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ABSTRACT 

An efficient and safe road network secures the nation’s economy and prosperity by 

providing public mobility and freight transport. Maintenance and rehabilitation of the road 

network cost billions of dollars annually. Road and highway infrastructures performance in any 

country is impacted by load repetitions and it is further compromised by climate attributes and 

extreme weather events. Damages to roads and bridges are among the infrastructure failures that 

have occurred during these extreme events. If maintenance and rehabilitation are not done 

promptly, the damages to the road caused by heavy traffic and extreme climate may lead to life-

threatening conditions for road users. A disruption in any one system affects the performance of 

others. For example, damages in road and bridge infrastructure will delay the recovery operation 

after a disaster. In 2018, a total of 331 natural disaster occurrences were reported worldwide, 

which resulted in 14,385 deaths. From 1900 to 2000, in 119 years, 14,854 natural disaster 

occurrences were reported which caused 32,651,605 deaths. Natural disaster occurrences like 

hurricanes, floods, droughts, landslides, etc. may be influenced by specific climate mechanisms 

like El Niño and Southern Oscillation (ENSO).  

Several climate attributes models were developed in this research employing Auto-

Regressive Integrated Moving Average (ARIMA) methodology. The sea surface temperature 

data were analyzed and a prediction model was developed to predict future ENSO years. The 

model successfully predicted the 2018-2019 El Niño year. The model prediction showed that the 

next El Niño years will be 2021-22 and 2025-26. The model prediction also shows that the next 

La Niña year will be 2028-29.  Global mean sea level (GMSL) data were analyzed and a 
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prediction model was developed. The predicted annual rate of change in GMSL is 0.6 mm/year 

from 2013 to 2050. But a higher annual rate of change (1.4 mm/year) is predicted from 2031 to 

2050. Northern hemisphere (Arctic) sea ice extent and southern hemisphere (Antarctic) sea ice 

extent data were investigated and two different models were developed. The model prediction 

shows that the total loss of northern hemisphere sea ice extent in 2050 will be 1.66 million km2. 

But the total gain of southern hemisphere sea ice extent will be 1.24 million km2. The net change 

of global sea ice extent will be -0.24 million km2, which indicates a loss of sea ice. The model 

predictions of the climate attributes can be used to understand and assess the future climate 

change in different climate zones worldwide. This understanding of climate changes and future 

predictions of climate attributes will help to develop climate adaptation strategies and better 

prepare the communities for extreme weather-related natural disaster occurrences. 

The condition deterioration progression of infrastructures, such as roads and bridges, is 

caused by load repetitions, as well as climate attributes and extreme weather. Pavements undergo 

maintenance and rehabilitations periodically to provide a smooth riding experience to the riders. 

Previous researches never considered maintenance and rehabilitation action history in the 

development of the condition deterioration model. This research considered the maintenance and 

rehabilitation history in the development and implementation of pavement condition 

deterioration models. The development of the IRI prediction model using Artificial Neural 

Network (ANN) and Multiple Linear Regression (MLR) considered the Long Term Pavement 

Performance (LTPP) climatic region, pavement structural properties, and traffic. The developed 

models are more objective, incorporate important input variables that are easily available, and 
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are easy to implement in decision making. The concrete highway pavement IRI deterioration 

prediction models were developed and evaluated in this research for LTPP datasets of 1,482 for 

JPCP, 577 for JRCP, and 575 for CRCP. Comparatively, the AASHTO MEPDG performance 

equations were developed using fewer test sections.  

Three performance models were developed for output variable, IRI (outside wheel path) 

(m/km) for Jointed Plain Concrete Pavement (JPCP), Jointed Reinforced Concrete Pavement 

(JRCP), and Continuously Reinforced Concrete Pavement (CRCP). The input variables are 

similar for all the models. An in-depth study of M&R history collected from the LTPP database 

for all concrete pavement produced several CN_Code. The best models were found with the 

CN_Code developed based on the IRI value improvement and the type of M&R action and this 

variable is a continuous variable where number increment indicates the frequency of M&R 

action provided in the pavement section.  

The models’ final structure and accuracy statistics can be summarized as: JPCP (13-19-1; 

ANN R2 =0.94 and MLR R2 =0.49), JRCP (11-19-1; ANN R2 =0.95 and MLR R2 =0.58), and 

CRCP (14-19-1; ANN R2 =0.95 and MLR R2 =0.83). The ANN models show better accuracy in 

predicting pavement performance compare to the multiple regression models for all types of 

concrete pavements. The developed IRI prediction models can successfully characterize the 

behavior (i.e. the increase of IRI values with time and decrease of IRI value after maintenance 

and rehabilitation). The ANN models can be used to provide future M&R action by changing 

CN_Code frequency and the model successfully distinguishes the behavior of IRI (i.e. decrease 

of IRI after M&R action and increase of IRI with time as CESAL increases). The developed 
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condition deterioration models for concrete highway pavement present a significant 

improvement on the models currently used in the mechanistic-empirical pavement design 

method. It is recommended to implement the pavement condition deterioration model developed 

in this research for life-cycle asset management and M&R programs. 
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CHAPTER I: INTRODUCTION  

1.1 Background 

An efficient and safe road network secures the nation’s economy and prosperity by 

providing public mobility and freight transport. One of the largest public infrastructure assets of 

a country is the road network. According to the Central Intelligence Agency (CIA), the world 

fact book [1] 223 countries worldwide reported to the agency a total of 38,800,476 kilometers of 

road networks for both unpaved and paved roads. According to a recent report of the U.S. 

Department of Transportation (USDOT), the U.S. road network exceeds 4.09 million miles in 

total length, which comprises approximately 2.67 million miles of paved roads and 1.41 million 

miles of unpaved roads, out of which around 65% of roads in every state needs maintenance [2]. 

Figure 1 shows the concrete pavement length in the U.S. by the state for 2019 [3]. The U.S. has a 

total 54, 632 miles of concrete pavement all over the country. Texas and Iowa have more than 

5,000 miles of concrete pavement. According to the USDOT, about 2,988.3 billion cumulative 

vehicle miles traveled (VMT) was observed in 2013 [4]. These statistics show that the road 

infrastructure is imperative to sustain the road user’s movement and ensure a nation’s economic 

competitiveness. Additionally, efficient and well-maintained road networks are essential for 

timely response in emergencies. Timely maintenance and rehabilitation treatment is one of the 

important factors to ensure the road networks are in acceptable condition for the long term. 
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However, it is well known that the major maintenance and rehabilitation (M&R) of a road 

network requires huge financial support. For example, out of an average of $50 billion per year 

allocated by the federal government on surface transportation programs, the highway and mass 

transit transportation modes dominate the spending financed through the Highway Trust Fund 

[4]. 

 

Figure 1 Spatial Map of Concrete Pavement Length (miles) in the United States 

Recently, the USDOT [5] stated that the highway part of the Highway Trust Fund 

encountered a shortfall as of July 31, 2015. Only $4.5 billion remained, which was close to the 

available cash balance level of $4 billion, since most of the funds were transferred to the states 
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for M&R treatments of roads in poor conditions, deficient bridges, and new constructions. 

Therefore, most state highway agencies face slower rates of reimbursements, which result in 

delayed M&R actions. Over time, if the required M&R treatments are not performed, road 

conditions will deteriorate and affect the safety of road users. The deterioration of pavements is 

imposing approximately $156 billion on the U.S. economy and will continue to do so since the 

service life of the national, and the state highways are looming to an end. In addition, due to the 

economic downfall of the last decade, the state, and the local agencies are inclining towards 

maintaining pavement rather than rehabilitating it. In many cases, state and local agencies do not 

have sufficient funds to maintain all highway and road pavements. Instead, agencies need to 

prepare a priority M&R list in the given year and future fiscal years [2]. 

  
In 2018, a total of 331 natural disaster occurrences were reported worldwide, which 

resulted in 14,385 deaths. From 1900 to 2000, in 119 years, 14,854 natural disaster occurrences 

were reported, which caused 32,651,605 deaths [6]. The average number of weather and climate 

disasters in the United State from 2015 to 2019 was 14 per year. From 1980 to 2019, 40 years, 

the United States experienced 258 weather-related disasters, and the total cost of weather and 

climate-related disaster was $1.75 trillion. In those 40 years, 32 events of floods cost an average 

of $4.6 billion per event and 174 hurricanes (severe storm, tropical cyclone, and winter storm) 

cost an average of $26.6 billion per hurricane [6]. All these disasters mostly affect the coastal 

areas of the country. In the United States, almost 40 percent of the population lives in relatively 

high population-density coastal areas. Globally, eight of the world’s 10 largest cities are near a 

coast [7]. Natural disaster occurrences like hurricanes, floods, droughts, landslides, etc. may be 
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influenced by specific climate mechanisms like El Niño and Southern Oscillation (ENSO) in the 

Pacific Ocean [8]. The ENSO event has a global impact through more precipitation, landslide, 

sedimentation, draught, etc. The ENSO events (El Niño and La Niña) historically led to warming 

(El Niño) and cooling (La Niña) temperatures. The 1997-1998 El Niño episode led to warm 

temperatures, and the 2012 La Niña led to cooler temperatures in different parts of the world. 

ENSO affects extreme weather events, such as torrential rainfall, drought, or extreme snowfall. 

Because of the global impacts, ENSO drives extreme weather and climate variability, which 

greatly affect the built environment and human habitants. The extreme weather affects lifeline 

infrastructure such as roads and bridges. Therefore, forecasting ENSO events a few years in 

advance is a theme of this doctoral research. 

Climate attributes such as precipitation, hot and cold temperature, and freeze-thaw cycles 

cause pavement distresses. Water seeps through concrete pavement joints and cracks and causes 

pumping erosion under the slabs. Slabs settle down due to excessive pumping [9]. Moreover, in 

winter, freezing temperatures cause accumulation of ice lenses in the subbase or subgrade layers 

and the ice lenses push pavements upward, leading to heaves or undulation of the pavements. On 

the other hand, in spring, ice lenses melt in the subbase or subgrade layers and make a weak 

subsurface leading to a downward settlement of the pavements. Freeze-thaw cycles are very 

detrimental to both flexible and concrete pavements since the foundation of pavements (i.e. base, 

subbase, and subgrade) becomes soft and unable to carry heavy vehicle loads. Furthermore, 

concrete pavements expand under hot summer temperatures, and if the contraction joints 

between two slabs are not adequately connected, then blow-up occurs, and that leads to the 
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breakdown of slabs at the joint locations. Traffic causes edge cracks, corner breaks, and 

longitudinal cracks in the concrete pavements. 

The combination of climate and traffic induced distresses are measured to identify the 

present condition of the concrete pavements. The maintenance need for pavements is decided 

based on the present condition. There are several performance scales available such as Present 

Serviceability Rating (PSR), Present Serviceability Index (PSI), and International Roughness 

Index (IRI) to access the current condition of the pavement [9]. IRI measures the longitudinal 

profile of pavement, and the measurement is expressed in a single average number in a unit of 

in/mile or m/km. A higher IRI number indicates a rough pavement profile and a lower number 

indicates a smooth pavement profile. IRI provides an overall condition of pavement surfaces due 

to distresses, and for this reason, IRI is the internationally recognized pavement conditioning 

rating system. The pavement profile is measured using high-speed vans equipped with lasers, 

accelerometers, and computers to measure IRI. The highly equipped vans can measure the 

surface profiles at traffic speeds. The onboard accelerometer gives the necessary data to the 

computer to calculate changes in the vertical position of the vehicle body as the vehicle moves 

along the pavement, the laser measures the distance between the vehicle body and the roadway 

surface. Collected data is stored in the computer at regular intervals. The IRI value increases due 

to a decrease in pavement smoothness caused by distresses, which are induced by climatic and 

traffic attributes [9]. Generally, an IRI rating less than 2.68 m/km is acceptable and a rating 

above 2.68 m/km is considered unacceptable and very poor conditioning rating [10]. 
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1.1.1 Motivation and Goals 

The motivation of the research is to: (1) enhance climate modeling, (2) develop the 

performance modeling to enhance concrete pavement structural design and asset management, 

and (3) enhance the design of concrete pavements, Numerous factors affect road conditions 

including heavy traffic flow, environmental effect, material degradation over time, construction 

quality, and interactions among all these factors. If timely maintenance and rehabilitation are not 

performed, road surface conditions will deteriorate and in most cases, this deterioration is 

indicated by the severity of surface cracks and rutting. The focus of this research is on the 

development of performance models for concrete highway pavements. Additionally, the research 

will also develop enhanced climate attributes models.  

1.2 Research Objectives and Scope 

The research objectives are: 

1) Complete literature review of climate mechanisms and climate attribute models, and 

concrete highway pavement performance models. 

2) Develop and verify monthly cyclic seasonal predictive models of selected climate 

attributes using time series data of NOAA and other sources, and make the long-term 

predictions.  

3) Develop performance models for concrete pavement highway sections using the LTPP 

database and verify the model accuracy for set aside LTPP data and other in-service 

highway data.  
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4) Implement the developed performance models to enhance concrete pavement design and 

asset management.  

The scope of this research is as follows:  

 The scope of climate models is limited to sea surface temperature, sea-level rise, and sea 

ice extents in Polar Regions. 

 The scope of performance models is limited to concrete pavements, which include 

Jointed Plain Concrete Pavement (JPCP), Jointed Reinforced Concrete Pavement (JRCP), 

and Continuously Reinforced Concrete Pavement (CRCP). 

1.3 Research Methodology 

The research methodology to achieve the objectives consists of the following key steps: 

Task 1 Literature Review  

An intensive literature review was conducted and will be extended for the following topics: (1) 

review climate mechanisms and enhancement of selected climate attribute models and (2) the 

concrete highway pavement performance models including models developed based on datasets 

from the LTPP database and the Mechanistic-Empirical Pavement Design Guide (MEPDG) 

models. 

Task 2 Models of Climate Attributes    

Time series data of selected climate attributes will be accessed from the data collected by NOAA 

and National Snow and Ice Data Center (NSIDC). Auto-Regressive Integrated Moving Average 

(ARIMA) modeling method will be used to develop monthly cyclic seasonal predictive models 

for these climate attributes. The prediction of these climate attributes will be used to assess the 
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impacts of climate change on infrastructure and communities, as well as to develop climate 

adaptation plans. 

Task 3 Performance Models for Concrete Pavement Condition Deterioration  

The ANN and multiple regression modeling techniques will be used to develop concrete 

pavement performance models. The LTPP database will be used to develop the models and set-

aside LTPP data will be used to verify the accuracy of the model. The construction number, CN, 

will be included as a categorical variable to consider maintenance & rehabilitation intervention. 

Task 4 Implementation of Developed Models to Enhance Asset Management  

The developed climate models along with pavement performance models will be implemented to 

enhance concrete pavement structural design and asset management.  

The research methodology flow chart in Figure 2 shows the milestones of the research 

topics and their interactions. 

 

Figure 2 Research Methodology Flowchart 
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1.4 Synthesis of Literature Review  

The ENSO events may touch the lives of more than a billion people around the globe. 

Their impacts can be devastating, as illustrated by some of the effects of the unusually strong El 

Niño of 1982–1983: (a) drought and wildfires in many nations of the western and southwestern 

Pacific Rim, southern Africa, southern India, Spain, Portugal, northern Africa, and South and 

Central America, (b) severe cyclones that damaged island communities in the Pacific, (c) 

flooding over wide areas of South America, Western Europe, the Gulf Coast, and some 

Caribbean islands, and (d) severe storms in the western and northeastern United States [11].  

Furthermore, El Niño has been associated with greater landslide occurrence around the world 

[12]. Currently, the National Oceanic and Atmospheric Administration (NOAA)’s ENSO 

predictions methodology relies on sea surface temperature data for ENSO prediction a few 

months ahead only. This doctoral research will enhance ENSO predictions several years in 

advance. This will be helpful to predict climate changes in climate zones worldwide and 

implement climate adaptation plans.  

Several IRI models were reviewed, which were developed using Artificial Neural 

Network (ANN) and multiple regression modeling techniques [13-18]. A synthesis of IRI 

prediction models for concrete highway pavement is shown in Table 1. The Long Term 

Pavement Performance (LTPP) database was used to develop these models.  
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Table 1 Summary of IRI Prediction Models using LTPP Data for Concrete Pavement 

Ref. Model Structure 
Goodness 

of fit 
Data 

Points 

[13] 
𝐼𝑅𝐼

= 𝐹
𝐽𝑜𝑖𝑛𝑡 𝐹𝑎𝑢𝑙𝑡𝑖𝑛𝑔, 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔,

 𝑎𝑛𝑑 𝐽𝑜𝑖𝑛𝑡 𝑆𝑝𝑎𝑙𝑙𝑖𝑛𝑔
 

R2 = 0.61 
Not 

Known 

[14] 𝐼𝑅𝐼 = 𝐹{𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝐽𝑜𝑖𝑛𝑡 𝐹𝑎𝑢𝑙𝑡𝑖𝑛𝑔} R2 = 0.50 
Not 

Known 

NCHRP 
1-37 
[15] 

𝐼𝑅𝐼 

= 𝐹

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐼𝑅𝐼, 𝐽𝑜𝑖𝑛𝑡 𝐹𝑎𝑢𝑙𝑡𝑖𝑛𝑔, 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔
 𝐽𝑜𝑖𝑛𝑡 𝑆𝑝𝑎𝑙𝑙𝑖𝑛𝑔, 𝑃𝑎𝑡𝑐ℎ𝑖𝑛𝑔, 𝐴𝑔𝑒, 𝐹𝑟𝑒𝑒𝑧𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥

 𝑎𝑛𝑑 𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 
𝑝𝑎𝑠𝑠𝑖𝑛𝑔 0.075 𝑚𝑚 𝑠𝑖𝑒𝑣𝑒 

R2 = 0.60 188  

[16] 

𝐼𝑅𝐼

= 𝐹

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐼𝑅𝐼, 𝐽𝑜𝑖𝑛𝑡 𝐹𝑎𝑢𝑙𝑡𝑖𝑛𝑔, 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔
 𝐽𝑜𝑖𝑛𝑡 𝑆𝑝𝑎𝑙𝑙𝑖𝑛𝑔, 𝑃𝑎𝑡𝑐ℎ𝑖𝑛𝑔, 𝐴𝑔𝑒, 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛,

𝑎𝑛𝑑 𝐹𝑟𝑒𝑒𝑧𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥
 

R2 = 0.81 327  

[17] 
8 inputs of independent variables, 2 hidden layers 

(24 and 12 hidden nodes), and 1 output (8-24-12-1) 
R2 = 0.83 188  

[18] 
7 inputs of independent variables, 1 hidden layer 

(10 hidden nodes), and 1 output (7-10-1) 
R2 = 0.84 264  

The synthesis of the literature of IRI prediction models established that all the 

independent variables need to be estimated before making the prediction, which is not easy and 

can be expensive for federal and state highway agencies.  

1.5 Research Needs 

The ENSO events affect climate and extreme weather, including more frequency of 

precipitation, drought or, extreme snowfall. Because of the global impacts of ocean currents, 

ENSO causes extreme weather and climate variability, which has the greatest impact on the built 
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environment and communities. The summary of the literature review revealed that the prediction 

of ENSO episodes several years in advance would be helpful to predict climate change 

worldwide and improve climate adaptation plans. The previous literature review and discussion 

show that it is imperative to maintain acceptable road conditions over time. This goal is possible 

if the enhanced prediction models for pavement condition deterioration are used for pavement 

structural design and asset management. The current literature review indicates that the M&R 

history was not considered in the concrete pavement condition deterioration progression 

modeling. In the LTPP database, the M&R sequence is denoted by the construction number 

(CN). Recently, enhanced performance models for asphalt highway pavements were developed 

using the CN categorical variable included in the LTPP database [19].  Therefore, this research 

will consider CN for developing performance models of concrete pavements. The independent 

variables, used in the previous discussion (Table 1) are mostly distress, age, and environmental 

data. However, for future prediction of IRI, these distresses need to be predicted as well. The 

performance models developed in this research will predict the IRI values without using distress 

data that will help the local and state agencies to prepare M&R programs and budgets without 

estimating distresses in future years. The only variable that will need to be predicted is traffic 

and the agency can use the historical traffic data for a particular pavement and project the future 

traffic data based on the annual traffic growth rate for the highway.  

1.6 Research Significance 

The following statements describe the significance of the research carried out in this 

dissertation: 
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 Synthesis of the past research contains climate models and concrete pavement performance 

models.  

 Enhanced computational models were developed for cyclic climate attributes (sea surface 

temperature and ENSO episodes, sea-level rise, and sea ice extent). The prediction of the 

climate attribute models can be used to understand future climate change in climatic zones 

worldwide. The predicted ENSO episodes can contribute to better predict extreme weather 

and climate. This understanding of climate mechanisms and future prediction of climate 

changes will lead to better prepare the communities, harden the critical infrastructure, and 

enhance disaster resilience management.  

 The LTPP database contains the most comprehensive information on road conditions for more 

than 2000 test sections throughout the U.S. Several prediction equations for pavement distress in 

the MEPDG were developed based on the LTPP data that has M&R histories. However, the 

mechanistic-empirical pavement design equations do not consider M&R history. The 

performance models for concrete pavements using the LTPP database will be for JPCP, 

JRCP, and CRCP. The performance models will contain cumulative traffic and construction 

numbers for maintenance and rehabilitation intervention, as an independent variable.  
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CHAPTER II: REVIEW AND ENHANCEMENT OF MODELS OF CLIMATE 

ATTRIBUTES 

2.1 Introduction 

Weather is described in short-term variability of air temperature, precipitation, humidity, 

cloudiness, air pressure, wind speed, and wind direction. Weather is defined locally. On the other 

hand, climate describes the “long-term” pattern of weather conditions for specific climate zones. 

There is no single global climate. The expression “long-term” usually means 30 years or more 

[20] described climate.  

The following attributes affect a region’s climate: (1) latitude, (2) elevation, (3) proximity 

to oceans and other large water bodies, mountains, or other surface features, (4) ocean current 

circulation patterns, (5) atmospheric circulation, (6) solar radiation, and, (7) cloud cover. These 

attributes contribute to climate mechanisms, which control the variations of air temperatures, and 

the amount of rainfall and/or snowfall received in each region throughout the year. These climate 

and weather patterns influence the regional biodiversity (forest, vegetation, agriculture, wild 

animals) and human habitants.  

Preliminary statistical inference analysis shows that climate attributes such as monthly 

global air temperature fails the Normality test and data independence test (shown by high 

autocorrelation). Therefore, the traditional regression modeling is invalid for this climate 
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attributes.  In this study, the ARIMA modeling method has been used to develop prediction 

models for several climate attributes.  

2.2 ARIMA Time Series Modeling 

2.2.1 ARIMA Methodology 

The Box-Jenkins ARIMA modeling method [22] is the preferred methodology if the time 

series data shows high autocorrelation. The ARIMA seasonal autoregressive model (p, d, 0) (P, 

D, 0) can be represented by the following Equation [21, 22]:  

𝛻d.𝛻s
D. 𝑌𝑡 = 𝐶 + (1− ϕ1𝐵− ϕ2𝐵2…− ϕp𝐵p) (1− ϕ1𝐵s − ϕ2 𝐵2s …−ϕP𝐵P𝑠). at                          Eq.1 

where,  

𝑌𝑡 = Time series data (dependent or response variable) 

𝛻d = Regular differencing operator of order d  

𝛻s
D = Seasonal differencing operator of order D 

C = Constant  

s = Seasonal length  

B = Backward shift operator  

(1− ϕ1𝐵− ϕ2𝐵2…− ϕp𝐵p) = Regular autoregressive process of order p  

(1− ϕ1𝐵s − ϕ2 𝐵2s …−ϕP𝐵P𝑠) = Seasonal autoregressive process of order P  

 at = Random shock term; normally distributed, independent with zero mean, and variance equal 

to σa  

Appendix A presents detailed steps involved in the ARIMA modeling of time series data.  
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2.2.2 ARIMA Modeling of Natural Disaster Occurrences 

This section presents an example of ARIMA modeling for time series data of annual 

natural disaster occurrences. This time series fails the normality test and independence test (high 

autocorrelation 0.92 at Lag-1). Natural disaster occurrences like the hurricane, flood, drought, 

landslide, etc. depend on different climate mechanism such as ENSO events. In 2018, a total of 

331 natural disaster occurrences were reported worldwide, which resulted in 14,385 deaths. 

From 1900 to 2000, in 119 years, a total of 14,854 natural disaster occurrences were reported 

which caused 32,651,605 deaths [6]. The extent of loss of lives and damages to property by 

natural disasters largely depends on the built environment. Figure 3 displays worldwide 

occurrences of natural disasters from the years 1900 to 2018 [6]. An annual mean of 124 natural 

disasters is calculated for these 119 years. 

 

Figure 3 Worldwide Disaster Occurrences, 1900-2018 
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2.2.2.1 Chi-Square Test of Goodness of Fit to a Normal Distribution 

For the Chi-square test, the number of observations has to be 50 or more. In this case, the 

number of data years is 119.  

Null hypothesis, H0: The population distribution of the worldwide natural disaster occurrences 

data is normal. 

Alternative hypothesis, HA: The population distribution of the worldwide natural disaster 

occurrences data is not normal. 

Table 2 summarizes the chi-square test results. The observed frequency and expected frequency 

must be 5 or more. 

Table 2 Computation of Chi-square for a Test of Goodness of Fit to a Normal Distribution 

 
Observed 
Frequency 

Observed 
Frequency 

Normal 
Dist. 

Normal 
Dist. 

Expected 
Frequency  

Frequency 
Range 

fo Percentage z score Probability fe* fo-fe (fo-fe)2 
(fo-

fe)2/fe 
< 10 30 26% < -0.7 0.227 26.3 3.714 13.797 0.525 

10-100 47 41% -0.7 to -0.1 0.214 24.8 22.199 492.805 19.871 
100-300 20 17% -0.1 to 1.2 0.454 52.7 -32.664 1066.937 20.259 

> 300 19 16% > 1.2 0.106 12.2 6.8 45.568 3.72 
Sum 116 100%  1.000 116   44.375 

*fe = Normal dist. Probability * Sum of Observations = 0.227*116 = 26.3 

From Table 2, the row number is r = 4. So, df = r-1 = 4-1 = 3 

X2
(3, 0.05) critical = 7.81 

X2 test = 44.37 

X2 test (44.37) > X2
 critical (7.81) 

Therefore, the null hypothesis is rejected. The data is not normally distributed. Figure 4 shows 

the observed frequency and expected frequency for the test data.  
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Figure 4 Observed Frequency and Expected Frequency  

2.2.2.2 Kolmogorov-Smirnov and Shapiro-Wilk Normality Tests 

Kolmogorov-Smirnov is a nonparametric test that is used to test the normality of the data. 

Shapiro-Wilk test is also used to test the normality of the data. These two Normality tests are 

generally used for less than 50 datasets. However, for illustration, the results of both Normality 

tests are conducted using the Statistical Package for the Social Sciences (SPSS) software [23]. 

For both Kolmogorov-Smirnov and Shapiro-Wilk normality tests the hypotheses are, as follows 

(for α = 0.05): 

Null hypothesis, H0: The distribution of the data is normal 

Alternative hypothesis, HA: The distribution of the data is not normal 

Table 3 shows, in the case of worldwide natural disaster occurrences data from 1900 to 2015, the 

probability of significance, p-value is less than the α level 0.05 probability of chance error. The 

results are statistically significant for both Kolmogorov-Smirnov and Shapiro-Wilk normality 

tests. Therefore, the null hypothesis is rejected. The data is not normally distributed.  
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Table 3 Kolmogorov-Smirnov and Shapiro-Wilk Normality Tests 

Tests of Normality 

 
Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 
Occurrence .254 116 .000 .755 116 .000 

a. Lilliefors Significance Correction 

To further examine the data for normality the recommended graphical representations are 

histograms with the normal curve, normal Q-Q plots, and boxplots.  

Next, the SPSS option of the histogram with the normality curve was used for the data. Figure 5 

shows that the histogram shape does not approximate a perfect bell curve. Therefore, it confirms 

that the data is not normally distributed, as shown by the normality tests. The Q-Q plot in Figure 

6 shows that the data does not fit the reference distribution (line of equality for observed and 

expected normal values). The points are not lying in tight random scatter around the reference 

line, which again indicates that the data is not normally distributed. 

 

Figure 5 Histogram with Bell-Shaped Curve 
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Figure 6 Q-Q Plot 

Figure 7 shows the box plot, which is not symmetric to the median line in approximately 

the center of the box. Therefore, it further indicates that the data is not normally distributed. 

 

Figure 7 Box Plot 
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The normality test has been conducted using three different tests, the Chi-square test, 

Kolmogorov-Smirnov test, and the Shapiro-Wilk test. It is evident from all three tests that the 

data is not normally distributed. The data also shows a high autocorrelation value of 0.92 at Lag-

1, which implies that the data is not independent. Therefore, the regression method is not valid.  

This time-series data can be modeled using the ARIMA modeling method. The following section 

shows the procedures of modeling the time-series natural disaster data from 1900 to 2015 and the 

verification of the model using the data from 2016 to 2018.  

2.2.2.3 ARIMA Modeling of Worldwide Disaster Data  

The ARIMA model terms were identified using the step-by-step procedure described in 

Appendix A. The Auto-Correlation Function (ACF) and Partial Auto-Correlation Function 

(PACF) plots of the original time series are shown in Figure 8 and Figure 9, respectively.  

 

Figure 8 ACF Plot World Disaster Occurrences 
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Figure 9 PACF Plot World Disaster Occurrences 

Figure 10 shows the differencing order-1 plot for the original time series. The correlation 

R-value for the differencing order time series and the original time series is 0.035, which is less 

than 0.2. According to Appendix A, differencing order-1 (d = 1) should be used to make the 

series stationary. However, Figure 10 shows two distinctive patterns and R-value for two 

different periods, from 1900 to 1980 (R = -0.09) and from 1981 to 2015 (R = 0.31). Hence, both 

d=0 and d=1 terms were used to develop the ARIMA model.  

 

Figure 10 Differencing Order-1 Plot World Disaster Occurrences 
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Model diagnostics for selecting model terms were based on ACF and PACF plots 

(Figures 8 and 9) of the original time series. The first ARIMA model (1,1,0) was tried (Figures 

11 and 12).  

 

Figure 11 Residual ACF and Residual PACF plot of ARIMA Model (1,1,0) 

 

Figure 12 ARIMA Model (1,1,0) Prediction of Worldwide Disaster Occurrences from 2016 to 

2030 
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The residual ACF and PACF (Figure 11) and future prediction pattern (Figure 12) plots 

indicate the need to improve the prediction pattern in the (1,1,0) model.  Subsequently, eight 

more models were tried using differencing order-1 (d=1) in the model terms. The prediction 

patterns of the models were not consistent with the pattern of the historic time series. Therefore, 

more models were tried using without differencing (d = 0) in the model terms, and the residual 

ACF and PACF plots were examined. Two more ARIMA models with moving average (q) terms 

(1,0,24) and (1,0,60) were tried without success. The last ARIMA model (1,0,34) trial turned out 

to be the best model as shown by the residual ACF and PACF plots (Figure 13) and prediction 

pattern (Figure 14). This ARIMA model included moving average term 34, which was 

interpreted from Figure 3 that shows the pattern of historic data changes in approximately 34 

years.  

 

Figure 13 Residual ACF and Residual PACF plot of ARIMA Model (1,0,34) 
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Figure 14 Worldwide Disaster Occurrences from 1900 to 2015 and ARIMA Model (1,0,34) 

Prediction from 1900 to 2030 

The observed vs. predicted worldwide disaster occurrences from 1900 to 2015 using the 

ARIMA model (1,0,34) are shown in Figure 15 with a high correlation 0.99 R-value.  

 

Figure 15 Observed vs. Predicted plot of Worldwide Disaster Occurrences using ARIMA Model 

(1,0,34) 
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Table 4 shows the verification for the year 2016 to 2018 using ARIMA Models’ 

prediction. Based on the mean difference, Root Mean Square Error (RMSE), Mean Absolute 

Relative Error (MARE), and future prediction pattern, the best model is (1,0,34).   

Table 4 Verification of ARIMA Models using 2016-2018 Measured Data 

Worldwide Disaster Occurrence, 1900-2030 
   R2 = 0.99 R = 0.99 R = 0.99 

Number Year Measured 

Predicted 
ARIMA 
Model 

(1,0,34) 

Predicted 
ARIMA 
Model 

(1,0,24) 

Predicted 
ARIMA 
Model 

(1,0,60) 
117 2016 324 350 369 354 
118 2017 335 345 372 389 
119 2018 331 333 357 359 
120 2019  349 379 388 
121 2020  323 380 399 
122 2021  336 390 406 
123 2022  373 413 452 
124 2023  371 398 445 
125 2024  378 413 465 
126 2025  367 398 437 
127 2026  308 337 356 

2016-2018 n 3 3 3 3 
 Mean 330 343 366 367 
 SD 5.57 8.74 7.94 18.93 
 COV (%) 1.7% 2.55% 2.17% 5.15% 

 Mean 
Difference 

 3.8% 10.9% 11.3% 

 RMSE  16.12 36.83 39.16 
 MARE (%)  3.9% 10.9% 11.3% 
   Best Model   

The following results are summarized for the best model (1,0,34).  

 the % mean difference in worldwide disaster occurrence: +3.8% 

 RMSE: 16.12 

 MARE: 3.9% 
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Equation 2 shows the terms of ARIMA (1,0,34) model.   

𝑌  =  𝐶 +  (1 –  𝜙 𝐵) ∗ (1 – 𝜃 𝐵  – 𝜃 𝐵 −  … … … … … … . . −𝜃 𝐵 ) ∗  𝑎              𝐸𝑞. 2           

where,  

𝑌  = Discrete time series 

C = Constant      

1 – ϕ1B = Regular Autoregressive process of order one 

1 – 𝜃 𝐵  – 𝜃 𝐵  = Regular Moving Average process of order 34 

at = random shock term; normally distributed, independent with zero mean, and variance equal to 

σa    

From the verification results (Figure 15 and Table 4), it is evident that the ARIMA modeling 

method can be used successfully to predict highly autocorrelated time series data, such as climate 

attributes.  

2.3 Climate Attribute Models 

Several climate attributes influence the climate mechanisms which are used to 

characterize climate zones worldwide. The climate attributes are mostly cyclic data either 

monthly or annual. The time series data of climate attributes show high autocorrelation values, 

which indicate that the data are not independent of each other. Therefore, the time series data of 

climate attributes can be modeled using the ARIMA modeling method. The ARIMA model can 

be used for long-term future predictions, depending on the variability and pattern of the 

attributes. The predictions of these climate attributes can lead to assess the climate change 

mechanisms and used to make climate adaptation decisions accordingly. This research will 
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model some selected climate attributes related to prominent climate mechanisms, such as sea 

surface temperature (related to ENSO), global mean sea level (related to sea-level change), and 

sea ice extents (in northern and southern polar regions). The data were accessed from NOAA and 

NSIDC [24, 25]. The following sections discuss the distinctive features to understand the 

predictive modeling of these climate attributes. 

2.4 Sea Surface Temperature    

2.4.1 El Niño-Southern Oscillation (ENSO)     

El Niño and La Niña occur in the equatorial Pacific Ocean. These events are 

characterized by NOAA a five consecutive 3-month running mean of sea surface temperature 

(SST) anomalies [8] in the Niño 3.4 region (Figure 16) that is above or below the threshold of 

0.5°C. This standard of measure is known as the Oceanic Niño Index (ONI) [8]. 

 

 

Figure 16 Niño 3.4 Region [8] 



 

28 

 

Historically, scientists have classified the intensity of El Niño based on SST anomalies 

exceeding a pre-selected threshold in a certain region of the equatorial Pacific. The most 

commonly used region is that the Niño 3.4 region and the most commonly used threshold is a 

positive SST departure from normal greater than or equal to +0.5°C. Since this region 

encompasses the western half of the equatorial cold tongue region, it provides a good measure of 

important changes in SST and SST gradients that result in changes in the pattern of deep tropical 

convection and atmospheric circulation. The criteria, that is often used to classify El Niño 

episodes, is that five consecutive 3-month running mean SST anomalies exceed the threshold [8]. 

Because of the strong interactions between oceanic and atmospheric changes, the 

Southern Oscillation and the El Niño mechanism are strongly coupled. This has led to the 

selection of the acronym ENSO to refer to the entire process. The ENSO climatic mechanism has 

been widely stated around the world because of its impact on the economies and activities, such 

as agriculture and fishing of developing countries. ENSO is a recurring climate pattern involving 

changes in the temperature of waters in the central and eastern tropical Pacific Ocean. On periods 

starting from about three to seven years, the surface waters across an oversized swath of the 

tropical Pacific Ocean warm or cool by anywhere from 1°C to 3°C, compared to normal. This 

oscillating warming and cooling pattern denoted as the ENSO cycle directly affects rainfall 

distribution in the tropics and can have a powerful influence on weather across the United States 

and other parts of the globe. El Niño and La Niña are the acute phases of the ENSO cycle; 

between these two phases is a third phase called ENSO-neutral. The phases are described below: 
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El Niño: A warming of the ocean surface, or above-average SST, in the central and eastern 

tropical Pacific Ocean.  Over Indonesia, rainfall tends to reduce while rainfall increases over the 

central and eastern tropical Pacific Ocean.  In general, the warmer the ocean temperature 

anomalies, the stronger the El Niño [26]. 

