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ABSTRACT

Transitional turbulence is a period of chaotic or unreliable variation in the state of

a software system that results from changes in the system’s interconnected components.

During these periods of instability, an external observer of the system’s state may “see”

erroneous results. This is a problem that can affect visual user interfaces such as those in

virtual and augmented reality applications and desktop or Web GUIs. In this research, we

study two different reactive applications developed in C# on .NET. We reduce the transi-

tional turbulence by augmenting the base applications with a dependency-graph-based event

scheduling approach. The first study investigates desktop and Web GUIs. The second study

investigates virtual and augmented reality applications built on the Unity3D game engine.

The two studies use similar approaches, but both are somewhat embedded in the details of

their applications and implementation platforms.

In addition to presenting the two augmented applications, this dissertation charac-

terizes the problem and its solution in a more general way. To do so, we use a design pattern

to state the general problem-solution pair and enable it to be reused in similar contexts.

We examine the two studies to identify their commonalities. We then unify the approaches

by writing a new design pattern named Dynamically Coalescing Reactive Chains

(DCRC). This dissertation both presents the new design pattern and records the system-

atic process we used to write it. To evaluate the design pattern and its usage, we apply it

to the application in the first study as if we were approaching the application anew. The

DCRC pattern facilitates the use of our approach for other applications and technologies

and lays the foundation for further research on transitional turbulence and related software

architecture issues.
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CHAPTER 1

INTRODUCTION

A visual user interface must respond expeditiously to user actions and display their

effects accurately. This is especially important for virtual and augmented reality applica-

tions, but it is also important for desktop and Web applications. Each of these applications

“interacts with its environment on an ongoing basis” (Chandy and Misra, 1988). It reacts to

a stream of events, where an event may be a stimulus from the external environment (such

as a user movement) or from the computational environment (such as a notification that

some software component changes its state).

When the handling of an event affects the state of one component of a system, that

component may affect several other components. Each of these may, in turn, affect others,

and so forth as the effects ripple throughout the system. It may take several update cycles for

the states of all components to be updated and the system to reach a stable state. This period

of transitional turbulence (Lorenz, 1963)—or glitchiness (Cooper and Krishnamurthi, 2006)—

can result in inconsistencies in the visible state if the display must render new frames before

stability is reached. The user (at least temporarily) perceives the system as unreliable and

inaccurate. As a result, programmers must take appropriate countermeasures to maintain

an accurate external state. For example, they can ignore updates that occur in the wrong

order or that use outdated inputs since these would result in incorrect observable states.

To alleviate this transitional turbulence problem, we developed a novel reactive (Bain-

omugisha et al., 2013) approach. The approach encodes the complex relationships among the
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user interface components in a dependency graph and then uses the graph to order the up-

dates of the components without violating the dependency constraints. This enables more

timely updates and more accurate visualizations, potentially providing users with a more

satisfying experience.

We use our approach to the transitional turbulence problem for two case studies.

In Chapter 3, we address .NET-based dynamic user interface for both desktop and Web

applications. In Chapter 4, we address virtual and augmented reality applications for the

Unity3D game engine (which itself builds on the top of .NET). All applications in both case

studies share a context that does not currently allow programmers to specify the update

order for the units at runtime.

In Chapter 5, we analyze these two case studies, extract their common features, and

systematically document our general approach. In the generalization, we focus on applica-

tions that are structured according to the implicit invocation architectural pattern (Shaw

et al., 1995) and codify our general approach as a design pattern (Buschmann et al., 1996,

2007). The overall research question for this dissertation as follows:

Can we mitigate the transitional turbulence in an implicit invocation-based sys-

tems by applying a technology-independent formal description such as a design

pattern created by highlighting common aspects of similar applications?

To answer this overall research question, we consider more specific research questions

for the research reported in each chapter. These include:

Chapter 3, the .NET dynamic user interface case study: Can dependency graph-based

execution reordering and self-adjusting state recomputation be used to augment the im-

plicit invocation built-in event system resulting in reduced transitional turbulence ex-

ecution inconsistencies and increased accuracy while maintaining performance in the

chained execution of multiple control’s event handlers specifically found in Web and

desktop graphical user interfaces?
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Chapter 4, the Unity3D virtual and augmented reality case study: Can dependency

graph-based execution reordering and self-adjusting state recomputation be used to aug-

ment the implicit invocation game loop resulting in reduced transitional turbulence

execution inconsistencies and increased accuracy while maintaining performance on

graphical applications built on game engines?

Chapter 5, the design pattern development: How can we codify the transitional tur-

bulence mitigation approach taken in Chapters 3 and 4 as a general, technology-independent

design pattern?

The two case studies address two different but related problems involving implicit

invocation architectures and devise two similar solutions using different technologies. Both

solutions work by augmenting the normal event processing mechanisms with new software

mechanisms that use the dependency graph.

In the first case study (in Chapter 3), we aim to augment Web and desktop graphical

user interfaces (GUIs) implemented in C#. The approach builds the dependency graph by

analyzing the relationships among the GUI controls (Marum et al., 2020a). Many effects

that had previously been spread across the rendering of multiple frames all now occur within

a single frame. By conducting a set of experiments, we show that our approach improves

performance and results in a more accurate behavior in comparison to implementations

using the Sodium (Blackheath and Jones, 2016) and Rx.NET (reactivex.io, 2020) reactive

programming libraries and the built-in .NET event system for user interfaces.

In the second case study (in Chapter 4), we aim to augment virtual and augmented

reality applications implemented using the Unity3D game engine and C# (Marum et al.,

2020c). Our augmentation, as described in Chapter 4, is similar to the one described above

except that it addresses similar issues in Unity3D’s existing object hierarchy (Unity Tech-

nologies, 2019). The approach builds the dependency graph by analyzing the relationships

among the Unity3D game components. If Unity3D’s object hierarchy changes, the approach
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recomputes the dependency graph. By reordering the events based on the dependencies,

the approach removes many inconsistencies without degrading the performance of the sys-

tem. By dynamically reacting to changes in the object hierarchy, the approach can smoothly

handle relatively complex applications. By conducting a set of experiments, we show our

approach performs better than both an unmodified Unity3D application and a similar ap-

plication developed using the reactive library UniRx (Kawai, 2014).

