

aromatase activity throughout the brain. To ensure that evidence for estrogen’s role in

recovery of spatial ability after cerebellar lesion were not confounded by lack of

aromatase activity outside of the cerebellum in other areas of the brain, a second

experiment was needed. To clarify that results seen in Experiment Iwere fi:om effects of

letrozole action on cerebellar function, I performed a second experiment. In Experiment

2,1 compare lesion animals, lesion animals fed letrozole, and lesion animals with

letrozole administered directly into the cerebellum at the lesion site. I predict that in

Experiment 2 each of the groups will perform similarly, meaning that results seen in

Experiment 1 in birds fed letrozole are mostly from effects of aromatase inhibition in the
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cerebellum and not in other brain areas because direct application to the cerebellum and

systemic effects are the same.

i

I
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Methods

Animals and Treatment

Male American Zebra finches {Taeniopygia guttata) of similar size and age were

used. They were bred at University of Mississippi in the animal care center from initial

stock obtained from multiple vendors. The subjects were all separated from the general

breeding population 72 hours pre-surgery and housed together in cages (length 40.6cm,

width 59.7cm, height 40.6cm) of no more than six birds. All procedures were approved

by the University of Mississippi lACUC (protocol #07-015).

Experiment 1

Birds were randomly assigned to 3 different treatments: Lesl (Lesion + com oil

vehicle, n=6), Sysl (Lesion + Systemic Letrozole, n=6) and Shaml (Sham + vehicle,

n=5)” groups. Letrozole is an aromatase inhibitor, an enzyme which produces estrogen.

These groups allowed for comparison of birds with  a lesion and blocked estrogen (Sysl),

birds with lesions and normal endogenous estrogen levels (Lesl) and Controls with

normal estrogen and no lesion. Letrozole in com oil (lOmg/mL) or oil vehicle were

administered by feeding 20ul of treatment daily. Animals were fed the treatment starting

72 hours pre-surgery and daily doses continued throughout training.

Experiment 2

Birds were randomly assigned to Les2 (Lesion + vehicle, n=5), Sys2 (Lesion +

Systemic letrozole, n=6), and Loc2 (Lesion + Local letrozole, n=7) groups. Les2 and

Sys2 groups were treated as above in Experiment 1. In Experiment 2, a group was added
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that was given letrozole locally into the lesion site. At the lesion site 5^il of steroid

suspension vehicle alone or containing 10% letrozole was released directly into the

cerebellum to ascertain whether systemic administration of letrozole was similar to direct

administration to the cerebellum. Similarity between these two groups would allow us to

infer that systemic effects of letrozole in our spatial task were principally due to

letrozole’s effects at the cerebellum.

Surgery’

Birds were weighed before surgery. Birds were briefly anesthetized using

isoflourane then injected with 30 pi equithesin to initiate anesthesia and allow placement

in a stereotaxic device (Kopf with small bird beak holder) outfitted to administer gas

isoflurane via a tube inserted in the bird’s beak below the beak holder. A small portion of

the skull was removed to expose the cerebellum and central sinus. Using the intersection

of central sinus between the cerebellum and the hemispheres as a zero point for lesion we

made bilateral puncture lesions to the cerebellum with a 26 gage needle (Spence et al.

2009). Experiment 1 lesion coordinates were L.M. ±1, R.C. -2.7, D.V -4.5. The needle

was left in brain for one minute before being removed. For birds in the sham group the

skull was only removed to the spongy bone layer. In Experiment 2, lesion methods were

the same except that lesion coordinates were L.M. ±.7, R.C. -2.2, D.V -4.5 and for birds

in the Sys2 and Let2 groups the needle was lowered into the brain and allowed to rest for

a full minute. Then the needle was retracted 1mm and 5 pi of steroid suspension vehicle

(9mg NaCl, 5 mg sodium carboxymethylcellulose, 4pl polysorbate 80,9pl benzyl

alcohol in 1 ml distilled water) (Saldanha et al, 2004) was injected into the brain over a

period of one minute using (WPI, Micro4 Micro-syringe Pump Controller). Loc 2 birds
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received a 10% letrozole solution in the steroid suspension vehicle. The needle was left in

the brain for another two minutes then removed, and the laceration from the surgery was

closed. Birds were allowed 48 hours to recover before behavioral testing began.

Apparatus

In order to test the spatial abilities of zebra finches, we built a clear cylinder

(height 29.8 cm, diameter 30 cm) that sat on a ceramic tile that was heated by a hot plate.