La Niña: A cooling of the ocean surface, or below-average SST, in the central and eastern 

tropical Pacific Ocean.  Over Indonesia, rainfall tends to increase while rainfall decreases over 

the central and eastern tropical Pacific Ocean.  The normal easterly winds along the equator 

become even stronger.  In general, the cooler the ocean temperature anomalies, the stronger the 

La Niña [26]. 

Neutral: Neither El Niño or La Niña. Often tropical Pacific SSTs are generally close to average.  

However, there are some instances when the ocean can look like it is in an El Niño or La Niña 

state, but the atmosphere is not playing along  [26]. 

2.4.2 Review of Sensor Used for SST Measurements 

Before 1997, SSTs were only available globally from IR satellite retrievals [27]. With the 

launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, which includes TRMM 

Microwave Imager (TMI), microwave retrievals became possible [28]. Though IR SSTs have a 

higher resolution than microwave SSTs (1- 4 km for IR as compared to 25 km for microwave), 

the IR retrieval is prevented by clouds [27]. Microwave SSTs get improved coverage as SST can 

be measured through clouds [27]. This has proven especially important in tropical cyclone 

forecasting as the clouds surrounding a cyclone prevented adequate SST [27]. 
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The vertically polarized microwave brightness temperature of ocean areas has an appreciable 

sensitivity to SST at frequencies between 4 and 11 GHz [27]. “In addition to SST, brightness 

temperature depends on the sea-surface roughness, the atmospheric temperature, and moisture 

profile” [27].  The spectral and polarimetric signatures of the surface-roughness and the 

atmosphere are quite distinct from the SST signature [27]. The influence of these effects can be 

removed by taking simultaneous measurements at multiple frequencies and polarizations [27]. 

The microwave instruments TMI, AMSR-E, AMSR2, WindSat, and GMI all measure multiple 

frequencies that are more than sufficient to remove the surface-roughness and atmospheric 

effects [27]. Technical specifications of microwave instruments used for sea surface temperature 

measurements are shown in Table 5.  

Table 5 Comparison of Microwave Instruments Used for Measuring SST 

Ref. Satellite 
Microwave 
Instrument 

Name 
Owner 

Resolution 
Swath 
width 
(km) 

Footprint  
(km × km) 

Year 
Launched Spectral 

(bands) 
Temporal 

(days) 

[29] 

Global 
Precipitation 
Measurement 
(GPM) 

GMI 
JAXA and 

NASA  
8 - 931 

32×19,18
×11,16×1
0,15×9,7×

4,6×4 

2014 

[30] GCOM-W1 AMSR2 NASA  7 0.5 1450 

62×35,42
×24,22×1
4,19×11,1
2×7,5×3 

2012 

[31] WindSAT WindSAT 

Naval 
Research 

Laboratory 
(NRL), 
Naval 

Center for 
Space 

Technolog
y, U.S. 

Navy, and  
NPOESS  

5 0.5 1025 

39×71,25
×38,16×2
7,20×30,8

×13 

2003 
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Ref. Satellite Microwave 
Instrument 

Owner Resolution Swath 
width 

Footprint  
(km × km) 

Year 
Launched 

[30] Aqua AMSR-E NASA  6 0.5 1450 

75×43,51×
29,27×16,
32×18,14
×8,6×4 

2002 

[28] 

Tropical 
Rainfall 
Measuring 
Mission 
(TRMM) 

TMI 
JAXA and 

NASA  
5 - 759 

72×43,35
×21,26×2
1,18×10,8

×6 

1997 

The additional 7 GHz channel present on AMSR-E and AMSR2, but not TMI, provides 

improved estimates of sea-surface roughness and improved accuracy for SSTs [27]. “All 

channels are used simultaneously to retrieve SST, wind speed, columnar water vapor, cloud 

liquid water, and rain rate. SST retrieval is prevented only in regions with sun-glitter, rain, or 

proximity to land. Since only a small number of retrievals are unsuccessful, almost complete 

global coverage is achieved daily” [27].  

2.4.3 Literature Review of the Impacts of ENSO 

Smith and Sardeshmukh [32] discussed the effect of ENSO on the probability distribution 

of daily surface air temperature over the Pacific–North American sector. It was investigated 

using the US National Centers for Environmental Prediction (NCEP) reanalysis data for 1959–

1998. In this study, the El Niño response was characterized by reduced intraseasonal variance 

over most of the US, western Canada, and the Gulf of Alaska, on the other hand, there was a rise 

of variance during La Niña. The sign of this response was consistent for many individual El Niño 

and La Niña years in regions with a robust signal. These results were consistent with other 

studies, suggesting an increased incidence of blocking along the west coast of North America 
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during El Niño, resulting in less storm activity and fewer incursions of warm and cold air over 

the eastern US.  

Lang et al. [33] discussed the effect of ENSO events on the tropical pacific mean climate 

by an analytical model that has an oscillatory regime that resembles the observations. During this 

oscillatory regime, the time-mean SST in the eastern equatorial Pacific was found to be 

significantly different from the corresponding equilibrium SST. In the oscillatory regime, SST is 

warmer than equilibrium SST. The study found that the difference was proportional to the 

amplitude of ENSO. The study also discussed the role of ENSO events in shaping the tropical 

mean climate state and suggested that decadal warming in the recent decades within the eastern 

tropical Pacific can be more of a consequence than an explanation for the elevated ENSO 

activity during the same period.  

Sun et al. [34] studied the worldwide and regional influence of the ENSO events on 

extreme precipitation. The analysis was done using a global database comprising over 7000 high-

quality observation sites. The study found the influence of ENSO in the extreme precipitation of 

several regions such as North and South America, southern and eastern Asia, South Africa, 

Australia, and Europe. The study also found that the effect of ENSO on extreme precipitation 

was asymmetric, with most parts of the planet experiencing a major effect just for one ENSO 

phase. These findings have important implications on the current understanding of how ENSO 

influences extreme precipitation and can enable a more rigorous theoretical foundation for 

providing quantitative extreme precipitation intensity predictions at seasonal timescales.  
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Moreiras [35] studied the temporal distribution of landslides that can be verified through 

climatic anomalies linked to the ENSO events. The study found that an increasing number of 

landslides triggered by rainfall have been recorded during warm episodes (El Niño) in the 

Cordillera Frontal, and a decreasing number during cold episodes (La Niña), which concluded 

that this geological province is principally influenced by the Pacific Anticyclone. However, slope 

instability in the Precordillera, located east of the Cordillera Frontal, seems to be mainly 

influenced by the Atlantic Anticyclone. Analysis of variance shows that there was no significant 

difference between landslide records and cold-warm episodes, and a higher number of landslides 

were recorded in years linked to wet periods than during dry periods. Furthermore, the 

precipitation threshold value related to landslide occurrence and antecedent precipitation were 

analyzed. 

Tote et al. [36] studied the effect of ENSO events on sediment production in a very large 

coastal basin in northern Peru. The effect of ENSO is not limited to changes in sediment 

mobilization. Since ENSO events can affect terrestrial ecosystems, they may have important 

effects on sediment production and transport in river basins over periods that are longer than the 

duration of the event itself. The study found that in strong negative ENSO periods, the mean 

annual streamflow discharge at the inlet of the Poechos reservoir in the lower basin was 5.4 

times over normal annual discharges, while average sediment fluxes exceeded those of normal 

years by a factor of about 11. In two heavily affected periods, 45.9% of the total sediment yield 

in the 29 years observation period was generated. Sediment fluxes in the post-ENSO period are 
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lower than expected, which proves post-ENSO event dynamics are significantly different from 

pre-event dynamics.  

From the detailed literature review above, it is profound that the ENSO events, which 

happen in the Pacific Ocean, have a global impact through drought, extreme precipitation, 

landslide, sedimentation, etc. Because of the global impacts, ENSO drives extreme weather and 

climate variability, which greatly affect the built environment and human habitants. The extreme 

weather affects lifeline infrastructure such as roads and bridges. Therefore, forecasting ENSO 

events a few years in advance is an intense area of research. Figure 17 shows the monthly sea 

surface temperature from January 1950 to February 2019. The criteria used by NOAA to classify 

ENSO episodes is that the five consecutive 3-month running mean SST anomalies exceed the 

threshold ±0.5. Figure 18 shows El Niño and La Niña years announced by NOAA. The criteria 

developed in this doctoral research to classify ENSO episodes is that the monthly SST anomalies 

(calculated using NOAA reference period: 1971-2000, 26.89 ℃) exceed the threshold ±1.  

Figure 19 shows El Niño and La Niña years detected by CAIT Methodology.  

 

Figure 17 Monthly Sea Surface Temperature, January 1950 to February 2019 
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Figure 18 El Niño and La Niña Years by NOAA, January 1950 to February 2019 

 

Figure 19 El Niño and La Niña Years Detected by CAIT Methodology, January 1950 to 

February 2019 

2.4.4 ARIMA Modeling of Sea Surface Temperature Data  

This section presents ARIMA modeling for time series data of sea surface temperature. 

This time series fails the Normality test and independence test (high autocorrelation 0.92 at Lag-

1). From January 1950 to February 2019, total sea surface temperature data points were 830 with 

a mean of 26.90 °C. Table 6 shows the maximum (29.41 °C) and minimum (24.25°C) sea surface 

temperature data were found in November 2015 and November 1955, respectively. For model 
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verification purposes 2018 and 2019 data were kept from the modeling database. Total model 

data points were 816 with an average of 26.89 °C. SST anomalies were calculated using NOAA 

reference period (1971-2000) average temperature of 26.89 ℃. El-Niño (positive anomalies) and 

La-Niña (negative anomalies) were identified.  

Table 6 Descriptive Statistics of Sea Surface Temperature 

Equatorial Pacific Sea Surface Temperatures (°C), 1950 - 2019 

Summary Statistics Sea Surface Temperature, (°C) 

n 830 
Mean  26.90 
SD 0.98 
COV (%) 3.65% 
Maximum 29.41 
Maximum Date November, 2015 
Minimum  24.25 
Minimum Date November, 1955 

The ACF and PACF plots of the original time series are shown in Figure 20 and Figure 

21, respectively. 

 

Figure 20 ACF Plot of Sea Surface Temperature 
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Figure 21 PACF Plot of Sea Surface Temperature 

Figure 22 shows the differencing order-1 plot for the original time series. The correlation 

R-value for the differencing order time series and the original time series is 0.202, which is more 

than 0.2. According to Appendix A, differencing order-1 (d = 0) should be used to make the 

series stationary.   

 

Figure 22 Differencing Order-1 Plot of Sea Surface Temperature 
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Model diagnostics for selecting model terms were based on ACF and PACF plots 

(Figures 20 and 21) of the original time series. The first seasonal ARIMA model (1,0,0) (1,0,1) 

was tried (Figures 23 and 24).  

 

Figure 23 Residual ACF and Residual PACF plot of Seasonal ARIMA Model (1,0,0) (1,0,1) 

 

Figure 24 Seasonal ARIMA Model (1,0,0) (1,0,1) Prediction of Sea Surface Temperature from 

2018 to 2030 
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The residual ACF and PACF (Figure 23) and future prediction pattern (Figure 24) plots 

indicate the need to improve the prediction pattern in the (1,0,0) (1,0,1) model.  Subsequently, 24 

more models were tried. The prediction patterns of the models were not consistent with the 

pattern of the historic time series. Therefore, more models were tried and the residual ACF and 

PACF plots were examined. Two seasonal ARIMA models (24,0,0)(24,0,36) and 

(9,0,0)(12,0,18) had showed better residual ACF and PACF. The seasonal ARIMA model 

(24,0,0)(24,0,36) trial turned out to be the best model as shown by the residual ACF and PACF 

plots (Figure 25) and prediction pattern (Figure 26).  

 

Figure 25 Residual ACF and Residual PACF plot of Seasonal ARIMA Model (24,0,0) (24,0,36) 
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Figure 26 Seasonal ARIMA Model (24,0,0) (24,0,36) Prediction of Sea Surface Temperature 

from 2018 to 2030 

The observed vs. predicted sea surface temperature from 1950 to 2017 using the ARIMA 

model (24,0,0) (24,0,36) are shown in Figure 27 with a high correlation 0.95 R-value.  

 

Figure 27 Observed vs. Predicted plot of Sea Surface Temperature using Seasonal ARIMA 

Model (24,0,0) (24,0,36) 
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Table 7 shows the verification for the year 2018 using seasonal ARIMA Models’ 

prediction.  

Table 7 Verification of Seasonal ARIMA Models using 2018 Measured Data 

Equatorial Pacific (Nino 3.4 Region) Monthly Sea Surface Temperatures, °C,  
January 2018 to December 2018                                                     

      R = 0.95 R = 0.95 

Cumulative 
Month No. 

Month Measured 
Predicted ARIMA 
Seasonal (24,0,0) 

(24,0,36) 

Predicted ARIMA 
Seasonal (9,0,0) 

(12,0,18) 
817 Jan-18 25.57 25.7 25.48 
818 Feb-18 25.98 26.09 25.83 
819 Mar-18 26.5 26.63 26.67 
820 Apr-18 27.32 27.03 27.48 
821 May-18 27.74 27.26 27.56 
822 Jun-18 27.77 27.57 27.65 
823 Jul-18 27.42 27.57 27.4 
824 Aug-18 26.95 27.29 27.27 
825 Sep-18 27.19 27.24 27.06 
826 Oct-18 27.62 27.4 26.84 
827 Nov-18 27.61 27.48 26.72 
828 Dec-18 27.49 27.57 26.64 

January - 
December 2018 

n 12 12 12 

  Mean 27.10 27.07 26.88 
  SD 0.72 0.62 0.68 
  COV (%) 2.65% 2.28% 2.52% 

  
Mean 

Difference (%) 
  -0.1% -0.8% 

  RMSE   0.07 0.13 
  MARE (%)   0.71% 1.18% 

The following results are summarized for the better model (24,0,0)(24,0,36) for 2018 

verification: 

 the % mean difference in sea surface temperature: -0.1% 

 RMSE: 0.07 

 MARE: 0.71% 
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Figure 28 and Figure 29 show seasonal ARIMA Model (24,0,0) (24,0,36) and (9,0,0) 

(12,0,18) prediction for 2018, respectively. Based on the mean difference, RMSE, MARE, and 

future prediction pattern, the better model is (24,0,0) (24,0,36). 

 

Figure 28 Observed and Seasonal ARIMA Model (24,0,0) (24,0,36) Prediction from January 

2018 to December 2018 

 

Figure 29 Observed and Seasonal ARIMA Model (9,0,0) (12,0,18) Prediction from January 2018 

to December 2018 

Table 8 shows the verification for the year 2019 using seasonal ARIMA models’ 

prediction.  
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Table 8 Verification of Seasonal ARIMA Models using 2019 Measured Data 

Equatorial Pacific (Nino 3.4 Region) Monthly Sea Surface Temperatures, °C  
January 2019 to December 2019                                                 

      R = 0.95 R = 0.95 

Cumulative 
Month No. 

Month Measured 
Predicted ARIMA 

Seasonal 
(24,0,0)(24,0,36) 

Predicted ARIMA 
Seasonal 

(9,0,0)(12,0,18) 
829 Jan-19 27.2 27.39 26.43 
830 Feb-19 27.48 27.78 26.68 
831 Mar-19 28.1 27.95 27.13 
832 Apr-19 28.45 28.07 27.79 
833 May-19 28.49 27.89 28.04 
834 Jun-19 28.18 27.84 28.01 
835 Jul-19 27.64 27.57 27.72 
836 Aug-19 26.9 26.79 27.47 
837 Sep-19 26.75 26.26 27.46 
838 Oct-19 27.2 26.16 27.5 
839 Nov-19 27.23 26.2 27.48 
840 Dec-19 27.12 26.31 27.47 

January - 
December 2019 

n 12 12 12 

  Mean 27.56 27.18 27.43 
  SD 0.60 0.78 0.48 
  COV (%) 2.19% 2.86% 1.77% 

  
Mean 

Difference 
(%) 

  -1.4% -0.5% 

  RMSE   0.56 0.57 

  
MARE 

(%) 
  1.67% 1.84% 

The following results are summarized for the better model (24,0,0) (24,0,36) for 2019 

verification: 

 the % mean difference in global mean sea level: -1.4% 

 RMSE: 0.56 

 MARE: 1.67% 
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Figure 30 and Figure 31 show seasonal ARIMA Model (24,0,0)(24,0,36) and (9,0,0) 

(12,0,18) prediction  for 2019, respectively. Based on the mean difference, RMSE, MARE, and 

future prediction pattern, the better model is (24,0,0)(24,0,36). 

 

Figure 30 Observed and Seasonal ARIMA Model (24,0,0) (24,0,36) Prediction from January 

2019 to December 2019 

 

Figure 31 Observed and Seasonal ARIMA Model (9,0,0) (12,0,18) Prediction from January 2019 

to December 2019 

Based on the observed vs. predicted results from 1950 to 2017 (Figure 27), the future 

prediction from 2018 to 2050, the verification results of the year 2018 and 2019, the seasonal 

ARIMA model (24,0,0) (24,0,36) was chosen as the best model.  Equation 3 shows the terms of 

seasonal ARIMA (24,0,0) (24,0,36) model.   
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𝑌  =  𝐶 +  (1 –  𝜙 𝐵 − 𝜙 𝐵 − ⋯ … … − 𝜙 𝐵 )

∗ (1 –  Φ 𝐵 − Φ 𝐵 − ⋯ … … − Φ 𝐵 )

∗ (1 – 𝜃 𝐵  – 𝜃 𝐵 − ⋯ … … – 𝜃 𝐵 )

∗ 𝑎                                                                                               𝐸𝑞. 3        

 𝑌  = Discrete time series 

C = Constant      

1 –  𝜙 𝐵 − 𝜙 𝐵 − ⋯ … … − 𝜙 𝐵  = Regular Autoregressive process of order 24 

1 –  Φ 𝐵 − Φ 𝐵 − ⋯ … … − Φ 𝐵 = Seasonal Autoregressive process of order 24 

1 – 𝜃 𝐵  – 𝜃 𝐵 − ⋯ … … – 𝜃 𝐵  = Seasonal Moving Average process of order 36 

at = random shock term; normally distributed, independent with zero mean, and variance equal to 

σa    

As discussed above, the best model found for SST is the seasonal ARIMA model (24,0,0) 

(24,0,36). The future prediction of this model was used to predict the future El Niño and La Niña 

years. The criteria developed in this doctoral research to classify ENSO episodes is that the 

monthly SST anomalies (calculated using NOAA reference period: 1971-2000, 26.89 ℃) exceed 

the threshold ±1 was applied to the future prediction of the final model. Figure 32 shows the 

future El Niño and La Niña years detected by CAIT Methodology. The model successfully 

predicted the 2018-2019 El Niño year. The model prediction shows that the next El Niño years 

will be 2021-22 and 2025-26. The model prediction also shows that the next La Niña year will be 

2028-29.  
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Figure 32 Future El Niño and La Niña Years Detected by CAIT Methodology, January 2018 to 

December 2030 

2.5 Sea Level Rise 

According to the U.N. Atlas of the Oceans, globally, eight of the world’s 10 largest cities 

are near a coast. In the United States, almost 40 percent of the population lives in relatively high 

population-density coastal areas, where sea level plays a role in flooding, shoreline erosion, and 

hazards from storms [7]. In the urban area along coastlines around the world, rising seas threaten 

the infrastructure necessary for local jobs and regional industries. In the natural world, rising sea 

level creates stress on coastal ecosystems that provide recreation, protection from storms, and 

habitat for fish and wildlife, including commercially valuable fisheries. As seas rise, saltwater is 

also contaminating fresh-water aquifers, many of which sustain municipal and agricultural water 

supplies and natural ecosystems [7]. 

2.5.1 Global Mean Sea Level  

Sea level is measured by two main methods: tide gauges and satellite altimeters. Tide 

gauge stations from around the world have measured the daily high and low tides for more than a 
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century, using a variety of manual and automatic sensors. Using data from scores of stations 

around the world, a global average is calculated and adjusted for seasonal differences. High-

quality measurements of (near)-global sea level have been made since late 1992 by satellite 

altimeters, in particular, TOPEX/Poseidon (launched August 1992), Jason-1 (launched December 

2001), Jason-2 (launched June 2008), and Jason-3 (launched January 2016) [37].  There are 

several changes in slope over short periods in the global mean sea level record. This variability is 

partly related to El Niño and La Niña (sea level rises during El Niño and falls during La Niña) 

and associated changes in the hydrological cycle [37]. 

The Global Mean Sea Level (GMSL) time series (Figure 33) is collected tide gauge data 

around the world. The total GMSL change from January 1880 to December 2009 is about 210 

mm over 130 years. The average annual rate of change over 130 years is 1.7 mm/year. The IPCC 

Fourth Assessment Report described studies that estimated sea-level rise for the 20th century 

between 0.5 and 3.0 mm a year. The most likely range, according to the IPCC, was between 1.0 

and 2.0 mm a year [38]. 

 

Figure 33 Monthly Global Mean Sea Level and Annual Rate of Change, January 1880 to 

December 2013 
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2.5.2 ARIMA Modeling of Global Mean Sea Level Data  

This section presents ARIMA modeling for time series data of global mean sea level. 

This time series fails the Normality test and independence test (high autocorrelation 0.997 at 

Lag-1). From January 1880 to December 2013, total global mean sea level data points were 

1,608 with a mean of -66.08 mm. Table 9 shows the maximum (82.4 mm) and minimum (-184.5 

mm) global mean sea level data were found in June 2012 and December 1882, respectively. For 

model verification purposes 2012 and 2013 data were kept from the modeling database. Total 

model data points were 1,596 with an average of -67.09 mm.  

Table 9 Descriptive Statistic of Monthly Global Mean Sea Level 

Monthly Global Mean Sea Level (mm) January 1880 to December 2013 

Summary Statistics Monthly Global Mean Sea Level (mm) 

n 1608 
Mean  -66.08 
SD 62.89 
COV (%) -95.18% 
Maximum 82.4 
Maximum Date June, 2012 
Minimum  -184.5 
Minimum Date December, 1882 
Autocorrelation at Lag-1 0.997 
Normality Test Significant (Not Normal) 

The ACF and PACF plots of the original time series are shown in Figure 34 and Figure 

35, respectively.  
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Figure 34 ACF Plot of Global Mean Sea Level 

 

Figure 35 PACF Plot of Global Mean Sea Level 
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Figure 36 shows the differencing order-1 plot for the original time series. The correlation 

R-value for the differencing order time series and the original time series is -0.021, which is less 

than 0.2. According to Appendix A, differencing order-1 (d = 1) should be used to make the 

series stationary. However, Figure 36 shows two distinctive patterns and R-values for two 

different periods, from 1880 to 1914 (R = 0.115) and from 1915 to 2013 (R = -0.0000127). 

Hence, both d=0 and d=1 terms were used to develop the ARIMA model.  

 

Figure 36 Differencing Order-1 Plot of Global Mean Sea Level 

Model diagnostics for selecting model terms were based on ACF and PACF plots 

(Figures 34 and 35) of the original time series. The first seasonal ARIMA model (1,1,0) (1,1,3) 

was tried (Figures 37 and 38).  
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Figure 37 Residual ACF and Residual PACF plot of Seasonal ARIMA Model (1,1,0) (1,1,3) 

 

 

Figure 38 Seasonal ARIMA Model (1,0,0) (1,0,3) Prediction of Global Mean Sea Level from 

2012 to 2050 
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The residual ACF and PACF (Figure 37) and future prediction pattern (Figure 38) plots 

indicate the need to improve the prediction pattern in the (1,1,0) (1,1,3) model.  Subsequently, 

nine more models were tried using differencing order-1 (d=1) in the model terms. The prediction 

patterns of the models were not consistent with the pattern of the historic time series. Therefore, 

more models were tried using without differencing (d = 0) in the model terms, and the residual 

ACF and PACF plots were examined. Two seasonal ARIMA models (6,0,0) (6,0,6) and (12,0,0) 

(12,0,36) were tried without success. The last ARIMA model (12,0,0) (12,0,24) trial turned out 

to be the best model as shown by the residual ACF and PACF plots (Figure 39) and prediction 

pattern (Figure 40).  

 

Figure 39 Residual ACF and Residual PACF plot of Seasonal ARIMA Model (12,0,0) (12,0,24) 
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Figure 40 Seasonal ARIMA Model (12,0,0) (12,0,24) Prediction of Global Mean Sea Level from 

2012 to 2050 

The observed vs. predicted monthly global mean sea level from 1880 to 2012 using the 

ARIMA model (12,0,0) (12,0,24) are shown in Figure 41 with a high correlation 0.95 R-value.  

 

Figure 41 Observed vs. Predicted plot of Monthly Global Mean Sea Level using Seasonal 

ARIMA Model (12,0,0) (12,0,24) 
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Table 10 and Table 11 show the verification for the years 2012 and 2013, respectively 

using seasonal ARIMA Models’ prediction. Based on the mean difference, RMSE, MARE, and 

future prediction pattern, the best model is (12,0,0) (12,0,24).  

Table 10 Verification of Seasonal ARIMA Models using 2012 Measured Data 

Monthly Global Mean Sea Level (mm) 
 January 2012 to December 2012 

      R = 0.99 R = 0.99 R =0.95 

Cumulative 
Month No. 

Month Measured 

Predicted 
ARIMA 
Seasonal 
(6,0,0) 
(6,0,6)  

Predicted 
ARIMA 
Seasonal 
(12,0,0) 

(12,0,36)  

Predicted 
ARIMA 
Seasonal 
(12,0,0) 

(12,0,24)  
1585 Jan-12 58.5 54.9 55.6 55.7 
1586 Feb-12 63.8 59.2 60.0 59.7 
1587 Mar-12 72.5 67.8 69.0 69.8 
1588 Apr-12 80.4 75.1 75.1 76.3 
1589 May-12 82 82.1 82.7 82.0 
1590 Jun-12 82.4 80.0 81.2 80.6 
1591 Jul-12 78.1 77.5 77.3 77.8 
1592 Aug-12 78.8 75.4 75.9 75.3 
1593 Sep-12 78.6 76.6 77.2 76.8 
1594 Oct-12 80.8 79.9 79.7 79.5 
1595 Nov-12 79.4 79.5 79.1 79.6 
1596 Dec-12 77.7 77.5 77.9 77.7 

January - 
December 2012 

n 12 12 12 12 

  Mean 76.08 73.78 74.23 74.24 
  SD 7.51 8.66 8.45 8.36 
  COV (%) 9.87% 11.74% 11.39% 11.27% 

  
Mean 

Difference (%) 
  -3.0% -2.4% -2.4% 

  RMSE   0.86 0.73 0.69 
  MARE (%)   3.23% 2.74% 2.60% 

The following results are summarized for the best model (12,0,0) (12,0,24): 

 the % mean difference in global mean sea level: -2.4% 

 RMSE: 0.69 

 MARE: 2.6% 
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Table 11 Verification of Seasonal ARIMA Models using 2013 Measured Data 

Monthly Global Mean Sea Level (mm) 
January 2013 to December 2013 

      R = 0.99 R = 0.99 R = 0.95 

Cumulative 
Month No. 

Month Measured 

Predicted 
ARIMA 
Seasonal 
(6,0,0) 
(6,0,6)  

Predicted 
ARIMA 
Seasonal 
(12,0,0) 

(12,0,36)  

Predicted 
ARIMA 
Seasonal 
(12,0,0) 

(12,0,24)  

1597 Jan-13 70.5 74.4 74.8 74.3 
1598 Feb-13 65.7 71.9 72.9 71.7 
1599 Mar-13 67 70.4 72.1 71.5 
1600 Apr-13 69.8 70.4 73.2 73.0 
1601 May-13 72 70.3 73.7 74.5 
1602 Jun-13 71.5 70.1 73.7 74.7 
1603 Jul-13 71.2 69.0 72.9 73.7 
1604 Aug-13 71.6 67.5 72.6 72.5 
1605 Sep-13 68.8 66.0 72.1 70.7 
1606 Oct-13 66.4 64.5 71.3 69.4 
1607 Nov-13 59.7 63.3 70.6 69.5 
1608 Dec-13 58.5 61.8 70.3 69.3 

January - 
December 2013 

n 12 12 12 12 

  Mean 67.73 68.30 72.50 72.06 
  SD 4.56 3.76 1.31 2.02 
  COV (%) 6.73% 5.50% 1.81% 2.81% 

  
Mean 

Difference (%) 
  0.8% 7.1% 6.4% 

  RMSE   0.94 1.69 1.51 

  MARE (%)   4.39% 7.42% 6.71% 

The following results are summarized for the best model (12,0,0) (12,0,24): 

 the % mean difference in global mean sea level: 6.4% 

 RMSE: 1.51 

 MARE: 6.71% 
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Figures 42 and 43 presented the observed and predicted global mean sea level data of 12 

months for 2013. Figure 29 shows that the seasonal ARIMA model (6,0,0) (6,0,6) prediction did 

not follow the same pattern as the observed data. Although, % mean difference, RMSE, and 

MARE statistics were the lowest for the seasonal ARIMA model (6,0,0) (6,0,6), the seasonal 

ARIMA model (12,0,0) (12,0,24) was chosen as the best model based on the verification of 2012 

and 2013 monthly global mean sea level data. 

 

Figure 42 Observed and Seasonal ARIMA Model (6,0,0) (6,0,6) Prediction from January 2013 to 

December 2013 

 

Figure 43 Observed and Seasonal ARIMA Model (12,0,0) (12,0,24) Prediction from January 

2013 to December 2013 

Equation 4 shows the terms of seasonal ARIMA (12,0,0) (12,0,24) model.   
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𝑌  =  𝐶 +  (1 –  𝜙 𝐵 − 𝜙 𝐵 − ⋯ … … − 𝜙 𝐵 )

∗ (1 –  Φ 𝐵 − Φ 𝐵 − ⋯ … … − Φ 𝐵 )

∗ (1 – 𝜃 𝐵  – 𝜃 𝐵 − ⋯ … … – 𝜃 𝐵 )

∗ 𝑎                                                                                               𝐸𝑞. 4        

 𝑌  = Discrete time series 

C = Constant      

1 –  𝜙 𝐵 − 𝜙 𝐵 − ⋯ … … − 𝜙 𝐵  = Regular Autoregressive process of order 12 

1 –  Φ 𝐵 − Φ 𝐵 − ⋯ … … − Φ 𝐵  = Seasonal Autoregressive process of order 12 

1 – 𝜃 𝐵  – 𝜃 𝐵 − ⋯ … … – 𝜃 𝐵  = Seasonal Moving Average process of order 24 

at = random shock term; normally distributed, independent with zero mean, and variance equal to 

σa    

As discussed above, the best model found for GMSL is the seasonal ARIMA model 

(12,0,0) (12,0,24). The future prediction of this model was used to predict the annual rate of 

change in GMSL. Figure 44 shows the predicted monthly global mean sea level and the annual 

rate of change from January 2013 to December 2050. The predicted annual rate of change in 

GMSL is 0.6 mm/year from 2013 to 2050. This contradicts the prediction from IPCC, which is 

between 1.0 and 2.0 mm a year [38]. But a higher annual rate of change (1.4 mm/year) is 

predicted from 2031 to 2050.  
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Figure 44 Predicted Monthly Global Mean Sea Level and Annual Rate of Change, January 2013 

to December 2050 

2.6 Sea Ice Extent 

Sea ice extent is defined as the total surface area covered by sea ice above a certain 

concentration threshold (usually 15%) [39]. It has most commonly been derived from passive 

microwave imagery. Sea ice extent is a widely used polar climate indicator. Sea ice affects both 

global ocean temperatures and the global movement of ocean waters. The ocean is salty and 

when sea ice forms, much of the salt is pushed into the ocean water below the ice, although some 

salt may become trapped in small pockets between ice crystals. Water below sea ice has a higher 

concentration of salt and is denser than the surrounding ocean water, so it sinks and moves from 

the surface. In this way, sea ice contributes to the circulation of the global ocean conveyor belt. 

Cold, dense polar water descends from the surface and circulates along the ocean bottom toward 

the equator, while the warm water from mid-depth to the surface travels from the equator toward 

the poles [40].  
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2.6.1 ARIMA Modeling of Northern Hemisphere Monthly Sea Ice Extent  

This section presents an example of ARIMA modeling for time series data of northern 

hemisphere monthly sea ice extent. The northern hemisphere sea ice extent is also known as the 

arctic sea ice extent. Figures 45 show the time series data of the northern hemisphere sea ice 

extent. This time series fails the Normality test and independence test (high autocorrelation 0.86 

at Lag-1). From January 1979 to July 2019, total northern hemisphere monthly sea ice extent 

data points were 487 with a mean of 11.48 million km2. Table 12 shows the maximum (16.34 

million km2) and minimum (3.57 million km2) northern hemisphere monthly sea ice extent data 

were found on March 1979 and September 2012, respectively. For model verification purposes 

2018 and 2019 data were set aside from the modeling database. Total model data points were 

468 with an average of 11.49 million km2. 

 

Figure 45 Northern Hemisphere Monthly Sea Ice Extent, January 1979 to July 2019 
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Table 12 Descriptive Statistics of Northern Hemisphere Monthly Sea Ice Extent 

Northern Hemisphere Sea Ice Extent (million square 
km), January 1979 to July 2019 

Summary Statistics 
Northern Hemisphere Sea 
Ice Extent (million km²) 

n 487 
Mean  11.48 
SD 3.21 
COV (%) 28.0% 
Maximum 16.34 
Maximum Date March, 1979 
Minimum  3.57 
Minimum Date September, 2012 
Autocorrelation at Lag-1 0.86 
Normality Test Significant (Not Normal) 

 
The ACF and PACF plots of the original time series are shown in Figure 46 and Figure 

47, respectively 

 

 

Figure 46 ACF Plot Northern Hemisphere Sea Ice Extent 
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Figure 47 PACF Plot Northern Hemisphere Sea Ice Extent 

Figure 48 shows the differencing order-1 plot for the original time series. The correlation 

R-value for the differencing order time series and the original time series is 0.27, which is more 

than 0.2. According to Appendix A, differencing order-1 (d = 0) should be used to make the 

series stationary.  

 

Figure 48 Differencing Order-1 Plot Northern Hemisphere Sea Ice Extent 
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Model diagnostics for selecting model terms were based on ACF and PACF plots 

(Figures 46 and 47) of the original time series. The first seasonal ARIMA model (1,0,2) (1,0,12) 

was tried (Figures 49 and 50).  

 

Figure 49 Residual ACF and Residual PACF plot of seasonal ARIMA Model (1,0,2) (1,0,12) 

 

Figure 50 Seasonal ARIMA Model (1,0,2) (1,0,12) Prediction of Northern hemisphere Monthly 

Sea Ice Extent from January 2018 to December 2050 
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The residual ACF and PACF (Figure 49) and future prediction pattern (Figure 50) plots 

indicate the need to improve the prediction pattern in the (1,0,2) (1,0,12) model.  Subsequently, 

11 more models were tried. The prediction patterns of the models were not consistent with the 

pattern of the historic time series. Therefore, more models were tried and the residual ACF and 

PACF plots were examined. Two seasonal ARIMA models (1,0,18) (1,0,24) and (2,0,18) 

(2,0,24) had showed better residual ACF and PACF. The seasonal ARIMA model (1,0,18) 

(1,0,24) trial turned out to be the best model as shown by the residual ACF and PACF plots 

(Figure 51) and prediction pattern (Figure 52).  

 

Figure 51 Residual ACF and Residual PACF plot of seasonal ARIMA Model (1,0,18) (1,0,24) 
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Figure 52 Seasonal ARIMA Model (1,0,18) (1,0,24) Prediction of Northern Hemisphere 

Monthly Sea Ice Extent from January 2018 to December 2050 

The observed vs. predicted northern hemisphere monthly sea ice extent from 1979 to 

2017 using the ARIMA model (1,0,18) (1,0,24) are shown in Figure 53 with a high correlation 

0.995 R-value.  

 

Figure 53 Observed vs. Predicted plot of Northern Hemisphere Monthly Sea Ice Extent using 

Seasonal ARIMA Model (1,0,18) (1,0,24) 
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Table 13 shows the verification for the year 2018 using seasonal ARIMA Models’ 

prediction.  

Table 13 Verification of Seasonal ARIMA Models using 2018 Measured Data 

Northern Hemisphere Sea Ice Extent (million square km), January 2018 to December 
2018 

      R = 0.995 R = 0.995 

Cumulative 
Month No. 

Month Measured 
Predicted Seasonal 
ARIMA (1,0,18) 

(1,0,24) 

Predicted Seasonal 
ARIMA (2,0,18) 

(2,0,24) 
469 Jan-18 13.06 13.23 13.28 
470 Feb-18 13.95 14.13 14.12 
471 Mar-18 14.3 14.36 14.26 
472 Apr-18 13.71 13.55 13.52 
473 May-18 12.21 12.14 12.12 
474 Jun-18 10.78 10.65 10.56 
475 Jul-18 8.27 8.14 8.03 
476 Aug-18 5.61 5.85 5.75 
477 Sep-18 4.71 5.07 5.05 
478 Oct-18 6.06 6.99 6.92 
479 Nov-18 9.8 9.47 9.45 
480 Dec-18 11.86 11.86 11.86 

January - 
December 2018 

n 12 12 12 

  Mean 10.4 10.5 10.4 
  SD 3.4 3.3 3.3 
  COV (%) 33.2% 31.5% 31.8% 
  Mean Difference (%) 0.90% 0.48% 
  RMSE 0.33 0.32 
  MARE (%) 3.18% 3.14% 

The following results are summarized for the better model (2,0,18) (2,0,24) for 2018 

verification: 

 the % mean difference in sea ice extent: 0.48% 

 RMSE: 0.32 

 MARE: 3.14% 
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Figure 54 and Figure 55 show seasonal ARIMA Model (1,0,18) (1,0,24) and (2,0,18) 

(2,0,24) prediction for 2018, respectively. Based on the mean difference, RMSE, MARE, and 

future prediction pattern, the better model is (2,0,18) (2,0,24). 