Our general practical contribution is the understanding that the increased control

of the update cycle improves the responsiveness of the update to changes in the structure

and ensures a more predictable result. To answer the overall research question, we build

a reactive framework around the dependency relationships among the objects in the user

interface’s structure. We define this general approach using a design pattern that we name

Dynamically Coalescing Reactive Chains (DCRC). The DCRC pattern’s practical

objective is to guarantee the execution order of the components’ update functions in appli-

cations based on the implicit invocation architecture pattern (Shaw et al., 1995) without

degrading the performance while preserving the correctness and increasing the predictabil-

ity of order-sensitive operations. To ensure that our final design pattern still fits into the

original solution definition in the case studies, we reapply the design pattern to .NET GUI

application as if we are trying to solve it anew.

The remainder of this dissertation is structured as follows. Chapter 2 defines back-

ground concepts that we use throughout this dissertation. Chapters 3 and 4 report on the

research related to the case studies described above. Similarly, Chapter 5 reports on the

research related to the design pattern development. Finally, Chapter 6 answers the overall

research question, reviews the contributions of this research, and identifies possible future

work.
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CHAPTER 2

BACKGROUND

Before we describe the two case studies in Chapters 3 and 4, this chapter defines

background concepts that we use throughout this dissertation. We start with reactive pro-

gramming semantics. Understanding how reactive programming works is essential to the

development of the two applications studied in Chapters 3 and 4 and to writing the design

pattern description in Chapter 5.

2.1 Reactive Programming Semantics

Chandy and Misra (1988) and Manna and Pneulli (1992) define a reactive program

(RP) as software that engages ongoing interactions with its environment. Reactive program-

ming (RP) focuses on how software reacts to changes in a system’s state. These changes can

be caused by interactions among the software components or by an external actor such as a

user or another software system. The developer must determine the chain of events caused

by a particular change. Throughout the execution of the application, the program reacts

to the changes as defined by the developer. Operating systems and embedded systems are

examples of reactive programs that do not terminate.

Using a spreadsheet as an example, Westberg (2017) describes the RP approach as

follows:

When the value of a specific cell is changed, all the dependent cells to that cell

are instantly updated as a function of that change. This type of model makes

it possible to have sequences of dependent values and events. If object C is

dependent on B, while B is dependent on A, then, if A changes, B is reevaluated,

followed by C. Changing object A creates a chain of reactions.
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Figure 2.1. Illustration of the reactive behavior.

A change in the value of A causes B to be recomputed based on A’s new value. A change in the

value of B, in turn, causes C to be recomputed because of the changes in the value of B. The

changes thus ripple through the entire graph of dependencies. It uses a push-based or event-

driven model of computation, where the environment rather than the program determines

the speed at which the program interacts with the environment. Figure 2.1 illustrates this

behavior.

The underlying model of spreadsheets stores the connections between the cells, so

when one cell changes, the other cells that use the first cell’s value to calculate their own

results also update, and then the resulting reactions spread out until all the values change

accordingly. This does not say that all reactive programming is as simple as a spreadsheet.

For reactive programming, we aim to extract and store the underlying dependencies of

complex software systems where those dependencies are not as simple or visual as in a

6



Figure 2.2. Spreadsheet’s auto-update functionality.

spreadsheet. Figure 2.2 shows how a reactive paradigm would recompute the calculations

based upon a change in the inputs.

For example, if a state can be described with a finite set of variables and their values,

then a transition gives a beginning state, some kind of stimulus from the environment (input),

and ensuing changes to the environment (output), and the state (next state). An execution

of a sequential program/process consists of an infinite sequence of states beginning with a

valid initial state with adjacent states being associated with a tuple in the transition relation.

An execution of a set of sequential processes is often given as the nondeterministic

interleaving of the sequences for the processes in the set. The execution of a transition in one

process might change the state of another process. A problem with a reactive system is that

some interleavings are undesirable. To remove undesirable interleavings, we have to schedule

the transition executions appropriately. For example, in multithreaded programs, the lack

of mutual exclusive access to critical sections would result in an undesirable interleaving. In

such a case, the programmer uses synchronization mechanisms (e.g., locks, semaphores) to

ensure mutual exclusion.
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For the type of applications we target in this research, such as game applications or

user interfaces, the rendering of the visual display is modeled as a separate process that runs

periodically. The various interactions inside the game are one or more processes that run

concurrently. “Inaccuracies” in the perceivable can result from undesirable interleaving of

the transitions. For example, a virtual ball may penetrate a wall briefly instead of bouncing

off the wall immediately. If the visual display runs during this interval, then the observer

perceives this as an inaccurate simulation. To mitigate this issue, our approach schedule

the transition executions (i.e., the changes to those components) to remove some of the

undesirable interleaving. Because the visual display is not under the programmer’s control,

it is not possible to remove all undesirable interleavings, but our approach aims to minimize

their number.

One common way to enable reactiveness is to capture the data dependencies between

the program’s components and execute the chain of functions necessary to propagate the

changes based upon these dependencies (Foust et al., 2015; Lehmann et al., 2016). At the

start of the application, the prototype creates a dependency graph. It then traverses this

graph whenever a change occurs to any data item. It continues traversing the graph as long

as changes are propagated from one node to others. When it stops, the graph remains stable

until the next chain of reactions. Figure 2.3 shows how behavioral information is extracted

from the systems described in Chapters 3 and 4, which are based on our earlier work (Marum

et al., 2016, 2019, 2020a,b,c).

Van den Vonder et al. (2017) argue that the benefit of reactive programming becomes

more evident in applications that are highly interactive with multiple user-interface events

that can change data values. There are many examples of RP frameworks ranging from those

designed to add reactivity to existing systems to purpose-built languages. For instance,

Czaplicki and Chong (2013) describe a language which was initially reactive and evolved

to a multi-purpose language and framework. Blackheath and Jones (2016) focus on the

development process for a new reactive library called Sodium. Blom and Beckhaus (2008)
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Figure 2.3. Extraction of dependencies from the original hierarchy.

examine a Haskell library for functional reactive game development. Their approach is

based on a reactive programming layer that acts like a middleman between the reactive user

interface and the non-reactive Virtual Environment (VE) manager. In the next section we

describe multiple aspects of the framework we use for both of our implementations, focusing

on the aspects that led us to choose it for our implementations

2.2 .NET Framework

Senthilvel and Qureshi (2017) describe Microsoft .NET (Microsoft, 2020b) as a man-

aged execution environment made up of tools, programming languages, and libraries for

building many different types of applications. There are implementations of .NET that al-

low .NET applications to execute on platforms such as Linux, macOS, Windows, iOS, and

Android.

Microsoft (2020b) originally implemented the .NET Framework as a managed exe-

cution environment for its Windows operating system. This framework provides a variety

of services for developing websites, services, desktop applications, etc. More recently, Mi-
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crosoft expanded these services to other operation system platforms: .NET Core for Linux

and macOS and Xamarin for Android and iOS devices. Both of those are open-source and

based upon an older implementation of .NET for Unix-based operational systems called

Mono.