The hot plate was heated until the tile surface was at approximately 50°C to motivate the

bird to escape. At temperatures below ~ 46°C birds did not try to escape and above ~

56°C birds appeared stressed. The temperature of the hotplate floor was recorded before

trials started and after trials were finished everyday (mean±standard error, 51.7±.2°C

experiment 1, 50.6±.2°C experiment 2). The cylinder had a clear lid that could easily be

opened by hand. A 5.5cm diameter hole cut 2.3 cm above the tile allowed the bird to

escape from the cylinder once inside. The cylinder and hot plate were placed in the center

of a zebra finch aviary cage (length 148.6cm, width 71.1cm, height 188.2cm). The bird’s

view of the room was limited by hanging a black cloth the full height of the 71.1cm sides

but only half the height of the 148.6cm sides of the aviary to allow sufficient light into

the test space. Three large cues were attached to the cloth walls of the aviary (blue

square, orange triangle, and red circle), such that direct approach or avoidance of any one

cue would not lead directly to the escape hole. Two perches spanned the width of the

aviary at about 20 cm from the top of the aviary and 70 to 110 cm into the aviary.

Previously it had been shown that the zebra finches do not visually recognize the hole cut

in the clear arena as evidenced by initial trial and error search behavior on being placed in

the arena.
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Distal Cues

Figure 1. The picture displays the testing apparatus witli the 3 distal cues; circle, triangle, and

square.

Behavioral testing

As birds were fed daily drug or vehicle treatments, they were taken from their

home cage, placed in individual carry cages (length 31.1cm, width 15.9cm, height

15.2cm) and taken to the test room. Carrying cages were placed on a cart where the bird

could not see into the testing aviary. Each bird was taken from their carrying cage and

held in the hand of the experimenter with the hand in a lab coat pocket. The

experimenter entered the aviary through a (45cm width, 162 cm height) and stood on

markers on the floor that were ~13 cm from the door and ~15 cm from the apparatus.

Given that the experimenter would be a large stable visual cue, it was important that this

person remained in a stable position tliroughout testing to not confuse the birds. The

experimenter opened the lid to the cylinder and placed the bird inside, then immediately
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started a stop watch. When the bird escaped through the goal, the watch was stopped.

Each bird was given two minutes to escape. If the bird did not escape in 2 min, the

experimenter reached in the cylinder and coaxed the bird out of the escape hole and

latency was recorded as 120s. The bird was allowed to remain in the aviary for one

minute after completing a trail before being returned to a carrying cage. Birds typically

sat on the available perches or in the far comer of the aviary during this rest period. We

were careful not to move during this rest period and did not even look at birds during this

period as this appeared to make the bird stressed and we wanted the rest period to be a

positive reinforcer. Each trial was recorded with  a digital camcorder and recordings were

used to confirm latency and to track the pathway of the bird using an automated tracking

program (dartfish company) to measure distance moved. (We are still in the process of

making these distance measurements). Each bird had an inter-trial interval of about 10-20

minutes while we tested other birds. Each bird was then run three more trials for a total

of 4 trials per day. We arbitrarily labeled quadrants of the maze NW, SW, SE, and NE

and birds were released into center of these quadrants at North, South, East, and West

accordingly. Order of release was random across trails with the constraint that we used

all 4 quadrants each day. Due to time constraints, we could only test a maximum of 6

birds a day. Thus birds were divided into “batches”. Each batch had two birds from each

of the three treatment groups. Within batches, birds were tested in groups of three; order

of groups tested and order of bird within a group was random. However, the order of

birds within a group was conserved for each day. Birds in experiment 1 were run for

eight days and birds in experiment 2 were run for seven days.

Probe trials
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On the last day of training, we ran a “probe” trial. During this trial, the three

distal visual cues were rotated 180 degrees and the experimenter moved 180 degrees to

stand on the opposite side of the cylinder from that during training. The clear cylinder

with an escape hole was replaced with an identical cylinder that had no escape hole.

Probe trails were run to determine if zebra finches used the distal cues to escape the

apparatus. If zebra finches were using the visual distal cues for orientation then they

should search for the escape hole 180 degrees from its original location (Figure 2). The

time spent in each quadrant of the maze was determined watching the video playback on

a large TV with the quadrants drawn on the screen. The probe trial was watched four

times and the time spent in each quadrant recorded using a stopwatch turned off and on as

the bird entered and exited the quadrant. The distance covered in each quadrant will be

determined with dartfish as for regular trials.
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Behavioral Trial Probe Trial

o

Figure 2. I op view of tlie apparatus in the behavioral and probe trials. In behavioral trial tlie cylinder
contains a small escape hole (indicated by black circle). In probe trial the cues are rotated 180° from their
original position and the cylinder with escape hole is replaced with a no escape cylinder. Tlie position of
the goal location in the probe trial is indicated by an arrow.