 

Figure 54 Observed and Seasonal ARIMA Model (1,0,18) (1,0,24) Prediction from January 2018 

to December 2018 

 

Figure 55 Observed and Seasonal ARIMA Model (2,0,18) (2,0,24) Prediction from January 2018 

to December 2018 
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Table 14 shows the verification for the year 2019 using seasonal ARIMA Models’ 

prediction.  

Table 14 Verification of Seasonal ARIMA Models using 2019 Measured Data 

Northern Hemisphere Sea Ice Extent (million square km), January 2019 to December 2019 

      R = 0.995 R = 0.995 

Cumulative 
Month No. 

Month Measured 
Predicted Seasonal 
ARIMA (1,0,18) 

(1,0,24) 

Predicted Seasonal 
ARIMA (2,0,18) 

(2,0,24) 
481 Jan-19 13.6 13.4 13.4 
482 Feb-19 14.4 14.3 14.3 
483 Mar-19 14.6 14.4 14.5 
484 Apr-19 13.5 13.6 13.7 
485 May-19 12.2 12.3 12.3 
486 Jun-19 10.5 10.7 10.7 
487 Jul-19 7.6 8.0 8.1 
488 Aug-19 5.0 5.6 5.7 
489 Sep-19 4.3 4.9 4.9 
490 Oct-19 5.7 6.7 6.8 
491 Nov-19 9.3 9.4 9.4 
492 Dec-19 12.0 11.8 11.8 

January - 
December 2019 

n 12 12 12 

  Mean 10.2 10.4 10.5 
  SD 3.8 3.4 3.4 
  COV (%) 36.8% 32.9% 32.8% 
  Mean Difference (%) 1.98% 2.38% 
  RMSE 0.42 0.44 
  MARE (%) 4.80% 5.05% 

The following results are summarized for the better model (1,0,18) (1,0,24) for 2019 

verification: 

 the % mean difference in sea ice extent: 1.98% 

 RMSE: 0.42 

 MARE: 4.80% 
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Figure 56 and Figure 57 show seasonal ARIMA Model (1,0,18) (1,0,24) and (2,0,18) 

(2,0,24) prediction  for 2019, respectively. Based on the mean difference, RMSE, MARE, and 

future prediction pattern, the better model is (1,0,18) (1,0,24). 

 

Figure 56 Observed and Seasonal ARIMA Model (1,0,18) (1,0,24) Prediction from January 2019 

to December 2019 

 

Figure 57 Observed and Seasonal ARIMA Model (2,0,18) (2,0,24) Prediction from January 2019 

to December 2019 
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Based on the observed vs. predicted results from 1979 to 2017 (Figure 53), the future 

prediction from 2018 to 2050, the verification results of the year 2018 and 2019, the seasonal 

ARIMA model (1,0,18) (1,0,24) was chosen as the best model.  Equation 5 shows the terms of 

seasonal ARIMA (1,0,18) (1,0,24) model.   

𝑌  =  𝐶 +  (1 –  𝜙 𝐵 ) ∗ (1 –  Φ 𝐵 ) ∗ (1 – 𝜃 𝐵  – 𝜃 𝐵 − ⋯ … … – 𝜃 𝐵 )

∗ (1 – 𝜃 𝐵  – 𝜃 𝐵 − ⋯ … … – 𝜃 𝐵 )

∗ 𝑎                                                                                               𝐸𝑞. 5        

 𝑌  = Discrete time series 

C = Constant      

1 –  𝜙 𝐵  = Regular Autoregressive process of order 1 

1 –  Φ 𝐵  = Seasonal Autoregressive process of order 1 

1 – 𝜃 𝐵  – 𝜃 𝐵 − ⋯ … … – 𝜃 𝐵  = Regular Moving Average process of order 18 

1 – 𝜃 𝐵  – 𝜃 𝐵 − ⋯ … … – 𝜃 𝐵  = Seasonal Moving Average process of order 24 

at = random shock term; normally distributed, independent with zero mean, and variance equal to 

σa    

2.6.2 ARIMA Modeling of Southern Hemisphere Monthly Sea Ice Extent  

This section presents an example of ARIMA modeling for time series data of southern 

hemisphere monthly sea ice extent. Southern hemisphere sea ice extent is also known as 

Antarctic sea ice extent. Figures 58 shows the time series data of southern hemisphere sea ice 

extent. This time series fails the Normality test and independence test (high autocorrelation 0.85 

at Lag-1). From January 1979 to July 2019, total southern hemisphere monthly sea ice extent 
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data points were 487 with a mean of 11.55 million km2. Table 15 shows the maximum (19.76 

million km2) and minimum (2.29 million km2) northern hemisphere monthly sea ice extent data 

were found on September 2014 and February 2017, February 2018, respectively. For model 

verification purposes 2018 and 2019 data were set aside from the modeling database. Total 

model data points were 468 with an average of 11.62 million km2. 

 

Figure 58 Southern Hemisphere Monthly Sea Ice Extent, January 1979 to July 2019 

Table 15 Descriptive Statistics of Southern Hemisphere Monthly Sea Ice Extent 

Southern Hemisphere Sea Ice Extent (million square km), January 
1979 to July 2019 

Summary Statistics 
Southern Hemisphere Sea Ice 

Extent (million km²) 
n 487 
Mean 11.55 
SD 5.58 
COV (%) 48.4% 
Maximum 19.76 
Maximum Date September, 2014 
Minimum 2.29 
Minimum Date February 2017 and February 2018 
Autocorrelation at Lag-1 0.85 
Normality Test Significant (Not Normal) 
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The ACF and PACF plots of the original time series are shown in Figure 59 and Figure 

60, respectively 

 

Figure 59 ACF Plot Southern Hemisphere Sea Ice Extent 

 

Figure 60 PACF Plot Southern Hemisphere Sea Ice Extent 
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Figure 61 shows the differencing order-1 plot for the original time series. The correlation 

R-value for the differencing order time series and the original time series is 0.27, which is more 

than 0.2. According to Appendix A, differencing order-1 (d = 0) should be used to make the 

series stationary.  

 

Figure 61 Differencing Order-1 Plot Southern Hemisphere Sea Ice Extent 

Model diagnostics for selecting model terms were based on ACF and PACF plots 

(Figures 59 and 60) of the original time series. The best model for the Northern Hemisphere 

Monthly Sea Ice Extent was the seasonal ARIMA model (1,0,18) (1,0,24). Since, the original 

time series of Southern Hemisphere Monthly Sea Ice Extent, ACF, and PACF plot was following 

the same pattern as Northern Hemisphere Monthly Sea Ice Extent, the first seasonal ARIMA 

model (1,0,18) (1,0,24) was tried (Figures 62 and 63).  
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Figure 62 Residual ACF and Residual PACF plot of seasonal ARIMA Model (1,0,18) (1,0,24) 

 

Figure 63 Seasonal ARIMA Model (1,0,18) (1,0,24) Prediction of Southern hemisphere Monthly 

Sea Ice Extent from January 2018 to December 2050 
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The residual ACF and PACF (Figure 62) and future prediction pattern (Figure 63) plots 

indicate the need to improve the prediction pattern in the (1,0,18) (1,0,24) model.  Subsequently, 

three more models were tried. The prediction patterns of the models were not consistent with the 

pattern of the historic time series. Therefore, more models were tried and the residual ACF and 

PACF plots were examined. Two seasonal ARIMA models (8,0,18) (8,0,24) and (12,0,18) 

(12,0,24) had showed better residual ACF and PACF. The seasonal ARIMA model (12,0,18) 

(12,0,24) trial turned out to be the best model as shown by the residual ACF and PACF plots 

(Figure 64) and prediction pattern (Figure 65).  

 

Figure 64 Residual ACF and Residual PACF plot of seasonal ARIMA Model (12,0,18) (12,0,24) 
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Figure 65 Seasonal ARIMA Model (12,0,18) (12,0,24) Prediction of Southern Hemisphere 

Monthly Sea Ice Extent from January 2018 to December 2050 

The observed vs. predicted northern hemisphere monthly sea ice extent from 1979 to 

2017 using the ARIMA model (12,0,18) (12,0,24) are shown in Figure 66 with a high correlation 

0.995 R-value. 

 

Figure 66 Observed vs. Predicted plot of Southern Hemisphere Monthly Sea Ice Extent using 

Seasonal ARIMA Model (12,0,18) (12,0,24) 
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Table 16 shows the verification for the year 2018 using seasonal ARIMA Models’ 

prediction.  

Table 16 Verification of Seasonal ARIMA Models using 2018 Measured Data 

Southern Hemisphere Sea Ice Extent (million square km), January 2018 to December 2018 

      R = 0.996 R = 0.995 

Cumulative 
Month No. 

Month Measured 
Predicted Seasonal 
ARIMA (12,0,18) 

(12,0,24) 

Predicted Seasonal 
ARIMA (8,0,18) 

(8,0,24) 

469 Jan-18 4.13 4.04 4.10 
470 Feb-18 2.29 1.94 2.19 
471 Mar-18 3.53 2.76 3.32 
472 Apr-18 6.01 5.8 6.27 
473 May-18 9.29 9.23 9.92 
474 Jun-18 12.89 12.54 13.07 
475 Jul-18 15.7 15.32 15.50 
476 Aug-18 17.34 17.57 17.44 
477 Sep-18 17.88 18.46 18.58 
478 Oct-18 17.66 17.85 18.32 
479 Nov-18 15.01 14.91 15.95 
480 Dec-18 9.03 9.82 10.99 

January - 
December 2018 

n 12 12 12 

  Mean 10.9 10.9 11.3 
  SD 5.9 6.1 6.1 
  COV (%) 54.2% 56.4% 53.9% 

  Mean Difference (%) -0.4% 3.7% 

  RMSE 0.42 0.72 
  MARE (%) 5.30% 5.08% 

The following results are summarized for the better model (12,0,18) (12,0,24) for 2018 

verification: 

 the % mean difference in sea ice extent: 0.4% 

 RMSE: 0.42 

 MARE: 5.30% 
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Figure 67 and Figure 68 show seasonal ARIMA Model (12,0,18) (12,0,24) and (8,0,18) 

(8,0,24) prediction for 2018, respectively. Based on the mean difference, RMSE, MARE, and 

future prediction pattern, the better model is (12,0,18) (12,0,24). 

 

Figure 67 Observed and Seasonal ARIMA Model (12,0,18) (12,0,24) Prediction from January 

2018 to December 2018 

 

Figure 68 Observed and Seasonal ARIMA Model (8,0,18) (8,0,24) Prediction from January 2018 

to December 2018 
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Table 17 shows the verification for the year 2019 using seasonal ARIMA Models’ 

prediction.  

Table 17 Verification of Seasonal ARIMA Models using 2019 Measured Data 

Southern Hemisphere Sea Ice Extent (million square km), January 2019 to December 2019 

      R = 0.996 R = 0.995 

Cumulative 
Month No. 

Month Measured 
Predicted Seasonal 
ARIMA (12,0,18) 

(12,0,24) 

Predicted Seasonal 
ARIMA (8,0,18) 

(8,0,24) 
481 Jan-19 3.83 4.63 5.68 
482 Feb-19 2.66 2.42 3.12 
483 Mar-19 3.16 3.42 4.38 
484 Apr-19 5.71 6.74 7.62 
485 May-19 8.84 9.92 10.83 
486 Jun-19 12.22 12.92 13.9 
487 Jul-19 15.27 15.66 16.36 
488 Aug-19 17.48 17.9 18.0 
489 Sep-19 18.24 18.7 18.9 
490 Oct-19 17.85 17.8 18.3 
491 Nov-19 14.89 14.9 15.8 
492 Dec-19 9.3 9.5 10.3 

January - 
December 2019 

n 12 12 12 

  Mean 10.8 11.2 11.9 
  SD 6.0 5.9 5.7 
  COV (%) 55.5% 52.9% 48.0% 

  Mean Difference (%) 3.87% 10.54% 

  RMSE 0.58 1.27 
  MARE (%) 6.98% 17.20% 

The following results are summarized for the better model (12,0,18) (12,0,24) for 2019 

verification: 

 the % mean difference in sea ice extent: 3.57% 

 RMSE: 0.58 

 MARE: 6.98% 
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Figure 69 and Figure 70 show seasonal ARIMA Model (12,0,18) (12,0,24) and (8,0,18) 

(8,0,24) prediction for 2019, respectively. Based on the mean difference, RMSE, MARE, and 

future prediction pattern, the better model is (12,0,18) (12,0,24). 

 

Figure 69 Observed and Seasonal ARIMA Model (12,0,18) (12,0,24) Prediction from January 

2019 to December 2019 

 

Figure 70 Observed and Seasonal ARIMA Model (8,0,18) (8,0,24) Prediction from January 2019 

to December 2019 
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Based on the observed vs. predicted results from 1979 to 2017 (Figure 66), the future 

prediction from 2018 to 2050, the verification results of the year 2018 and 2019, the seasonal 

ARIMA model (12,0,18) (12,0,24) was chosen as the best model.  Equation 6 shows the terms of 

seasonal ARIMA (12,0,18) (12,0,24) model.   

𝑌  =  𝐶 +  (1 –  𝜙 𝐵 − 𝜙 𝐵 − ⋯ … … − 𝜙 𝐵 )

∗ (1 –  Φ 𝐵 − Φ 𝐵 − ⋯ … … − Φ 𝐵 )

∗ (1 – 𝜃 𝐵  – 𝜃 𝐵 − ⋯ … … – 𝜃 𝐵 )

∗ (1 – 𝜃 𝐵  – 𝜃 𝐵 − ⋯ … … – 𝜃 𝐵 )

∗ 𝑎                                                                                               𝐸𝑞. 6        

 𝑌  = Discrete time series 

C = Constant      

1 –  𝜙 𝐵 − 𝜙 𝐵 − ⋯ … … − 𝜙 𝐵  = Regular Autoregressive process of order 12 

(1 –  Φ 𝐵 − Φ 𝐵 − ⋯ … … − Φ 𝐵 )= Seasonal Autoregressive process of order 12 

1 – 𝜃 𝐵  – 𝜃 𝐵 − ⋯ … … – 𝜃 𝐵  = Regular Moving Average process of order 18 

1 – 𝜃 𝐵  – 𝜃 𝐵 − ⋯ … … – 𝜃 𝐵  = Seasonal Moving Average process of order 24 

at = random shock term; normally distributed, independent with zero mean, and variance equal to 

σa    

As discussed above, the best model found for Northern hemisphere sea ice extent and 

southern hemisphere sea ice extent is the seasonal ARIMA model (1,0,18) (1,0,24) and (12,0,18) 

(12,0,24), respectively. The future predictions of these models were used to calculate the net 

change in global sea ice extent in 2050. The model prediction shows that the total loss of 
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northern hemisphere sea ice extent in 2050 will be 1.66 million km2. But the total gain of 

southern hemisphere sea ice extent will be 1.24 million km2. The net change of global sea ice 

extent will be -0.24 million km2, which indicates a loss of sea ice. The calculation process is 

given below:  

2050 predicted average annual Northern hemisphere sea ice extent = 8.74 million km² 

2018 average annual Northern hemisphere sea ice extent = 10.4 million km² 

2050 vs. 2018 change = (8.74-10.4) = -1.66 million km² 

2050 vs. 2018 percent change = ((8.74-10.4)/10.4)*100 = -16% 

2050 predicted average annual Southern hemisphere sea ice extent = 12.14 million km²\ 

2018 average annual Southern hemisphere sea ice extent = 10.9 million km² 

2050 vs. 2018 change = (12.14-10.9) = 1.24 million km² 

2050 vs. 2018 percent change = ((12.14-10.9)/10.9)*100 = 11.4% 

Total 2017 for global sea ice extent = 10.42+10.7 = 21.12 million km² 

Total 2050 for global sea ice extent = 8.74+12.14 = 20.88 million km² 

Net Change 2050 vs 2017 = 20.88-21.12 = -0.24 million km²  

2.7 Implementation of Models for Climate Attributes  

The model predictions of the climate attributes can be used to understand and assess the 

future climate change in different climate zones worldwide. The predicted ENSO episodes can 

contribute to better predict long-term weather and climate changes. This understanding of 

climate changes and future predictions of climate attributes will help to develop climate 
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adaptation strategies and better prepare the communities for extreme weather-related natural 

disaster occurrences.  

2.8 Concluding Remarks         

Several climate attribute models were developed in this chapter. The key concluding 

remarks for these models are discussed below:  

 The best model found for SST is the seasonal ARIMA model (24,0,0) (24,0,36). The model 

successfully predicted the 2018-2019 El Niño year. The model prediction shows that the next 

El Niño years will be 2021-22 and 2025-26. The model prediction also shows that the next 

La Niña year will be 2028-29. 

 The best model found for GMSL is the seasonal ARIMA model (12,0,0) (12,0,24). The 

predicted annual rate of change in GMSL is 0.6 mm/year from 2013 to 2050. This contradicts 

the prediction from IPCC, which is between 1.0 and 2.0 mm a year [42]. But a higher annual 

rate of change (1.4 mm/year) is predicted from 2031 to 2050. 

 The best model found for northern hemisphere sea ice extent and southern hemisphere sea ice 

extent is the seasonal ARIMA model (1,0,18) (1,0,24) and (12,0,18) (12,0,24), respectively. 

The model prediction shows that the total loss of northern hemisphere sea ice extent in 2050 

will be 1.66 million km2. But the total gain of southern hemisphere sea ice extent will be 1.24 

million km2. The net change of global sea ice extent will be -0.24 million km2, which 

indicates a loss of sea ice. 
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CHAPTER III: ARTIFICIAL NEURAL NETWORKS (ANNS) 

3.1 Overview of ANN 

3.1.1 Definition 

Artificial Neural Network, ANN, is an information processing computational tool during 

which highly interconnected processing neurons work together to investigate and solve a 

complex problem in a nontraditional manner [41]. The unique power of ANNs, which emulate 

the biological nervous system, lies in the tremendous number of interconnections between their 

neurons or processing elements because they provide significant advantages by learning from 

examples, producing meaningful and cost-effective solutions to numerous problems, neglecting 

the minor errors such as a small difference between the predicted and measured value [41]. 

ANNs adapt themselves to changing circumstances and process information quickly to come up 

with desired outputs [41]. ANNs store data among the individual neurons of the network and 

process data in a parallel and distributed manner.  

The following explanation of the ANN modeling method is discussed by Hossain et al. 

[42]:   

 ANN consists of three building blocks (1) input neurons or processing elements, representing 

the input for the problem, (2) connecting links known as axons, which connect input and 

output neurons and represent the connection weights that associate the 
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      input with the output, and (3) output neurons, or processing elements representing the output 

for the problem.  

 ANNs can be composed of a single layer or many layers, depending on the complexity of the 

data.  

 Multilayered neural networks have more than one hidden layer consisting of neurons with no 

direct connection to either the input or the output of the network, preferably they are used to 

further refine the training process by adjusting the connecting weights for the networks. 

These connection weights are applied to the links connecting the input to the output.  

 Overall, ANNs are a proven alternative to conventional function approximation methods, 

which are very often limited by strict assumptions of normality, linearity, and variable 

independence.  

 The power of ANNs to capture different relationships allows users to quickly and 

comparatively easily develop the specified model.  

 ANNs offer some advantages. They require less formal statistical training, they can implicitly 

detect complex nonlinear relationships between dependent and independent variables, they 

can detect all possible interactions between predictor variables, and there are multiple 

training algorithms available. 

3.1.2 Elements 

The architecture of a typical ANN consists of some hidden nodes that are usually 

arranged in layers such as an input layer, hidden layers, and an output layer [10]. Figure 71 

shows a typical ANN model structure. These layers are described as follows:  
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 Input Layer: This layer consists of independent variables used in the model.  

 Hidden Layer: This layer consists of hidden nodes. The hidden layer can be one or more and 

each hidden layer can contain a different number of hidden nodes.  

 Output Layer: This layer consists of the dependent variable used in the model. 

 

Figure 71 Typical ANN Model Structure 

3.2 Feed-Forward Network and Error Backpropagation Learning Algorithm 

 There are several layers and a specific number of neurons in a neural network with a 

backpropagation algorithm. The inputs directly affect the output phenomenon. The output 

neuron(s) which signifies the solution of the phenomenon is contained by the output layer. The 

hidden layer is in between the input and output layers. It is designed to not have contact with the 

outside environment. Numerous studies have discovered only one hidden layer can approximate 

any function with finitely many discontinuities to arbitrary precision [43]. But the activation 

functions of that hidden layer must be non-linear. 
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A sigmoidal function is employed to adjust the connection weights by determining the 

error. It is the most widely used function to calculate the output of the neuron at the hidden and 

output layers. The connection weights are not known in the beginning. Thus, the connection 

weights linked to the input values are assigned randomly. The output value using these initial 

connection weights may not be close to the target value. The output value is compared to the 

actual value and error is calculated. This error is propagated backward through the network and 

the initial connection weights are adjusted. These adjusted weights are used to calculate the new 

output and then the comparison of new output with actual value is done again. Then, the new 

error is determined and the connection weights are adjusted similarly. All training datasets are 

continuously subjected to the forward activation of signals and the backpropagation of errors. 

This is continued until the error is reduced to a predetermined minimum or an allowed tolerance 

[44, 45]. Connection weights that produce an error within the allowable range are considered to 

be the final connection weights and are stored to represent the network.  

3.3 Learning Algorithm  

3.3.1 Nodal Input Values 

All the nodes are connected: the nodes in the input layer are connected to all of the nodes 

in the hidden layer and the nodes in the hidden layer are all connected to the nodes in the output 

layer (Figure 71). In each node, the node values are multiplied by their corresponding connection 

weights and added up to calculate the sum of weights. This is the new input value for the next 

node. The bias is an additional set of weights. The sum of weights along with bias is used to It 

adjusts the output. This is the new input value for the next node. 
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For example, for an arbitrary node “A” at a hidden layer, the node value is the sum of the 

value of the weights from the input layer. The following equation expresses the input value for a 

node “A” [43]: 

 𝑁𝑜𝑑𝑒 = ∑ [(𝐼𝑛𝑝𝑢𝑡 𝑁𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒) × (𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡) ] + 𝑏𝑖𝑎𝑠                  𝐸𝑞𝑛. 7  

3.3.2 Activation Function: Sigmoidal Function 

Several active functions can be used in neural networks like Identity function, Binary step 

function, Logistic sigmoidal function, and Bipolar sigmoidal function. For specific applications, 

specific functions can be used as these functions have different ranges, and each one has its 

properties. The activation function must be continuous, differentiable, and monotonically non-

decreasing to be used in the backpropagation neural network [46].  

Feed forwarded information at the nodes in the hidden and output layer(s) must pass 

through this activation function, which is to introduce nonlinearity into the model. The node’s 

input is subjected to the nonlinear transformation in all the nodes at the hidden and output layers, 

which can be simplified with the following equation for the node “A” [43]: 

𝑂𝑢𝑡 = 𝑓(𝑁𝑒𝑡 )                                                                                                                                   𝐸𝑞𝑛. 8  

Where f is the activation function and (input)A is the input for node A, which is computed 

using equation  9.  

In this study, the sigmoidal function was used as the activation function. The sigmoidal 

function is one of the most common activation functions and is the most widely used in 

backpropagation networks. The final output signal is positive and has a specified interval 
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between 0 and 1. Figure 72 shows the sigmoidal activation function. The sigmoidal function is 

expressed as 

𝑦(𝑥) =
 1

1 + 𝑒
                                                                                                                                      𝐸𝑞𝑛. 9 

 

Figure 72 Sigmoid Activation Function 

3.3.3 Weight Adjustment 

The result from the output node (i.e., the predicted value) is compared with the actual 

value/targeted value. The error calculated from these two values is used to adjust the connection 

weights. There are different methods of propagating this error (i.e., Error Back-Propagation) to 

adjust the connection weights, such as; Perceptron’s, Gradient Descent, Levenberg-Marquardt, 

and many others. Due to its simplicity, stability, and effectiveness, the most popular learning 

method is the Gradient Descent method [47].  

The Gradient Descent method propagates the error from the output layer to the previous 

layers utilizing the derivatives of the activation function. The weight adjustments are calculated 

using equations 10 and 11 [43]. 
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∆𝑤 = 𝑤
( )

− 𝑤
( )

                                                                                                          𝐸𝑞𝑛. 10  

According to Zupan and Gasteiger’s backpropagation neural network algorithm, 

incremental change,∆𝑤 , can be calculated using the Delta rule [48]: 

∆𝑤 = 𝑛𝛿 𝑂𝑢𝑡                                                                                                                         𝐸𝑞𝑛. 11  

Where new and old stand for the current and previous iterations; n is the learning rate that 

moderates the amount of data being updated. The weighted error of the connection ji is 

represented by the error function𝛿. The outcome from the ith neuron in the (L-1)th layer is 

represented by the 𝑂𝑢𝑡  term [43].   

3.3.4 Learning Process 

The entire learning process of a one output neural network is outlined in the following six 

steps [43]: 

(1) Input vectors are marked as X1, X2, X3, …, Xn, where n refers to the total number of 

variables 

(2) Propagate the input vectors, X1, X2, X3, …, Xn via the connection weights to compute the 

output vectors. 

(3) Itemize the initial weights and update connection weights on the output layer. 

(4) All weights on any hidden layers are updated. 

(5) Steps A through D are repeated for each training dataset. 

(6) Steps A through E are repeated until the predicted output meets the corresponding target 

output within a predetermined tolerance or the training iterations reach the maximum limit 

[43, 49].  
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3.4 Number of Hidden Nodes 

The number of initial hidden nodes and the maximum allowed hidden nodes in ANN 

model development are specified by the user. The user specifies an initial hidden node and the 

ANN progresses to the maximum allowed number of hidden nodes. The formula to compute the 

maximum number of hidden nodes (HN) is as follows: 

𝐻𝑁 ≤
(    ) (    )

(    ) (    )
                                      𝐸𝑞𝑛. 12  

An important note when choosing the maximum allowed hidden nodes, an overtraining 

situation can be caused by choosing too many hidden nodes. Yet, for a complex phenomenon, 

having too few hidden nodes may not allow the model to capture the phenomenon. Networks 

with one hidden layer were chosen for this study to utilize the generalization capability of neural 

network modeling [43].  

3.5 Model Selection Criteria 

The comparison among networks is done using three statistical accuracy measures. The 

three measures are the Coefficient of Determination (R2), the Mean Absolute Relative Error 

(MARE), and the Average Square Error (ASE). In order to completely evaluate each network, 

the training, testing, validation, and overall performance statistics should be considered. The 

statistical measures of the network producing the minimum values of ASE and MARE and the 

highest R2 indicate a level of agreement between predicted and actual output values.  The ASE 

value is computed by the equation [50]: 

𝐴𝑆𝐸 =  
∑ ∑

.
                                                                                                                   𝐸𝑞𝑛. 13     
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The MARE value is expressed by the following equation [50]: 

𝑀𝐴𝑅𝐸 =  

∑ ∑
𝑌 − 𝑌

𝑌

𝑁. 𝑛
                                                                                                       𝐸𝑞𝑛. 14 

Where, 𝑌  = Predicted output; 𝑌  = Actual output; N = number of dataset; and n = number of 

outputs. 

To prevent the ANN models from being biased towards a specific input, the values of all 

the inputs are normalized. The data were normalized using equations 15 and 16 for input 

variables and Equations 17 and 18 for output variables.  

= 0.8                                                                                                  Eqn. 15 

= 0.2                                                                                                  Eqn. 16  

= 0.9                                                                                                   Eqn. 17 

= 0.1                                                                                                   Eqn. 18 

Where, X =  value of each independent variable, Xmax  = Maximum X, Xmin = Minimum X 

Y =  value of dependent variable, Ymax  = Maximum Y, Ymin = Minimum Y 

ANNxmax = Maximum X value normalized with respect to the value on the right side of Equation   

ANNxmin = Minimum X value normalized with respect to the value on the right side of Equation   

ANNYmax = Maximum Y value normalized with respect to the value on the right side of Equation   

ANNYmin = Minimum Y value normalized with respect to the value on the right side of Equation   
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3.6 Summary of ANN Model Development  

The development of the ANN model includes five sequential stages. The ANN 

architecture is determined based on parameter characteristics and ANN knowledge in the first 

stage. In this step, the datasets are divided into three different sub-datasets: training, testing, and 

validation. In Yaserer’s study, the network was trained and tested, in the second stage using the 

optimum number of hidden nodes and iteration, attained from the first stage [51]. The best 

performing networks are determined in this stage based on the lowest ASE, lowest MARE, and 

highest R2 values. The best performing network obtained from the second stage was validated 

using validation sub-datasets in the third stage. The best performing networks attained from the 

second stage were retrained using all the data, in the fourth stage [51]. Normally, retraining the 

network with all experimental data is expected to provide reliable predictions and overall better 

accuracy measures. However, it has been shown through several research studies [51-54] that 

stage four is recommended to arrive at a better performing network model. Stage five involves 

selecting the best network based on the statistical accuracy measures, which are ASE, MARE, 

and R2. It should be noted that the best performing models to predict multiple output phenomena 

are selected based on the “average” statistical values as oppose to individual output statistics. 

The modeling sequence explained in this section was employed to develop all the models in this 

doctoral dissertation [43]. In this research, the development of ANN models was carried out 

using the ANN TRSEQ1 computer program [53].  
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CHAPTER IV: DEVELOPMENT OF PERFORMANCE MODELS FOR 

JOINTED PLAIN CONCRETE HIGHWAY PAVEMENTS 

4.1 Background 

The LTPP program was established to monitor and collect pavement performance data 

during 1987-1991 under the Strategic Highway Research Program (SHRP) of the National 

Academy of Science [55]. Since 1992, the Federal Highway Administration (FHWA) has 

continued the management and funding of the program [56]. The LTPP program has two vital 

classes of studies and several other smaller studies to investigate specific pavement-related 

details that are critical to pavement performance. The vital classes of study are the General 

Pavement Study (GPS) and the Specific Pavement Studies (SPS).  The combined GPS and SPS 

programs involve over 2,500 test sections located on in-service highways throughout the United 

States and Canada. The LTPP program monitors and collects pavement performance data on all 

active sites. The collected data include information in seven modules: Inventory, Maintenance, 

Monitoring (Deflection, Distress, and Profile), Rehabilitation, Materials Testing, Traffic, and 

Climatic. 

The LTPP data is collected at different spatial locations that exhibit values that are 

different across the LTPP regions. The following LTPP climate zone classification map (Figure 

73) was created during the initial recruitment phases of the LTPP test sections [15, 57], which 
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indicates spatial and temporal variability that applied to the collected pavement attributes. Four 

different climates zones were identified, namely wet-freeze, wet-non-freeze, dry-freeze, and dry-

non-freeze zones. In certain areas, the regional contractors altered this map to state boundaries to 

ease data collection processes.  

 

Figure 73 LTPP Climate Zones [15] 

Pavement smoothness is one of the foremost important measures of pavement 

performance. Within the MEPDG study of NCHRP 1–37 A [15], pavement smoothness is 

defined by the IRI. The IRI statistic is generally used as an internationally recognized pavement 

conditioning rating system. The IRI is calculated from the measured longitudinal profile of a 

pavement. It mathematically represents the reaction of a single tire on a vehicle suspension to 
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roughness in the pavement surface traveling at 50 mph. The measurement is expressed in a single 

number with a unit of in/mile or m/km. A higher IRI number indicates a rough pavement profile 

and, a lower number indicates a smooth pavement profile [58]. The pavement profile is measured 

using high-speed vans equipped with lasers, accelerometers, and computers to measure IRI. The 

highly equipped vans can measure the surface profiles at traffic speeds. The onboard 

accelerometer gives the necessary data to the computer to calculate changes in the vertical 

position of the vehicle body as the vehicle moves along the pavement, and the laser measures the 

distance between the vehicle body and the roadway surface. Collected data is stored in the 

computer at regular intervals. The IRI value increases due to a decrease in pavement smoothness 

caused by distresses, which are triggered by climatic and traffic attributes. Generally, an IRI 

rating less than 2.68 m/km is acceptable, and a rating above 2.68 m/km is considered 

unacceptable and very poor conditioning rating [10]. 

In the MEPDG study of NCHRP 1–37 A [15], the IRI measurement of longitudinal 

roughness was adopted to indicate pavement smoothness for the following reasons: 

 It is time stable and can be reproduced easily from longitudinal profile elevation data since it 

is just a computed statistic of the road profile. 

 It gives consistently high correlations with the outputs of other roughness measuring devices 

at different speeds. 

 It has been shown to correlate well with the user serviceability rating, such as PSR.  
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Jointed plain concrete pavements (JPCP) contain several joints to control the location of 

the expected natural cracks. The cracking occurs at joints and not elsewhere in the slabs. JPCP 

does not contain any steel reinforcement unlike reinforced concrete pavement (JRCP, CRCP). 

However, there may be load transfer devices (e.g., dowel bars) at transverse joints and deformed 

steel bars (e.g., tiebars) at longitudinal joints. The spacing between transverse joints is typically 

about 15 feet for slabs 7-12 inches thick. Figure 74 shows the top-view and cross-section view of 

a JPC pavement [59].  

 

Figure 74 Cross-section and Top-view of Jointed Plain Concrete Pavement [59] 

4.2 Methodology 

The prediction of IRI value is important to estimate condition deterioration and timely 

maintenance and/or major rehabilitation actions, as well as associated budget. Pavement 

performance (condition attributes of IRI and distresses) can be predicted using computational 

models. Mechanistic-Empirical pavement performance models can evaluate the deterioration 
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process of pavement conditions, identify the major load and environmental attributes that affect 

the service life, provide forecasts over time, and play an essential role in the pavement asset 

management system. Figure 75 shows the pavement performance modeling methodology using 

the LTPP database. 

 

Figure 75 Pavement Performance Modeling Methodology Flow Chart using the LTPP Database 
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The model development process is, as follows: 

(1) Conduct a literature review of past research studies to identify independent and categorical 

variables that influence pavement performance. 

(2) Assemble databases for JPCP model development from the LTPP database, which must 

include the variables identified in step (1). 

(3) Evaluate the quality of databases and identify missing/erroneous data items. 

(4) Develop procedures for estimating important missing data in the time series.  

(5) Develop pavement performance models using ANN and multiple linear regression modeling 

techniques.  

(6) Select the appropriate IRI model form (should be capable of estimating the increase of IRI 

value with time and decrease of IRI value after maintenance and rehabilitation). 

(7) Evaluate accuracy and verification of developed performance prediction models for JPCP. 

(8) Perform sensitivity analysis for developed performance models. 

(9) Implement selected performance models. 

4.3 Literature Review of IRI Prediction Models 

Oh et al. [60] analyzed the long-term performance of JPCP in line with changes in 

standard mix design using evaluation of concrete properties based on Korea HPMS (highway 

pavement management system) and Korea LTPP data accumulated for over 15 years. The study 

found that the concrete pavements built in the 2010s by the specification of a durability-based 

mix design adopted in 2010 performed better with much fewer surface distresses than the 
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concrete pavements built before 2010 using the specification of classical strength-based mix 

design.  

Zhizhong and Zhongyin [61] developed an IRI prediction model by using the Markov 

approach. The data employed in this study is based on the field IRI dates obtained from test 

sections TXLF210016 locate on Highway 281 in the US from 1997-2005. This study used a 

combined approach by empirical regression and Markov to predict the IRI data from 2005 to 

2011.  

Wang and Li [62] developed a pavement smoothness prediction model employing a Gray 

Theory-based technique. In this study, rather than using the conventional least square method to 

determine the coefficients for Gray Models (GM), the fuzzy regression method is proposed to 

solve this gray problem. With pavement, IRI and distresses data exported from the LTPP 

database, Fuzzy and Gray Model (FGM)-based smoothness predictions are established using 

influencing factors like those in MEPDG. Based on the comparisons among results originated 

from MEPDG models, conventional GM models, FGM models, and actual LTPP data, the study 

found that the FGM method is promising for performance modeling.  

Naguib et al. [63] developed a regression model for IRI prediction for JPCP using the 

data from the LTPP Project. A total of 327 data points from 81 pavement sections distributed all 

over the U.S. were used for model development. The model predicts IRI as a function of 

pavement age, initial IRI, faulting, number of spalled joints, number of transverse cracks, 

precipitation, and freezing index. The goodness of fit statistics of the model shows excellent 

improvement over the model implemented within the MEPDG. The model has a high coefficient 
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of determination (R2) of 0.80. In addition, the bias in the predicted values of IRI was 

significantly lower compared to the MEPDG regression model. 