The .NET Framework, which is also called the Common Language Infrastructure

(CLI), is described by Nagel (2018) as consisting of the following components:

Common Language Runtime (CLR), which is described by the official .NET documen-

tation (Microsoft, 2020b) as the execution engine that handles running apps. The CLR

provides the services and runtime environment to the machine code. Senthilvel and

Qureshi (2017) describe the Common Language Runtime (CLR) as the runtime exe-

cution environment. Any code that must run on .NET framework is executed under

the control of the CLR. That is why it is often called managed code. Internally, the

CLR loads any required functions or classes from the .NET Framework Class Library.

.NET Framework Class Library (FCL), which is described by the official .NET docu-

mentation (Microsoft, 2020b) as a class library that provides multiple system function-

alities available to all technologies and languages in the .NET Framework. The FCL

contains various classes, data types, and interfaces and a common event system that

manages action notifications and handles subscription and ownership of these actions.

Common Language Specification (CLS), which is described by the official .NET docu-

mentation (Microsoft, 2020b) as the component responsible for converting the different

.NET programming languages’ lexical, syntactical rules and regulations into a CLR un-

derstandable format. It is a part of the compilation capabilities that unifies all .NET

languages into a single standard. The CLS handles the lexical, syntactical, and seman-

tic analyses and then translates the original source code into the respective version of

the code in the Common Intermediate Language (CIL).
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Common Type System (CTS), which is described by Price (2019) as the component re-

sponsible for understanding all the data type systems of .NET programming languages

and converting them into a common format. All types in .NET follow a tight inheri-

tance scheme. Therefore any developer-defined type inherits from System.Object or

from one of its subtypes.

The components described above support the features that lead us to choose the .NET

framework for the two case studies presented in Chapter 3 and 4. Having a common language

specification and a common type system provides the uniform inherited type system upon

which we build our reactive augmentation. It allows us to separate a subset of the components

by defining another logic layer upon the existing classes in the .NET framework. This allows

us to define a flexible type definition. That is, we can expand our search by accessing all

classes that inherit from a given class, and then we can search for specific types among them

to use specific capabilities. The Framework Class Library permitted us to tap into the .NET

capabilities for efficiently iterating through large data structures, especially special iteration

capabilities and functional combinators.

C# (pronounced “See Sharp”) is the main language of the .NET Framework. The offi-

cial C# documentation (Microsoft, 2020a) describes C# as a strongly typed, multiparadigm

language in the C family of programming languages. It is primarily an object-oriented lan-

guage, but it also has support for elements of the functional, event-oriented, and metapro-

gramming paradigms. In C#, everything is an object. Albahari and Johansen (2020) de-

scribe C# as a language that supports many unique programming abstractions such as

delegates, properties, events, and attributes.

According to Price (2019), C# has a unified type system that includes all the common

primitive types such as int and double, but even these types inherit from the primary

Object type. The types that belong to the common type system share a set of common

operations that allow data from these types to be stored, transported, and operated on in a

standardized manner. For example, all classes inherit the ToString() method.
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Figure 2.4. An implementation of a foreach iterating through a list in C#.

According to Price (2019) and Albahari and Johansen (2020), C# has the following

characteristics that we relate to our research:

For Each: C# provides an additional flow control statement, foreach. Albahari and Jo-

hansen (2020) define foreach as a built-in loop construct that iterates over all items in

array or collection without requiring an explicit specification of the indices. Figure 2.4

demonstrates the use of a collection (a list) that holds an unknown and theoretically

unlimited amount of data. It uses foreach iteration to easily iterate through the

collection.

Generics: Microsoft (2020a) defines a generic as a language feature that enables classes
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and methods that work with a set of types. To use a generic, a developer needs to use

a placeholder (e.g., <T>) on the methods or classes. Microsoft (2020b) explains that

.NET can infer the appropriate type at runtime. Generic data types enable a function

to be called without knowing the specific data type being handled. Thus, the same

function can be used for a wide variety of data types.

Figure 2.5 demonstrates the use of generic to establish a functionality that works for

any data type.

Collections: Price (2019) defines collections in a library of several built-in data structures

(e.g., lists, queues, hash tables) that are available in the .NET languages.

Since event handling is an important aspect of our research, we examine .NET’s

event-handling capabilities in some detail in the next section.

2.3 Event System

An event is a message or signal that represents an action or occurrence. An event is

triggered whenever the system needs to do something to respond to that phenomenon. From

a programming standpoint, an event is a message sent by a component that was acted upon

to indicate some occurrence that must be dealt with. Events are an effective mechanism for

interprocess communication because they signal state changes, which may be valuable to the

reaction of that event in the system.

Event-handling mechanisms can take many forms across different languages and im-

plementations; for object-based systems an event is often an object whose properties contain

any contextual information needed to process the desired occurrence. Nagel (2018) explains

that the .NET Framework, more specifically C#, models event handling by using two ab-

stractions: event-handlers and delegates. Figure 2.6 illustrates a code sample in .NET that

handles events.

Based on the definition from Microsoft (2020a), a delegate is a type that represents
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Figure 2.5. An implementation of a generic data type and function in C#.
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Figure 2.6. Handling an event in C#.
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or holds a reference to a method, provided that the parameter list and the return type are

similar and the method is accessible. Price (2019) defines a delegate as a way of treating

a method as a first-class object. Whenever a delegate references a method, C# treats the

method as a class attribute, returning a reference to that method.

Whenever a delegate references a method, no behavioral information needs to be

known about that method. The only information required is its signature. As Price (2019)

notes, the delegate can point to any method whose arguments and return values match the

ones described in the method of the delegate signature. Albahari and Johansen (2020) argues

that the primary reason to use a delegate is to add function polymorphism to the code, which

is something that a developer cannot achieve by just using interfaces and abstract classes.

Delegates allow functions to be passed to other functions so these other functions can invoke

the first ones directly instead of duplicating the same code in multiple places.

Figure 2.7 shows the declaration of a delegate called MyDelegate, which has a void

return type and a String parameter. The target method can be attached to the delegate

by assigning a method directly to the object of delegate type.

Microsoft (2020a) explains that there are three steps for working with a delegate:

1. declare the delegate

2. set a target method (whose signature must match the delegate’s signature)

3. call the delegate (which indirectly invokes the method attached to it)

A delegate is declared using the following syntax:

[accessModifier ] delegate [returnType ] [delegateName ]([parameters ])

Figure 2.7 highlights the method methodA() being attached to the delegate MyDelegate.