Histology

Birds were killed on the last day of testing by isoflourane overdose. The brain was

then removed from the skull and fast frozen using dry ice. Brains were stored at -80°C.

The cerebellum of each brain was sectioned at 40 |im and every section of the cerebellum

was mounted on slides. Slides were stored at -80°C until staining. Brains were Nissl

stained and lesion placement was confinned using (Imager.Ml, Carl Zeiss) using

objectives 1.5x to 5x with reference to a pigeon atlas (Kartell & Hodos, 1967).

Analysis

Data from both experiments anal)^ed using STATVIEW 4.0 (SAS Inst.) on

Macintosh OS9. The four trials mn daily for each bird were averaged. Latency to escape

was compared using repeated measures analysis of variance (ANOVA) followed by a t-

test using BonfeiToni correction for multiple t-test to compare treatment groups if the

were
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ANOVA was significant. Repeated measures ANOVA was used to compare treatment

groups during the probe trail and planned comparisons were used to investigate

preference for the quadrant indicated by visual cues for each treatment group. The level

of significance was P<0.05 for all comparisons. In Experiment 1, the goal was to have six

birds for each group, however, one bird from the Sham 1 group died during testing; this

bird’s data was excluded from analysis. In Experiment 2, the goal was to have seven

birds in each group but two birds died during the first three days of the experiment from

surgery and one bird’s foot was smashed during testing. These three birds’ data were

excluded from analysis.
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Results and Discussion

Experiment 1

I found a significant difference between experimental groups (F2,m=p<0.006 ).

We used Bonferroni corrected post-hoc t-test to determine which groups differed. There

was no difference in performance between Shaml animals and Lesl animals nor between

Lesl and Sysl differ. However, Sysl birds were slower to escape than Shaml birds

(p=0.005, to be significant with Bonferroni correction p<0.016). All of the groups did

show some improvement in performance across days =3127, p<0.0001). There

was no interaction effect.
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●^Sham 1
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1 2 3 4 5 6 7 8
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Figure 3. Shows the results of Experiment!. There was no difference in Lesl and Shaml groups. There was
also no difference between Sysl and Lesl groups. Shaml had a significantly shorter latency of escape than
Sysl as indicated by *.
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In Experiment 1 probe trials, there was no difference between groups and no interactions.

There was a significant effect of quadrant preference (F3,39=23.79, p<0.0001). Each of the

groups showed a preference for the quadrant 180° opposite the original goal location as

compared to the other quadrants as measured by a planned comparison test (Fi=36.84,

p<0.0001). These indicate that birds did not use olfactory cues or visual cues other that

than the four cues that were rotated in the probe trails: the square, circle, triangle and the

bird handler (Figure 4).

<u ■ 180 Opposite Original Goal
■ Original Goal
■ Other two quadrants

u
1.2

5C

1

ILL
0.8

i 0.6

cO.4
(U 0.2
"O
fU 0

Sham 1 Sys 1 Les 1

Treatment Groups
<y

Figure 4. Each group showed a significant preference for tlie quadrant 180“ opposite the original location.

(Significant differences are indicated by *)
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Lesion Confirmation. I examined nissl stained brains to confimi lesion

placements. Lesions did not always directly hit the lateral deep cerebellar nucleus but did

damage neuronal connections and the overlying folia of the lateral deep cerebellar

nucleus (Figure 5).

t=.

■  ■: <\ V'

i-
I

►«)

S .

Figure 5. Shows brain tissue after nissl staining indicating exemplary placement of lesions. Black arrows
point to the lesion site.

Because birds with lesions that had endogenous esti'ogen did not perform

differently than controls, but birds with lesions and blocked aromatase performed

significantly worse than controls, I concluded that by inhibiting aromatase production the

affects of cerebellar lesions are intensified. Because I did not see differences between

controls and the lesion group not treated with letrozole, one could suggest that the

cerebellum is not involved in spatial learning. Instead, we suggest that the presence of

endogenous estrogen in the avian brain in the lesion group was sufficient to reduce the
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effects of lesions to control levels. While, birds without endogenous E were impaired

compared to controls. However, since letrozole in Sysl was administered orally, which

means that aromatase was inhibited throughout the brain, data collected reflected the

effects of the lack of aromatase activity throughout the brain. To ensure that impairments

seen in Sys 1 are from lesioning the cerebellum with aromatase activity blocked and not

the effects of letrozole on other brain areas, more specifically the hippocampus, another

experiment was needed. The hippocampus has been reported to enrich place learning

with moderate increases in estradiol levels (Zurkovsky et al, 2006). From this one could

infer that decreases in estrogen levels may impair spatial function, with this in mind I

conducted Experiment 2 to ensure results in Experiment 1 were the result of impairments

due to action of letrozole at the site of the cerebellar lesion.