Rahman et al. [64] developed pavement performance evaluation models using data from 

primary and interstate highway systems in the state of South Carolina, USA. Historical pavement 

performance data were collected from 25 pavements across the state. A total of 8 models were 

developed based on regression techniques, which include 4 for Asphalt Concrete (AC) 

pavements and 4 JPCP and 4 Asphalt Concrete (AC) models were developed using regression 

technique. The input variables were Annual Average Daily Traffic (AADT), Free Flow Speed 

(FFS), precipitation, temperature, and soil type (soil Type A from Blue Ridge and Piedmont 

Region, and soil Type B from Coastal Plain and Sediment Region) and the output variables were 

Present Serviceability Index (PSI), Pavement Distress Index (PDI), Pavement Quality Index 

(PQI), and International Roughness Index (IRI). The results showed that AADT, FFS, and 

precipitation have statistically significant effects on PSI and IRI for both JPCP and AC 

pavements.  

4.4 Related Studies on ANN-Based IRI Prediction Models 

Relatively few studies have been conducted in recent years to predict the roughness of 

asphalt and concrete pavements, and selected studies are reviewed in the following paragraphs.  

Attoh-Okine [65] developed an IRI prediction model of asphalt pavements by using data 

from the LTPP database. The study used a backpropagation neural network algorithm and aimed 

toward developing a roughness prediction model and applying sensitivity analysis to spot the 

relative significance of material and construction variables on the roughness. The independent 
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variables were the asphalt content, asphalt layer thickness, cumulative equivalent single axle 

load, structural number (SN), and also the percentage of fines passing through the No. 200 sieve. 

The IRI was the output variable. The study revealed that the predicted neural network model was 

a useful alternative required for performance-related specifications such as measuring IRI for a 

newly constructed pavement.  

Lin et al. [66] studied the relationship between asphalt pavement distresses and IRI based 

on ANNs. The ANN architecture used included fourteen independent variables, two hidden 

layers with six hidden nodes, and one output (14-6-6-1 ANN model). The independent variables 

were stripping, alligator cracking, cracking, rutting on the left wheel path, rutting on the right 

wheel path, road level, corrugation, potholes (mild and severe), road level, manholes (mild and 

severe), bleeding, and patching. The output variable was IRI. The study conducted a sensitivity 

analysis that found rutting, potholes, and patching were the most relevant independent variables.  

Mazari and Rodriguez [67] conducted a study that found correlations between IRI with 

pavement age, equivalent single axle load (ESAL), and SN employing a hybrid gene expression 

programming ANN model (GEP-ANN). The GEP-ANN structure included one hidden layer with 

twenty hidden nodes and one output (4-20-1 ANN model). The data was collected from eight 

U.S. states and two Canadian provinces using the LTPP databases of asphalt pavement. The 

study found that GEP-ANN provides a better IRI prediction model than a GEP-only prediction 

model. 

Ziari et al. [68] developed a model predicting IRI using pavement structure, traffic, and 

climate data collected from the LTPP database and using ANN and group method of data 
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handling (GMDH) techniques. The used input variables in this study were surface, base, and sub-

base thickness, ESAL, annual average daily traffic (AADT), annual average daily truck traffic 

(AADTT), annual average precipitation (AAP), annual average temperature (AAT), annual 

average freezing index (AAFI), and pavement age. The study modeled IRI for both flexible and 

rigid highway pavements employing a large 9-100-50-30-1 ANN model in addition to other 

ANN models. The study used the ANN model for both short- and long-term IRI predictions. 

Georgiou et al. [69] developed a model for the prediction of pavement roughness in terms 

of the IRI using ANNs and support vector machines (SVMs). The modeling is based on 

pavement roughness data collected periodically for a high-volume motorway during a seven-year 

period, on a yearly basis. The comparative study of the developed models concludes that the 

performance of the ANN model is slightly better compared to the SVM in terms of prediction 

accuracy.  

Hossain et al. [42] developed a prediction model for IRI for flexible pavements using 

climate and traffic data by employing ANN modeling. The climate and traffic data were 

collected from the LTPP database. The ANN model was trained using 50% of climate, traffic, 

and IRI data, and the other 50% of data was employed to validate the model by comparing ANN 

predicted IRI and measured IRI for flexible pavement under a climatic zone. The trained model 

and the validated model were compared by calculating the RMSE of ANN predicted IRI and 

measured IRI. The study developed a model for a flexible pavement located at the wet-freeze 

climatic zone, employing a 7-7-1 ANN structure and using the Pure Linear transfer function, the 
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RMSE generated was 0.055. A better prediction ANN model was generated using 7-9-9-1 

architecture using a nonlinear transfer function and the RMSE further improved to 0.012. 

Hossain et al. [70] developed a prediction model for IRI for rigid pavement using climate 

and traffic data by employing Artificial Neural Network (ANN) modeling. The climate and 

traffic data were collected from the LTPP database. The ANN model was trained using 70% of 

climate, traffic, and IRI data, 15% of data was used to test the model, and the other 15% of the 

data was employed to validate the model. The trained model and the validated model were 

compared by calculating the Root Mean Square Error (RMSE) and Mean Absolute Percentage 

Error (MAPE) of ANN predicted IRI and measured IRI. The study developed a model for rigid 

pavement located at the wet no-freeze climatic zone, employing 7-9-9-1 ANN structure and 

using hyperbolic tangent sigmoidal transfer function, the RMSE value and MAPE value 

generated was 0.01 and 0.01 (1% error), respectively. 

Mohamed Jaafar [19] developed mechanistic-empirical models for predicting IRI, rutting, 

and cracking for asphalt pavements using pavement structural, traffic, and climate data extracted 

from the LTPP database. The models were developed using ANN and multiple linear regression 

techniques. The ANN architecture for IRI modeling used included seven independent variables, 

one hidden layer with five hidden nodes, and one output (7-5-1 ANN model). The independent 

variables used for IRI modeling were initial IRI, pavement age, SN, CESAL, air temperature, 

precipitation, and CN (an indicator of major maintenance and/or rehabilitation). The ANN model 

had a high coefficient of correlation (R) of 0.72. The model implemented in MEPDG had a 

coefficient correlation of 0.75, but the MEPDG model does not consider pavement M&R history 
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as an independent variable, which was included in this study. This study also developed a 

multiple linear regression model, and this model includes Region as an independent variable with 

other variables that were used in the ANN model. The multiple regression model had a 

correlation coefficient of 0.63. The model verification showed a -22.6% difference in the means 

of measured and predicted IRI values. The ANN model verification showed a -25.3% difference 

in the means of measured and predicted IRI values. It is evident from the study that the ANN 

model and the multiple regression model of IRI are reasonably accurate for predicting future IRI 

values within the LTPP database used. This study [19] of mechanistic-empirical pavement 

performance models of asphalt pavement is the first and only study that embedded M&R 

intervention compared to the above literature review. Table 18 shows the summary of IRI 

prediction models for concrete pavement using the LTPP data employing ANN and multiple 

regression modeling techniques.  

Table 18 Summary of IRI Prediction Models using LTPP Data for Concrete Pavement 

Reference Model Structure Goodness of fit 
Data 

Points 

[13] 

𝐼𝑅𝐼 = 99.59 + 2.6098 × 𝐹𝑎𝑢𝑙𝑇𝑇
+ 2.2802 ∗ 𝑇 − 𝐶𝑟𝑎𝑐𝑘
+ 1.8407 × 𝑆𝑝𝑎𝑙𝑙 

R2 = 0.61 
Not 

Known 

[14] 𝐼𝑅𝐼 = 1.471 + 0.2794 × 𝐹 R2 = 0.50 
Not 

Known 

NCHRP  
1-37 
[15] 

𝐼𝑅𝐼 = 𝐼𝑅𝐼1 + 0.013 × 𝑇𝐶
+ 0.007 × 𝑆𝑃𝐴𝐿𝐿
+ 0.005 × 𝑃𝐴𝑇𝐶𝐻
+ 0.0015 × 𝑇𝐹𝐴𝑈𝐿𝑇
+ 0.4 × 𝑆𝐹 

R2 = 0.60 188  
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Reference Model Structure Goodness of fit 
Data 

Points 

[16] 

𝐼𝑅𝐼 = 0.142 + 0.78 × 𝐼𝑅𝐼1 
+ 0.013 × 𝐴𝑔𝑒 + 0.000152 × 𝐹𝑎𝑢𝑙𝑡 + 

0.018 × 𝑇𝑐𝑟𝑎𝑐𝑘 + 0.014 × 𝑆𝑝𝑎𝑙𝑙
+ 0.000109 × 𝑝𝑟𝑒𝑐. 

+ 0.000072 × 𝐹𝐼 
R2 = 0.81 327  

[17] 
8 inputs of independent variables, 2 hidden 

layers (24 and 12 hidden nodes), and 1 
output (8-24-12-1) 

R2 = 0.83 188  

[18] 

7 inputs of independent variables, 1 hidden 
layer (10 hidden nodes), and 1 output (7-10-

1) 
R2 = 0.84 264  

Where, IRI = International Roughness Index, in/mile, FaulTT = total accumulated joint 

faulting, in/mile, T-crack = amount of transverse cracking, number of cracks per mile, Spall = 

percentage of joints spalled , F = Transverse joint Faulting, IRI1= initial smoothness measured as 

IRI, m/km, TC = percentage of slabs with transverse cracking (all severities), SPALL = 

percentage of joints with spalling (all severities), PATCH = pavement surface area with flexible 

and rigid patching (all severities), percent, TFAULT = total joint faulting cumulated per km, 

mm, SF = site factor = Age*(1+FI)*(1+P200)/1000000, Age = pavement age in years, FI = 

freezing index, ℃ days, P200 = percent subgrade material passing the 0.075-mm sieve, 

perc.=annual average precipitation in mm. 

The previous literature review indicates that the M&R history was not considered in the 

concrete pavement condition deterioration progression modeling. Recently, enhanced 

performance models for asphalt highway pavements were developed using M&R history [19].  

Therefore, this research will consider M&R history for developing performance models for 
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concrete pavements. The independent variables used in the previously developed models are 

mostly distress, age, and environmental data. However, for future prediction of IRI, these 

distresses need to be predicted as well. The performance models developed in this research will 

predict the IRI values using easily available variables that will help the local and state agencies 

to prepare M&R programs and budgets without estimating distresses in future years.  

4.5 Data Collection for Jointed Plain Concrete Pavement using LTPP Database 

The data were collected from the LTPP database of JPCP, which is GPS-3 [71]. A total of 

107 GPS-3 JPCP pavement sections are included in the LTPP that are located throughout the 

United States. The IRI measurements are from 1989 to 2018. A total of 7,982 measurements are 

for 107 sections. By averaging the IRI value from one run, a dataset was created which has 1,486 

data points. Figure 76 shows the spatial map of JPCP sections included in the LTPP database.  

 

Figure 76 Spatial Map of JPCP Sections in the USA 
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JPCP sections included in the LTPP database are located in four climatic regions. Table 

19 shows that 43% (46 of 107) sections are in the wet, freeze climatic region and 31.8% (34 of 

107) sections are in the wet, non-freeze climatic region. The IRI data points follow the same 

statistics, higher in wet, freeze (44.9%, 665 of 1,482) region than wet, non-freeze (25.4%, 376 of 

1,482) region. 

Table 19 Distribution of Pavement Sections and IRI Data Points in Different Climatic Region 

Climatic Region 
Number of 
Sections 

% of Sections 
Number of Data 

Points 
% of Data 

points 
Wet, Non-Freeze 34 31.8% 376 25.4% 
Dry, Non-Freeze 13 12.1% 210 14.2% 
Dry, Freeze 14 13.1% 231 15.6% 
Wet, Freeze 46 43.0% 665 44.9% 
Total 107 100% 1482 100% 

Table 20 shows the distribution of pavement sections and IRI data points by state. 

Wisconsin has the highest 13 pavement sections out of 107 and 12.1% (209 of 1,482) IRI data 

points. California has 8 sections and it contains the second highest IRI data points of 9.6% (143 

of 1,482).   

Table 20 Distribution of Pavement Sections and IRI Data Points by States 

State 
Code 

State Name Climate Zone 
Number 

of 
Sections 

% of 
Sections 

Number 
of Data 
points 

% of 
Data 

points 
1 Alabama Wet, Non-Freeze 1 0.9% 9 0.6% 
4 Arizona Dry, Non-Freeze, Dry, Freeze 2 1.9% 16 1.1% 

6 California 
Wet, Non-Freeze, Dry, Non-
Freeze, 

8 7.5% 143 9.6% 

8 Colorado Dry, Freeze, Wet, Freeze, 2 1.9% 36 2.4% 
12 Florida Wet, Non-Freeze 6 5.6% 69 4.7% 
13 Georgia Wet, Non-Freeze 7 6.5% 89 6.0% 

16 Idaho 
Wet, Non-Freeze, Dry, Non-
Freeze, Dry, Freeze 

2 1.9% 43 2.9% 

18 Indiana Wet, Freeze, Wet, Non-Freeze 2 1.9% 30 2.0% 
19 Iowa Wet, Freeze 3 2.8% 46 3.1% 
20 Kansas Wet, Freeze, Wet, Non-Freeze 2 1.9% 27 1.8% 



 

108 

 

State 
Code 

State Name Climate Zone 
Number 

of 
Sections 

% of 
Sections 

Number 
of Data 
points 

% of 
Data 

points 
21 Kentucky Wet, Freeze, Wet, Non-Freeze 1 0.9% 17 1.1% 
23 Maine Wet, Freeze 2 1.9% 28 1.9% 
26 Michigan Wet, Freeze 2 1.9% 17 1.1% 
27 Minnesota Wet, Freeze 7 6.5% 75 5.1% 
28 Mississippi Wet, Non-Freeze 2 1.9% 21 1.4% 
31 Nebraska Dry, Freeze, Wet, Freeze 4 3.7% 74 5.0% 
32 Nevada Dry, Non-Freeze, Dry, Freeze 3 2.8% 26 1.8% 
35 New Mexico Dry, Non-Freeze, Dry, Freeze 1 0.9% 12 0.8% 

37 
North 
Carolina 

Wet, Non-Freeze 4 3.7% 48 3.2% 

38 North Dakota Wet, Freeze 2 1.9% 26 1.8% 
40 Oklahoma Wet, Non-Freeze 4 3.7% 39 2.6% 
42 Pennsylvania Wet, Freeze, Wet, Non-Freeze 1 0.9% 23 1.6% 

45 
South 
Carolina 

Wet, Non-Freeze 1 0.9% 9 0.6% 

46 South Dakota Dry, Freeze, Wet, Freeze 7 6.5% 97 6.5% 

48 Texas 
Wet, Non-Freeze, Dry, Non-
Freeze 

3 2.8% 33 2.2% 

49 Utah 
Dry, Non-Freeze, Dry, Freeze, 
Wet, Freeze 

6 5.6% 89 6.0% 

53 
Washington 

Wet, Non-Freeze, Dry, Non-
Freeze, Dry, Freeze 

6 5.6% 105 7.1% 

55 Wisconsin Wet, Freeze 13 12.1% 209 14.1% 
56 Wyoming Dry, Freeze 1 0.9% 12 0.8% 
72 Puerto Rico Wet, Non-Freeze 2 1.9% 14 0.9% 

Total 107 Sections and 1482 Data Points 

4.6 Preliminary ANN Models 

The data used for the model are 590 data points from 43 JPCP sections from all over the 

United States. IRI measurements are measured left (inside) wheel path and right (outside) wheel 

path. The mean IRI is the average of IRI measurement in right (outside) and left (inside) wheel 

path. Figure 77 shows the mean IRI measurement of 43 sections of JPCP pavement.  
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Figure 77 Mean IRI Distribution over the Years 

4.6.1 Preliminary ANN Model Architecture 

In the preliminary research, using the selected JPCP section of the LTPP database, 

several models were tried with varying numbers of inputs and outputs variables. The first model 

had six inputs variables but CN was a categorical variable with two categories 0 for CN1 and 1 

for any other CN number. The region was also assigned as a categorical variable with four 

categories. Therefore, the first model had 10 input and 2 output variables (i.e. IRI for inside and 

outside wheel path). The second model had the same number of input variables but the output 

variable was mean IRI (MRI). The third model had 13 input variables (including 4 climatological 

variables) and one output variable (mean IRI). Table 21 shows the input variables used in this 

study for the ANN model. The independent variables used in the MEPDG model are related to 

distresses, which need to be measured or predicted for future years, to predict the IRI. On the 

other hand, the ANN model developed in this research used easily available input variables. 
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Table 21 Input and Output Variables Used in Preliminary ANN Models 

Input Variables Model 1 Model 2 Model 3 

IRI
0
 (Initial IRI 

m/km) 

Initial IRI Right 
Wheel Path, m/km Initial Mean IRI, 

m/km 
Initial Mean IRI, m/km 

Initial IRI Left 
Wheel Path, m/km 

Age (Pavement age, 
years) 

Age  Age  Age  

h (Concrete pavement 
thickness, in) 

h  h  h  

ESAL (Equivalent 
Single Axel Load) 

ESAL  ESAL  ESAL  

Climatic Region 
(Categorical variable 
for LTPP climatic 
region) 

Wet, Non-Freeze 
Dry, Non-Freeze 
Wet, Freeze 
Dry, Freeze 

Wet, Non-Freeze 
Dry, Non-Freeze 
Wet, Freeze 
Dry, Freeze 

Wet, Non-Freeze 
Dry, Non-Freeze 
Wet, Freeze 
Dry, Freeze 

CN (Construction 
Number, Categorical 
variable for M & R) 

No Intervention 0 
Any Intervention 1 

No Intervention 0 
Any Intervention 1 

No Intervention 0 
Any Intervention 1 

Climatological Inputs 
  

    Mean Annual Temperature (°C) 
Total Annual Precipitation (in) 
Freezing Index Year 
Freeze-Thaw (days) 

Output Variables 

  

IRI Right Wheel 
Path, m/km 
IRI Left Wheel Path, 
m/km 

Mean IRI, m/km Mean IRI, m/km 

4.6.2 Preliminary ANN Model Selection 

Three best performing networks from each model (Model 1, Model 2, and Model 3) were 

selected based on statistical measures such as minimum values of MARE, ASE, and maximum 

values of Coefficient of Determination (R2). A total of 590 datasets were used to build the 

desired database; 302, 144, and 144 subdatabases were used, respectively, for training, testing, 

and validation purposes. Datasets that include minimum and maximum values of each variable 
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were included in the training phase for the network to represent the characteristics of the 

response. The maximum and minimum ranges of each input/output variable for ANN model 

development were chosen on purpose to be wider than their actual ranges for better mathematical 

mapping [54]. The statistical measures of the best performing network for Model 1, Model 2, and 

Model 3 are shown in Table 22. With the lowest ASE value of 0.001766, the lowest MARE 

value of 10.437, and the highest R2 value of 0.87169 in all data stages, Model 2 was selected to 

be the best performing model.  

Table 22 Best Networks from Each Model 

Dataset 
Statistical Error 

Measures  
Model 1 Model 2 Model 3 

4-6-20000 6-9-20000 3-5-20000 

Training 
MARE 15.745 10.668 12.693 

R² 0.76194 0.85476 0.8527 
ASE 0.003375 0.002127 0.00217 

Testing 
MARE 13.934 13.096 13.516 

R² 0.65816 0.79938 0.7513 
ASE 0.004032 0.002644 0.003282 

Validation 
MARE 15.327 14.465 15.292 

R² 0.7403 0.7413 0.74104 
ASE 0.002882 0.003545 0.00403 

All Data 
MARE 12.98 10.437 11.822 

R² 0.80226 0.87169 0.85598 
ASE 0.002526 0.001766 0.001986 

Final Network Structure 10-6-2 9-9-1 13-5-1 

4.6.3 Preliminary ANN Model Results  

Model 2 was chosen as the best performing network based on statistical measures (ASE, 

MARE, and R2 value) of all data. This model will be discussed further to explain the 

considerations made to choose the best model. The comparison of the prediction accuracy 
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measures for ANN Model 2 is graphically presented in Figure 78. From Figure 78 it is evident 

that once observed IRI rises above 3.0, the model steadily underestimates the prediction output. 

 

Figure 78 Observed Mean IRI (m/km) vs. Predicted Mean IRI (m/km) 

4.6.4 Sensitivity Analysis for Preliminary ANN Models 

The 590 data points are assigned section sequence numbers from 1 to 590. Figure 79 

shows the observed and Model 2 predicted mean IRI values. From Figure 79, it is demonstrated 

that the predicted IRI has apprehended most of the variability in the IRI observed values.   

 

Figure 79 Observed and Predicted Mean IRI (m/km) plot 
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Figure 80 shows the observed and predicted IRI for Section 06-3017, in California. The 

predicted values follow the observed values closely. The difference in the mean values of 

observed and predicted is -3.1%. 

 

Figure 80 Observed and Predicted Mean IRI Plot of JPCP Section in California 

Randomly selected sections with different M&R types (CN1 and CN2) were used to 

generate IRI predictions for future years. For IRI predictions, the ESAL values were assumed 

with an annual growth rate of 1%. Figure 81 shows that the IRI prediction model follows the 

trend of the observed values. Additionally, it can estimate the increase of IRI values with time 

and decrease of IRI value after maintenance and rehabilitation. 

 

Figure 81 ANN Future Prediction Plot of Mean IRI for JPCP Section in California 
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4.6.5 Recommendations from Preliminary Study 

(1) In the preliminary study, ESAL was used as an independent variable. The cumulative ESAL 

(CESAL) should be used as an independent variable to incorporate the accumulated traffic 

load for better performance prediction. 

(2) The developed IRI prediction models in this study used 590 data points. All data points 

should be used to develop models for better characterization. 

(3) Further study on exploring M&R types and their classifications need to be done.  

4.7 Consideration of M&R Treatment in the Development of IRI Roughness Prediction Models  

The current literature review indicated that none of the equations developed from 

previous studies considered M&R history in the equations. Therefore, this research proposes the 

use of CN as a categorical variable in the IRI roughness prediction models. This approach was 

used in a recent asphalt highway pavement performance study at the University of Mississippi 

[19]. The CN categorical variable is one of the attributes available in the LTPP pavement 

monitoring database. In the LTPP study, a test section on the road network was assigned CN1 

when it was opened to the traffic. When the first M&R treatment was conducted, the 

construction number changed to CN2. The CN values increase as a result of more frequent M&R 

treatments. The CN factor indicates that a major M&R treatment was conducted on the pavement 

section. Generally, the M&R treatment intervention improves the pavement condition with 

respect to longitudinal roughness, cracking, rutting, and other surface defects for asphalt 

pavements. On the JPCP highway, the M&R treatment intervention improves the pavement 

condition with respect to longitudinal roughness, cracking, faulting, joint deterioration, and other 
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surface defects. In the data analysis to develop the condition prediction equation, it is imperative 

to consider the CN intervention factor for realistic modeling of pre- and post-M&R practice. The 

CN intervention factor is considered as a categorical variable with zero or one value. The zero 

value means no M&R, and a value of one for CN implies some M&R treatment has taken place. 

By using this dichotomous (dummy) variable in the regression analysis, the models are more 

realistic since the modeling approach considers the actual M&R treatment conducted in the field. 

This concept of using the CN in the regression models was not discussed in AASTHO’s MEPDG 

model development and implementation [72].  

4.8 Database Development for JPCP Final Performance Models 

4.8.1 Data Processing  

Output Variables 

International Roughness Index (IRI) is considered as the output variable in the pavement 

performance modeling process for this research. The IRI measurements are from 1989 to 2018. 

A total of 7,982 measurements are for 107 sections. Each section has two types of IRI 

measurements, IRI inside/left wheel path and IRI outside/right wheel path. A mean roughness 

index Mean IRI is calculated by averaging the IRI inside/left wheel path and IRI outside/right 

wheel path measurements. In each visit date, several IRI measurement runs were completed for 

each section. By averaging the IRI measurement runs, a single IRI measurement was obtained 

for IRI inside/left wheel path, IRI outside/right wheel path, and mean IRI for each visit date. By 

doing this, a dataset was created which has 1,486 data points for 107 JPCP sections. After further 

study of the IRI data collection, it was found that two pavement sections later became asphalt 
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overlaid concrete pavement and four data points were collected after the section became asphalt 

overlaid concrete pavement. These four data points were excluded from the dataset and the final 

dataset came to have 1,482 data points.  Figure 82 shows the IRI Measurements for Inside Wheel 

Path and Outside Wheel Path.  

 

Figure 82 IRI Measurements for Inside Wheel Path and Outside Wheel Path 

Hypothesis Testing Using T-Test for IRI Inside Wheel Path (IRI Left) and Outside Wheel 

Path (IRI Right) for Jointed Plain Concrete Pavements using LTPP Database 

Step by Step procedure  

Step 1: Set up the null hypothesis and alternative hypothesis. 

Null Hypothesis: H0: µ1 = µ2  

Where:  

µ1 = Mean of Population 1 for IRI inside wheel path 

µ2 = Mean of Population 2 for IRI outside wheel path 
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The population means of the two samples (IRI inside wheel path and IRI outside wheel path) are 

equal. This implies that both samples are from the same population. 

Alternative Hypothesis: HA: µ1 ≠ µ2 

The population means of the two samples (IRI inside wheel path and IRI outside wheel path) are 

not equal. This implies that both samples are from different populations. 

Step 2: Select α probability of Type 1 chance error for α level of statistical significance. 

α = 0.05  

α/2 = 0.025 (for two-tailed test) 

Figure 83 shows the two-tailed t-test probability distribution. 

 

Figure 83 Two-tailed t-test Probability Distribution Graph 

Step 3: Define test criteria and the decision rule for rejecting H0. 

Test criteria: t critical = 1.96 for degree of freedom (dof) = 2962 and α/2 = 0.025 

Decision Rule: Reject H0 if t-test statistics t test exceeds the absolute value of t critical (t test> t critical) 

and probability of significance value, p ≤ Probability of Type-1 chance error, α. 
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Step 4: Calculate t test statistics, t test, and p-significance value. 

t test = 3.30 

Probability of significance, p-value < 0.001 

Step 5: Interpret the results. 

t test (3.30) > t critical (1.96) and p (< 0.001) < α (0.05) 

Therefore, the t-test rejects the null hypothesis. The results show that the difference in the 

means of IRI inside wheel path and IRI outside wheel path is statistically significant at α 0.05 

probability of chance error. This implies that both samples (IRI inside wheel path and IRI outside 

wheel path) are from different populations. The results show that that the IRI outside wheel path 

is significantly higher than the IRI inside wheel path. Hence, this research developed pavement 

performance models using IRI (outside wheel path) (m/km) as the output variable across all 

concrete pavement types.   

Input Variables 

An input or independent variable is also known as a predictor variable is used to predict 

the output variable. Pavement deterioration is affected by several factors such as pavement 

structure, climate, traffic, and maintenance over the years. In this research, an extensive literature 

review was done to identify the key input variables that influence pavement performance. This 

research also identified the input variables that were used in previously developed pavement 

performance models. In addition to using these input variables, other easily available input 

variables were used to develop the pavement condition deterioration model. The input variables 

were collected from the LTPP database corresponded to the output variable (IRI outside wheel 
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path) measurement taken date (visit date). The relationship between each input variable and 

output variable (IRI outside wheel path) was studied by creating several plots.  

Initial IRI (Outside Wheel Path) (m/km):  

The initial IRI outside wheel path (m/km) represents the first IRI value measured in the 

outside wheel path for a specific pavement section of the LTPP database. The first measurement 

is usually done when the pavement was built and opened to traffic or the pavement was first 

included in the LTPP study. It indicates the road surface condition at the beginning of the 

analysis period. Initial IRI has a range of a minimum of 0.83 to a maximum of 4.53. Figure 84 

shows the plot of the initial IRI outside wheel path (m/km) against the IRI outside wheel path 

(m/km).  

 

Figure 84 Initial IRI vs. IRI Measurement (Outside Wheel Path) of JPCP Sections 
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Age: 

The variable age is calculated by subtracting the year when the section was opened to 

traffic from the year IRI measurement was collected. This variable represents the time pavement 

was expose to climate and traffic loads. Age is also a fundamental variable to be used as an input 

variable to predict pavement performance for future years. The mean pavement age 107 JPCP 

section is 19 years. But for some pavement sections, some IRI data were collected when the 

pavement age was as little as one year, and for some pavement sections that age was as high as 

46 years. Figure 85 shows the pavement age when IRI measurements were collected. 

 

Figure 85 Age vs. IRI Measurement (Outside Wheel Path) of JPCP Sections 

Concrete Pavement Thickness (in):  

Concrete pavement thickness represents the thickness of the concrete layer in a JPCP 

pavement section that is laid over the base/subbase layer. This layer is exposed to climate and 

endures the traffic loads throughout pavements life. Concrete layer thickness plays an important 

role in JPCP performance. The average concrete layer thickness is 9.5 in with a standard 
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deviation of 1.22 in. The maximum concrete layer thickness is 13.2 in and the minimum is 7 in. 

Figure 86 shows the concrete layer thickness of JPCP sections and IRI outside wheel path 

measurements.  

Base/Subbase Thickness (in):  

Base/subbase pavement thickness represents the thickness of the base/subbase layer in a 

JPCP pavement section that is laid over the subgrade layer. Some JPCP sections have both base 

and subbase layers, on the other hand, some JPCP sections have only a base layer underneath the 

concrete layer, over the subgrade layer. Traffic loads transfer from concrete layer to 

base/subbase layer and this layer is also affected by precipitation. Therefore, base/ subbase 

thickness is an important input variable for JPCP performance modeling. The average 

base/subbase thickness is 5.3 in. The maximum base/subbase thickness is 23.2 in. 

 

Figure 86 Concrete Pavement Thickness vs. IRI Measurement (Outside Wheel Path) of JPCP 

Sections 
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Average Contraction Spacing (m) 

The average contraction spacing represents the joint spacing in JPCP sections. This joint 

spacing controls the natural cracks in a pavement section. Therefore, it will be useful to use the 

average contraction spacing of joints as an input variable for JPCP performance modeling. The 

mean average contraction spacing is 4.94 m with a standard deviation of 0.99 m. The maximum 

average contraction spacing is 9.14 m and the minimum is 3.51 m. Figure 87 shows the average 

contraction spacing of JPCP sections and IRI outside wheel path measurements. 

 

Figure 87 Average Contraction Spacing vs. IRI Measurement (Outside Wheel Path) of JPCP 

Sections 

Cumulative ESAL:  

Cumulative ESAL (CESAL) is the sum of annual ESAL data over the years. ESAL 

represents a mixed stream of traffic of different axle loads and axle configurations predicted over 

the design or analysis period and then converted into an equivalent number of 18,000-lb. single 

axle loads summed over that period. ESAL represents the effects of traffic loads on the pavement 
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over time. In some years, the LTPP database did not have ESAL information corresponding to 

the IRI measurements data. Interpolation and extrapolation procedures were applied using known 

data points to compute ESAL for the missing years. Cumulative ESAL represents the cumulative 

traffic load that was endured by the pavement over pavements’ life. CESAL has one of the most 

important effects on pavement deterioration. Hence, it is vital to use in performance modeling. 

CESAL has a mean of 5,519,198 and a standard deviation of 7,631,630. Figure 88 shows the 

CESAL values corresponded to the IRI outside wheel path measurements for JPCP sections 

included in this study. 

 

Figure 88 Cumulative ESAL vs. IRI Measurement (Outside Wheel Path) of JPCP Sections 

Average Annual Temperature: 

Average annual temperature represents the average daily mean air temperatures for the 

year. The temperature data were collected corresponding to each IRI outside wheel path 
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measurement collection year (visit year). The temperature changes affect the material properties 

of pavements and contribute to the pavement deterioration process. Thus, this climatological 

variable is used in pavement performance modeling. The collected data has a mean of 12.25 °C 

and a standard deviation of 4.89 °C average annual temperature. The maximum temperature is 

26.6 °C and the minimum temperature is 2.5 °C. Figure 89 shows the average annual temperature 

and IRI outside wheel path measurements for JPCP sections. 

 

Figure 89 Average Annual Temperature vs. IRI Measurement (Outside Wheel Path) of JPCP 

Sections 

Total Annual Precipitation: 

Total annual precipitation represents the sum of monthly precipitation for the year. The 

precipitation data were collected corresponding to each IRI outside wheel path measurement 

collection year (visit year). The amount of precipitation affects the material properties of 
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pavements’ base/ subbase and subgrade layer hence, also has effects on the pavement 

deterioration process. Thus, this climatological variable is used in pavement performance 

modeling. The collected data has a mean of 793.16 mm with a standard deviation of 423.85 mm 

total annual precipitation. The maximum total annual precipitation is 2,235 mm and the 

minimum is 59 mm. Figure 90 shows the total annual precipitation and IRI outside wheel path 

measurements for JPCP sections. 

 

Figure 90 Total Annual Precipitation vs. IRI Measurement (Outside Wheel Path) of JPCP 

Sections 

Annual Freezing Index: 

The annual freezing index represents the sum of the difference between 0 and mean daily 

air temperature, when the mean daily air temperature is less than 0 °C, for each day of the month. 

This signifies the freezing of pavement sections thus freezing of pavement materials which affect 
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the pavement performance. The annual freeze index data were collected corresponding to each 

IRI outside wheel path measurement collection year (visit year). The collected data has a mean 

of 333.8 and a standard deviation of 357.96 for the annual freezing index. The maximum annual 

freezing index is 1937. Figure 91 shows the annual freezing index and corresponded IRI outside 

wheel path measurements.  

 

Figure 91 Annual Freezing Index vs. IRI Measurement (Outside Wheel Path) of JPCP Sections 

Annual Freeze-Thaw (days): 

Annual freeze-thaw (days) represents the number of days in the year when the air 

temperature goes from less than 0 °C to greater than 0 °C, assumes minimum daily temperature 

occurs before maximum daily temperature. This signifies that the number of days pavement 

sections undergo a freeze-thaw process which affects the pavement materials hence pavement 

performance. The annual freeze-thaw has a mean of 77.45 days with a standard deviation of 43.4 
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days. The maximum annual freeze-thaw days are 204 days. Figure 92 shows the annual freeze-

thaw and corresponded IRI outside wheel path measurements.  

 

Figure 92 Annual Freeze-Thaw vs. IRI Measurement (Outside Wheel Path) of JPCP Sections 

A correlation analysis was performed to obtain the Pearson correlation coefficient (r) 

between all variables.  The correlation matrix summarizes the correlation coefficient (r) values 

between all the variables and it is easy to observe if the variables are correlated with each other. 

This correlation coefficient (r) only provides a linear association between variables, if the data is 

not linearly correlated it will have a low correlation value. Table 23 summarizes the descriptive 

statistics of input variables used in this study and the correlation between each input variable and 

the output variable (IRI outside wheel path).   

The three highest correlations between input variables and IRI outside wheel path (m/km) 

were observed with the variable initial IRI (outside wheel path) (m/km) (0.65) followed by total 
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annual precipitation (mm) (0.188), and average contraction spacing (m) (0.134). Other variables 

show low correlation coefficient (r) values, which means they are not linearly correlated with the 

output variable. However, these variables might follow a non-linear correlation with IRI outside 

wheel path (m/km) that cannot be identified by the correlational analysis. Therefore, even though 

some correlation coefficient values were low, all input variables were used in this study for the 

development of ANN models. 

Table 23 Descriptive Statistics of Input Variables for JPCP Model 

Statistics Mean SD 
COV 
(%) 

Maximum Minimum 

Correlation 
with IRI 
outside 

wheel path 
(m/km), r 

Initial IRI (Outside 
Wheel Path) (m/km) 

1.66 0.6078 36.6% 4.53 0.83 0.650 

Age 19 9.2438 49.8% 46 1 0.038 
Cumulative ESAL 5,519,198 7,631,630 1 57,108,622 14,016 -0.089 
Concrete Pavement 
Thickness (in) 

9.6 1.2174 12.7% 13.2 7 0.013 

Base/Subbase Thickness 
(in) 

5.3 2.9018 54.5% 23.2 0 0.096 

Average Contraction 
Spacing (m) 

4.9416 0.9900 20.0% 9.14 3.51 0.134 

Average Annual Air 
Temperature (°C) 

12.2472 4.8935 40.0% 26.6 2.5 0.038 

Total Annual 
Precipitation (mm) 

793.1601 423.8546 53.4% 2235.3999 58.9 0.188 

Annual Freezing Index 333.8036 357.9607 107.2% 1937 0 -0.021 
Annual Freeze-Thaw 
(days) 

77.4480 43.3860 56.0% 204 0 0.019 

Some variables were dummy coded as 0 and 1 for modeling purposes. The categorical 

variables used in this study are summarized in Table 24. 

The climatic region represents the climate zone defined by the LTPP which consists of 

four different regions, wet non-freeze, dry non-freeze, dry freeze, wet freeze. Correlation 
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analysis shows a correlation coefficient value of 0.18 between wet, non-freeze climate zone and 

IRI outside wheel path (m/km) and a negative correlation coefficient value of -0.2 between dry, 

non-freeze climate zone and IRI outside wheel path (m/km).  

Season characterizes the month in which the measurements were collected, and it consists 

of four seasons, spring (March, April, May), summer (June, July, August), autumn (September, 

October, November), and winter (December, January, February). The summer season has the 

highest correlation (0.11) with IRI outside wheel path (m/km).  

The base/subbase materials represent the type of base/subbase materials used in the 

pavement section which consists of two types, unbound (granular) or bound (stabilized). 