An Event object in C# is defined by Microsoft (2020a) as a special kind of delegate

designed to facilitate event-driven programming. Delegates are very flexible. They can be
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Figure 2.7. A delegate implementation in C#.

passed around and can reference any method that matches its signature. However, this

also raises a problem: delegates can easily have their properties overridden, and that leads

to errors where references to a changed delegate become invalid. That means a developer

must not use delegates as public properties. To avoid the above problem but still work with

delegates, Price (2019) points out that C# uses Events, which defines a wrapper around the

delegate. Figure 2.8 shows the relationship between Event and Delegate.

The Event type resolves the problem of exposing a delegate outside of a class by

defining wrappers around Delegate. Albahari and Johansen (2020) state that a developer

must never raise an event unless at least one other method is added to the event. In other

words, the delegate attached to the event must not be equal to null. So, once an event is

created and attached to a delegate, it can neither be set to Null nor overridden by using the

keyword new. It can only have event-handling methods added or removed.

The signature of an event handler contains the method that is invoked in case of

a notification of an event. Price (2019) explains that this event handler signature has two
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Figure 2.8. The relationship between event and delegate.

parameters. The first parameter is the event data, which is a collection of data regarding the

event notified. The second parameter is the sender object, which refers to the control that

generated the event. The method bound to the event object is an action notification that

originates from an interaction with a control from an external or internal actor instead of a

simple method call. The event object is primarily used for signaling a message or notification

passing. In the next section, we describe the general aspects of reflection and metadata and

how .NET makes this information available.

2.4 Reflection and Metadata

In general terms, Pontes et al. (2019) define reflection as a programming capability

that allows a running program to have access to information about the structure of the objects

and classes from which the program is constructed. This includes information about the

methods and data attributes within the individual classes. Li et al. (2019) define reflection
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as the ability to examine a program and possibly change its structure and behavior at

runtime. It is a feature present in many languages, like Python, C#, and Java. For .NET,

Hamilton (2003) explains that reflection is the process of runtime type discovery. It enables

a program to dynamically inspect an instance of a given type, analyzing and invoking its

members at runtime, without having compile-time knowledge of its existence.

The information required to make such analyses is commonly called metadata. Mi-

crosoft (2020b) defines metadata as the structural information about the components present

in a program. This metadata includes information about the way components are loaded,

how memory is laid out, how methods are invoked, how classes are structured (information

about the names and types of methods and attributes, and any connection between these

components), and how types are declared. Figure 2.9 shows how a program can access

information about an object at runtime, including all its fields.

Rodriguez and Swierstra (2015) describe the Type class as the main component of all

reflection operations. A Type object represents a type inside the system. The Type class

enables a program to access the metadata. It provides methods for obtaining information

about a type declaration, such as the constructors, methods, fields, properties, and events

of a class, as well as the module and the assembly in which the class is deployed.

For Rodriguez and Swierstra (2015), .NET applications store metadata in assembly

files. Assemblies are composed of multiple modules and each module contains the structural

information of a single class and the structural details of all the methods and attributes

within that class. An assembly is a versioned binary file that contains all information that

the .NET framework needs to execute the file. Assemblies are composed of multiple modules.

Each module contains the structural information for a single class and the structural details

of all the methods and attributes within that class.

Damyanov and Holmes (2004) explain that a program can use reflection to access and

modify an object’s class information, including the values of its attributes. Using reflection,

it can invoke an object’s methods and create objects and attributes dynamically at runtime.
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Figure 2.9. Using Type class to access information about a given object.
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For Pontes et al. (2019), these capabilities mean that managed code can actually examine

other managed code, including itself, to determine information about that code.

Rodriguez and Swierstra (2015) explain that reflection uses the information present in

the metadata to access the components’ structure programmatically. Whenever a class needs

to use information from a class compiled in a different assembly, Rodriguez and Swierstra

(2015) highlight that the compiler must describe the location of the assembly containing that

class, so the CLR can link the assembly to the final executable file. The CLR automatically

links the classes present in the .NET class library to the executable file.

In the next section, we consider the implicit invocation model. This model describes

the general structure and behavior of the applications of interest in this dissertation research.

2.5 Implicit Invocation Model

Complex systems are typically comprised of many components. Garlan and Shaw

(1993) find that the fundamental issue in the development of these systems is the mech-

anism for integrating the components. Traditionally, Shaw and Garlan (1996) note that

these systems provide a collection of functions. Components interact with each other by

explicitly invoking each other’s functions. They call this mechanism for integration explicit

invocation. In explicit invocation, a component directly accesses and invokes functions on

other components of the system. However, Shaw and Garlan (1996) note that there is an

alternative called implicit invocation. The idea behind implicit invocation, as stated by Gar-

lan and Shaw (1993), is that instead of invoking a function on another component directly,

a component can post an event notification to the other components interested in knowing

about the event. Components can register themselves to be notified when the event notifi-

cation is posted. Each component can associate the invocation of one of its own functions

in response to the event notification. When the event notification is posted, the system lets

each component execute the function associated with the event. Thus, an event notification

implicitly or indirectly causes the invocation of functions in all the registered components.
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The implicit invocation model assumes the existence of a loosely coupled collection

of components, each of which carries out some process to which other components may need

to react.

Garlan et al. (1998) state that these components (processes, actors, programs, struc-

tures, or objects depending on the technology applied) can post a notification to a central

manager that some event of interest has occurred locally. The central manager can then

notify other interested components of what has occurred. These other components have

no knowledge of what components are in the system and may only communicate with the

other components through asynchronous event notifications. Figure 2.10 shows the overall

functioning of the implicit invocation model.

Garlan and Khersonsky (2000) observe that a component posting an event notification

does not know if any other component is interested, neither do they know in what order the

events from different components will be received by the interested parties. As a result,

implicit invocation should scale well as the number of events and components increases.

According to Garlan and Shaw (1993), an implicit invocation system has three key

concepts:

Component: A logically independent entity that can be the poster (post event notification

to a manager) or the listener (registered in the manager as interested in being notified

that certain event has occurred). The components in an implicit invocation system

may all be a part of one software system or may be spread across several software

systems.

Event: An occurrence of possible interest or importance within a system. The notification

of an event must be posted to the manager. The event must contain the identifier

for its source component to enable other interested parties (components) to register to

receive the event notification. The event may contain data.

Manager: A medium that enables the components to register to receive the events of their

22



Figure 2.10. The implicit invocation architecture model.
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choice. When one of the components posts an event, the manager dispatches the event

to the registered parties by invoking the function on each party associated with this

event.