Experiment 2

In Experiment 2, as expected, there were no significant differences across

treatment groups (Figure 6). Each of the groups showed progress in latency to escape

across days. Direct injection of letrozole into the lesion site did not significantly alter

latency of escape when compared to estrogen administered orally. From the results of

Experiment 2,1 concluded that since there were no differences across groups for latency

of escape that the effects seen in Experiment 1 are mostly the result of aromatase activity

being inhibited by the presence of letrozole in the cerebellum.
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Figure 6. There was no significant difference between groups.

As expected, in probe trials there was no difference between groups and no

interaction while there was a strong effect of quadrant (F3,39=36.43, p<0.0001). Each

group showed preference for the quadrant 180° opposite the original goal location in

probe trials (planned comparisons, Fi>105.3, p<0.0001) (Figure 7). This points to the

conclusion that each of the groups learned the location of the escape hole using the

spatial cues provided. Thus, there was no deficit in learning the location of the goal.
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Figure 7. Each group showed preference for tlie quadrant 180° opposite tlie original goal (Significant

differences are indicated by *).

Lesion Confirmation. I examined Nissl stained brains to confirm lesion

placements. Lesions did not always directly strike the medial deep cerebellar nucleus

every experimental bird. However, in every bird lesions disrupted neural connections to

each medial deep cerebellar nucleus and overlying folia of the cerebellum (Figure 8).

m
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Figure 8. Displays an exemplary photomicrograph nissl stained brain tissue that shows the lesion to the
medial deep cerebellar nucleus. Black arrows point to the postion of the lesion.
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Conclusions

Our experiments are the first to test the role of estrogen in recovery of spatial

learning in any species and the first to demonstrate that letrozole acting directly on the

cerebellum may produce alterations in behavioral deficits caused by cerebellar lesions in

zebra finches. Results of Experiment 1 clearly show that blocking estrogen synthesis

impairs the normal course of recovery after lesions of the cerebellum. In fact, birds that

have lesions of the cerebellum and endogenous estrogen were not significantly different

from controls in performance on a spatial learning task. During probe trials all birds

tracked the 180 degree rotation of the visual cues and searched for the escape hole in the

quadrant 180 degrees opposite the original location. This suggests that the avian

cerebellum is not necessary for recalling the location of a goal once it is learned, but

instead is involved in acquisition of learning the goal location. This result is similar to

what is seen in humans and in rodents (Lalonde & Strazielle, 2003; Petrosini, 2007).

The performance on the probe trials also suggest that I did not interfere with

hippocampal function in my experiments. The type of spatial knowledge performed in the

probe trial is known to involve the hippocampus in various species (Zurkovsky et al,

2006; Bast et al, 2009). Importantly, in zebra finches lesions of the hippocampus also

impair their ability to locate a goal (Bast et al., 2009). Furthermore, there is evidence that

even moderate elevations in estradiol increase place learning in rats though the

hippocampus (Zurkovsky et al, 2006) suggesting that minor reductions in estrogen could

cause deficits in spatial learning . Given that hippocampal-like  spatial knowledge was

intact in these zebra finches, I suggest that the actions of letrozole on the brain in

Experiment 1, though systemic, were mainly affecting neuroplasticity at the lesion site.

28



At the very least, they were not unduly impairing hippocampal function. The results of

Experiment 2 further support the assertion that the systemic letrozole treatment was

similar to administration of letrozole directly to the lesion site. My results support and

extend a previous study showing that lesions of the cerebellum interfere with spatial

working memory and that estrogen improves recovery of function in that task (Spence et

al., 2009).