Table 24 Correlation between IRI (Outside Wheel Path) (m/km) with Categorical Variables 

Categorical Variables Categories 

Correlation 
with IRI 

outside wheel 
path (m/km), r 

Climatic Region (Categorical 
variable for LTPP climatic region) 

Wet, Non-Freeze 0.18 
Dry, Non-Freeze -0.20 
Dry, Freeze -0.02 
Wet, Freeze 0.00 

Seasons 
(Categorical variable for the 
season) 

Winter 0.00 
Spring -0.07 
Summer 0.11 
Autumn -0.03 

Base/Subbase Material (Categorical 
variable for Base/Subbase 
materials) 

Unbound (Granular) Base/ Subbase 0.05 

Bound (Treated) Base/ Subbase -0.03 

The annual average temperature, total annual precipitation, annual freezing index, and 

annual freeze-thaw are responsible to represent the effect of climate variables in the model. 

Concrete, base, and subgrade layers’ properties are susceptible to both temperature and moisture 

variations, which makes the use of climate variables crucial for more accurate pavement 
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performance models. Table 25 shows that there is a high linear association between climate 

variables and climate zones defined by the LTPP. For this reason, climate variables were not 

included in the process of developing final models. The climate zones were used as a categorical 

variable.  

Table 25 Correlation between Climatological Variables and LTPP Climate Zones 

Input Variables 
Wet, Non-

Freeze 
Dry, Non-

Freeze 
Dry, 

Freeze 
Wet, 

Freeze 
Average Annual Air Temperature (°C) 0.62 0.40 -0.22 -0.66 
Total Annual Precipitation (mm) 0.65 -0.45 -0.47 0.10 
Annual Freezing Index -0.50 -0.35 -0.06 0.73 
Annual Freeze-Thaw (days) -0.43 -0.48 0.48 0.36 

4.8.2 Maintenance and Rehabilitation Actions 

In a previous study to develop an IRI roughness prediction model using the LTPP 

database for Southern U.S. states, Mohamed Jaafar and Uddin [73] discussed the effect of the 

CN on asphalt highway pavement roughness. As an illustration, for JPCP Figure 93 shows 

different CN values for section 06-3042 located in California. This test section has four 

construction numbers (CN1, CN2, CN3, CN4), which were assigned in 1989, 1996, 2008, and 

2010. It was observed that the IRI values at each subsequent CN decreased as seen in CN2 year 

and more sharply decreased in CN4 year, and then increased again until the subsequent 

maintenance and rehabilitation year. Another example of JPCP highway section 06-3013 is 

shown in Figure 94, which has only CN1 (starting year) and CN2 (year 2007) interventions. The 

IRI shows a significant reduction in the year 2009.  
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Figure 93 IRI Data for JPCP Section 06-3042 in California 

 

Figure 94 IRI Data for JPCP Section 06-3013 in California  
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It is evident from Figure 94 that the M&R treatments improved the JPCP surface 

condition, which contributed to lower IRI roughness values. This statement is supported by an 

independent sample t-test described below. The t-test compared whether there are statistically 

significant differences between the means of yearly IRI between CN1 and CN2 (pre- and post- 

CN2).  

Step-by-Step Procedure  

Step 1: Setup null hypothesis and alternative hypothesis. 

Null Hypothesis: H0: µ1 = µ2  

Where:  

µ1 = Mean of Population 1 for CN1 IRI 

µ2 = Mean of Population 2 for CN2 IRI 

The population means of the two samples (CN1 IRI and CN2 IRI) are equal. This implies that 

both samples are from the same population. 

Alternative Hypothesis: HA: µ1 ≠ µ2 

The population means of the two samples (CN1 IRI and CN2 IRI) are not equal. This implies 

that both samples are from different populations. 

Step 2: Select α probability of Type 1 chance error for α level of statistical significance. 

α = 0.05; α/2 = 0.025 (for two-tailed test) 

Figure 83 shows the two-tailed t-test probability distribution. 

Step 3: Define test criteria and decision rule for rejecting H0. 

Test criteria: t critical = 2.11 for degree of freedom (dof) = 17 and α/2 = 0.025 

Decision Rule: Reject H0 if t-test statistics t test exceeds the absolute value of t critical (t test> t critical) 

and probability of significance value, p ≤ Probability of Type-1 chance error, α. 
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Step 4: Calculate t test  statistics, t test ,and p-significance value. 

t test = 8.92 

Probability of significance, p-value < 0.001 

Step 5: Interpret the results. 

t test (8.92) > t critical (2.11) and p (<0.001) < α (0.05) 

Therefore, the t-test rejects the null hypothesis. The results show that the difference in the 

means of CN1 IRI and CN2 IRI are statistically significant at α 0.05 probability of chance error. 

This implies that both IRI samples (CN1 and CN2) are from different populations. This 

confirmed that the mean IRI value for CN2 (0.97 m/km) is statistically significant and lower, 

compared to the mean IRI value for CN1 (1.73 m/km). 

The t-test established that there is a significant change in IRI value after M&R actions are 

done on a pavement section. Hence, it is important to incorporate pavement M&R history in the 

JPCP performance model. An in-depth study of M&R history provided in the LTPP database 

concrete pavement has been carried out in this research. The process is as follows: 

 The M&R actions (improvement done on pavement) history was collected from the LTPP 

database. The M&R action was provided as IMP_TYPE code that is assigned by the LTPP. 

The description of IMP_TYPE code is described in Table 26 gathered from the LTPP user 

guide [74]. This table contained the type of improvements for both concrete and asphalt 

pavement. For this research, only concrete pavement improvement types (M&R actions) 

were further investigated.   
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Table 26 IMP_Type and Improvement Description collected from LTPP User Guide [74] 

IMP_Type Type of Improvement 
1 Crack Sealing 
2 Transverse Joint Sealing 
3 Lane-Shoulder Longitudinal Joint Sealing 
4 Full-Depth Transverse Joint Repair Patch 
5 Full-Depth Patching of PCC Pavement Other Than at Joint 
6 Partial-Depth Patching of PCC Pavement Other Than at Joint 
7 PCC Slab Replacement 
8 PCC Shoulder Restoration 
9 PCC Shoulder Replacement 

10 AC Shoulder Restoration 
11 AC Shoulder Replacement 
12 Grinding Surface 
13 Grooving Surface 
14 Pressure Grout Subsealing 
16 Asphalt Subsealing 
19 AC Overlay 
20 PCC Overlay 
21 Mechanical Premix Patch 
22 Manual Premix Spot Patch 
23 Machine Premix Patch 
24 Full-Depth Patch of AC Pavement 
25 Patch Pot Holes: Hand Spread, Compacted with Truck 
26 Skin Patching 
27 Strip Patching 
28 Surface Treatment, Single Layer 
29 Surface Treatment, Double Layer 
30 Surface Treatment, Three or More Layers 
31 Aggregate Seal Coat 
32 Sand Seal Coat 
33 Slurry Seal Coat 
34 Fog Seal Coat 
35 Prime Coat 
36 Tack Coat 
37 Dust Layering 
38 Longitudinal Subdrainage 
39 Transverse Subdrainage 
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IMP_Type Type of Improvement 
40 Drainage Blankets 
41 Well System 
42 Drainage Blankets with Longitudinal Drains 
43 Hot-Mix Recycled AC 
44 Cold-Mix Recycled AC 
45 Heater Scarification, Surface-Recycled AC 
46 Crack-and-Seat PCC Pavement + AC Surface 
47 Crack-and-Seat PCC Pavement + PCC Surface 
48 Recycled PCC 
49 Pressure Relief Joints in PCC Pavements 
50 Joint Load-Transfer Restoration in PCC 
51 Mill Off AC and Overlay with AC 
52 Mill Off AC and Overlay with PCC 
53 Other 
54 Partial-Depth Joint Patching of PCC Pavement 
55 Mill Existing Pavement and Overlay with Hot-Mix AC 
56 Mill Existing Pavement and Overlay with Cold-Mix AC 
57 Saw and seal 

 The M&R action corresponded to each IRI data point was obtained from Table 26. The 

IMP_TYPE and the description for the type of improvements for concrete pavements are 

described in Table 27. The M&R actions can be characterized in two categories: major M&R 

and local/minor M&R. Table 27 described the designation of M&R categories for the 

different types of improvement [75]. The improvement description and designated M&R 

action category were obtained for each IRI data point using Table 27.  

Table 27 Designation of Major M&R and Minor M&R for Different Type of Improvement [75] 

IMP_Type Type of Improvement 
M&R Definitions 

Local/Minor = L_Minor    Major = M 

1 Crack Sealing L_Minor 

2 Transverse Joint Sealing 
L_Minor (less than or equal to 50% slabs) 

Major (more than 50% slabs) 
3 Lane-Shoulder Longitudinal Joint Sealing L_Minor  
4 Full-Depth Transverse Joint Repair Patch Major  
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IMP_Type Type of Improvement 
M&R Definitions 

Local/Minor = L_Minor    Major = M 

5 
Full-Depth Patching of PCC Pavement 
Other Than at Joint 

Major  

6 
Partial-Depth Patching of PCC Pavement 
Other Than at Joint 

L_Minor (less than or equal to 10% slabs) 
Major (more than 10% slabs) 

7 PCC Slab Replacement Major  
8 PCC Shoulder Restoration L_Minor  
9 PCC Shoulder Replacement Major  

10 AC Shoulder Restoration L_Minor  
11 AC Shoulder Replacement L_Minor  
12 Grinding Surface L_Minor  
13 Grooving Surface Major  

14 Pressure Grout Subsealing 
L_Minor (less than or equal to 10% slabs) 

Major (more than 10% slabs) 
16 Asphalt Subsealing L_Minor  

38 Longitudinal Subdrainage L_Minor  

39 Transverse Subdrainage L_Minor  

40 Drainage Blankets L_Minor  

41 Well System L_Minor  

42 
Drainage Blankets with Longitudinal 
Drains 

L_Minor  

47 
Crack-and-Seat PCC Pavement + PCC 
Surface 

Major (if recorded) 

48 Recycled PCC Major (if recorded) 
49 Pressure Relief Joints in PCC Pavements L_Minor  

50 Joint Load-Transfer Restoration in PCC Major  

53 Other L_Minor (If IRI Improves) 

54 
Partial-Depth Joint Patching of PCC 
Pavement 

L_Minor  

The CN_Code categorical variable was developed to represent the M&R action done on a 

pavement section. The LTPP database has the Construction Number (CN) corresponded to each 

IRI data point and the description is given in Section 4.7. But this CN is not an accurate 

representation of the improvement action done on pavement. For this reason, this doctoral 
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research assigned CN_Code for each IRI data point based on IRI value improvement, the M&R 

action done before the collection of IRI measurements, and the type of M&R action (major, 

local/minor). Several CN_Code were developed to achieve the most accurate model that will 

provide an accurate future prediction of IRI and incorporate the M&R actions in the developed 

model. The description of each CN_Code is given below:  

(1) The first CN_Code was developed based on the original CN collected from the LTPP 

database corresponded to each IRI data point. If no M&R action (CN1 in the original LTPP 

database) was done, the CN_Code was categorized as ‘0’, and this 0 was continued until an 

M&R action was performed. The first M&R action (CN2 in the original LTPP database) was 

categorized as ‘1’, and this 1 was continued until the second M&R action. The second M&R 

action (CN3 in the original LTPP database) was categorized as ‘2’, and this 2 was continued 

until the third M&R action. This CN_Code assignment continued until all the M&R actions 

done on a pavement section were categorized.  

(2) The second CN_Code was also developed based on the original CN collected from the LTPP 

database corresponded to each IRI data point. If no M&R action (CN1 in the original LTPP 

database) was done, the CN_Code was categorized as ‘1’, and this 1 was continued until an 

M&R action was performed. The first M&R action (CN2 in the original LTPP database) was 

categorized as ‘2’, and this 2 was continued until the second M&R action. The second M&R 

action (CN3 in the original LTPP database) was categorized as ‘3’, and this 3 was continued 

until the third M&R action. This CN_Code assignment continued until all the M&R actions 

done on a pavement section were categorized.  
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(3) The third CN_Code was developed based on the improvement of IRI values for each IRI data 

point. If the IRI value change was less than 0.1 m/km, the CN_Code was assigned as ‘0’. If 

the IRI value change was more than 0.1 m/km, the CN_Code was assigned as ‘1’, and when 

the next IRI value change was more than 0.1 m/km, the CN_Code was assigned as ‘2’. In 

between CN_Code ‘1’ and CN_Code ‘2’, the CN_Code for other data points was assigned as 

‘0’.  This CN_Code assignment continued until all the IRI data points were categorized.  

(4) The fourth CN_Code was also developed based on the improvement of IRI values for each 

IRI data point. If the IRI value change was less than 0.1 m/km, the CN_Code was assigned as 

‘0’, and this 0 was continued until the IRI value change was more than 0.1m/km. If the IRI 

value change was more than 0.1 m/km, the CN_Code was assigned as ‘1’, and this 1 was 

continued until the next IRI value change was more than 0.1m/km. When the next IRI value 

change was more than 0.1 m/km, the CN_Code was assigned as ‘2’, and this 2 was continued 

until the next IRI value change was more than 0.1m/km. This CN_Code assignment process 

continued until all the IRI data points were categorized.  

(5) The fifth CN_Code was developed based on the IRI value improvement and the type of 

M&R action provided in Table 27. If no M&R action was done and the improvement of IRI 

value was very low, the CN_Code was categorized as ‘0’, and this 0 continued until an M&R 

action was performed or the IRI value improved significantly. The first data point found with 

an M&R action done or a significant improvement of IRI value was assigned as ‘1’ 

CN_Code and this 1 continued until the end of IRI data points for this pavement section.  
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(6) The sixth and the last CN_Code was also developed based on the IRI value improvement and 

the type of M&R action provided in Table 27. If no M&R action was done and the 

improvement of IRI value was very low, the CN_Code was categorized as ‘0’, and this 0 

continued until an M&R action was performed or the IRI value improved significantly. The 

first data point found with an M&R action done or a significant improvement of IRI values 

was assigned as ‘1’ CN_Code and this 1 continued until the next  M&R action was 

performed or the IRI value improved significantly. The next data point found with an M&R 

action done or a significant improvement of IRI value was assigned as ‘2’ CN_Code and this 

2 continued until the next  M&R action was found or the IRI value improved significantly. 

This CN_Code assignment process continued until all the IRI data points were categorized 

for a pavement section.  

4.8.3 Database Summary 

The input and output variables are thoroughly discussed in section 4.8.1. Table 28 shows 

the key input variables for the final JPCP models. As discussed above, the climate variables 

show a high linear association with climatic regions. For this reason, for JPCP final models only 

climatic regions were used as input variables. The climate variables are also needed to be 

predicted for future prediction of the output variable (IRI outside wheel path).  

Table 28 Input Variables for JPCP Performance Models 

No. Input Variables 

1 IRI0 (Initial IRI Outside Wheel Path) (m/km) Initial IRI Outside Wheel Path 
(m/km) 

2 Age (Pavement age, years) Age 
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No. Input Variables 

3 hconcrete  (Concrete pavement thickness, in) hconcrete  

4 hbase/subbase  (Base/Subbase thickness, in) hbase/subbase  

5 Average Contraction spacing (m) Average Contraction spacing (m) 

6 
CESAL (Cumulative Equivalent Single Axel 
Load) 

CESAL 

7 
Base/Subbase Materials ( Categorical variable 
for Base/Subbase materials) 

Unbound (Granular) Base/ Subbase 
Bound (Treated) Base/ Subbase 

8 
Climatic Region (Categorical variable for LTPP 
climatic region) 

Wet, Non-Freeze 
Dry, Non-Freeze 
Wet, Freeze 
Dry, Freeze 

9 
Seasons 
(Categorical variable for the season) 

Winter (Dec-Feb) 
Spring (Mar-May) 
Summer (June-Aug) 
Autumn (Sept-Nov) 

The maintenance and rehabilitation (M&R) history is represented as CN_Code. Table 29 

shows the CN_Code used in these final models. CN_Code descriptions are discussed in section 

4.8.2. Six models were tried to find the most accurate model that can predict IRI incorporating 

the M&R history of the pavement sections. 

Table 29 CN_Code used in JPCP Perfomance Models 

Models  CN (Construction Number, variable for M & R) 
Model A CN Original Continuous: (0,0,1,1,2,2…) 

No M&R Action 0 
M&R Action 1,2…. 

Model Aa CN Original Continuous: (1,1,2,2…) 
No M&R Action 1 
M&R Action 2,3,4…. 

Model A1 CN Continuous if more than 0.1m/km IRI change: (0,0,1,0,2,0...) 
No IRI Improvement 0 
IRI Improvement 1,2…. 
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Models  CN (Construction Number, variable for M & R) 
Model A2 CN Continuous if more than 0.1m/km IRI change: (0,0,1,1,2,2...) 

No IRI Improvement 0 
IRI Improvement 1,2…. 

Model A3 CN Categorical: (0,1) 
(Based on IRI value improvement and the type of M&R action provided in 
Table 27) 
No IRI Improvement and/or M&R Action 0 
Any IRI Improvement and/or M&R Action 1 

Model A4 CN Continuous: (1,1,2,2,3,3,…..) 
(Based on IRI value improvement and the type of M&R action provided in 
Table 27) 
No IRI Improvement and/or M&R Action 1 
IRI Improvement and/or M&R Action 2,3,4 

This research also developed the Multiple Linear Regression (MLR) model using the 

same input variables to compare with the ANN model. For verification of the MLR model, the 

database was divided into two parts: model database and verification database. The verification 

pavement sections were randomly selected using some guidelines to ensure these pavement 

sections were collected from all climate zones. The guidelines are described below:  

 If less than 5 LTPP sections in one climate zone do not pick any sections for verification. 

 If 5 to 10 LTPP sections in one climate zone pick up one section for verification. 

 If 11 to 20 LTPP sections in one climate zone pick up two sections for verification.   

 If more than 20 LTPP sections pick up a minimum of three sections for verification 

Nine JPCP sections were randomly selected from all climate zones following the above 

guidelines for the verification database. These nine pavement sections have 127 data points. So, 

the final model database contains 1,355 data points. 
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Table 30 Randomly Chosen JPCP Sections for Verification Database 

No.  Section Climate Region  
1 37-3807 Wet, Non-Freeze 
2 40-4157 Wet, Non-Freeze 
3 35-3010 Dry, Non-Freeze 
4 53-3014 Dry, Non-Freeze 
5 19-3033 Wet, Freeze 
6 26-3068 Wet, Freeze 
7 27-3005 Wet, Freeze 
8 16-3017 Dry, Freeze 
9 32-3010 Dry, Freeze 

4.9 Final ANN Models 

4.9.1 ANN Model Architecture 

In the final research, using the developed model database, six models were tried with the 

same input variables from Table 28 only changing CN_Code described in Table 29. The output 

variable is IRI outside wheel path (m/km) for all six models. These six models have six 

continuous variables, three categorical variables, and CN_Code.  

4.9.2 ANN Model Selection 

Six best performing networks from each model (Model A, Model Aa, Model A1, Model 

A2, Model A3, and Model A4) were selected based on statistical measures such as minimum 

values of MARE, ASE, and maximum values of R2. A total of 1355 datasets were used to build 

the desired database. Datasets that include minimum and maximum values of each variable were 

included in the training phase for the network to represent the characteristics of the response. The 

maximum and minimum ranges of each input/output variable for ANN model development were 

chosen on purpose to be wider than their actual ranges for better mathematical mapping (30).  
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Model A 

The inputs for Model A are initial IRI, age, concrete pavement thickness, base/subbase 

thickness, average contraction spacing, CESAL, base/subbase materials type, climatic region, 

seasons, and CN_Code and output is IRI (outside wheel path) (m/km) as shown in Table 28. The 

CN_Code is shown in Table 29. This CN_Code is based on the original CN collected from the 

LTPP database. No M&R action was assigned as 0 and M&R actions were assigned as 1,2 and 

so on. This CN_Code is a continuous variable where 1, 2 is the frequency of M&R actions done 

on pavement. Table 31 shows the statistical accuracy of Model A. The ASE values for training, 

testing, validation, and all data are 0.001938, 0.004707, 0.006162, and 0.001417, respectively. 

R2 values for this model are as follows: 0.897 for the training, 0.701 for the testing, 0.623 for the 

validation, and 0.899 for all data. The final architecture of this model is 17-18-1, where 17 is the 

number of inputs, 18 is the number of hidden nodes and 1 is the number of output. 

Model Aa 

The inputs and output of this model are very similar to model A. The CN_Code used in 

Model Aa is shown in Table 29. This CN_Code is also based on the original CN collected from 

the LTPP database. No M&R action was assigned as 1 and M&R actions were assigned as 2,3 

and so on. This CN_Code is a continuous variable where 2, 3 is the frequency of M&R actions 

done on pavement. Table 31 shows the statistical accuracy of Model Aa. The ASE values for the 

selected network are as follows: 0.001201 for the training, 0.004609 for the testing, 0.007607 for 

the validation, and 0.001409 for all data. The R2 for training, testing, validation, and all data are 
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0.920, 0.683, 0.514, and 0.901, respectively. The final architecture of this model is 17-18-1 

where, 17 inputs, 18 hidden nodes, and 1 output. 

Model A1 

The inputs and output of this model are very similar to model Aa. The CN_Code used in 

Model A1 is shown in Table 29. This CN_Code was developed based on the improvement of IRI 

values for each IRI data point. If the IRI value change was less than 0.1 m/km, the CN_Code was 

assigned as ‘0’. If the IRI value change was more than 0.1 m/km, the CN_Code was assigned as 

1, 2, and so on. In between CN_Code ‘1’ and CN_Code ‘2’, the CN_Code for other data points 

was assigned as ‘0’.  This CN_Code is a continuous variable where 1, 2 is the frequency IRI 

value improvements. Table 31 shows the statistical accuracy of Model A1. The ASE values for 

training, testing, validation, and all data are 0.001632, 0.005224, 0.006835, and 0.001718, 

respectively. R2 values for this model are as follows: 0.897 for the training, 0.658 for the testing, 

0.577 for the validation, and 0.875 for all data. The final architecture of this model is 17-19-1, 

where 17 is the number of inputs, 19 is the number of hidden nodes and 1 is the number of 

output. 

Model A2 

The inputs and output of this model are very similar to model A1. The CN_Code used in 

Model A2 is shown in Table 29. This CN_Code was also developed based on the improvement 

of IRI values for each IRI data point. If the IRI value change was less than 0.1 m/km, the 

CN_Code was assigned as ‘0’. If the IRI value change was more than 0.1 m/km, the CN_Code 

was assigned as 1, 2, and so on. This CN_Code is a continuous variable where 1, 2 is the 
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frequency of IRI value improvements. Table 31 shows the statistical accuracy of Model A2. The 

ASE values for the selected network are as follows: 0.002054 for the training, 0.004246 for the 

testing, 0.004444 for the validation, and 0.001638 for all data. The R2 for training, testing, 

validation, and all data are 0.865, 0.695, 0.709, and 0.882, respectively. The final architecture of 

this model is 17-13-1 where, 17 inputs, 13 hidden nodes, and 1 output. 

Model A3 

The inputs and output of this model are very similar to model A2. The CN_Code used in 

Model A3 is shown in Table 29. This CN_Code was developed based on the IRI value 

improvement and the type of M&R action provided in Table 27. If no M&R action was done and 

the improvement of IRI value was very low, the CN_Code was categorized as ‘0’. If any M&R 

action was done or there was a significant improvement of IRI value, the CN_Code was assigned 

as ‘1’ This CN_Code is a categorical variable. Table 31 shows the statistical accuracy of Model 

A3. The ASE values for training, testing, validation, and all data are 0.001062, 0.003779, 

0.004751, and 0.001354, respectively. R2 values for this model are as follows: 0.932 for the 

training, 0.724 for the testing, 0.689 for the validation, and 0.904 for all data. The final 

architecture of this model is 17-17-1, where 17 is the number of inputs, 17 is the number of 

hidden nodes and 1 is the number of output. 

Model A4 

The inputs and output of this model are very similar to model A3. The CN_Code used in 

Model A4 is shown in Table 29. This CN_Code was also developed based on the IRI value 

improvement and the type of M&R action provided in Table 27. If no M&R action was done and 
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the improvement of IRI value was very low, the CN_Code was categorized as ‘1’. If M&R 

action was done or there was a significant improvement of IRI value, the CN_Code was assigned 

as 2, 3, and so on. This CN_Code is a continuous variable where 2, 3 is the frequency of M&R 

actions and/or IRI value improvements. Table 31 shows the statistical accuracy of Model A4. 

The ASE values for the selected network are as follows: 0.001485 for the training, 0.003835 for 

the testing, 0.005116 for the validation, and 0.001630 for all data. The R2 for training, testing, 

validation, and all data are 0.900, 0.740, 0.680, and 0.881, respectively. The final architecture of 

this model is 17-13-1 where, 17 inputs, 13 hidden nodes, and 1 output. 

Table 31 Best Networks from Each Model 

Models Model A Model Aa ModelA1 ModelA2 ModelA3 
Best Model 
ModelA4 

Structure 
Initial Nodes-Final Nodes-

Iterations 
14-18-20000 1-18-20000 4-19-20000 5-13-20000 3-17-20000 2-13-20000 

Training 
MARE 15.357 11.277 13.420 15.490 11.109 13.246 

R² 0.897 0.920 0.897 0.865 0.932 0.900 
ASE 0.001938 0.001201 0.001632 0.002054 0.001062 0.001485 

Testing 
MARE 22.175 18.163 21.877 19.798 18.748 18.251 

R² 0.701 0.683 0.658 0.695 0.724 0.740 
ASE 0.004707 0.004609 0.005224 0.004246 0.003779 0.003835 

Validation 
MARE 22.575 20.863 23.964 21.614 18.469 20.245 

R² 0.623 0.514 0.577 0.709 0.689 0.680 
ASE 0.006162 0.007607 0.006835 0.004444 0.004751 0.005116 

All Data 
MARE 12.376 12.582 12.841 13.008 12.115 12.634 

R² 0.899 0.901 0.875 0.882 0.904 0.881 
ASE 0.001417 0.001409 0.001718 0.001638 0.001354 0.001630 

Final Structure 
Input Variables-Final 

Nodes-Iterations 
17-18-20000 17-18-20000 17-19-20000 17-13-20000 17-17-20000 17-13-20000 

Model A3 has the lowest ASE for training, testing, and all data. Model A3 also has the 

lowest MARE for training, validation, and all data. Model Aa has the lowest MARE and model 

A4 has the highest R2 for testing. Model A3 has the highest R2 for training and all data. Figure 
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95 shows that model A2 has the lowest ASE and highest R2 for validation.  

 

Figure 95 Comparison of Model Accuracy across All Models for Validation 

Figure 96 shows that model A3 has the lowest ASE, MARE, and highest R2 for all data. 

Based on the statistical accuracy, Model A3 is the best performing network. But as discussed 

above, the CN_Code used in Model A3 is a categorical variable with 0 and 1 where M&R action 

and/or IRI improvement frequency cannot be added for future prediction. Model A4 has very 

similar statistical accuracy and the CN_Code is a continuous variable where M&R action and/or 

IRI improvement frequency can be added for future prediction. For this reason, Model A4 has 

been chosen as the best network. Further investigation into the input variables was done using 

Model A4 input variables and CN_Code.  
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Figure 96 Comparison of Model Accuracy across All Models for All Data 

Model A4a 

A new model, model A4a was tried using the same input variable as model A4 excluding 

seasons categorical variable. The CN_Code is also the same as model A4. Table 32 shows the 

statistical accuracy of Model A4a. The ASE values for the selected network are as follows: 

0.001037 for the training, 0.002567 for the testing, 0.002141 for the validation, and 0.000922 for 

all data. The R2 for training, testing, validation, and all data are 0.934, 0.805, 0.850, and 0.933, 

respectively. The final architecture of this model is 13-19-1 where, 13 inputs, 19 hidden nodes, 

and 1 output. 
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Table 32 Statistical Accuracy Measures of Five Chosen Model Networks for Model A4a 

Dataset 
Statistical 

Error 
Measures 

2-19-20000 7-19-20000 1-14-20000 1-19-20000 
Best Model 

11-19-20000 

Training 
MARE 11.791 10.556 13.026 11.877 11.039 

R² 0.928 0.937 0.920 0.929 0.934 
ASE 0.001166 0.000967 0.001324 0.001153 0.001037 

Testing 
MARE 15.331 13.759 16.352 15.104 14.779 

R² 0.836 0.834 0.830 0.826 0.805 
ASE 0.002279 0.002289 0.002378 0.002414 0.002567 

Validation 
MARE 15.986 15.231 16.025 15.452 14.510 

R² 0.849 0.837 0.851 0.858 0.850 
ASE 0.002316 0.002404 0.002316 0.002331 0.002141 

All Data 
MARE 9.825 9.639 11.276 9.954 9.543 

R² 0.932 0.931 0.911 0.930 0.933 
ASE 0.000961 0.000960 0.001238 0.000978 0.000922 

Final Structure 13-19-20000 13-19-20000 13-14-20000 13-19-20000 13-19-20000 
     Best Model 

Table 33 shows that Model A4a has lower ASE, MARE, and higher R2 across all 

datasets. The exclusion of input variable season helped to develop a better model. For this 

reason, the season was not used as an input variable in the model developing process for other 

types of concrete pavement.  

Table 33 Comparison of Statistical Accuracy Measures between Model A4 and Model A4a 

Models ModelA4 
Best Model 
ModelA4a 

Input Variables 
With Independent 
Variable Seasons 

Without Independent 
Variable Seasons 

Structure 
Initial Nodes-Final Nodes-Iterations 

2-13-20000 11-19-20000 

Training 
MARE 13.246 11.039 

R² 0.900 0.934 
ASE 0.001485 0.001037 

Testing 
MARE 18.251 14.779 

R² 0.740 0.805 
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Models ModelA4 
Best Model 
ModelA4a 

Input Variables 
With Independent 
Variable Seasons 

Without Independent 
Variable Seasons 

Structure 
Initial Nodes-Final Nodes-Iterations 

2-13-20000 11-19-20000 

ASE 0.003835 0.002567 

Validation 
MARE 20.245 14.510 

R² 0.680 0.850 
ASE 0.005116 0.002141 

All Data 
MARE 12.634 9.543 

R² 0.881 0.933 
ASE 0.001630 0.000922 

Final Structure 
Input Variables-Final Nodes-Iterations 

17-13-20000 13-19-20000 

 

Model B 

Table 33 shows that the best performing model is Model A4a. Another model has been 

tried using the same input variable as Model A4a and included four more climatological 

variables average annual air temperature (°C), total annual precipitation (mm), annual freezing 

index, annual freeze-thaw (days). The CN_Code is the same as Model A4a. Table 34 shows the 

statistical accuracy of Model B. The ASE values for the selected network are as follows: 

0.000754 for the training, 0.001982 for the testing, 0.002592 for the validation, and 0.000803 for 

all data. The R2 for training, testing, validation, and all data are 0.949, 0.869, 0.837, and 0.942, 

respectively. The final architecture of this model is 17-19-1 where, 17 inputs, 19 hidden nodes, 

and 1 output.  
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Table 34 Statistical Accuracy Measures of Five Chosen Model Networks for Model B 

Dataset 
Statistical 

Error measure 
Best Model 
6-19-20000 

10-18-20000 8-19-20000 5-19-20000 11-19-20000 

Training 

MARE 9.415 10.504 10.560 10.691 9.622 

R² 0.949 0.934 0.945 0.938 0.948 

ASE 0.000754 0.001005 0.000907 0.001017 0.000836 

Testing 

MARE 13.062 15.076 15.594 14.712 16.289 

R² 0.869 0.832 0.854 0.844 0.826 

ASE 0.001982 0.002474 0.002493 0.002572 0.002579 

Validation 

MARE 13.660 15.584 16.999 16.407 17.063 

R² 0.837 0.831 0.806 0.817 0.824 

ASE 0.002592 0.002661 0.002943 0.002991 0.002943 

All Data 

MARE 9.037 9.407 9.644 9.596 9.841 

R² 0.942 0.935 0.939 0.937 0.935 

ASE 0.000803 0.000910 0.000857 0.000871 0.000915 

Final Structure 17-19-20000 17-18-20000 17-19-20000 17-19-20000 17-19-20000 

Table 35 shows that Model B has lower ASE and MARE for training, testing, and all 

data. The R2 values are also higher for Model B than Model A4a for training, testing, and all 

data. But Model A4a has a lower MARE, ASE, and higher R2 value for the validation dataset. 

For this reason, Model A4 was still chosen as bet performing model. Another reason for 

choosing model A4a will be that all climatological variables need to be predicted before using in 

the models for future prediction of IRI. The climatological variables were not used in this 

doctoral research for the development of other types of concrete pavement performance models. 

 



 

152 

 

Table 35 Comparison of Statistical Accuracy Measures between Model A4a and Model B 

Models 
Best Model 
ModelA4a 

Model B 

Structure 
Initial Nodes-Final Nodes-Iterations 

11-19-20000 6-19-20000 

Training 
MARE 11.039 9.415 

R² 0.934 0.949 
ASE 0.001037 0.000754 

Testing 
MARE 14.779 13.062 

R² 0.805 0.869 
ASE 0.002567 0.001982 

Validation 
MARE 14.510 13.660 

R² 0.850 0.837 
ASE 0.002141 0.002592 

All Data 
MARE 9.543 9.037 

R² 0.933 0.942 
ASE 0.000922 0.000803 

Final Structure 
Input Variables-Final Nodes-

Iterations 
13-19-20000 17-19-20000 

4.9.3 ANN Model Results 

The discussion in the previous section establishes that Model A4a is the best performing 

network based on all statistical measures (ASE, MARE, and R2 value). The final model structure 

has 13 inputs of independent variables, 19 hidden nodes, and 1 output (13-19-1) (Figure 97). The 

comparison of the prediction accuracy measures for ANN Model A4a is graphically presented in 

Figure 98. From Figure 98, it is evident that once observed IRI rises above 3.0, the model 

steadily underestimates the prediction output. 
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Figure 97 Network Architecture for Best Model (Model A4a, Structure: 13-19-1) 

 

Figure 98 Observed IRI (Outside Wheel Path) (m/km) vs. Predicted IRI (Outside Wheel Path) 

(m/km) 
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The 1,355 data points are assigned section sequence numbers from 1 to 1,355. Figure 99 

shows the observed and Model A4a predicted IRI (outside wheel path) values. From Figure 99, it 

is demonstrated that the predicted IRI has apprehended most of the variability in the IRI 

observed values.   

 

Figure 99 Observed and Predicted IRI (Outside Wheel Path) (m/km) Plot 

Figure 100 shows the observed and predicted IRI for Section 27-3012, in Minnesota. The 

predicted values follow the observed values closely. The difference in the mean values of 

observed and predicted is 0.23%. 

 

Figure 100 Observed and Predicted IRI (Outside Wheel Path) (m/km) Plot of JPCP section in 

Minnesota 
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4.9.4 Sensitivity Analysis  

A sensitivity analysis was carried out to evaluate the significance of the inputs on the 

output. A Graphical User Interface (GUI) was developed by importing all the final ANN model 

parameters into an excel spreadsheet. To examine the models, some input was changed while 

keeping the other inputs constant. In this paper, the sensitivity analysis of model A4a is 

presented since it is the best model in terms of statistical accuracy measures. All model A4a 

inputs were kept constant except age and CESAL that were changed to generate predictions of 

IRI. The CESAL values were calculated using the previous year’s data. A randomly selected 

section with one M&R action done was used to show the sensitivity analysis. Figure 101 that the 

IRI prediction model follows the trend of the observed values. Additionally, it can estimate the 

increase of IRI values with time and decrease of IRI value after M&R action. Usually, without 

any rehabilitation, pavement deteriorates over time, therefore, IRI increases.  

 

Figure 101 ANN Future Prediction Plot of IRI (Outside Wheel Path) (m/km) for JPCP Section in 

Minnesota 
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Figure 101 shows that with the increase of CESAL value, the IRI value increases more 

than 2.68 m/km when a pavement is considered as very poor condition [10]. At this point, a new 

M&R action should be done to improve pavement performance. By changing CN_Code 

frequency using GUI, a future M&R action was provided in the section. Figure 102 shows that 

with CESAL value increasing over time in the future, the IRI value decreased when future M&R 

action was done, which means pavement condition improved.  

 

Figure 102 ANN Future Prediction Plot of IRI (Outside Wheel Path) (m/km) after First M&R 

Action 

Figure 102 shows that after one future M&R action has been taken, the IRI value went 

down, and then the IRI value is increasing with time as CESAL is increasing in the future. The 

IRI value increases more than 2.68 m/km again at age 36. Another M&R action was provided 

using the CN_Code frequency and the IRI value plummeted. Figure 103 shows the IRI value 

drop after the second M&R action in the future.   
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Figure 103 ANN Future Prediction Plot of IRI (Outside Wheel Path) (m/km) after Second M&R 

Action 

4.10  Multiple Linear Regression Analysis for JPCP Performance Model  

A multiple linear regression (MLR) analysis was conducted to develop the JPCP 

performance model. This MLR model will be compared with the best model developed using the 

ANN modeling technique. The best performing model was model A4a for JPCP discussed in 

section 4.9.3. The input and output variables are the same as model A4a. The input variables are 

initial IRI, age, concrete pavement thickness, base/subbase thickness, average contraction 

spacing, CESAL, base/subbase materials type, climatic region, and CN_Code. The output 

variable is IRI (outside wheel path) (m/km). The input variables have six continuous variables, 

two categorical variables, and CN_Code. The CN_Code was developed based on the IRI value 

improvement and the type of M&R action provided in Table 27. If no M&R action was done and 

the improvement of IRI value was very low, the CN_Code was categorized as ‘1’. If M&R 
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action was done or there was a significant improvement of IRI value, the CN_Code was assigned 

as 2, 3, and so on. This CN_Code is a continuous variable where 2, 3 is the frequency of M&R 

actions and/or IRI value improvements.  