In addition to the asynchronous nature and the scalability of implicit invocation, it

has other possible benefits (Garlan and Shaw, 1993; Shaw, 1996):

• Implicit invocation provides strong support for reuse. A new component can be intro-

duced into the implicit invocation system simply by connecting it to the manager and

registering it for the events of that system.

• Implicit invocation eases refactoring. Components may be replaced by other compo-

nents without affecting the interfaces of other components in the system.

In contrast to implicit invocation’s loose coupling, systems based on explicit invo-

cation are tightly coupled. A change to one component or function likely requires that all

other components that use that component or function must also be changed.

The primary disadvantage of implicit invocation is that components relinquish control

over the computation performed by the system (Shaw and Garlan, 1996). When a component

announces an event, it has no idea what other components will respond to the event nor

can it rely on the order in which listener functions are invoked. This creates concern related

to the correctness of the event ordering. Since the event notification itself has no logical

meaning, the meaning of an event notification depends on the listeners’ functions that will

be invoked. This makes reasoning about the correctness of a system more difficult than for

explicit invocation systems.

2.6 Dependency Graph

A dependency graph is a graphical representation of a set of nodes that depicts a

transitive dependency relation on the set (Féray et al., 2018). In a transitive relation, if A is

related to B and B is related to C, then A is also related to C.
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Figure 2.11. The dependency graph and the relation between nodes.

In this dissertation research, a node in the dependency graph represents some kind of

computational entity. If some node B depends on a node A, then the computation at A can

somehow affect the computation at B. For example, node A may change, create, or modify

a value that B uses in its computation. In such a case, the computation at A likely should

precede the computation at B. Thus, from an acyclic dependency graph, it is possible to

derive a sequence for the computations (i.e., an evaluation order) in which every node of the

graph is visited and no node is visited before any node it depends on. Figure 2.11 shows a

dependency graph, showing the dependency relationships between the nodes.

In computer science, we can define a dependency graph as a directed acyclic graph that

represents a given component collection and shows how the components relate to each other

using directed links called dependencies (Azero, 2013). In most variations of dependency

graphs, the nodes consist of programmable units (e.g., classes, structs, objects, code files,

etc.). The graph encodes the relationships between any two components. Suppose we have
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two components A and B. If B depends on A, then A must be evaluated first and any change

to A will require a change to B.

The dependency graph must be always acyclic (Azero, 2013) since the presence of

cycles of dependencies (also called circular dependencies) leads to a situation in which no

valid evaluation order exists. By topologically sorting the nodes in the dependency graph,

we can infer a valid evaluation order. Most topological sorting algorithms are capable of

detecting cycles in their inputs (Franciscus et al., 2019). However, it may be desirable to

perform cycle detection separately from topological sorting to provide appropriate handling

for the detected cycles.

Figure 2.12 shows the use of a dependency analysis to build a dependency graph.

Each edge between the nodes in the graph is defined as a dependency relationship between

the computational components between them. The successful evaluation of this dependency

graph will yield an evaluation order that will allow all the components to execute without

violating any of the dependency constraints represented in the dependency graph.

For a given dependency graph, there can be more than one correct evaluation order.

Computationally speaking, as stated by Azero (2013), an evaluation order is a topological

order that uses the dependencies as constraints. Thus, any algorithm that derives a correct

topological order from a dependency graph derives a correct evaluation order.
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Figure 2.12. Mathematical dependency graph used to infer evaluation order (Marum et al.,
2019).
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CHAPTER 3

DEPENDENCY GRAPH-BASED REACTIVE AUGMENTATION OF WEB AND

DESKTOP USER INTERFACES

3.1 Introduction

In this chapter, we consider both desktop and Web-based user interfaces (UI). Foust

et al. (2015) argue that UIs are reactive applications normally implemented using imperative

callbacks that are then sent to a programming layer to handle the event processing. Czaplicki

and Chong (2013) define that the user interface components are arranged in graph structures:

For a Web page, this graph is the Document Object Model (DOM) and, for the .NET desktop,

it is the Designer class. Unless the executions of the controls are explicitly scheduled

by the program, they are scheduled in whatever order the controls happen to fit into the

application’s execution. Normally, an event first causes its associated component to be

executed, which may raise other events that can subsequently execute other components in

the interface.

Foust et al. (2015) state that a graphical user interface (GUI) must be able to execute

complex tasks in which one user interaction can initiate a chain of effects on other GUI

components. It should be able to do so without introducing any inaccurate or misleading

displays, even temporarily. The current approaches to the implementation of a GUI rely on

asynchronous calls. These approaches enable the GUI to respond to a user at any time, but

they make the management of the data dependencies among components difficult.

For example, consider the .NET framework. An event causes its associated GUI

control to be scheduled for execution. The execution of this control may have an effect upon

another control in a chain (e.g., the second control may use the data that the first modifies).
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The first control does not directly call the second. Instead, the first control raises a new

event, which causes the execution of the second control at some later point.

In a complex application, the effects may appear slowly and in a different order than

expected by the user. This may result in temporarily inaccurate and misleading displays. In

an attempt to alleviate this problem, developers sometimes employ reactive programming

techniques. These can help because they make the data dependencies explicit and enforce

them automatically at runtime. However, they still do not handle dependencies between

controls.

In this research, we develop a reactive programming approach that addresses the

problem described above. Our approach (described in Section 3.4) analyzes the complex

relationships among the controls, encodes the dependencies between them in a dependency

graph, and then topologically sorts the graph to extract an evaluation order for the event

handlers of the components that does not violate the dependency constraints. This augmen-

tation improves the performance by coalescing the set of updates so that users conceptualize

it as occurring in a single chain. It ensures a deterministic result. Whenever an event as-

sociated with some control A is fired in the user interface, our approach uses the graph to

generate the list of other controls affected by control A. The user interface then executes

these controls along with control A in the order defined by the list. Thus, they appear as

part of the same update of the display.

Along the path to achieving this, our research aims to determine whether dependency

graph-based execution reordering and self-adjusting state recomputation can augment the

GUI’s built-in event system to mitigate the execution inconsistencies due to transitional

turbulence and increase the accuracy without degrading the performance significantly. Pre-

liminary versions of this research are described in Marum et al. (2020a) and Marum et al.

(2020b).

We evaluate our approach by comparing its performance against the performance

of original .NET, Rx.NET (Malawski, 2016), and Sodium (Blackheath and Jones, 2016)
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implementations. Rx.NET and Sodium are commonly used alternative reactive libraries for

user interfaces. Before we look at the design of our augmentation and the implementations,

let us examine the technologies present in the .NET framework in Section 3.2 to build user

interfaces: especifically the WindowsForms and ASP.NET. Then in Section 3.3 we examine

the aspects of the problem in more detail.