It was somewhat surprising that we did not see a deficit in learning the location of

the escape when comparing birds with cerebellar lesions and endogenous estrogen to

controls with sham lesions. While lack of estrogen decreased performance, the lesion

itself was not sufficient to cause a deficit in this task. I believe this is due to the presence

of endogenous estrogen improving repair at the lesion site. However, my results seem to

contradict other studies showing that lesions of the cerebellum in zebra finches and in

My results likely differ fi*om the previous zebra

finch study because of differences in task difficulty or task demands. The plus maze used

in Spence study (2009) required use of spatial working memory (remembering which

alley had already been entered during a trial) while our task required spatial reference

memory (knowing the location of a goal across trials). My results may suggest that the

avian cerebellum is more important for working memory than reference memory as has

been found under certain conditions in mice (Spence et al., 2009). It may also be that it

was easier for the zebra finches to acquire the spatial knowledge needed to solve the task

in our study than in the Spence et al. (2009) study. My spatial cues were rather large

(including a human only 2 ft from the clear cylinder) and there were only 4 prominent

cues available while the Spence study used a blind to hide the experimenter and used

rodents do impair spatial abilities.
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more dispersed and irregular objects already in the room (shelves, desk, pipes, etc) as

cues. Thus, the procedural aspects of the task, the knowing “how” to acquire spatial

knowledge, may have been reduced and deficits not seen until the lesion was paired with

a reduction in estrogen.

Differences between our study and rat studies are more obvious. In the studies of

spatial memory in rats, half of the cerebellum was removed. In our study, only a small

lesion was produced. In addition, zebra finches have increased plasticity in the

cerebellum compared to the rat cerebellum. Purkinje cells of the avian cerebellum are

steroidogenic well into adulthood while steroidogenesis is seen only in the Purkinje cells

of developing rat pups (Tsutsui et aL, 2003; Tsutsui et al, 2006). Thus, zebra finches

without blocked estrogen synthesis would be more likely to be producing estrogen in the

cerebellum than would a rat. Further testing with larger lesions or a harder spatial task

will be needed to understand if there are deficits in acquisition of a reference spatial task

in cerebellar lesioned songbirds.

A previous zebra finch study showed impairments in spatial working memory

after cerebellar lesions without blocking aromatase activity. However, the plus arm maze

tests different types of spatial abilities than my escape maze and the fomiat of the task

required far more motor coordination than did my spatial. Birds had to walk down long

alleys to obtain a food reward hidden in one of the four arms. In that study, some birds

had gross motor impairments and fell over as they went down alleys while the animals in

our study never fell. The animals in the plus maze also showed an increase in entries into

non-goal arms demonstrating errors in spatial working memory as well as the differences

in latency to complete the task partly do to motor deficits. Nonetheless, the lack of falls
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in my birds vs. those in the plus maze study suggest differences in neural pathways being

interrupted. Although both studies used similar lesion coordinates, a different steriotax

was used and slightly different lesion positions were found. We have not yet completed

lesion volume studies therefore we can not compare the volume of damage in our study

to the volume of damage seen in the Spence paper.

Although my findings differ from previous literature showing that

animals with damage to the cerebellum were able to learn a spatial task, they do show

that estrogen improves learning after lesions to the cerebellum which is consistent with

studies showing estrogen plays a role in neuroprotection or neural repair. Although this

study mostly focuses on cerebellar function and does not include experiments to

investigate the actual mechanism through which estrogen is acting, previous literature

suggest some mechanisms. In zebra finches, estrogen has been shown to protect the brain

against a secondary wave of neural degeneration that occurs after lesions when estrogen

is not present (Ryan et al, 2008). The secondary wave of degeneration would increase

the amount of damage at the lesion, resulting in loss of more neural connections. We are

in the process of examining the size of lesions with and without estrogen treatment to

investigate this possibility. Another possibility is that estrogen added in recovery after

injury by helping in restoring neural structure (Foy et al, 2000). We have demonstrated

that estrogen increases cerebellar neurogenesis and we are further investigating that

process (unpublished data).

My results suggest that the cerebellum is involved in spatial learning

though it takes a reduction in estrogen to bring out this defict. In addition, given that as

all birds show a general improvement in the task, even those with letrozole, it appears
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that the cerebellum is not essential to learning  a spatial task but rather that lack of

endogenous estrogen after cerebellar lesions slows learning. Thus estrogen either aids in

recovery of some aspect of learning that has been lost by the lesion or estrogen improves

the ability to learn the task over time. We do not know the exact avenue through which

estrogen is improving spatial learning. More research is needed to know the exact

mechanism through which estrogen is aiding recovery of function and in what specific

aspects of spatial acquisition the cerebellum is involved. We plan to further investigate

the involvement of the zebra finch cerebellum in spatial learning by increasing the

complexity of the task and to study the injured brain tissue to help determine how

estrogen is aiding in recovery of function in the cerebellum. We now have an excellent

test of spatial reference memory and an exceptional model, the songbird, in which to test

the role of estrogen from a behavioral and a mechanistic standpoint.
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