IRI (outside wheel path) (m/km) was normally distributed. Standard residuals were 

normally distributed. Scatterplots were analyzed, and no curvilinear relationships between the 

criterion variable and predictor variables or heteroscedasticity were evident. There was a 

statistically significant relationship between input variables and output variable, F (12, 1354) = 

108.557, p < 0.001. The MLR model accounted for 49% of the variance in the model with R2 = 

0.493. 

4.10.1 MLR Model Results and Comparison between Final ANN Model and MLR Model 

The developed MLR model equation is given below: 

𝐼𝑅𝐼 (𝑂𝑢𝑡𝑠𝑖𝑑𝑒 𝑊ℎ𝑒𝑒𝑙 𝑃𝑎𝑡ℎ)(𝑚 𝑘𝑚⁄ )

= 1.537 + 0.866 × 𝐼𝑅𝐼  + [(−0.001) × 𝐴𝑔𝑒] + 0.159 × 𝑊𝑒𝑡, 𝑁𝑜𝑛 − 𝐹𝑟𝑒𝑒𝑧𝑒

+ [(−0.272) × 𝐷𝑟𝑦, 𝑁𝑜𝑛 − 𝐹𝑟𝑒𝑒𝑧𝑒] + [(−0.011) × 𝐷𝑟𝑦, 𝐹𝑟𝑒𝑒𝑧𝑒]

+ 0 × 𝑊𝑒𝑡, 𝐹𝑟𝑒𝑒𝑧𝑒 + [(−0.229) × 𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟 𝐵𝑎𝑠𝑒/ 𝑆𝑢𝑏𝑏𝑎𝑠𝑒 

+ 0.064 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑 𝐵𝑎𝑠𝑒/ 𝑆𝑢𝑏𝑏𝑎𝑠𝑒 + [(−0.267) × 𝐶𝑁 ]

+ [(−0.056) × ℎ ] + 0.031 × ℎ /

+ [(−0.087) × 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 (𝑚)] + 6.711 × 10 × 𝐶𝐸𝑆𝐴𝐿 

Where, IRI0 = Initial IRI Outside Wheel Path (m/km); Wet, Non-Freeze, Dry, Non-Freeze, Wet, 

Freeze, and Dry, Freeze = Categorical variable for climatic region; Granular Base/Subbase, 

Treated Base/Subabse = Categorical variable for base/subbase material type; CN_Code =  
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Continuous variable for Maintenance and Rehabilitation (M&R) frequency; hconcrete = Concrete 

pavement thickness, in; hbase/subbase = Base/Subbase thickness, in; CESAL = Cumulative 

Equivalent Single Axel Load. 

The comparison of the prediction accuracy measures for the MLR model is graphically 

presented in Figure 104. From Figure 104, it is evident that the model prediction is scattered and 

far away from the line of equality.  The MLR model accounted for only 49% variability whereas 

the final ANN model accounted for 94% variability in the model.   

 

Figure 104 Observed IRI (Outside Wheel Path) (m/km) vs. Predicted IRI (Outside Wheel Path) 

(m/km) 

The 1,355 data points are assigned section sequence numbers from 1 to 1,355. Figure 105 

shows the observed and MLR model predicted IRI (outside wheel path) values. From Figure 105, 
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it is demonstrated that the predicted IRI could not capture most of the variability in the IRI 

observed values.   

 

Figure 105 Observed and Predicted IRI (Outside Wheel Path) (m/km) Plot 

Figure 106 shows the observed and predicted IRI for Section 27-3012, in Minnesota. The 

predicted values do not follow the observed values closely. The difference in the mean values of 

observed and predicted is -2.8% whereas the difference is 0.23% for the final ANN Model.  

 

Figure 106 Observed and Predicted IRI (Outside Wheel Path) (m/km) Plot of JPCP Section in 

Minnesota 
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The model was verified using the verification database described in section 4.8.3. Figure 

107 shows the observed and predicted value against the line of equality. Model verification 

results are summarized below:   

 the % mean difference in IRI outside wheel path (m/km): 1.49% 

 RMSE: 0.370 

 MARE: 19.3% 

 

Figure 107 Observed IRI (Outside Wheel Path) (m/km) vs. Predicted IRI (Outside Wheel Path) 

(m/km) using Verification Database 
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4.11  Concluding Remarks 

Based on the materials discussed in this chapter, the key concluding remarks are 

summarized below:  

 The LTPP database contained 107 JPCP sections under the GPS-3 study. Most data points 

are from the wet, freeze and wet, non-freeze climatic regions. 

 Preliminary research showed that reasonably better IRI models can be developed using 

readily available input variables collected from the LTPP database employing the ANN 

modeling technique.  

  The hypothesis testing in this study confirmed that IRI outside wheel path has significantly 

higher values than IRI inside wheel path. Therefore, the ANN and MLR models were 

developed for IRI outside wheel path.  

 The climatological variables have a strong linear association with climatic regions. The 

climatological variables also need to be predicted before using in the prediction models for 

future IRI predictions. Hence, climatological variables were not used in the model 

development.  

 The exclusion of categorical variable season helped to develop a better ANN performance 

model for JPCP.   

 The hypothesis testing in this study demonstrated that it is imperative to use the maintenance 

and rehabilitation history of the pavement in the development of the IRI prediction model. 

An in-depth study of M&R history collected from the LTPP database for JPC pavement 

produced several CN_Code. The best model was found with the CN_Code developed based 
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on the IRI value improvement and the type of M&R action provided in Table 27 and the 

variable is a continuous variable where number increment indicates the frequency of M&R 

action provided in the pavement section.  

 The best performing ANN model has a network structure of 13-19-1 (i.e. 13 inputs, 19 

hidden nodes, and 1 output). The ANN model to predict IRI has an R2 value of 0.94. The 

total data points used to develop the IRI prediction ANN model were 1,355. From Table 18, 

it is evident that the developed ANN model in this study has higher accuracy than the 

previously developed models via multiple regression and ANN models.   

 The developed IRI prediction model can successfully characterize the behavior (i.e. the 

increase of IRI values with time and decrease of IRI value after maintenance and 

rehabilitation). The ANN model can be used to provide future M&R action by changing 

CN_Code frequency and the model successfully distinguishes the behavior of IRI (i.e. 

decrease of IRI after M&R action and increase of IRI with time as CESAL increases).  

 The developed MLR model to predict IRI has an R2 value of 0.49. The verification of this 

MLR model generated a mean difference of 1.49%, RMSE of 0.370, and MARE of 19.3%. 

 The ANN model shows better accuracy compared to the MLR model developed in this study. 

The ANN model accounted for 94% variability in the model whereas the MLR model 

accounted for only 49% variability.    
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CHAPTER V: DEVELOPMENT OF PERFORMANCE MODELS FOR 

JOINTED REINFORCED CONCRETE PAVEMENTS 

5.1 Background 

Jointed reinforced concrete pavements (JRCP) are a type of concrete pavement that 

contains steel mesh reinforcement. In JRCP, the joint spacing is higher than JPCP pavement, and 

to hold the mid-panel cracks reinforcing steels are provided. The spacing between transverse 

joints is typically 30 feet or more. Figure 108 shows the average joint spacing and average mid-

panel crack [76].  

 

Figure 108 Cross-section and top view of Jointed Reinforced Concrete Pavement [76] 
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5.2 Methodology 

The methodology of developing the JRCP performance model is similar to the JPCP 

performance model described in section 4.2. The model development process for JRCP is, as 

follows: 

(1) Conduct a literature review of past research studies to identify independent and categorical 

variables that influence pavement performance. 

(2) Assemble databases for JRCP model development from the LTPP database, which must 

include the variables identified in step (1). 

(3) Evaluate the quality of databases and identify missing/erroneous data items. 

(4) Develop procedures for estimating important missing data in the time series.  

(5) Develop pavement performance models using ANN and multiple linear regression modeling 

techniques.  

(6) Select the appropriate IRI model form (should be capable of estimating the increase of IRI 

value with time and decrease of IRI value after maintenance and rehabilitation). 

(7) Evaluate accuracy and verification of developed performance prediction models for JRCP. 

(8) Perform sensitivity analysis for developed performance models. 

(9) Implement selected performance models. 

5.3 Literature Review 

There were not many smoothness (IRI) models found for JRCP pavements. Some models 

were developed only for specific states of a specific area. The FHWA RPPR study [77] 
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investigated the effect of distress on both serviceability (PSR) and smoothness (IRI) for JRCP. 

The model developed for IRI as part of the RPPR study is as follows: 

𝐼𝑅𝐼  =  99.59 +  2.6098 ∗ 𝐹𝑎𝑢𝑙𝑇𝑇 +  2.2802 ∗ 𝑇 − 𝑐𝑟𝑎𝑐𝑘3 +  1.8407 ∗ 𝑆𝑝𝑎𝑙𝑙  

Where, 

IRI = International Roughness Index, in/mile 

FaulTT = total accumulated joint faulting, in/mile 

T-crack = amount of transverse cracking, number of cracks per mile 

Spall = percentage of joints spalled 

R2
 = 0.61, SEE = 64.11 in/mile, N = 144 

5.4 Data Collection for JRCP Performance Models 

The data were collected from the LTPP database of JRCP, which is GPS-4 [71]. A total 

of 49 GPS-4 JRCP pavement sections are included in the LTPP that are located throughout the 

United States. The IRI measurements are from 1989 to 2017. By averaging the IRI value from 

one run, a dataset was created which has 577 data points. Figure 109 shows the spatial map of 

JRCP sections included in the LTPP database.  

JRCP sections included in the LTPP database are located in two climatic regions (Wet, 

Non-Freeze, and Wet, Freeze). Table 36 shows that 36.37% (18 of 49) sections are in the wet, 

non-freeze climatic region and 63.27% (31 of 49) sections are in the wet, freeze climatic region. 

The IRI data points follow the same statistics, higher in the wet, freeze (69.5%, 401 of 577) 

region than the wet, non-freeze (30.5%, 176 of 577) region.  
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Figure 109 Spatial Map of JRCP Sections in the USA 

Table 36 Distribution of Pavement Sections and IRI Data Points in Different Climatic Region 

Climatic Region 
Number of 
Sections 

% of 
Sections 

Number of Data 
Points 

% of Data Points 

Wet, Non-
Freeze 

18 36.73% 176 30.50% 

Dry, Non-Freeze 0 0.00% 0 0.00% 

Dry, Freeze 0 0.00% 0 0.00% 

Wet, Freeze 31 63.27% 401 69.50% 

Total 49 100.00% 577 100.00% 
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Table 37 shows the distribution of pavement sections and IRI data points by state. 

Minnesota State has the highest eight pavement sections out of 49 and 17.5% IRI data points. 

Though Kansas has only five sections, and it contains the second highest IRI data points of 

13.69%.   

Table 37 Distribution of Pavement Sections and IRI Data Points by States 

State 
Code State Name 

Climatic Zone 
Number of 
Sections 

% of 
Sections 

Number of 
Data Points 

% of Data 
points 

1 Alabama Wet, Non-Freeze 2 4.08% 13 2.25% 

5 Arkansas Wet, Non-Freeze 7 14.29% 57 9.88% 

9 Connecticut Wet, Freeze 1 2.04% 18 3.12% 

10 Delaware Wet, Non-Freeze 1 2.04% 10 1.73% 

17 Illinois Wet, Freeze 2 4.08% 24 4.16% 

18 Indiana Wet, Freeze 2 4.08% 23 3.99% 

20 Kansas Wet, Freeze 5 10.20% 79 13.69% 

21 Kentucky Wet, Freeze 1 2.04% 5 0.87% 

22 Louisiana Wet, Non-Freeze 1 2.04% 6 1.04% 

26 Michigan Wet, Freeze 1 2.04% 18 3.12% 

27 Minnesota Wet, Freeze 8 16.33% 101 17.50% 

28 Mississippi Wet, Non-Freeze 1 2.04% 11 1.91% 

29 Missouri Wet, Freeze 6 12.24% 67 11.61% 

34 New Jersey Wet, Non-Freeze 1 2.04% 13 2.25% 

36 New York Wet, Freeze 2 4.08% 28 4.85% 

39 Ohio Wet, Freeze 1 2.04% 5 0.87% 

42 Pennsylvania Wet, Freeze 1 2.04% 14 2.43% 

48 Texas Wet, Non-Freeze 5 10.20% 66 11.44% 

54 West Virginia Wet, Freeze 1 2.04% 19 3.29% 

Total 49 Sections and 577 Data points 

5.4.1 Database Development 

Output Variables 

IRI is considered as the output variable in the pavement performance modeling process 

for this research. The IRI measurements are from 1989 to 2017. Each section has two types of 
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IRI measurements, IRI inside/left wheel path and IRI outside/right wheel path. A mean 

roughness index Mean IRI is calculated by averaging the IRI inside/left wheel path and IRI 

outside/right wheel path measurements. In each visit date, several IRI measurement runs were 

completed for each section. By averaging the IRI measurement runs, a single IRI measurement 

was obtained for IRI inside/left wheel path, IRI outside/right wheel path, and mean IRI for each 

visit date. By doing this, a dataset was created which has 577 data points for 49 JRCP sections. A 

t-test done in section 4.8.1 showed that IRI outside wheel path (m/km) is significantly higher 

than IRI inside wheel path (m/km) for the JPCP section. Hence, IRI outside wheel path (m/km) 

was used as the output variable for JRCP performance model development. Figure 110 shows the 

IRI Measurements for Outside Wheel Path.  

 

Figure 110 IRI Measurement (Outside Wheel Path) of JRCP Sections 

Input Variable 

The input variables were kept the same as found from the investigation done developing 

JPCP performance models. For the JRCP model, the input variables were collected from the 
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LTPP database corresponded to the output variable (IRI outside wheel path) measurement taken 

date (visit date). The relationship between each input variable and output variable (IRI outside 

wheel path) was studied by creating several plots.  

Initial IRI (Outside Wheel Path) (m/km):  

The initial IRI outside wheel path (m/km) represents the first IRI value measured in the 

outside wheel path for a specific pavement section of the LTPP database. The first measurement 

is usually done when the pavement was built and opened to traffic or the pavement was first 

included in the LTPP study. It indicates the road surface condition at the beginning of the 

analysis period. Initial IRI has a range of a minimum of 1.23 m/km to a maximum of 3.08 m/km. 

Figure 111 shows the plot of the initial IRI outside wheel path (m/km) against the IRI outside 

wheel path (m/km).  

 

Figure 111 Initial IRI vs. IRI Measurement (Outside Wheel Path) of JRCP Sections 
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Age: 

The variable age is calculated by subtracting the year when the section was opened to 

traffic from the year IRI measurement was collected. This variable represents the time pavement 

was expose to climate and traffic loads. Age is also a fundamental variable to be used as an input 

variable to predict pavement performance for future years. The mean pavement age for the 49 

JRCP section is 20 years. But for some pavement sections, some IRI data were collected when 

the pavement age was as little as three years, and for some pavement sections that age was as 

high as 46 years. Figure 112 shows the pavement age when IRI measurements were collected. 

 

Figure 112 Age vs. IRI Measurement (Outside Wheel Path) of JRCP Sections 

Concrete Pavement Thickness (in):  

Concrete pavement thickness represents the thickness of the concrete and steel mesh 

layer in a JRCP pavement section that is laid over the base/subbase layer. This layer is exposed 

to climate and endures the traffic loads throughout pavements life. Concrete layer thickness plays 

an important role in JRCP performance. The average concrete layer thickness is 9.5 in with a 

standard deviation of 0.73 in. The maximum concrete layer thickness is 11.4 in and the minimum 
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is 7.9 in. Figure 113 shows the concrete layer thickness of JRCP sections and IRI outside wheel 

path measurements. 

 

Figure 113 Concrete Pavement Thickness vs. IRI Measurement (Outside Wheel Path) of JRCP 

Sections 

Base/Subbase Thickness (in):  

Base/subbase pavement thickness represents the thickness of the base/subbase layer in a 

JRCP pavement section that is laid over the subgrade layer. Some JRCP sections have both base 

and subbase layers on the other hand some JRCP sections have only a base layer underneath the 

concrete layer, over the subgrade layer. Traffic loads transfer from concrete layer to 

base/subbase layer and this layer is also affected by precipitation. Therefore, base/ subbase 

thickness is an important input variable for JRCP performance modeling. The average 

base/subbase thickness is 5.6 in. The maximum base/subbase thickness is 15 in. 
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Average Contraction Spacing (m) 

The average contraction spacing represents the joint spacing in JRCP sections. This joint 

spacing controls the natural cracks in a pavement section. Therefore, it will be useful to use the 

average contraction spacing of joints as an input variable for JRCP performance modeling. The 

mean average contraction spacing is 13.8 m with a standard deviation of 4.5 m. The maximum 

average contraction spacing is 23.84 m and the minimum is 4.57 m.  

Cumulative ESAL:  

CESAL is the sum of annual ESAL data over the years. ESAL represents a mixed stream 

of traffic of different axle loads and axle configurations predicted over the design or analysis 

period and then converted into an equivalent number of 18,000-lb. single axle loads summed 

over that period. ESAL represents the effects of traffic loads on the pavement over time. In some 

years, the LTPP database did not have ESAL information corresponding to the IRI 

measurements data. Interpolation and extrapolation procedures were applied using known data 

points to compute ESAL for the missing years. Cumulative ESAL represents the cumulative 

traffic load that was endured by the pavement over pavements’ life. CESAL has one of the most 

important effects on pavement deterioration. Hence, it is vital to use in performance modeling. 

CESAL has a mean of 7,148,272 and a standard deviation of 7,686,590. Figure 114 shows the 

CESAL values corresponded to the IRI outside wheel path measurements for JRCP sections 

included in this study. 
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Figure 114 Cumulative ESAL vs. IRI Measurement (Outside Wheel Path) of JRCP Sections 

 A correlation analysis was performed to obtain the Pearson correlation coefficient (r) 

between all variables.  The correlation matrix summarizes the correlation coefficient (r) values 

between all the variables and it is easy to observe if the variables are correlated with each other. 

This correlation coefficient (r) only provides a linear association between variables, if the data is 

not linearly correlated it will have a low correlation value. Table 38 summarizes the descriptive 

statistics of input variables used in this study and the correlation between each input variable and 

the output variable (IRI outside wheel path).   

The four highest correlations between input variables and IRI outside wheel path (m/km) 

were observed with the variable initial IRI (outside wheel path) (m/km) (0.728) followed by 

CESAL (0.285), age (0.251), and concrete pavement thickness (in) (0.249). The lowest 

correlation was with base/subbase thickness (in) (0.017). However, these variables might follow 

a non-linear correlation with IRI outside wheel path (m/km) that cannot be identified by the 
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correlational analysis. Therefore, even though some correlation coefficient values were low, all 

input variables were used in this study for the development of ANN models. 

Table 38 Descriptive Statistics of Input Variables for JRCP Model 

Statistics Mean SD COV Maximum Minimum 

Correlation 
with IRI 
(outside 

wheel path), 
R 

Initial IRI (Outside 
Wheel Path) (m/km) 

1.743 0.330 18.95% 3.08 1.23 0.728 

Age 20 8 40.89% 46 3 0.251 
Concrete Pavement 
Thickness (in.) 

9.495 0.733 7.72% 11.4 7.9 0.249 

Base/Subbase 
Thickness (in) 

5.592 2.777 49.66% 15 0 0.017 

Average Contraction 
Spacing (m) 

13.799 4.483 32.49% 23.84 4.57 0.187 

Cumulative ESAL 7,148,272 7,686,590 107.53% 55,100,663 256,750 0.285 

Some variables were dummy coded as 0 and 1 for modeling purposes. The climatic 

region represents the climate zones defined by the LTPP which consists of four different regions, 

wet non-freeze, dry non-freeze, dry freeze, wet freeze. JRCP sections included in the LTPP GPS-

4 study are only from wet, non-freeze, and wet, freeze climatic zone. The base/subbase materials 

represents the type of base/subbase materials used in the pavement section which consists of two 

types, unbound (granular) or bound (stabilized). For JPCP, model A4a was developed without 

using categorical variable season which turned out to be a better model than model A4 with the 

categorical variable season. Thus, the categorical variable season was not used in the 

development of the JRCP performance model. 
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5.4.2 Maintenance and Rehabilitation Actions 

The t-test in section 4.8.2 established that there is a significant change in IRI value after M&R 

actions are done on a pavement section. Hence, it is important to incorporate pavement M&R 

history in the JRCP performance model. An in-depth study of the M&R history provided in the 

LTPP database for JRCP has been carried out in this research. The process is as follows: 

 The M&R actions (improvement done on pavement) history was collected from the LTPP 

database. The M&R action was provided as IMP_TYPE code that is assigned by the LTPP. 

The description of IMP_TYPE code is described in Table 26 gathered from the LTPP user 

guide [74]. This table contained the type of improvements for both concrete and asphalt 

pavement. For this research, only concrete pavement improvement types (M&R actions) 

were further investigated. 

 The M&R action corresponded to each IRI data point was obtained from Table 26. The 

IMP_TYPE and the description for the type of improvements for concrete pavements are 

described in Table 27. The M&R actions can be characterized in two categories: major M&R 

and local/minor M&R. Table 27 described the designation of M&R categories for the 

different types of improvement [75]. The improvement description and designated M&R 

action category were obtained for each IRI data point using Table 27.  

The CN_Code categorical variable was developed to represent the M&R action done on a 

pavement section. The LTPP database has the Construction Number (CN) corresponded to each 

IRI data point and the description is given in Section 4.7. But this CN is not an accurate 

representation of the improvement action done on pavement. For this reason, this doctoral 
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research assigned CN_Code for each IRI data point based on IRI value improvement, the M&R 

action done before the collection of IRI measurements, and the type of M&R action (major, 

local/minor). Three CN_Code were developed for JRCP pavement to achieve the most accurate 

model that will provide an accurate future prediction of IRI and incorporate the M&R actions in 

the developed model. The developed CN_Code reflects the learning from the development of 

JPCP performance models. The description of each CN_Code is given below: 

(1) The first CN_Code was developed based on the original CN collected from the LTPP 

database corresponded to each IRI data point. If no M&R action (CN1 in the original LTPP 

database) was done, the CN_Code was categorized as ‘0’, and this 0 was continued until an 

M&R action was performed. The first M&R action (CN2 in the original LTPP database) was 

categorized as ‘1’, and this 1 was continued until the end of the section.  

(2) The second CN_Code was also developed based on the original CN collected from the LTPP 

database corresponded to each IRI data point. If no M&R action (CN1 in the original LTPP 

database) was done, the CN_Code was categorized as ‘1’, and this 1 was continued until an 

M&R action was performed. The first M&R action (CN2 in the original LTPP database) was 

categorized as ‘2’, and this 2 was continued until the second M&R action. The second M&R 

action (CN3 in the original LTPP database) was categorized as ‘3’, and this 3 was continued 

until the third M&R action. This CN_Code assignment continued until all the M&R actions 

done on a pavement section were categorized. 

(3) The third and the last CN_Code was also developed based on the IRI value improvement and 

the type of M&R action provided in Table 27. If no M&R action was done and the 
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improvement of IRI value was very low, the CN_Code was categorized as ‘0’, and this 0 

continued until an M&R action was performed or the IRI value improved significantly. The 

first data point found with an M&R action done or a significant improvement of IRI values 

was assigned as ‘1’ CN_Code and this 1 continued until the next  M&R action was 

performed or the IRI value improved significantly. The next data point found with an M&R 

action done or a significant improvement of IRI values was assigned as ‘2’ CN_Code and 

this 2 continued until the next  M&R action was found or the IRI value improved 

significantly. This CN_Code assignment process continued until all the IRI data points were 

categorized for a pavement section. 

5.4.3 Database Summary 

The input and output variables are thoroughly discussed in section 5.4.1. Table 39 shows 

the key input variables for JRCP models. The maintenance and rehabilitation (M&R) history is 

represented as CN_Code. Table 39 also shows the CN_Code used in these models. CN_Code 

descriptions are discussed in section 5.4.2. Three models were tried to find the most accurate 

model that can predict IRI incorporating the M&R history of the pavement sections. 

Table 39 Input Variables Used in JRCP Performance Models 

No. Input Variables Model 1 Model 2 Model 3 

1 
IRI

0
 (Initial IRI 

Outside Wheel Path) 
(m/km) 

Initial IRI Outside 
Wheel Path (m/km) 

Initial IRI Outside 
Wheel Path (m/km) 

Initial IRI Outside 
Wheel Path (m/km) 

2 
Age (Pavement age, 
years) 

Age  Age  Age 

3 
h

concrete 
 

 (Concrete pavement 
h

concrete 
 h

concrete 
 h

concrete 
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No. Input Variables Model 1 Model 2 Model 3 
thickness, in) 

4 
h

base/subbase 
 

 (Base/Subbase 
thickness, in) 

h
base/subbase 

 h
base/subbase 

 h
base/subbase 

 

5 
Average Contraction 
spacing (m) 

Average Contraction 
spacing (m) 

Average 
Contraction 
spacing (m) 

Average 
Contraction 
spacing (m) 

6 
CESAL (Cumulative 
Equivalent Single Axel 
Load) 

CESAL CESAL CESAL 

7 

Base/Subbase 
Materials (Categorical 
variable for 
Base/Subbase 
materials) 

Unbound (Granular) 
Base/ Subbase  
Bound (Treated) 
Base/ Subbase 

Unbound 
(Granular) Base/ 
Subbase  
Bound (Treated) 
Base/ Subbase 

Unbound 
(Granular) Base/ 
Subbase  
Bound (Treated) 
Base/ Subbase 

8 

Climatic Region 
(Categorical variable 
for LTPP climatic 
region) 

Wet, Non-Freeze 
Wet, Freeze 

Wet, Non-Freeze 
Wet, Freeze 

Wet, Non-Freeze 
Wet, Freeze 

9 
CN (Construction 
Number, variable for M 
& R) 

CN Categorical: 
No M&R Action 0 
M&R Action 1 

CN Original 
Continuous: 
(1,1,2,2…) 
No M&R Action 1 
M&R Action 
2,3,4…. 

CN Continuous: 
(1,1,2,2,3,3,…..) 
(Based on IRI 
value improvement 
and the type of 
M&R action 
provided in Table 
27) 
No IRI 
Improvement 
and/or M&R 
Action 1 
IRI Improvement 
and/or M&R 
Action 2,3,4 
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5.5 ANN Models 

5.5.1 ANN Model Architecture 

In the final research, using the developed model database, three models were tried with 

the same input variables from Table 39 only changing CN_Code described. The output variable 

is IRI outside wheel path (m/km) for all three models. These three models have six continuous 

variables, two categorical variables, and CN_Code. 

5.5.2 ANN Model Selection 

Three best performing networks from each model (Model 1, Model 2, and Model 3) were 

selected based on statistical measures such as minimum values of MARE, Averaged-Squared- 

ASE, and maximum values of R2. A total of 577 datasets were used to build the desired database; 

297, 140, and 140 subdatabases were used, respectively, for training, testing, and validation 

purposes. Datasets that include minimum and maximum values of each variable were included in 

the training phase for the network to represent the characteristics of the response. The maximum 

and minimum ranges of each input/output variable for ANN model development were chosen on 

purpose to be wider than their actual ranges for better mathematical mapping [54].  

Model 1 

The inputs for Model 1 are initial IRI, age, concrete pavement thickness, base/subbase 

thickness, average contraction spacing, CESAL, base/subbase materials type, climatic region, 

and construction number and output is IRI (outside wheel path) (m/km) as shown in Table 39. 

The CN_Code used in this model is based on the original CN collected from the LTPP database. 

No M&R action was assigned as 0 and M&R actions were assigned as 1. This CN_Code is a 



 

181 

 

categorical variable. Four model networks were chosen after training and testing to compare the 

accuracy of the models after validation and all data. Table 40 shows the statistical accuracy of 

the four chosen networks. Based on the ASE, MARE, and R2, the chosen best model network is 

11-19-20000 (Input Variables-FinalHN-Iteration). The best network’s ASE values for training, 

testing, validation, and all data are 0.00395, 0.00465, 0.00413, and 0.00089, respectively. 

Though three other model networks have lower ASE in validation, the chosen best model 

network has the lowest ASE in testing, training, and all data. R2 values for this model are as 

follows: 0.953 for the training, 0.695 for the testing, 0.720 for the validation, and 0.934 for all 

data. The chosen model network's R2 value is highest for training, testing, and all data. The final 

architecture of this model is 11-19-1, where 11 is the number of inputs, 19 is the number of 

hidden nodes and 1 is the number of output. 

Table 40 Statistical Accuracy Measures of Four Chosen Model Networks for Model 1 

InitialHN-FinalHN-Iteration 
Best Model 

11-19-20000 
3-19-20000 6-17-20000 7-15-20000 

Training 

MARE 4.871 5.464 5.569 6.039 

R² 0.953 0.943 0.938 0.935 

ASE 0.00395 0.00450 0.00614 0.00520 

Testing 

MARE 8.226 8.304 10.444 10.365 

R² 0.695 0.673 0.562 0.630 

ASE 0.00465 0.00536 0.00705 0.00620 

Validation 

MARE 8.501 8.084 9.188 9.039 

R² 0.720 0.771 0.738 0.761 

ASE 0.00413 0.00333 0.00404 0.00344 
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InitialHN-FinalHN-Iteration 
Best Model 

11-19-20000 
3-19-20000 6-17-20000 7-15-20000 

All Data 

MARE 4.841 5.221 5.930 5.769 

R² 0.934 0.927 0.910 0.909 

ASE 0.00089 0.00098 0.00120 0.00122 

Final Structure 

(Input Variables-FinalHN-Iteration) 
11-19-20000 11-19-20000 11-17-19100 11-15-20000 

 

Model 2 

The inputs and output of this model are very similar to model 1. The CN_Code used in 

this model is also based on the original CN collected from the LTPP database. No M&R action 

was assigned as 1 and M&R actions were assigned as 2, 3, and so on. This CN_Code is a 

continuous variable where 2, 3 is the frequency of M&R actions done on pavement. Five model 

networks were chosen after training and testing to compare the accuracy of the models after 

validation and all data. Table 41 shows the statistical accuracy of the five chosen networks. 

Based on the ASE, MARE, and R2, the chosen best model network is 11-18-20000 (Input 

Variables-FinalHN-Iteration). The best network’s ASE values for training, testing, validation, 

and all data are 0.00058, 0.00278, 0.00353, and 0.00104, respectively. Though the 11-19-20000 

network has lower ASE in validation and all data, the chosen best model network has the lowest 

ASE in testing and training. R2 values for this model are as follows: 0.961 for the training, 0.768 

for the testing, 0.751 for the validation, and 0.922 for all data. The chosen model network’s R2 

value is the highest for testing, and validation. The MARE value (4.491) for the chosen best 
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model network is the lowest in training.  The final architecture of this model is 11-18-1, where 

11 is the number of inputs, 18 is the number of hidden nodes and 1 is the number of output. 

Table 41 Statistical Accuracy Measures of five Chosen Model Networks for Model 2 

InitialHN-FinalHN-Iteration 
Best Model 
8-18-20000 

13-18-20000 1-18-8100 6-17-20000 4-19-20000 

Training 

MARE 4.491 4.607 4.556 4.578 4.908 

R² 0.961 0.953 0.960 0.962 0.948 

ASE 0.00058 0.00069 0.00064 0.00058 0.00077 

Testing 

MARE 8.197 8.469 8.342 8.177 8.526 

R² 0.768 0.763 0.755 0.746 0.736 

ASE 0.00278 0.00282 0.00296 0.00312 0.00316 

Validation 

MARE 9.118 9.850 10.587 10.218 8.204 

R² 0.751 0.706 0.648 0.636 0.735 

ASE 0.00353 0.00410 0.00546 0.00583 0.00346 

All Data 

MARE 5.419 6.051 6.709 5.516 5.326 

R² 0.922 0.903 0.896 0.919 0.925 

ASE 0.00104 0.00130 0.00143 0.00108 0.00101 

Final Structure 
(Input Variables-FinalHN-

Iteration) 
11-18-20000 11-18-20000 11-18-8100 11-17-20000 11-19-20000 

 

Model 3 

The inputs and outputs of this model are very similar to model 1 and model 2. The 

CN_Code used in this model was developed based on the IRI value improvement and the type of 

M&R action provided in Table 27. If no M&R action was done and the improvement of IRI 

value was very low, the CN_Code was categorized as ‘1’. If M&R action was done or there was 

a significant improvement of IRI value, the CN_Code was assigned as 2, 3, and so on. This 

CN_Code is a continuous variable where 2, 3 is the frequency of M&R actions and/or IRI value 
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improvements. Five model networks were chosen after training and testing to compare the 

accuracy of the models after validation and all data. Table 42 shows the statistical accuracy of 

the five chosen networks. Based on the ASE, MARE, and R2, the chosen best model network is 

11-19-20000 (Input Variables-FinalHN-Iteration). The best network’s ASE values for training, 

testing, validation, and all data are 0.00052, 0.00183, 0.00192, and 0.00064, respectively. The 

chosen best model network has the lowest ASE in validation. R2 values for this model are as 

follows: 0.965 for the training, 0.852 for the testing, 0.853 for the validation, and 0.952 for all 

data. The chosen model network’s R2 value is the highest for validation.  The final architecture 

of this model is 11-19-1, where 11 is the number of inputs, 19 is the number of hidden nodes and 

1 is the number of output. 

Table 42 Statistical Accuracy Measures of five Chosen Model Networks for Model 3 

InitialHN-FinalHN-
Iteration 

4-19-20000 5-19-20000 
Best Model 
8-19-20000 

13-19-20000 17-19-20000 

Training 

MARE 4.041 4.133 4.217 3.904 5.949 

R² 0.963 0.963 0.965 0.969 0.937 

ASE 0.00054 0.00053 0.00052 0.00046 0.00103 

Testing 

MARE 6.909 6.596 7.249 7.332 7.926 

R² 0.873 0.873 0.852 0.849 0.883 

ASE 0.00155 0.00156 0.00183 0.00189 0.00180 

Validation 

MARE 7.387 8.046 7.430 8.082 8.042 

R² 0.762 0.788 0.853 0.822 0.772 

ASE 0.00330 0.00288 0.00192 0.00240 0.00329 

All Data 
MARE 4.701 4.200 4.358 4.548 5.231 

R² 0.941 0.954 0.952 0.945 0.930 
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InitialHN-FinalHN-
Iteration 

4-19-20000 5-19-20000 
Best Model 
8-19-20000 

13-19-20000 17-19-20000 

ASE 0.00078 0.00061 0.00064 0.00074 0.00094 
Final Structure 

(Input Variables-
FinalHN-Iteration) 

11-19-20000 11-19-20000 11-19-20000 11-19-20000 11-19-20000 

Three best performing networks from each model (Model 1, Model 2, and Model 3) are 

showed in Table 43. Model 3 has the lowest ASE, MARE, and highest R2 for training, testing, 

validation, and all dataset. Thus, model 3 has been chosen as the best network. 

Table 43 Best Networks from Each Model 

Models Model 1 Model 2 
Best Model 

Model 3 
Structure 

Initial Nodes-Final Nodes-
Iterations 

11-19-20000 8-18-20000 8-19-20000 

Training 

MARE 4.871 4.491 4.217 

R² 0.953 0.961 0.965 
ASE 0.00395 0.00058 0.00052 

Testing 

MARE 8.226 8.197 7.249 

R² 0.695 0.768 0.852 

ASE 0.00465 0.00278 0.00183 

Validation 

MARE 8.501 9.118 7.430 

R² 0.720 0.751 0.853 

ASE 0.00413 0.00353 0.00192 

All Data 

MARE 4.841 5.419 4.358 

R² 0.934 0.922 0.952 

ASE 0.00089 0.00104 0.00064 
Final Structure 

Input Variables-Final Nodes-
Iterations 

11-19-20000 11-18-20000 11-19-20000 
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5.5.3 ANN Model Results 

The discussion in the previous section demonstrates that model 3 is the best performing 

network based on all statistical measures (ASE, MARE, and R2 value). The final model structure 

has 11 inputs of independent variables, 19 hidden nodes, and 1 output (11-19-1) (Figure 115).  

The comparison of the prediction accuracy measures for ANN model 3 is graphically presented 

in Figure 116. 

 

Figure 115 Network Architecture for Best Model (Model 3, Structure: 11-19-1) 
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Figure 116 Observed IRI (Outside Wheel Path) (m/km) vs. Predicted IRI (Outside Wheel Path) 

(m/km) 

The 577 data points are assigned section sequence numbers from 1 to 577. Figure 117 

shows the observed and Model 3 predicted IRI outside wheel path (m/km) values. From Figure 

117, it is demonstrated that the predicted IRI has apprehended most of the variability in the IRI 

observed values.   

 

Figure 117 Observed and Predicted IRI (Outside Wheel Path) (m/km) Plot 
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Figure 118 shows the observed and predicted IRI for Section 20-4052, in Kansas. The 

predicted values follow the observed values closely. The difference in the mean values of 

observed and predicted is 0.6%. 