3.2 Background

WindowsForms is a set of managed libraries for the .NET Framework that simplifies

common application tasks related to the UI (Brown, 2006). It is the User Interface (UI)

manager. It allows the developer to create visual client applications that display informa-

tion, request input from users, and communicate with remote computers over a network

(Microsoft, 2020b).

In the WindowsForms architecture, a form is a class that contains a list of controls,

along with their descriptive information (Greene and Stellman, 2013). Controls can be nested

inside of other controls. Normally, the parent control owns and defines certain characteristics

of its child controls, such as their locations and colors. Given the definition of the UI, .NET

creates the respective executable form at runtime. This UI can display information to the

user and let the user interact with the system. A WindowsForms application’s behavior is

built by programming each control’s response to user actions and interactions in general, such

as mouse clicks or key presses (Albahari and Johansen, 2020). Each control is a discrete UI

element that displays data or accepts data input. The WindowsForms architecture features a

library of commonly used UI controls that can be added to forms (Nagel, 2018): text boxes,

buttons, drop-down boxes, radio buttons, and others. However, developers can extend the

behavior of an existing control or create their own custom controls. They can create new

classes that inherit from the specific control they want to extend or they can create a class

that inherits directly from the top-level UserControl class to create new types of controls.

When a user does something to the form or one of its controls, the action generates
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an event (Price, 2019). The application reacts to these events by using user-defined event-

handlers to process the events as they occur. Events are notifications that can be generated

by a user action (such as clicking the mouse or pressing a key), by the program code, or

by the system. Event-driven applications execute code in response to an event. Each form

and control exposes a predefined set of events that a developer can use to program its

behavior (Nagel, 2018). If one of these events occurs and there is code in the associated

event handler, that code is invoked. The types of events raised by an object vary, but many

types are common to most controls. For example, most objects can handle a Click event. If

a user clicks in a control inside the form, the event handler of that control in the form code

is executed.

Forms in the WindowsForms architecture are defined using partial classes. A partial

class is a feature of C# that spreads the definition of a class across multiple class files. Then,

during compilation, these files are integrated to form a single class. The benefit of using a

partial class is to separate logically different aspects of the class into separate groupings. In

real-world programming, there are several situations where splitting the definition of a class

is desirable. By declaring a class partial, a developer can separate the different functionalities

of that class into multiple source files that will be combined into a single class definition at

compile time as a way to extend the functionality of the class. Each source file adds a distinct

part of the overall class definition. Since it is a single class, the source files can reference

each other’s methods and attributes. However, all parts combined must form a valid class

definition, so two parts cannot define the same method with the same signature. The same

constraint holds for properties, constructors, and so forth. The merge occurs at the class

level; two methods with the same name are considered overloads and are never merged into

a larger method.

This separation, in the case of the WindowsForms form, keeps automatically generated

code from the logic file where the developer implements the UI behavior. It keeps this

automated code and the developer code safe from unwanted modifications (Microsoft, 2020a).
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However, this separation does not make any difference to the C# compiler, as it treats all

these partial classes as a single entity at the time of compilation and compiles them into a

single type in the Microsoft Intermediate Language (MSIL).

The most relevant partial class example is the file file.cs that is used to build a form

in WindowsForms applications (Albahari and Johansen, 2020). .NET formats the UI into two

separate files, the file.Designer.cs designer class file and the file.cs logic class file. The

designer file has code related to the implementation of the controls and the appearance

of the UI and the logic file contains the event handlers and any logic related functions

and variables. Microsoft .NET’s main Integrated Development Environment (IDE), called

Microsoft Visual Studio, contains a native form designer system with a toolbox containing

all the common controls used in UIs. It has an option to add third-party control libraries

and the developer’s own controls (Microsoft, 2020b). The developer can drag a control from

the toolbox to the form, position it in the desired place, and modify its properties. As a

control is dragged, a related object with the same type as the control dragged is instantiated

on the file.Designer.cs page and its properties are automatically modified in the same

way the developer changed the control’s properties in the form designer.

The file.Designer.cs contains the auto-generated code that is added every time

a new control is dragged from the toolbox to the form. So, this file contains the code

that implements the controls, changes their features, positions the controls in the form,

and handles the form’s overall appearance (Microsoft, 2020b). Meanwhile, the file.cs file

handles the behavioral code, i.e., event-handling methods, connections to other classes, and

any other logic-related methods required. The event handler is a method that is bound to

an event. When the event is raised, the code within the event handler is executed. In the

definition of an event handler, each event handler normally provides two parameters that

allow the developer to handle the event properly: the first is the sender which is a reference

to the control that produced the event (that is necessary since the same event in multiple

controls can be handled by the same method) and the second is a reference to an array of
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event-related data (information such as the location of the mouse for mouse events or data

being transferred in drag-and-drop events).

3.3 Problem Definition

Graphical user interfaces are critical components of many software products. Devel-

opers dedicate a large portion of development effort to the design and implementation of

GUIs. Given their prominence in software development and their role as mediators between

users and computers, GUIs must be designed and implemented correctly. Bishop and Hor-

spool (2004) define a GUI as a hierarchical collection of user controls, with each control

containing its own position and attributes. Based upon this definition, we argue that in such

a collection, some given user’s interaction with one control may initiate a wave of changes

that spreads incrementally across many other controls in the collection. In this chapter, we

call this situation a transitional turbulence (or what Cooper and Krishnamurthi (2006) call

glitchiness).

Transitional turbulence or turbulence of transition (Lorenz, 1963) is a term applied to

fluids in which a fluid’s overall state and its surface remain troubled after an external force is

applied to it. To translate the term into computational terminology, transitional turbulence

is a period of chaotic or unreliable variation in the state of a software system that leads

to instability in its execution. It can result from changes to the system’s interconnected

components and lead to an external presentation that does not accurately represent the

system’s expected behavior and inconsistencies in the visible state if the display must render

new frames before stability is reached. Suppose a certain interaction affects a control within

an interconnected cluster of controls. This generates a “ripple effect” where all controls

around the initial control are affected, and then all controls around those controls, and so on

until the effects propagate through a large portion of the system. In this particular situation,

transitional turbulence can be defined as the ripple effect caused by the chained execution

of multiple interconnected events. For example, a selection of a radio button in a user form
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may activate or deactivate whole sections of the form, cause changes in default values, etc.