 

Figure 118 Observed and Predicted IRI (Outside Wheel Path) (m/km) plot of JRCP section in 

Kansas 

5.5.4 Sensitivity Analysis 

A sensitivity analysis was carried out to evaluate the significance of the inputs on the 

output. A GUI was developed by importing all the final ANN model parameters into an excel 

spreadsheet. To examine the models, some input was changed while keeping the other inputs 

constant. In this paper, the sensitivity analysis of model 3 is presented since it is the best model 

in terms of statistical accuracy measures. All model 3 inputs were kept constant except age and 

CESAL that were changed to generate predictions of IRI. The CESAL values were calculated 

using the previous year’s data. A randomly selected section with one M&R action done was used 

to show the sensitivity analysis. Figure 119 that the IRI prediction model follows the trend of the 
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observed values. Additionally, it can estimate the increase of IRI values with time and decrease 

of IRI value after M&R action. Usually, without any rehabilitation, pavement deteriorates over 

time, therefore, IRI increases.  

 

Figure 119 ANN Future Prediction Plot of IRI (Outside Wheel Path) (m/km) for JRCP Section in 

Kansas 

Figure 119 shows that with the increase of CESAL value, the IRI value increases more 

than 2.68 m/km when a pavement is considered as very poor condition [10]. At this point, a new 

M&R action should be done to improve pavement performance. By changing CN_Code 

frequency using GUI, a future M&R action was provided in the section. Figure 120 shows that 

with CESAL value increasing over time in the future, the IRI value decreased when future M&R 

action was done, which means pavement condition improved. 
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Figure 120 ANN Future Prediction Plot of IRI (Outside Wheel Path) (m/km) after M&R Action 

5.6 Multiple Linear Regression Analysis for JRCP Performance Model 

A MLR analysis was conducted to develop the JRCP performance model. This MLR 

model will be compared with the best model developed using the ANN modeling technique. The 

best performing model was model 3 for JRCP discussed in section 5.5.3. The input and output 

variables are the same as model 3. The input variables are initial IRI, age, concrete pavement 

thickness, base/subbase thickness, average contraction spacing, CESAL, base/subbase materials 

type, climatic region, and CN_Code. The output variable is IRI (outside wheel path) (m/km). The 

input variables have six continuous variables, two categorical variables, and CN_Code. The 

CN_Code was developed based on the IRI value improvement and the type of M&R action 

provided in Table 27. If no M&R action was done and the improvement of IRI value was very 

low, the CN_Code was categorized as ‘1’. If M&R action was done or there was a significant 
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improvement of IRI value, the CN_Code was assigned as 2, 3, and so on. This CN_Code is a 

continuous variable where 2, 3 is the frequency of M&R actions and/or IRI value improvements.  

IRI (outside wheel path) (m/km) was normally distributed. Standard residuals were 

normally distributed. Scatterplots were analyzed, and no curvilinear relationships between the 

criterion variable and predictor variables or heteroscedasticity were evident. There was a 

statistically significant relationship between input variables and output variable, F (10, 576) = 

78.34, p < 0.001. The MLR model accounted for 58% of the variance in the model with R2 = 

0.581. 

5.6.1 MLR Model Results and Comparison between ANN Model and MLR Model 

The developed MLR model equation is given below: 

𝐼𝑅𝐼 (𝑂𝑢𝑡𝑠𝑖𝑑𝑒 𝑊ℎ𝑒𝑒𝑙 𝑃𝑎𝑡ℎ)(𝑚 𝑘𝑚⁄ )

= 1.215 + 1.070 × 𝐼𝑅𝐼  + 0.004 × 𝐴𝑔𝑒 + 0 × 𝑊𝑒𝑡, 𝑁𝑜𝑛 − 𝐹𝑟𝑒𝑒𝑧𝑒

+ [(−0.081) × 𝑊𝑒𝑡, 𝐹𝑟𝑒𝑒𝑧𝑒] + [(−0.154) × 𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟 𝐵𝑎𝑠𝑒/ 𝑆𝑢𝑏𝑏𝑎𝑠𝑒 

+ [(−0.118) × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑 𝐵𝑎𝑠𝑒/ 𝑆𝑢𝑏𝑏𝑎𝑠𝑒 + [(−0.101) × 𝐶𝑁 ]

+ [(−0.085) × ℎ ] + 0.003 × ℎ /

+ [(−0.016) × 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 (𝑚)] + 8.191 × 10 × 𝐶𝐸𝑆𝐴𝐿 

Where, IRI0 = Initial IRI Outside Wheel Path (m/km); Wet, Non-Freeze and Wet, Freeze = 

Categorical variable for climatic region; Granular Base/Subbase, Treated Base/Subabse = 

Categorical variable for base/subbase material type; CN_Code = Continuous variable for 

Maintenance and Rehabilitation (M&R) frequency; hconcrete = Concrete pavement thickness, in; 

hbase/subbase = Base/Subbase thickness, in; CESAL = Cumulative Equivalent Single Axel Load. 
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The comparison of the prediction accuracy measures for the MLR model is graphically 

presented in Figure 121. From Figure 121, it is evident that the model prediction is scattered and 

far away from the line of equality.  The MLR model accounted for only 58% variability whereas 

the ANN model accounted for 95% variability in the model.   

 

Figure 121 Observed IRI (Outside Wheel Path) (m/km) vs. Predicted IRI (Outside Wheel Path) 

(m/km) 

The 577 data points are assigned section sequence numbers from 1 to 577. Figure 122 

shows the observed and MLR model predicted IRI (outside wheel path) values. From Figure 122, 

it is demonstrated that the predicted IRI could not apprehend most of the variability in the IRI 

observed values.   



 

193 

 

 

Figure 122 Observed and Predicted IRI (Outside Wheel Path) (m/km) Plot 

Figure 123 shows the observed and predicted IRI for Section 20-4052, in Kansas. The 

predicted values do not follow the observed values closely. The difference in the mean values of 

observed and predicted is 13.1% whereas the difference is 0.6% for ANN Model.  

 

Figure 123 Observed and Predicted IRI (Outside Wheel Path) (m/km) Plot of JRCP Section in 

Kansas 
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5.7 Concluding Remarks 

Based on the materials discussed in this chapter, the key concluding remarks are 

summarized below:  

 The LTPP database contained 49 JRCP sections under the GPS-4 study. All the pavements 

are in the wet, freeze and wet, non-freeze climatic regions. 

 An in-depth study of M&R history collected from the LTPP database for JRC pavement 

produced several CN_Code. The best model was found with the CN_Code developed based 

on the IRI value improvement and the type of M&R action provided in Table 27 and the 

variable is a continuous variable where number increment indicates the frequency of M&R 

action provided in the pavement section.  

 The best performing ANN model has a network structure of 11-19-1 (i.e. 11 inputs, 19 

hidden nodes, and 1 output). The ANN model to predict IRI has an R2 value of 0.95. The 

total data points used to develop the IRI prediction ANN model were 577.  

 The developed IRI prediction model can successfully characterize the behavior (i.e. the 

increase of IRI values with time and decrease of IRI value after maintenance and 

rehabilitation). The ANN model can be used to provide future M&R action by changing 

CN_Code frequency and the model successfully distinguishes the behavior of IRI (i.e. 

decrease of IRI after M&R action and increase of IRI with time as CESAL increases).  

 The developed MLR model to predict IRI has an R2 value of 0.58. The ANN model shows 

better accuracy compared to the MLR model developed in this study. The ANN model 
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accounted for 95% variability in the model whereas the MLR model accounted for only 58% 

variability.    
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CHAPTER VI: DEVELOPMENT OF PERFORMANCE MODELS FOR 

CONTINUOUS REINFORCED CONCRETE PAVEMENTS 

6.1 Background 

Continuously reinforced concrete pavement (CRCP) is becoming increasingly popular 

across the United States and around the world. It has the potential to provide a long-term service 

life under heavy traffic loadings and challenging environmental conditions, provided proper 

design and quality construction practices are utilized.  A reasonably regular transverse cracking 

pattern with desirable crack spacing (2 to 8 ft (0.6 to 2.4 m)) is a good identifier for a well-

performing CRC pavement [78]. This in turn keeps the cracks tight and provides a high level of 

load transfer across the cracks. Figure 124 shows the controlled cracks and embedded 

reinforcement steel in a CRC pavement [78].  

 

Figure 124 Cross-section and top view of Continuously Reinforced Concrete Pavement [78] 
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6.2 Methodology 

The methodology of developing the CRCP performance model is similar to the JPCP 

performance model described in section 4.2. The model development process for CRCP is, as 

follows: 

(1) Conduct a literature review of past research studies to identify independent and categorical 

variables that influence pavement performance. 

(2) Assemble databases for JRCP model development from the LTPP database, which must 

include the variables identified in step (1). 

(3) Evaluate the quality of databases and identify missing/erroneous data items. 

(4) Develop procedures for estimating important missing data in the time series.  

(5) Develop pavement performance models using ANN and multiple linear regression modeling 

techniques.  

(6) Select the appropriate IRI model form (should be capable of estimating the increase of IRI 

value with time and decrease of IRI value after maintenance and rehabilitation). 

(7) Evaluate accuracy and verification of developed performance prediction models for JRCP. 

(8) Perform sensitivity analysis for developed performance models. 

(9) Implement selected performance models. 

6.3 Literature Review 

The literature review related to smoothness (IRI) prediction modeling for CRCP 

pavement are discussed below:  
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In the MEPDG study of NCHRP 1–37 A [15], the CRCP smoothness model was 

developed using distress variables to be compatible with the other distress models that will be 

used in the pavement design. The model developed for predicting the smoothness of CRCP 

pavements is as follows: 

IRI = IRII + 0.003*TC + 0.008*PUNCH + 0.45*SF + 0.2*PATCH (21) 

N = 94; R2 = 60 percent; SEE = 0.23 m/km 

where 

IRII = initial IRI, m/km; TC = number of medium- and high-transverse cracks/km; PUNCH = 

number of medium- and high-severity punchouts/km; PATCH = percentage pavement surface 

with patching (M-H severity flexible and rigid); Site Factor (SF) = 

Age*(1+FI)*(1+P200)/1000000; Age = pavement age in years; FI = freezing index, oC days; and  

P200 = percent subgrade material passing the 0.075-mm sieve 

Johnston and Surdahl [79] analyzed the LTPP CRC data by using multiple regression 

techniques. The database used in this study contained 85 CRC pavement sections from 29 states 

across the U.S. The study found significant correlations between cracks and steel depth, cracks 

and steel size, and cracks and pavement thickness.  

Gharaibeh et al. [80] reviewed the design and performance of continuously reinforced 

concrete pavement (CRCP) in Illinois. The study investigated the effect of key design and 

construction parameters on long-term CRCP performance by using a database based on field 

surveys conducted from 1977 to 1994 compiled by the Illinois Department of Transportation. 

The study found that the following variables have significant effects on CRCP performance: 
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longitudinal reinforcement content (greatest effect of all variables), slab thickness (also very 

significant), traffic load applications, depth of reinforcement, base type, and D-cracking of 

concrete. The study also found that CRCP sections with a slab 178 mm (7 in.) thick and steel 

content less than 0.6 percent developed the most structural failures and CRCP sections with a 

slab 254 mm (10 in.) thick and steel content from 0.7 to 0.8 percent developed the fewest 

failures.  

Yaserar et al. [50] developed a performance model for CRC pavement using the ANN 

modeling technique for Mississippi. This study used maintenance and rehabilitation actions as an 

input in the model. The database used in this study contained 69 CRCP pavement sections that 

resulted in 212 datasets from 2010 to 2018. The ANN model was trained using 25% data, then 

tested with 25% data and the other 25% of data was employed to validate the model by 

comparing ANN predicted IRI and measured IRI. The study developed a model employing an 

11-18-1 ANN structure with the accuracy of 0.0012 ASE, 5.923 MARE, and 0.872 R2 statistical 

measures.  

6.4 Data Collection for CRCP Performance Models 

The data were collected from the LTPP database of CRCP, which is GPS-5 [71]. A total 

of 53 GPS-5 CRCP pavement sections are included in the LTPP that are located throughout the 

United States. The IRI measurements are from 1989 to 2017. By averaging the IRI value from 

one run, a dataset was created which has 575 data points. Figure 125 shows the spatial map of 

CRCP sections included in the LTPP database. CRCP sections included in the LTPP database are 

located in four climatic regions. Table 44 shows that 60.38% (32 of 53) sections are in the wet, 
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non-freeze climatic region and 28.3% (15 of 53) sections are in the wet, freeze climatic region. 

The IRI data points follow the same statistics, higher in wet, non-freeze (60.7%, 349 of 575) 

region than wet, freeze (25.74%, 148 of 575) region. 

 

Figure 125 Spatial Map of CRCP Sections in the USA 

Table 44 Distribution of Pavement Sections and IRI Data Points in Different Climatic Region 

Climatic Region 
Number of 
Sections 

% of 
Sections 

Number of 
Data Points 

% of Data 
Points 

Wet, Non-Freeze 32 60.38% 349 60.70% 

Dry, Non-Freeze 5 9.43% 64 11.13% 

Dry, Freeze 1 1.89% 14 2.43% 

Wet, Freeze 15 28.30% 148 25.74% 

Total 53 100.00% 575 100.00% 
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Table 45 shows the distribution of pavement sections and IRI data points by state. Texas 

has the highest 13 pavement sections out of 53 and 25.39% (146 of 575) IRI data points. Oregon 

has 4 sections and it contains the second highest IRI data points of 12.35% (71 of 575).   

Table 45 Distribution of Pavement Sections and IRI Data Points by States 

State 
Code 

State Name Climatic Zone 
Number of 
Sections 

% of 
Sections 

Number of 
Data Points 

% of Data 
points 

1 Alabama Wet, Non-Freeze 1 1.89% 8 1.39% 

4 Arizona Dry, Non-Freeze 1 1.89% 10 1.74% 

5 Arkansas Wet, Non-Freeze 2 3.77% 20 3.48% 

10 Delaware Wet, Non-Freeze 1 1.89% 6 1.04% 

13 Georgia Wet, Non-Freeze 1 1.89% 6 1.04% 

17 Illinois Wet, Freeze 3 5.66% 38 6.61% 

19 Iowa Wet, Freeze 2 3.77% 22 3.83% 

24 Maryland Wet, Non-Freeze 1 1.89% 12 2.09% 

26 Michigan Wet, Freeze 1 1.89% 7 1.22% 

28 Mississippi Wet, Non-Freeze 3 5.66% 22 3.83% 

29 Missouri Wet, Freeze 1 1.89% 10 1.74% 

31 Nebraska Wet, Freeze 1 1.89% 6 1.04% 

37 
North 
Carolina 

Wet, Non-Freeze 1 1.89% 10 1.74% 

38 North Dakota Wet, Freeze 1 1.89% 7 1.22% 

40 Oklahoma Wet, Non-Freeze 3 5.66% 35 6.09% 

41 Oregon 
Wet, Non-Freeze, 
Dry, Non-Freeze 

4 7.55% 71 12.35% 

42 Pennsylvania Wet, Freeze 2 3.77% 20 3.48% 

45 
South 
Carolina 

Wet, Non-Freeze 3 5.66% 23 4.00% 

46 South Dakota 
Wet, Freeze, Dry, 
Freeze 

3 5.66% 39 6.78% 

48 Texas 
Wet, Non-Freeze, 
Dry, Non-Freeze 

13 24.53% 146 25.39% 

51 Virginia Wet, Non-Freeze 3 5.66% 44 7.65% 

55 Wisconsin Wet, Freeze 2 3.77% 13 2.26% 

Total 53 Sections and 575 Data points 
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6.4.1 Database Development 

Output Variables 

IRI is considered as the output variable in the pavement performance modeling process 

for this research. The IRI measurements are from 1989 to 2017. Each section has two types of 

IRI measurements, IRI inside/left wheel path and IRI outside/right wheel path. A mean 

roughness index Mean IRI is calculated by averaging the IRI inside/left wheel path and IRI 

outside/right wheel path measurements. In each visit date, several IRI measurement runs were 

completed for each section. By averaging the IRI measurement runs, a single IRI measurement 

was obtained for IRI inside/left wheel path, IRI outside/right wheel path, and mean IRI for each 

visit date. By doing this, a dataset was created which has 575 data points for 53 CRCP sections. 

Figure 126 shows the IRI Measurements for Inside Wheel Path and Outside Wheel Path. 

 

Figure 126 IRI Measurement (Outside Wheel Path) of CRCP Sections 

Input Variables 

The input variables were kept similar to JPCP performance models. The literature review 

shows the properties related to reinforcement play an important role in CRCP performance. Clear 
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cover of concrete layer and steel density were included for the CRCP performance model. For 

the CRCP performance model, the input variables were collected from the LTPP database 

corresponded to the output variable (IRI outside wheel path) measurement taken date (visit date). 

The relationship between each input variable and output variable (IRI outside wheel path) was 

studied by creating several plots.  

Initial IRI (Outside Wheel Path) (m/km):  

The initial IRI outside wheel path (m/km) represents the first IRI value measured in the 

outside wheel path for a specific pavement section of the LTPP database. The first measurement 

is usually done when the pavement was built and opened to traffic or the pavement was first 

included in the LTPP study. It indicates the road surface condition at the beginning of the 

analysis period. Initial IRI has a range of a minimum of 0.73 m/km to a maximum of 2.85 m/km. 

Figure 127 shows the plot of the initial IRI outside wheel path (m/km) against IRI outside wheel 

path (m/km).  

 

Figure 127 Initial IRI vs. IRI Measurement (Outside Wheel Path) of CRCP Sections 
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Age: 

The variable age is calculated by subtracting the year when the section was opened to 

traffic from the year IRI measurement was collected. This variable represents the time pavement 

was expose to climate and traffic loads. Age is also a fundamental variable to be used as an input 

variable to predict pavement performance for future years. The mean pavement age 53 CRCP 

section is 20 years. But for some pavement sections, some IRI data were collected when the 

pavement age was as little as one year, and for some pavement sections that age was as high as 

43 years. Figure 128 shows the pavement age when IRI measurements were collected. 

 

Figure 128 Age vs. IRI Measurement (Outside Wheel Path) of CRCP Sections 

Concrete Pavement Thickness (in):  

Concrete pavement thickness represents the thickness of concrete and steel mesh layer in 

a CRC pavement section that is laid over the base/subbase layer. This layer is exposed to climate 

and endures the traffic loads throughout pavements life. Concrete pavement thickness plays an 

important role in CRCP performance. The average concrete layer thickness is 9.02 in with a 
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standard deviation of 1.31 in. The maximum concrete layer thickness is 12.8 in and the minimum 

is 6.2 in. Figure 129 shows the concrete layer thickness of CRCP sections and IRI outside wheel 

path measurements.  

Base/Subbase Thickness (in):  

Base/subbase pavement thickness represents the thickness of the base/subbase layer in a 

CRC pavement section that is laid over the subgrade layer. Some CRCP sections have both base 

and subbase layers underneath the concrete layer, over the subgrade layer. Traffic loads transfer 

from concrete layer to base/subbase layer and this layer is also affected by precipitation. 

Therefore, base/ subbase thickness is an important input variable for CRCP performance 

modeling. The average base/subbase thickness is 5.304 in. The maximum base/subbase thickness 

is 15.1 in and the minimum thickness is 1.6 in. 

 

Figure 129 Concrete Pavement Thickness vs. IRI Measurement (Outside Wheel Path) of CRCP 

Sections 
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Depth of Concrete Cover to Reinforcement (in) 

Depth of concrete cover to reinforcement (in) or clear cover represents the space between 

the concrete top to reinforcement. The mean clear cover is 3.87 in. with a standard deviation of 

0.74 in. The maximum clear cover is 5.5 in and the minimum is 2.5 in. Figure 130 shows the 

depth of concrete cover to reinforcement of CRCP sections and IRI outside wheel path 

measurements. 

 

Figure 130 Depth of Concrete Cover to Reinforcement vs. IRI Measurement (Outside Wheel 

Path) of CRCP Sections 

Design Percentage of Longitudinal Steel  

The design percentage of longitudinal steel represents the steel density in a CRCP 

section. The amount of steel has a profound effect on the strength of the concrete pavement. 

Therefore, it will be useful to use the steel density as an input variable for CRCP performance 

modeling. The mean steel density is 0.61 percent with a standard deviation of 0.1 percent. The 
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maximum steel density is 1.16 percent and the minimum is 0.5 percent. Figure 131 shows the 

steel density and IRI outside wheel path measurements. 

 

Figure 131 Design Percentage of Longitudinal Steel vs. IRI Measurement (Outside Wheel Path) 

of CRCP Sections 

Cumulative ESAL:  

CESAL is the sum of annual ESAL data over the years. ESAL represents a mixed stream 

of traffic of different axle loads and axle configurations predicted over the design or analysis 

period and then converted into an equivalent number of 18,000-lb. single axle loads summed 

over that period. ESAL represents the effects of traffic loads on the pavement over time. In some 

years, the LTPP database did not have ESAL information corresponding to the IRI 

measurements data. Interpolation and extrapolation procedures were applied using known data 

points to compute ESAL for the missing years. Cumulative ESAL represents the cumulative 

traffic load that was endured by the pavement over pavements’ life. CESAL has one of the most 
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important effects on pavement deterioration. Hence, it is vital to use in performance modeling. 

CESAL has a mean of 10,031,067 and a standard deviation of 12,019,369. Figure 132 shows the 

CESAL values corresponded to the IRI outside wheel path measurements for JPCP sections 

included in this study. 

 

Figure 132 Cumulative ESAL vs. IRI Measurement (Outside Wheel Path) of CRCP Sections 

A correlation analysis was performed to obtain the Pearson correlation coefficient (r) 

between all variables.  The correlation matrix summarizes the correlation coefficient (r) values 

between all the variables and it is easy to observe if the variables are correlated with each other. 

This correlation coefficient (r) only provides a linear association between variables, if the data is 

not linearly correlated it will have a low correlation value. Table 46 summarizes the descriptive 

statistics of input variables used in this study and the correlation between each input variable and 

the output variable (IRI outside wheel path).   
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The three highest correlations between input variables and IRI outside wheel path (m/km) 

were observed with the variable initial IRI (outside wheel path) (m/km) (0.888) followed by age 

(0.217), and steel density (-0.208). Other variables show low correlation coefficient (r) values, 

which means they are not linearly correlated with the output variable. However, these variables 

might follow a non-linear correlation with IRI outside wheel path (m/km) that cannot be 

identified by the correlational analysis. Therefore, even though some correlation coefficient 

values were low, all input variables were used in this study for the development of ANN models. 

Table 46 Descriptive Statistics of Input Variables for CRCP Model 

Statistics Mean SD COV Maximum Minimum 

Correlation 
with IRI 
(outside 
wheel 

path), R 
Initial IRI (Outside 
Wheel Path) (m/km) 

1.560 0.547 35.09% 2.85 0.73 0.888 

Age 20 9 45.39% 43 1 0.217 
Concrete Pavement 
Thickness (in.) 

9.021 1.310 14.52% 12.8 6.2 -0.166 

Base/Subbase 
Thickness (in) 

5.304 2.939 55.41% 15.1 1.6 -0.147 

Depth of Concrete 
cover to 
reinforcement (in) 

3.869 0.739 19.11% 5.5 2.5 -0.025 

Design percentage 
of longitudinal steel 

0.610 0.095 15.63% 1.16 0.5 -0.208 

Cumulative ESAL 10,031,068 12,019,369 119.82% 81,723,010 0 -0.106 

Some variables were dummy coded as 0 and 1 for modeling purposes. The climatic 

region represents the climate zone defined by the LTPP which consists of four different regions, 

wet non-freeze, dry non-freeze, dry freeze, wet freeze. The base/subbase materials represent the 

type of base/subbase materials used in the pavement section which consists of two types, 

unbound (granular) or bound (stabilized). For JPCP, model A4a was developed without using 
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categorical variable season which turned out to be a better model than model A4 with the 

categorical variable season. Thus, the categorical variable season was not used in the 

development of the CRCP performance model. 

6.4.2 Maintenance and Rehabilitation Actions 

The t-test in section 4.8.2 established that there is a significant change in IRI value after 

M&R actions are done on a pavement section. Hence, it is important to incorporate pavement 

M&R history in the CRCP performance model. An in-depth study of M&R history provided in 

the LTPP database for CRCP has been carried out in this research. The process is as follows: 

 The M&R actions (improvement done on pavement) history was collected from the LTPP 

database. The M&R action was provided as IMP_TYPE code that is assigned by the LTPP. 

The description of IMP_TYPE code is described in Table 26 gathered from the LTPP user 

guide [74]. This table contained the type of improvements for both concrete and asphalt 

pavement. For this research, only concrete pavement improvement types (M&R actions) 

were further investigated. 

 The M&R action corresponded to each IRI data point was obtained from Table 26. The 

IMP_TYPE and the description for the type of improvements for concrete pavements are 

described in Table 27. The M&R actions can be characterized in two categories: major M&R 

and local/minor M&R. Table 27 described the designation of M&R categories for the 

different types of improvement [75]. The improvement description and designated M&R 

action category were obtained for each IRI data point using Table 27.  
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The CN_Code categorical variable was developed to represent the M&R action done on a 

pavement section. The LTPP database has the Construction Number (CN) corresponded to each 

IRI data point and the description is given in Section 4.7. But this CN is not an accurate 

representation of the improvement action done on pavement. For this reason, this doctoral 

research assigned CN_Code for each IRI data point based on IRI value improvement, the M&R 

action done before the collection of IRI measurements, and the type of M&R action (major, 

local/minor). Four CN_Code were developed for CRCP pavement to achieve the most accurate 

model that will provide an accurate future prediction of IRI and incorporate the M&R actions in 

the developed model. The developed CN_Code reflects the learning from the development of 

JPCP performance models. The description of each CN_Code is given below: 

(1) The first CN_Code was developed based on the original CN collected from the LTPP 

database corresponded to each IRI data point. If no M&R action (CN1 in the original LTPP 

database) was done, the CN_Code was categorized as ‘0’, and this 0 was continued until an 

M&R action was performed. The first M&R action (CN2 in the original LTPP database) was 

categorized as ‘1’, and this 1 was continued until the end of the section.  

(2) The second CN_Code was also developed based on the original CN collected from the LTPP 

database corresponded to each IRI data point. If no M&R action (CN1 in the original LTPP 

database) was done, the CN_Code was categorized as ‘1’, and this 1 was continued until an 

M&R action was performed. The first M&R action (CN2 in the original LTPP database) was 

categorized as ‘2’, and this 2 was continued until the second M&R action. The second M&R 

action (CN3 in the original LTPP database) was categorized as ‘3’, and this 3 was continued 
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until the third M&R action. This CN_Code assignment continued until all the M&R actions 

done on a pavement section were categorized. 

(3) The CRCP sections included in the LTPP study are not much aged. There were not many 

M&R actions done on the pavement sections and the IRI value improvement is not 

significant for all the sections. Thus, the third CN_Code was also developed based on the IRI 

value improvement of more than 0.1 m/km and the type of M&R action provided in Table 

27. If no M&R action was done and the improvement of IRI value was less than 0.1 m/km, 

the CN_Code was categorized as ‘0’, and this 0 continued until an M&R action was 

performed or the IRI value improved more than 0.1 m/km. The first data point found with an 

M&R action done or IRI value improvement more than 0.1 m/km, was assigned as ‘1’ 

CN_Code and this 1 continued until the next  M&R action was performed or the IRI value 

improved more than 0.1 m/km. The next data point found with an M&R action done or IRI 

value improvement more than 0.1 m/km, was assigned as ‘2’ CN_Code and this 2 continued 

until the next  M&R action was found or the IRI value improved more than 0.1 m/km. This 

CN_Code assignment process continued until all the IRI data points were categorized for a 

pavement section. 

(4) The fourth and the last CN_Code was also developed based on the IRI value improvement of 

more than 10% and the type of M&R action provided in Table 27. If no M&R action was 

done and the improvement of IRI value was less than 10%, the CN_Code was categorized as 

‘0’, and this 0 continued until an M&R action was performed or the IRI value improved more 

than 10%. The first data point found with an M&R action done or IRI value improvement of 
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more than 10%, was assigned as ‘1’ CN_Code and this 1 continued until the next  M&R 

action was performed or the IRI value improved more than 10%. The next data point found 

with an M&R action done or IRI value improvement of more than 10%, was assigned as ‘2’ 

CN_Code and this 2 continued until the next  M&R action was found or the IRI value 

improved more than 10%. This CN_Code assignment process continued until all the IRI data 

points were categorized for a pavement section. 

6.4.3 Database Summary 

The input and output variables are thoroughly discussed in section 6.4.1. Table 47 shows 

the key input variables for CRCP models. The maintenance and rehabilitation (M&R) history is 

represented as CN_Code. Table 47 also shows the CN_Code used in these models. CN_Code 

descriptions are discussed in section 6.4.2. Four models were tried to find the most accurate 

model that can predict IRI incorporating the M&R history of the pavement sections. 

Table 47 Input Variables Used in CRCP Performance Models 

No. Input Variables Model 1 Model 2 Model 3 Model 4 

1 
IRI

0
 (Initial IRI 

Outside Wheel 
Path) (m/km) 

Initial IRI Outside 
Wheel Path 
(m/km) 

Initial IRI 
Outside Wheel 
Path (m/km) 

Initial IRI 
Outside Wheel 
Path (m/km) 

Initial IRI 
Outside Wheel 
Path (m/km) 

2 
Age (Pavement age, 
years) 

Age  Age  Age  Age 

3 
h

concrete 
(Concrete 

pavement thickness, 
in) 

h
concrete 

 h
concrete 

 h
concrete 

 h
concrete 

 

4 
h

base/subbase 

(Base/Subbase 
thickness, in) 

h
base/subbase 

 h
base/subbase 

 h
base/subbase 

 h
base/subbase 

 

5 
Depth of Concrete 
cover to 

Clear Cover (in) Clear Cover (in) Clear Cover (in) Clear Cover (in) 
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No. Input Variables Model 1 Model 2 Model 3 Model 4 
reinforcement (in) 

6 
Design percentage 
of longitudinal steel 

Steel Density Steel Density Steel Density Steel Density 

7 

CESAL 
(Cumulative 
Equivalent Single 
Axel Load) 

CESAL CESAL CESAL CESAL 

8 

Base/Subbase 
Materials 
(Categorical 
variable for 
Base/Subbase 
materials) 

Unbound 
(Granular) Base/ 
Subbase  
Bound (Treated) 
Base/ Subbase 

Unbound 
(Granular) Base/ 
Subbase  
Bound (Treated) 
Base/ Subbase 

Unbound 
(Granular) Base/ 
Subbase  
Bound (Treated) 
Base/ Subbase 

Unbound 
(Granular) Base/ 
Subbase  
Bound (Treated) 
Base/ Subbase 

9 

Climatic Region 
(Categorical 
variable for LTPP 
climatic region) 

Wet, Non-Freeze 
Dry, Non-Freeze 
Wet, Freeze 
Dry, Freeze 

Wet, Non-Freeze 
Dry, Non-Freeze 
Wet, Freeze 
Dry, Freeze 

Wet, Non-Freeze 
Dry, Non-Freeze 
Wet, Freeze 
Dry, Freeze 

Wet, Non-Freeze 
Dry, Non-Freeze 
Wet, Freeze 
Dry, Freeze 

10 
CN (Construction 
Number, variable 
for M & R) 

CN Categorical: 
No M&R Action 0 
M&R Action 1 

CN Original 
Continuous: 
(1,1,2,2…) 
No M&R Action 
1 
M&R Action 
2,3,4…. 

CN Continuous: 
(1,1,2,2,3,3,…..) 
(Based on IRI 
value 
improvement of 
more than 0.1 
m/km and the 
type of M&R 
action provided in 
Table 27) 
No IRI 
Improvement 
and/or M&R 
Action 1 
IRI Improvement 
and/or M&R 
Action 2,3,4 

CN Continuous: 
(1,1,2,2,3,3,…..) 
(Based on IRI 
value 
improvement of 
more than 10% 
and the type of 
M&R action 
provided in 
Table 27) 
No IRI 
Improvement 
and/or M&R 
Action 1 
IRI Improvement 
and/or M&R 
Action 2,3,4 



 

215 

 

6.5 ANN Models 

6.5.1 ANN Model Architecture 

In this research, using the developed model database, four models were tried with the 

same input variables from Table 47 only changing CN_Code described. The output variable is 

IRI outside wheel path (m/km) for all four models. These models have seven continuous 

variables, two categorical variables, and CN_Code. 

6.5.2  ANN Model Selection 

Four models (Model 1, Model 2, Model 3, and Model 4) were developed. A total of 575 

datasets were used to build the desired database; 299, 138, and 138 subdatabases were used, 

respectively, for training, testing, and validation purposes. Datasets that include minimum and 

maximum values of each variable were included in the training phase for the network to 

represent the characteristics of the response. The maximum and minimum ranges of each 

input/output variable for ANN model development were chosen on purpose to be wider than 

their actual ranges for better mathematical mapping [54].  

Model 1 

The inputs for Model 1 are initial IRI, age, concrete pavement thickness, base/subbase 

thickness, clear cover, steel density, CESAL, base/subbase materials type, climatic region, and 

CN_Code and output is IRI (outside wheel path) (m/km) as shown in Table 47. The CN_Code 

used in this model is based on the original CN collected from the LTPP database. No M&R 

action was assigned as 0 and M&R actions were assigned as 1. This CN_Code is a categorical 

variable. Four model networks were chosen after training and testing to compare the accuracy of 
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the models after validation and all data. Table 48 shows the statistical accuracy of the four 

chosen networks. Based on the ASE, MARE, and R2, the chosen best model network is 14-8-

20000 (Input Variables-FinalHN-Iteration). The best network’s ASE values for training, testing, 

validation, and all data are 0.000476, 0.001015, 0.001422, and 0.000490, respectively. Though 

the other three model networks have lower ASE in testing and validation, the chosen best model 

network has the lowest ASE in training and all data. R2 values for this model are as follows: 

0.973 for the training, 0.939 for the testing, 0.924 for the validation, and 0.971 for all data. The 

chosen model network’s R2 value is the highest for training and all data. The chosen best model 

network has the lowest MARE in training, testing, and all data. The final architecture of this 

model is 14-8-1, where 14 is the number of inputs, 8 is the number of hidden nodes and 1 is the 

number of output. 

Table 48 Statistical Accuracy Measures of Four Chosen Model Networks for Model 1 

InitialHN-FinalHN-Iteration 1-4-20000 
Best Model 
4-8-20000 

1-6-20000 16-16-16000 

Training 
MARE 4.488 3.811 4.289 4.153 

R² 0.959 0.973 0.964 0.964 
ASE 0.000720 0.000476 0.000627 0.000640 

Testing 
MARE 5.556 5.438 5.712 5.453 

R² 0.943 0.939 0.934 0.948 
ASE 0.000933 0.001015 0.001083 0.000854 

Validation 
MARE 5.660 6.073 5.985 6.022 

R² 0.931 0.924 0.928 0.909 
ASE 0.001305 0.001422 0.001370 0.001700 

All Data 
MARE 4.759 3.857 4.461 4.200 

R² 0.952 0.971 0.955 0.963 
ASE 0.000809 0.000490 0.000748 0.000616 

Final Structure 
(Input Variables-FinalHN-

Iteration) 
14-4-20000 14-8-20000 14-6-20000 14-16-16000 
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Model 2 

The inputs and output of this model are very similar to model 1. The CN_Code used in 

this model is also based on the original CN collected from the LTPP database. No M&R action 

was assigned as 1 and M&R actions were assigned as 2, 3, and so on. This CN_Code is a 

continuous variable where 2, 3 is the frequency of M&R actions done on pavement. Five model 

networks were chosen after training and testing to compare the accuracy of the models after 

validation and all data. Table 49 shows the statistical accuracy of the five chosen networks. 

Based on the ASE, MARE, and R2, the chosen best model network is 14-19-20000 (Input 

Variables-FinalHN-Iteration). The best network’s ASE values for training, testing, validation, 

and all data are 0.000288, 0.000725, 0.000846, and 0.000304, respectively. Though the other 

four model networks have lower ASE in testing and validation, the chosen best model network 

has the lowest ASE in training and all data. R2 values for this model are as follows: 0.984 for the 

training, 0.952 for the testing, 0.950 for the validation, and 0.982 for all data. The chosen model 

network’s R2 value is the highest for all data. The MARE value (3.354) for the chosen best model 

network is the lowest in all data.  The final architecture of this model is 14-19-1, where 14 is the 

number of inputs, 19 is the number of hidden nodes and 1 is the number of output. 