These changes may, in turn, initiate their own waves of changes.

In this typical implementation of a GUI, a user interacts with the GUI by triggering

an event (e.g., clicking the mouse while the cursor is positioned at a particular locus on

the screen). If an event is associated with a particular GUI control, we call that control

the producer of the event. Once an event is raised, it can be processed by event handlers

associated with various consumer controls in the GUI. To associate some behavior with an

event, a software developer must encode the desired behavior into the built-in event-handling

mechanism provided by the language. This asynchronous event-handling architecture is

called implicit invocation (Shaw, 1996).

In an implicit invocation architecture, each control responds to events in which it

is “interested”. A response to an event may result in the control changing its state and

triggering new events that notify other controls of the state change. Thus, one control

responding to one event may trigger chains of events affecting several other controls in the

GUI. In complex cases, these event chains may be long; reaching a stable state may require

the processing of many events. The propagation of events is done by an event-handling

layer of the system, not by the controls themselves. Therefore, from the perspective of an

application developer, the order in which events are handled is non-deterministic.

Although the GUI’s controls are loosely coupled from a communication perspective,

an implementation usually arranges them into some hierarchical data structure. For exam-

ple, the controls within a Web-based GUI are organized by the Document Object Model

(DOM) within a browser. Similarly, the controls within a C# desktop GUI are organized

by a separate class named Designer; this class abstracts the UI visual representation and

contains a hierarchical set of controls. The display system uses these data structures when it

periodically renders the GUI onto the screen. This is where transitional turbulence can arise

due to the loose coupling of the GUI controls. The controls are frequently interacting with

each other, the nature of these interactions can be unpredictable, and the ramifications of
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an interaction can affect multiple objects. This interaction generates a “ripple effect” where

all objects around the initial object are affected, and then all objects around those objects,

and so on until the effects propagate through a larger portion of the system. The processing

of a long chain of events may span several cycles of the display system. A control may be

rendered with a state that is inconsistent with the states of other controls. This may result

in displays that are temporarily inaccurate or misleading from the perspective of a human

user.

In this implicit invocation style, an action is performed on a given control, this control

notifies the system about an interaction that occurred on it. The system calls the interested

control, prompting this control to answer this call by invoking specific functions that are

declared within it to react to these specific changes. Once a function has finished executing,

the system goes back to idle and the execution is returned to the manager. This is an

asynchronous process that breaks the ripple effect into several time-consuming ripples. The

event-handling approach described above is organized according to the well-known Observer

design pattern (Gamma et al., 1995).

The shortcomings of this structure affect the accuracy of the GUI and the predictabil-

ity of the operations on the GUI. Usually, the effect of transitional turbulence spreads through

the handling of several events, with one control executed per event-handling cycle. In a typ-

ical GUI, it may take several cycles for all the executions belonging to a chain of executions

to propagate throughout the entire user interface. A user must wait for the entire sequence

of steps to complete. The time may extend across more than one update of the display.

What the developer intends to be a smooth and coherent experience may appear choppy

and incoherent to the waiting user.

Because the events are handled asynchronously, the order and timing of change prop-

agation is machine-dependent (Salvaneschi et al., 2014, 2015). This is especially problematic

in situations where many events occur within a small time interval. The order in which

events are processed may differ from the order in which they were generated. Listener-based
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asynchronous execution enables the system to keep responding to the user while one con-

trol is still executing. However, because it handles each execution independently from the

others, it decreases the control over the execution, which complicates the handling of depen-

dencies between controls. The existence of dependencies between controls means that the

execution of one control’s event may affect the outcome of another; therefore, changing the

order in which these events run may yield different outcomes. The Observer pattern does

not guarantee the order in which events will be handled. Events may occur in an order that

does not respect the dependencies among the controls. This traditional approach thus can

lead to misleading or inaccurate results. The asynchronicity of the implicit invocation yields

many benefits in the development of user interfaces, but the implicit invocation also imposes

some liabilities on the system as well. The absence of control of the order in which events

are received and the responses to those events occur in the implicit invocation event system

causes issues relative to the correctness. An example of that would be two components A and

B which are executed in this order: A executes, and then later on the same cycle, B executes

as well. When B affects A, the execution of A happens before the execution of B in this cycle,

which means that A will not execute a second time and the modification made in A by B will

not be identified and reacted by A until the next update cycle.

From our perspective, event-driven systems have two flaws. The first is that there may

be a considerable time lag between A’s state change and B’s response. When a user perceives

that the changes in A and B are linked, the time lag between may make the execution seem

slow and choppy. The second flaw is that A’s state may change a second time before B is able

to examine the result of the first change. This can cause B to miss an update or retrieve data

from A that is inconsistent with its other states. This can cause inaccurate or misleading

displays, at least temporarily. Although the event-driven approach is appropriate in many

circumstances, there are some situations in which executing all the updates as a single atomic

chain is a more appropriate approach. Functional reactive programming (FRP) libraries

—such as Sodium (Blackheath and Jones, 2016), Reactive Extensions (Malawski, 2016),
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ReactiveBanana (Chupin and Nilsson, 2019), and Elm (Czaplicki and Chong, 2013)—are

effective alternatives to the use of the Observer pattern. According to Czaplicki and Chong

(2013), the FRP paradigm treats user events as discrete happenings on an infinite stream.

Each event can be handled as it comes and the programmer can fully define the system’s

reaction to each event. There are no unexpected results. Because all data dependencies are

explicit and are enforced on each event in the stream, the FRP paradigm is closer to being

a solution to the problem described in this section than the traditional approach. However,

FRP does not fully solve the problem. Because each execution is self-contained, the FRP

paradigm does not allow one control to impact the execution of another. Thus, FRP poorly

supports user interfaces with dependencies between controls. In addition, the implementation

of FRP libraries still relies on listeners. Each control’s execution is regarded as a different

point in time, a drop in the stream of events, with each drop handled internally as a regular

event handler. Therefore, for each control, the execution is still handled internally as an

asynchronous event.

In the path to achieving this, our research aims to answer the following specific

Research Question:

Can dependency graph-based execution reordering and self-adjusting state recom-

putation be used to augment the implicit invocation built-in event system resulting

in reduced transitional turbulence execution inconsistencies and increased accu-

racy while maintaining performance in the chained execution of multiple control’s

event handlers specifically found in Web and desktop graphical user interfaces?

To answer this question satisfactorily, we pursue a few other secondary research questions.

A. Can we augment the built-in event system of .NET to improve the execution control,

system responsiveness and accuracy in the chained execution of multiple control’s event

handlers?
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Figure 3.1. Partial update order based on the original user interface.