Table 49 Statistical Accuracy Measures of Five Chosen Model Networks for Model 2 

InitialHN-FinalHN-
Iteration 

3-17-20000 3-18-20000 
Best Model 
3-19-20000 

6-12-20000 14-19-20000 

Training 

MARE 3.355 3.315 3.284 3.743 2.924 

R² 0.983 0.983 0.984 0.980 0.988 

ASE 0.000300 0.000293 0.000288 0.000349 0.000220 

Testing 
MARE 5.296 5.267 5.253 5.584 5.019 

R² 0.953 0.953 0.952 0.949 0.949 
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InitialHN-FinalHN-
Iteration 

3-17-20000 3-18-20000 
Best Model 
3-19-20000 

6-12-20000 14-19-20000 

ASE 0.000717 0.000719 0.000725 0.000772 0.000775 

Validation 

MARE 5.363 5.303 5.271 5.652 5.133 

R² 0.951 0.951 0.950 0.948 0.951 

ASE 0.000834 0.000836 0.000846 0.000889 0.000832 

All Data 

MARE 3.401 3.380 3.354 3.736 3.374 

R² 0.981 0.981 0.982 0.976 0.981 

ASE 0.000318 0.000311 0.000304 0.000400 0.000324 
Final Structure 

(Input Variables-FinalHN-
Iteration) 

14-17-20000 14-18-20000 14-19-20000 14-12-20000 14-19-20000 

 

Model 3 

The inputs and output of this model are very similar to model 1and model 2. The 

CN_Code used in this model was developed based on the IRI value improvement and the type of 

M&R action provided in Table 27. If no M&R action was done and the improvement of the IRI 

value was less than 0.1 m/km, the CN_Code was categorized as ‘1’. If M&R action was done or 

there was an improvement in the IRI value more than 0.1 m/km, the CN_Code was assigned as 2, 

3, and so on. This CN_Code is a continuous variable where 2, 3 is the frequency of M&R actions 

and/or IRI value improvement of more than 0.1 m/km. Five model networks were chosen after 

training and testing to compare the accuracy of the models after validation and all data. Table 50 

shows the statistical accuracy of the five chosen networks. Based on the ASE, MARE, and R2, 

the chosen best model network is 14-19-20000 (Input Variables-FinalHN-Iteration). The best 

network’s ASE values for training, testing, validation, and all data are 0.000320, 0.000720, 

0.001020, and 0.000296, respectively. The chosen best model network has the lowest ASE in 

testing and validation. R2 values for this model are as follows: 0.982 for the training, 0.958 for 
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the testing, 0.945 for the validation, and 0.982 for all data. The chosen model network’s R2 value 

is the highest for testing and validation. The final architecture of this model is 14-19-1, where 14 

is the number of inputs, 19 is the number of hidden nodes and 1 is the number of output. 

Table 50 Statistical Accuracy Measures of Five Chosen Model Networks for Model 3 

InitialHN-FinalHN-
Iteration 

Best Model 
9-19-20000 

1-11-20000 15-16-9100 10-19-20000 4-19-19900 

Training 
MARE 3.029 3.749 4.166 2.936 3.128 

R² 0.982 0.973 0.965 0.983 0.983 
ASE 0.000320 0.000478 0.000616 0.000303 0.000298 

Testing 
MARE 4.799 5.299 5.724 4.651 5.078 

R² 0.958 0.945 0.947 0.944 0.945 
ASE 0.000720 0.000923 0.000930 0.000987 0.001005 

Validation 
MARE 5.520 5.575 5.865 5.137 5.738 

R² 0.945 0.943 0.940 0.936 0.933 
ASE 0.001020 0.001072 0.001044 0.001222 0.001268 

All Data 
MARE 3.089 4.012 3.920 3.055 2.974 

R² 0.982 0.970 0.972 0.982 0.984 
ASE 0.000296 0.000508 0.000471 0.000298 0.000267 

Final Structure 
(Input Variables-FinalHN-

Iteration) 
14-19-20000 14-11-20000 14-16-9100 14-19-20000 14-19-19900 

Model 4 

The inputs and output of this model are very similar to model 3. The CN_Code used in 

this model was developed based on the IRI value improvement and the type of M&R action 

provided in Table 27. If no M&R action was done and the improvement of IRI value was less 

than 10%, the CN_Code was categorized as ‘1’. If M&R action was done or there was an 

improvement in the IRI value more than 10%, the CN_Code was assigned as 2, 3, and so on. 

This CN_Code is a continuous variable where 2, 3 is the frequency of M&R actions and/or IRI 

value improvement of more than 10%. Five model networks were chosen after training and 
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testing to compare the accuracy of the models after validation and all data. Table 51 shows the 

statistical accuracy of the five chosen networks. Based on the ASE, MARE, and R2, the chosen 

best model network is 14-19-20000 (Input Variables-FinalHN-Iteration). The best network’s 

ASE values for training, testing, validation, and all data are 0.000254, 0.000526, 0.000651, and 

0.000319, respectively. The chosen best model network has the lowest ASE in testing, 

validation, and all data. R2 values for this model are as follows: 0.986 for the training, 0.965 for 

the testing, 0.961 for the validation, and 0.981 for all data. The chosen model network’s R2 value 

is the highest for training, validation, and all data. The MARE value for the chosen best model 

network is the lowest for training, validation, and all data. The final architecture of this model is 

14-19-1, where 14 is the number of inputs, 19 is the number of hidden nodes and 1 is the number 

of output. 

Table 51 Statistical Accuracy Measures of Five Chosen Model Networks for Model 4 

InitialHN-FinalHN-Iteration 9-14-20000 
Best Model 
9-19-20000 

4-10-5000 11-15-20000 7-15-20000 

Training 
MARE 3.081 2.779 3.853 3.497 3.298 

R² 0.982 0.986 0.974 0.977 0.981 
ASE 0.000309 0.000254 0.000464 0.000408 0.000330 

Testing 
MARE 4.196 4.327 4.791 5.012 4.766 

R² 0.971 0.965 0.960 0.961 0.961 
ASE 0.000448 0.000526 0.000605 0.000610 0.000619 

Validation 
MARE 5.044 4.903 5.824 5.806 5.459 

R² 0.961 0.961 0.952 0.949 0.954 
ASE 0.000651 0.000651 0.000825 0.000886 0.000812 

All Data 
MARE 3.659 3.150 4.114 3.432 3.310 

R² 0.971 0.981 0.969 0.978 0.979 
ASE 0.000484 0.000319 0.000517 0.000377 0.000343 

 Final Structure 
(Input Variables-FinalHN-Iteration) 

14-14-20000 14-19-20000 14-10-5000 14-15-20000 14-15-20000 

 



 

221 

 

Four best performing networks from each model (Model 1, Model 2, Model 3, and Model 

4) are showed in Table 43. Model 3 has the lowest ASE, MARE, and the highest R2 for all 

datasets. Model 4 has the lowest ASE, MARE, and the highest R2 for training, testing, and 

validation. Thus, model 4 has been chosen as the best network. 

Table 52Best Networks from Each Model 

Models Model 1 Model 2 Model 3 
Best Model 

Model 4 
Structure 

Initial Nodes-Final Nodes-Iterations 
4-8-20000 3-19-20000 9-19-20000 9-19-20000 

Training 
MARE 3.811 3.284 3.029 2.779 

R² 0.973 0.984 0.982 0.986 
ASE 0.000476 0.000288 0.000320 0.000254 

Testing 

MARE 5.438 5.253 4.799 4.327 

R² 0.939 0.952 0.958 0.965 

ASE 0.001015 0.000725 0.000720 0.000526 

Validation 

MARE 6.073 5.271 5.520 4.903 

R² 0.924 0.950 0.945 0.961 

ASE 0.001422 0.000846 0.001020 0.000651 

All Data 

MARE 3.857 3.354 3.089 3.150 

R² 0.971 0.982 0.982 0.981 

ASE 0.000490 0.000304 0.000296 0.000319 
Final Structure 

Input Variables-Final Nodes-Iterations 
14-8-20000 14-19-20000 14-19-20000 14-19-20000 

6.5.3 ANN Model Results 

The discussion in the previous section establishes that model 4 is the best performing 

network based on all statistical measures (ASE, MARE, and R2 value). The final model structure 

has 14 inputs of independent variables, 19 hidden nodes, and 1 output (11-19-1) (Figure 133). 



 

222 

 

The comparison of the prediction accuracy measures for ANN model 4 is graphically presented 

in Figure 134. 

 

Figure 133 Network Architecture for Best Model (Model 4, Structure: 14-19-1) 

 

Figure 134 Observed IRI (Outside Wheel Path) (m/km) vs. Predicted IRI (Outside Wheel Path) 

(m/km) 
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The 575 data points are assigned section sequence numbers from 1 to 575. Figure 135 

shows the observed and Model 4 predicted IRI outside wheel path (m/km) values. From Figure 

133, it is revealed that the predicted IRI has apprehended most of the variability in the IRI 

observed values.   

 

Figure 135 Observed and Predicted IRI (Outside Wheel Path) (m/km) Plot 

Figure 136 shows the observed and predicted IRI for Section 24-5807, in Maryland. The 

predicted values follow the observed values closely. The difference in the mean values of 

observed and predicted is -0.13%. 

 

Figure 136 Observed and Predicted IRI (Outside Wheel Path) (m/km) plot of CRCP section in 

Maryland 
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6.5.4 Sensitivity Analysis 

A sensitivity analysis was carried out to evaluate the significance of the inputs on the 

output. A GUI was developed by importing all the final ANN model parameters into an excel 

spreadsheet. To examine the models, some input was changed while keeping the other inputs 

constant. In this paper, the sensitivity analysis of model 4 is presented since it is the best model 

in terms of statistical accuracy measures. All model 3 inputs were kept constant except age and 

CESAL that were changed to generate predictions of IRI. The CESAL values were calculated 

using the previous year’s data. A randomly selected section with one M&R action done was used 

to show the sensitivity analysis. Figure 137 that the IRI prediction model follows the trend of the 

observed values. Additionally, it can estimate the increase of IRI values with time and decrease 

of IRI value after M&R action. Usually, without any rehabilitation, pavement deteriorates over 

time, therefore, IRI increases.  

 

Figure 137 ANN Future Prediction Plot of IRI (Outside Wheel Path) (m/km) for CRCP Section 

in Maryland 
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Figure 137 shows that with the increase of CESAL value, the IRI value increases more 

than 2.68 m/km when a pavement is considered as very poor condition [10]. At this point, a new 

M&R action should be done to improve pavement performance. By changing CN_Code 

frequency using GUI, a future M&R action was provided in the section. Figure 138 shows that 

with CESAL value increasing over time in the future, the IRI value decreased when future M&R 

action was done, which means pavement condition improved. 

 

Figure 138 ANN Future Prediction Plot of IRI (Outside Wheel Path) (m/km) after M&R Action 

6.6 Multiple Linear Regression Analysis for CRCP Performance Model 

A MLR analysis was conducted to develop the CRCP performance model. This MLR 

model will be compared with the best model developed using the ANN modeling technique. The 

best performing model was model 4 for CRCP discussed in section 6.5.3. The input and output 

variables are the same as model 4. The input variables are initial IRI, age, concrete pavement 
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thickness, base/subbase thickness, clear cover, steel density, CESAL, base/subbase materials 

type, climatic region, and CN_Code. The output variable is IRI (outside wheel path) (m/km). The 

input variables have seven continuous variables, two categorical variables, and CN_Code. The 

CN_Code was developed based on the IRI value improvement and the type of M&R action 

provided in Table 27. If no M&R action was done and the improvement of IRI value was less 

than 10%, the CN_Code was categorized as ‘1’. If M&R action was done or there was an 

improvement of IRI value more than 10%, the CN_Code was assigned as 2, 3, and so on. This 

CN_Code is a continuous variable where 2, 3 is the frequency of M&R actions and/or IRI value 

improvement of more than 10%.  

IRI (outside wheel path) (m/km) was normally distributed. Standard residuals were 

normally distributed. Scatterplots were analyzed, and no curvilinear relationships between the 

criterion variable and predictor variables or heteroscedasticity were evident. There was a 

statistically significant relationship between input variables and output variable, F (12, 574) = 

230.259, p < 0.001. The MLR model accounted for 83% of the variance in the model with R2 = 

0.831. 

6.6.1 MLR Model Results and Comparison between ANN Model and MLR Model 

The developed MLR model equation is given below: 
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𝐼𝑅𝐼 (𝑂𝑢𝑡𝑠𝑖𝑑𝑒 𝑊ℎ𝑒𝑒𝑙 𝑃𝑎𝑡ℎ)(𝑚 𝑘𝑚⁄ )

= −0.322 + 0.922 × 𝐼𝑅𝐼  + 0.014 × 𝐴𝑔𝑒 + 0 × 𝑊𝑒𝑡, 𝑁𝑜𝑛 − 𝐹𝑟𝑒𝑒𝑧𝑒

+ [(−0.049) × 𝐷𝑟𝑦, 𝑁𝑜𝑛 − 𝐹𝑟𝑒𝑒𝑧𝑒] + [(−0.126) × 𝐷𝑟𝑦, 𝐹𝑟𝑒𝑒𝑧𝑒]

+ [(−0.063) × 𝑊𝑒𝑡, 𝐹𝑟𝑒𝑒𝑧𝑒] + 0 × 𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟 𝐵𝑎𝑠𝑒/ 𝑆𝑢𝑏𝑏𝑎𝑠𝑒 

+ [(−0.067) × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑 𝐵𝑎𝑠𝑒/ 𝑆𝑢𝑏𝑏𝑎𝑠𝑒 + [(−0.228) × 𝐶𝑁 ]

+ 0.044 × ℎ + (−0.002) × ℎ ⁄ + 0.044 × 𝐶𝑙𝑒𝑎𝑟 𝐶𝑜𝑣𝑒𝑟

+ 0.227 × 𝑆𝑡𝑒𝑒𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + [(−4.129 × 10 ) × 𝐶𝐸𝑆𝐴𝐿] 

Where, 

IRI0 = Initial IRI Outside Wheel Path (m/km); Dry, Non-Freeze, Dry, Freeze, Wet, Non-Freeze 

and Wet, Freeze = Categorical variable for climatic region; Granular Base/Subbase, Treated 

Base/Subabse = Categorical variable for base/subbase material type; CN_Code = Continuous 

variable for Maintenance and Rehabilitation (M&R) frequency; hconcrete = Concrete pavement 

thickness, in; hbase/subbase = Base/Subbase thickness, in; Clear Cover = Depth of Concrete cover to 

reinforcement (in); Steel Density = Design Percentage of Longitudinal Steel; CESAL = 

Cumulative Equivalent Single Axel Load. 

The comparison of the prediction accuracy measures for the MLR model is graphically 

presented in Figure 139. From Figure 139, it is evident that the model prediction is somewhat 

scattered and cluttered around the line of equality.  The MLR model accounted for 83% 

variability whereas the ANN model accounted for 98% variability in the model.   
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Figure 139 Observed IRI (Outside Wheel Path) (m/km) vs. Predicted IRI (Outside Wheel Path) 

(m/km) 

The 575 data points are assigned section sequence numbers from 1 to 575. Figure 140 

shows the observed and MLR model predicted IRI (outside wheel path) values. From Figure 140, 

it is revealed that the predicted IRI could apprehend some of the variability in the IRI observed 

values.   
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Figure 140 Observed and Predicted IRI (Outside Wheel Path) (m/km) Plot 

Figure 141 shows the observed and predicted IRI for Section 24-5807, in Maryland. The 

predicted values do not follow the observed values closely. The difference in the mean values of 

observed and predicted is 46.1% whereas the difference is -0.13% for ANN Model.  

 

Figure 141 Observed and Predicted IRI (Outside Wheel Path) (m/km) Plot of CRCP Section in 

Maryland 
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6.7 Concluding Remarks 

Based on the materials discussed in this chapter, the key concluding remarks are 

summarized below:  

 The LTPP database contained 53 CRCP sections under the GPS-5 study. Most data points are 

from the wet, freeze and wet, non-freeze climatic regions. 

 An in-depth study of M&R history collected from the LTPP database for CRC pavement 

produced several CN_Code. The best model was found with the CN_Code developed based 

on the IRI value improvement and the type of M&R action provided in Table 27 and the 

variable is a continuous variable where number increment indicates the frequency of M&R 

action provided in the pavement section.  

 The best performing ANN model has a network structure of 14-19-1 (i.e. 14 inputs, 19 

hidden nodes, and 1 output). The ANN model to predict IRI has an R2 value of 0.98. The 

total data points used to develop the IRI prediction ANN model were 575.  

 The developed IRI prediction model can successfully characterize the behavior (i.e. the 

increase of IRI values with time and decrease of IRI value after maintenance and 

rehabilitation). The ANN model can be used to provide future M&R action by changing 

CN_Code frequency and the model successfully distinguishes the behavior of IRI (i.e. 

decrease of IRI after M&R action and increase of IRI with time as CESAL increases).  

 The developed MLR model to predict IRI has an R2 value of 0.83. The ANN model shows 

better accuracy compared to the MLR model developed in this study. The ANN model 
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accounted for 98% variability in the model whereas the MLR model accounted for 83% 

variability.    
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CHAPTER VII: IMPLEMENTATION OF PERFORMANCE MODELS FOR 

CONCRETE PAVEMENT ASSET MANAGEMENT 

7.1 Implementation of Developed Performance Model  

An Excel-based program was developed using Visual Basic programing language for the 

utilization of the performance models. Connection weights, threshold values, and coefficients for 

best performing networks were imported into an excel worksheet to develop the Excel-based 

program. The connection weights, threshold values, and input values were used to perform the 

Feed-forward calculations using Excel functions. A programming code with Visual Basic 

language was written to automatically generate predictions for repeated years. Figure 142 shows 

the excel-based user interface developed for CRC pavement for example.  

 

Figure 142 Graphical User Interface   
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7.1.1 Application of IRI Performance Condition Deterioration Model  

The performance model can be implemented very easily using the program developed in 

section 7.1. Some of the input variables are constant for each section. After selecting a new 

section in Figure 142, those variables will be automatically updated. Three variables need to be 

provided by the user to generate predictions for a specific pavement section. The input variables 

that need to be provided by the user are discussed below:  

 Pavement age (year) is calculated from the initial year when the road was opened to the 

traffic. If a pavement was opened to traffic in 1991, the pavement age in 2021 is 31 years. If 

a prediction has to be made in 2030, the pavement age will be 40 years. 

 Estimate the CESAL for the projected years based on a known traffic growth factor. If the 

recent CESAL is 500,000 in 2021, and the annual traffic growth factor is 1%, the estimated 

CESAL in 2030 is 546,843 and will be used in the model.  

 For the maintenance and rehabilitation (M&R) action (CN_Code) variable, assign 1 if there 

is no M&R has taken place. If a new pavement action needs to be done, add one to the 

previous CN_Code. If no new M&R action needs to be done, keep the same CN_Code.  

Users can update the projection year and the age will be calculated based on the given 

projection year. By clicking the “Projections” button shown in Figure 142, a submenu will be 

displayed. This submenu is shown in Figure 143. This submenu will allow the user to select how 

they want to provide the information about CESAL. Either, the user can provide each year’s 

ESAL and the program will calculate the CESAL using the ESAL information. Or, the user can 

provide percent increase/ ESAL growth information for the highway, the program will calculate 
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the CESAL using equations embedded in the coding. Users can give the information about 

rehabilitation to occur at a specific year shown in Figure 144. The model considers the effect of 

rehabilitation for the year assigned and then goes back to the trend of deterioration. 

 

Figure 143 Graphical User Interface Submenu for ESAL Information 
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Figure 144 Graphical User Interface Submenu for Maintenance and Rehabilitation Information 

7.2 Application of Performance Models for Concrete Pavement Asset Management 

Figure 142 shows an enhanced Pavement Asset Management (PAM) framework [9], 

which was developed based on the U.S. Governmental Accounting Standards Board (GASB) 

Statement 34 framework [81]. The influence of life-cycle M&R is significant for longer 

performing highway conditions, as shown in Figure 143. It is recommended to implement the 

pavement condition deterioration model developed in this research for life-cycle asset 
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management and M&R programs. A simplified M&R intervention criterion for PAM is shown in 

Table 53 [75]. 

The performance model developed in this research can successfully predict when a new 

M&R will be needed for a pavement section. Table 53 can be used to decide what type of M&R 

actions should be provided in the section. A present worth analysis can be done to identify what 

type of M&R will be less costly but sustainable for the pavement. A life cycle cost analysis can 

also be done use performance prediction. This can be helpful to the agencies for budget 

allocation and prioritize urgent M&R actions.  

 

Figure 145 An Enhanced Pavement Asset Management (PAM) Framework [9] 
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Figure 146 Basic Concept of Life Cycle Cost (LCC) [9] 

Table 53 Simplified M&R Intervention Criteria for Pavement Asset Management [75] 

1. Short Term or Single Year M, R&R Intervention Policy 

  
Asphalt Pavement 

M, R&R 
Intervention Criteria M, R&R Treatment 

(a) 
Total Distress Area 
Low (L), Medium 
(M), High (H) 

(L, M, H Severity) > 
60% 

Asphalt Pavement: M1 for freeway and 
highway; M2 for other roads 
Concrete Pavement: M1P for freeway 
and highway; M2P (extensive) for other 
roads 

(b) Cracking Area 
< 60% 
H - Severity ≥ 20% 

Asphalt Pavement: M3 (Minor, seal coat) 
Concrete Pavement: M2P (extensive) 

(c) Rutting Area 
< 60% 
H - Severity ≥ 20% 

Asphalt Pavement: M2 (Milling and 
inlay) 

(d) Total Distress Area 
< 60% 
H - Severity < 20% 

Asphalt Pavement: M4 (Local minor 
maintenance) 
Concrete Pavement: M4P (Local) 

(e) 
Longitudinal 
Roughness 

IRI exceeds 5.2 m/km 
(Rough & Unsafe) 

Asphalt Pavement: M3 (Minor, seal coat) 
Concrete Pavement: M2P (Extensive) 

(Only if distress repairs are not being applied) 
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1. Short Term or Single Year M, R&R Intervention Policy 

(f) 

Catastrophic Failure 
Policy (Flood due to 
rain, hurricane, river 
overflow), Others: 
Earthquake 

Rapid Condition Assessment to Identify: 
(1) Local Failure (> 60% area) 
 
(2) Mitigation by Major Maintenance & 
Rehabilitation 

Asphalt Pavement: M3 
Concrete Pavement: 
M2P 
Reconstruction as 
needed 

Asphalt Pavement Treatment Codes Unit Cost, US $ 

M1 Major maintenance, rehabilitation 
1.5 inch milling, 4 inches asphalt overlay on 
freeways 
and highways, $6.0/sq. yard on 100% area 

M2 Major, Milling and inlay 
1.5 inch milling and asphalt inlay, $3.0/sq. yard 
on 
100% area 

M3 Minor, seal coat 
Asphalt slurry seal or microsurfacing, $1.5/sq. 
yard 
on 100% area 

M4 Local, minor for H - severity 
Asphalt patching $2.5/sq. yard for rutted area; 
Crack 
sealing $1.5/sq. yard for cracked area 

(If both M2 and M3 are selected then use only M2 for freeways and highways and use only M3 
for 
other types of roads) 
Concrete Pavement M, R&R Treatment Codes Unit Cost, US $ 

M1P Major maintenance, rehabilitation 
4 inches asphalt overlay on freeway and highway; 
$8.0/sq. yard on 100% area 

M2P Concrete pavement restoration Extensive; $7.0/sq. yard on distressed area 

M4P Concrete pavement restoration Local; $6.0/sq. yard on distressed area 

2. Long Term or Multi Year M,R&R Intervention Policy 
Asphalt Pavement Intervention Criteria 
Based on Longitudinal Roughness 

M2 if IRI equals or exceeds 5.2 m/km 

Concrete Pavement Intervention Criteria M1P if PSR equals or < 2.0 

7.3 Concluding Remarks 

The developed condition deterioration models for concrete highway pavement present a 

significant improvement on the models currently used in the mechanistic-empirical pavement 

design method. It is recommended to implement the pavement condition deterioration model 

developed in this research for life-cycle asset management and M&R programs.
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CHAPTER VIII: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

8.1 Summary 

Road and highway infrastructures performance in any country is impacted by load 

repetitions and it is further compromised by climate attributes and extreme weather events. 

Damages to roads and bridges are among the infrastructure failures that have occurred during 

these extreme events. A disruption in any one system affects the performance of others. For 

example, damages in road and bridge infrastructure will delay the recovery operation after a 

disaster. The model predictions of the climate attributes can be used to understand and assess the 

future climate change in different climate zones worldwide. This understanding of climate 

changes and future predictions of climate attributes will help to develop climate adaptation 

strategies and better prepare the communities for extreme weather-related natural disaster 

occurrences. 

The importance of considering maintenance and rehabilitation action in the condition 

deterioration model was never considered. This research considered the maintenance and 

rehabilitation history in the development and implementation of pavement condition 

deterioration models. The development of the IRI prediction model considered the LTPP 

climatic regions, pavement structural properties, and traffic. The developed models are more
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objective, incorporate important input variables that are easily available and easy to implement in 

decision making. The concrete highway pavement IRI deterioration prediction models were 

developed and evaluated in this research for LTPP datasets of 1,482 for JPCP, 577 for JRCP, and 

575 for CRCP. Comparatively, the AASHTO MEPDG performance equations were developed 

using fewer test sections. 

8.2 Conclusions 

8.2.1 Review and Enhancement of Climate Attributes Models 

 Several climate attribute models were developed in this research. The key concluding 

remarks for these models are discussed below:  

 The best model found for sea surface temperature (SST) is the seasonal ARIMA model 

(24,0,0) (24,0,36). The model successfully predicted the 2018-2019 El Niño year. The model 

prediction shows that the next El Niño years will be 2021-22 and 2025-26. The model 

prediction also shows that the next La Niña year will be 2028-29. 

 The best model found for global mean sea level (GMSL) is the seasonal ARIMA model 

(12,0,0) (12,0,24). The predicted annual rate of change in GMSL is 0.6 mm/year from 2013 

to 2050. But a higher annual rate of change (1.4 mm/year) is predicted from 2031 to 2050. 

 The best model found for northern hemisphere sea ice extent and southern hemisphere sea ice 

extent is the seasonal ARIMA model (1,0,18) (1,0,24) and (12,0,18) (12,0,24), respectively. 

The model prediction shows that the total loss of northern hemisphere sea ice extent in 2050 

will be 1.66 million km2. But the total gain of southern hemisphere sea ice extent will be 1.24 



 

241 

 

million km2. The net change of global sea ice extent will be -0.24 million km2, which 

indicates a loss of sea ice. 

8.2.2 Development of Condition Deterioration Progression Models for Concrete Pavements 

Three performance models were developed for three different concrete pavement types. 

The key conclusions from all three models are summarized below: 

 The hypothesis testing in this study confirmed that IRI outside wheel path has significantly 

higher values than IRI inside wheel path. Therefore, the ANN and MLR models were 

developed for IRI outside wheel path.  

 The climatological variables have a strong linear association with climatic regions. The 

climatological variables also need to be predicted before using in the prediction models for 

future IRI predictions. Hence, climatological variables were not used in the model 

development.  

 The exclusion of categorical variable season helped to develop a better ANN performance 

model for JPCP. Hence, the categorical variable season was not used in the development of 

JRCP and CRCP performance models.  

 The hypothesis testing in this study demonstrated that it is imperative to use the maintenance 

and rehabilitation history of the pavement in the development of the IRI prediction model. 

An in-depth study of M&R history collected from the LTPP database for all concrete 

pavement produced several CN_Code. The best model was found with the CN_Code 

developed based on the IRI value improvement and the type of M&R action provided in 
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Table 27 and this variable is a continuous variable where number increment indicates the 

frequency of M&R action provided in the pavement section.  

 The ANN models show better accuracy in predicting pavement performance compare to the 

multiple regression models for all types of concrete pavement.  

 The developed IRI prediction models can successfully characterize the behavior (i.e. the 

increase of IRI values with time and decrease of IRI value after maintenance and 

rehabilitation). The ANN models can be used to provide future M&R action by changing 

CN_Code frequency and the model successfully distinguishes the behavior of IRI (i.e. 

decrease of IRI after M&R action and increase of IRI with time as CESAL increases).  

The results of JPCP performance models are discussed below: 

 The LTPP database contained 107 JPCP sections under the GPS-3 study. Most data points 

are from the wet, freeze and wet, non-freeze climatic regions. 

 The best performing ANN model has a network structure of 13-19-1 (i.e. 13 inputs, 19 

hidden nodes, and 1 output). The ANN model to predict IRI has an R2 value of 0.94. The 

total data points used to develop the IRI prediction ANN model were 1,355. From Table 18, 

it is evident that the developed ANN model in this study has higher accuracy than the 

previously developed models via multiple regression and ANN models.   

 The developed MLR model to predict IRI has an R2 value of 0.49. The verification of this 

MLR model generated a mean difference of 1.49%, RMSE of 0.370, and MARE of 19.3% 
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 The ANN model shows better accuracy compared to the MLR model developed in this study. 

The ANN model accounted for 94% variability in the model whereas the MLR model 

accounted for only 49% variability.    

The outcomes of JRCP performance models are summarized below: 

 The LTPP database contained 49 JRCP sections under the GPS-4 study. All the pavements 

are in the wet, freeze and wet, non-freeze climatic regions. 

 The best performing ANN model has a network structure of 11-19-1 (i.e. 11 inputs, 19 

hidden nodes, and 1 output). The ANN model to predict IRI has an R2 value of 0.95. The 

total data points used to develop the IRI prediction ANN model were 577.  

 The developed MLR model to predict IRI has an R2 value of 0.58. The ANN model shows 

better accuracy compared to the MLR model developed in this study. The ANN model 

accounted for 95% variability in the model whereas the MLR model accounted for only 58% 

variability.    

The results of CRCP performance models are discussed below:  

 The LTPP database contained 53 CRCP sections under the GPS-5 study. Most data points are 

from the wet, freeze and wet, non-freeze climatic regions. 

 The best performing ANN model has a network structure of 14-19-1 (i.e. 14 inputs, 19 

hidden nodes, and 1 output). The ANN model to predict IRI has an R2 value of 0.98. The 

total data points used to develop the IRI prediction ANN model were 575.  

 The developed MLR model to predict IRI has an R2 value of 0.83. The ANN model shows 

better accuracy compared to the MLR model developed in this study. The ANN model 
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accounted for 98% variability in the model whereas the MLR model accounted for 83% 

variability.    

8.3 Recommendations for Future Research 

 The models developed in this research have some limitations. The recommendations for 

future researches to overcome these limitations are discussed below: 

 The climate attribute models developed in this research can be updated incorporating the 

latest year’s data.  

 The developed ANN models for concrete highway pavements are not recommended to be 

used outside of their applicable ranges for extrapolation. 

 All the ANN models developed in this research are static. Dynamic sequential modeling 

technique where predictions for the future years will be used as input to predict the next 

year’s value; can be developed for concrete pavements using the same LTPP database.  

 These performance models can be incorporated in the life cycle cost (LCC) analysis of 

pavements. 

 These performance models can be implemented for highway pavement asset management.  
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APPENDIX 

Appendix A  Step-by-Step Procedure to Diagnose Terms for ARIMA Time Series Modeling 
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THE UNIVERSITY OF MISSISSIPPI 
DEPARTMENT OF CIVIL ENGINEERING 

CENTER FOR ADVANCED INFRASTRUCTURE TECHNOLOGY  
 

TECHNICAL MEMORANDUM 
 

TECH MEMO: TM-SS-3                                         PROJECT: ARIMA Time Series Modeling 

TO: W. Uddin, Project Director                        DATE: September 9, 2019 REV: December 11, 2019  

AUTHOR: Salma Sultana, PhD Graduate Research Assistant 

SUBJECT: Step-by-Step Procedure to Diagnose Terms for ARIMA Time Series Modeling  

ARIMA Modeling for Highly Autocorrelated Cyclic Seasonal Time Series Data 

Use the following step-by-step procedure to diagnose appropriate terms for Auto Regressive 

Integrated Moving Average (ARIMA) modeling [1, 2]. 

1. Plot time series, x (year or month) y (observation) with marker (symbol) and connecting 
lines, as shown in Figure A for global natural disaster time series. The requirement for 
minimum data points is preferably 50 for ARIMA modeling. 

 

Figure A. Time series plot of annual global natural disasters 

2. Conduct Normality test (Kolmogorov-Smirnov and Shapiro-Wilk). If it is significant and fails 

the Normality test then regression model is invalid and ARIMA modeling is preferred.  
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3. Calculate autocorrelation R at Lag-1. (High R ≥ 0.4 means serial correlation; therefore, 

regression model and linear trend line are invalid.) The SPSS statistical software [3] includes an 

option to create Autocorrelation (ACF) plot and Partial Autocorrelation (PACF) plot up to 60 

lags or more. The command is: Analysis > Forecasting > Autocorrelation. 

In the case of global disaster time series data, the data has decaying ACF and spiking PACF 

(Figure A1).  

   

 

 

 

 

 

Figure A1.  ACF and PACF plot 

4. Study the time series plot (Figure A) to identify trend and seasonality pattern in the data. 

5. If trend and seasonality are present, as shown in Figure A then calculate R-values for 
differencing order-1 and moving average (2,3,4,6,9,12…..) in an Excel table.  

5a. Plot order-1 differencing (d) time series (y1-y2) and calculate correlation R-value with the 

original time series. Figure B shows differencing order-1. If the differencing series does not 

increase or decline with time, then it implies linear trend can be removed by differencing.  

If R-value of differencing series with the original time series is generally equal or less than 0.2, 

the series can be made stationary by differencing. Use d = 1and d = 2 if appropriate. In that case 

run ACF and PACF plots using differencing series to select ARIMA terms.   

If differencing R-value with the original time series is more than 0.2, don’t use differencing 

operator (d). Use d = 0. 
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Figure B. Differencing-1 plot 

5b. Identify high R-values for moving average (MA) terms (Step 5) to select appropriate MA 

term (q order). It is advised not to use q order 1.  

6. Select (p,0,q) terms if differencing is not used where p is the order of Autoregressive (AR) 

term , 0 for no differencing, and q order of MA term. 

If differencing order-d is applicable then select (p,d,q) terms. 

7. Use the following diagnosis steps to select the initial ARIMA model for appropriate order of 

AR,d,MA terms (p,d,q):  

7a. Rule for selecting differencing order-d is explained in Step 5a. 

7b. Rules to interpret ACF and PACF of the original time series output for selecting p,q and 

seasonal terms are, as follows: 

1. AR Process (p, d, 0): Decaying ACF and spiking PACF (p non-zero spike from PACF 

plot). Select AR term p by number of spike(s) with high R-value in PACF plot. Figure C shows 

an example of the AR process (p,0,0) without differencing (d = 0).  
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Figure C. AR Process (p,0,0) 

2. MA Process (0, d, q): Spiking ACF and decaying PACF (q non-zero spike from ACF 

plot). Identify MA term q with high R-value (Steps 5, 5b). Figure D shows an example of the 

MA process (0,0,q) without differencing (d = 0).  

 

Figure D. MA Process (0,0, q) 

3. AR, d, MA process (p, d, q): Both ACF and PACF decaying. Select AR term p by 

number of spike(s) with high R-value in PACF plot. Identify MA term q with high R-value 

(Steps 5, 5b). Figure E shows an example process (p,0,q) without differencing (d = 0). 

 

Figure E. AR, d, MA Process (p,0,q) 
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8. Select P and Q seasonal model terms for seasonal ARIMA model.  

8a. Use PACF plot to determine the term of P (use the selected p for P). 

8b. Use d as used in the ARIMA model terms. 

8c. Use ACF plot to determine the term of seasonal Q.  

Additionally, look at R in combined Excel table created in steps 5 for Q, using the MA term with 

the highest value. 

9. Analyze ARIMA model.  

The SPSS command is: Analyze > Forecasting > Create Traditional Models. 

9a. Use reasonable forecast number of years, which should be lesser than the total years of the 

historical time series data. For example, forecasts up to future years 2030 and/or 2050 can be 

used for modeling of climate attribute time series data up to the previous years.   

10. Conduct diagnostic evaluation. 

10a. Investigate and interpret residual ACF plot and residual PACF plot (Figure F), prediction of 

the verification year, and the predictions for the future years.  

10b. If necessary, change the ARIMA model terms as appropriate. Repeat steps 10a.  

 

Figure F. Residual ACF and PACF 
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11. Continue post-diagnostics for enhancing the term of ARIMA model, as necessary for 

improving the results. 

11a. The final ARIMA (p,0,q) model for the annual global natural disaster time series (Figure A) 

is (1,0,34). 

11b. Note this is not a seasonal ARIMA model because of the annual time series. If monthly 

time series is analyzed, then the model will be seasonal ARIMA model (p,0,q) (P,0,Q). 

12. The following examples illustrate writing formats for ARIMA models. 

12a. Example of AR process ARIMA (1,0,0) model equation: 

Yt = C + (1 – ϕ1B) * at           

Yt = Data time series (Dependent or response variables) 

C = Constant      

1 – ϕ1B = Regular Autoregressive process of order one 

at = random shock term; normally distributed, independent with zero mean, and variance 

equal to σa  

12b. Example of MA process ARIMA (0,1,3) model equation: 

           ∇1
 * Yt = C + (1 – θ1B – θ2B2 – θ3B3) * at                                                                             

Yt = Data time series (Dependent or response variables) 

∇1 = Regular Differencing operator of order one 

C = Constant      

1 – θ1B – θ2B2 – θ3B3 = Regular Moving Average process of order three 

at = random shock term; normally distributed, independent with zero mean, and variance 

equal to σa  
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12c. Example of (AR, d, MA) process ARIMA (1,1,3) model equation: 

∇1 * Yt = C + (1 – ϕ1B) * (1 – θ1B – θ2B2 – θ3B3) * at           

 Yt = Data time series (Dependent or response variables) 

∇1 = Regular Differencing operator of order one 

C = Constant      

1 – ϕ1B = Regular Autoregressive process of order one 

1 – θ1B – θ2B2 – θ3B3 = Regular Moving Average process of order three 

at = random shock term; normally distributed, independent with zero mean, and variance 

equal to σa    

Concluding Remarks:  

The above step-by-step procedure (steps 1 to 12) should be followed for identifying appropriate 

ARIMA model terms for the data time series.   
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