B. Can the dynamic extraction of the dependencies among controls and the creation of a

dependency graph represent the relevant constraints to the invocation order of the control’s

event handlers?

C. Can the regular checking for changes in the control’s state on the user interface’s hierarchy

enable prompt rearrangement of both the dependencies and the execution order?

D. Can the implementation work without degrading the performance of the original applica-

tion?

Figure 3.1 depicts how our approach uses the original hierarchy to extract dependen-

cies and define a partial update order.

In the following section, we describe the implementation aspects of a proof-of-concept

system that can answer the research questions posed above.

3.4 Design and Implementation

This section describes our reactive approach to designing and implementing dynamic

user interfaces (UI). Each control within a page or form starts in some state and continuously

interacts with the user and its environment (including other controls). Our approach analyzes
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Figure 3.2. Dependency graph analysis and update order creation.

the dynamic dependency relationships among the controls and builds a dependency graph.

(For example, if a text box enables a button, then the button depends upon the text box.)

This graph forms the basis for the reactive, dynamic user interface. Figure 3.2 depicts the

process of analysis starting from the UI hierarchy to determine the update order.

After the creation of the page, our approach creates the form’s dependency graph

by calling our CreateGraph() function on each of the controls in the UI. This function

examines each control’s properties, fields, and methods (its dynamic information, not its

code) to construct a list of all other controls that this control affects. If a control in the

form is intended to be reactive, it must implement IUpdatable, an interface that includes

the getTarget(), getter, and setter methods.

The dependency graph is created based upon the analysis of the UI hierarchical data

structure that contains all components available in the GUI. For every control we track the

associated dependencies, using the dependency criteria defined for this application. The de-

pendency graph is a directed acyclic graph (DAG), where the nodes represent the control’s

internal state and edges between nodes represent direct dependency relations between con-

trols. Each node contains the control object copied from the original UI and the control’s

type.

Dependency is defined as a relation where a control A, through one of its methods,
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directly modifies one of the properties of another control B or even B itself. In such cases, B

is dependent on A. Then, we argue that when A is executed, a subsequent execution of some

control B is affected, then B must be executed so it can react to this change.

Algorithm 1 describes the function CreateDGraph(), the process of building the de-

pendency graph. This process executes only at the beginning of the GUI execution. Each

node of this dependency graph represents exactly one of the reactive controls in the GUI. Al-

gorithm 1 encodes the dependency relationships between all pairs of controls using a directed

acyclic graph.

Algorithm 1 Function CreateDGraph: Building the dependency graph from the DOM
Marum et al. (2020a).

if Form or Page is not empty and is IReactive then
Q = empty queue;
Tree = Document Object Model hierarchy;
First = first control in the control list from the form or page;
Enqueue the First in Q;
while Q is not empty do

P = Dequeue the next Control in Q;
if P is not in the Dependency Graph then

Insert P as a Node in the Graph;

end
while for each Control C in the list of targets of cont do

if C is not empty and is IUpdatable then
if C is not in the Dependency Graph then

Insert C as a Node in the Graph;

end
if Edge between C and cont does not exist then

if Edge do not cause a cycle then
Create a Edge in the Graph between source P and destination C;

end

end

end

end

end

end

40



A node object contains a reference to the control object in the GUI and information

about it such as its type and name or ID. If the control corresponding to some node (called

the source) can affect the execution of some other node’s control (called the destination),

then the dependency graph includes a directed edge from the source node to the destination

node. However, the algorithm does not allow the dependency graph to have cycles (which

would correspond to an infinite update process).

Function createDGraph(), which creates the dependency graph, is called only at the

startup of the application, just after the GUI is built. In the case that a cycle is formed,

the dependency is ignored by the system, and then this execution is handled as the built-in

event mechanism of the application.

Whenever a user interacts with a reactive control, the language’s runtime system

invokes that control’s event handler as usual for event-driven systems. However, our approach

modifies the event handler to call our function UpdateGraph() before executing the handler’s

other code. This function does a depth-first search (DFS) on the current dependency graph.

If the function determines that any control in the UI structure has been modified, deleted,

or inserted relative to the current dependency graph, then it updates the dependency graph

accordingly. For this purpose, it compares every control in the DOM with the previous

state stored in the dependency graph. We consider three cases in which the component is

modified. We implement different protocols on each as listed below:

New control inserted: The algorithm adds the new control as a new node in the depen-

dency graph and encodes the new dependencies that arise from this insertion as new

edges in the graph. The algorithm then recomputes the dependencies for all compo-

nents that became dependent upon the new component.

Control modified: The algorithm adds edges to or deletes edges from the dependency

graph to reflect the new dependencies of the modified control.

Control deleted: The algorithm deletes the corresponding node and all its incoming and
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outgoing edges from the dependency graph. All dependencies for all controls affected

must be recomputed.

Algorithm 2 shows the first part of the UpdateGraph() that updates the dependency

graph according to the type of changes made to the GUI.

Algorithm 2 Function UpdateDGraph: Reanalyze the DOM to update the dependency
graph and create a partial update queue - part 1 (Marum et al., 2020a).

if Form or Page is not empty and is IReactive then
Q = empty queue;
Tree = Document Object Model hierarchy;
First = reactive control that was executed;
Enqueue the First in Q;
while Q is not empty do

Cont = Dequeue the first object in the queue;
call C.getTarget() to update the target of each control;
C1 = instance of Cont in the Graph, null if not found;
if C1 is null then

Insert Cont as a Node in the Dependency Graph;
while for each target control P in Cont do

if value of P is a control and is IUpdatable and not null then
Insert P as a Node in the Dependency Graph;
if Edge between Cont and P do not cause a cycle then

Create a Edge in the Graph between Cont and P;

end

end

end

end

end

end

Once the dependency graph has been updated (if needed), the system traverses the

graph to generate an update order. It begins with the reactive control that launches the event

and considers all controls that are directly or indirectly affected by that control. (Figure 3.1

illustrates how our approach defines a coalescing event chain from the original structure.)

The idea is to try to realize the direct and indirect effects of the launching event within one

cycle of the event-handling system.
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Algorithm 3 shows the second part of the UpdateGraph() that updates the depen-

dency graph according to the type of changes made to the GUI.

Algorithm 3 Function UpdateDGraph: Reanalyze the DOM to update the dependency
graph and create a partial update queue - part 2 (Marum et al., 2020a).

if continues... then
while continues... do

else
Update the value of C1 in the Graph;
while for each target control P in C1 do

if value of P is control and is IUpdatable and not null then
P1 = object equal to P in the Graph, null if not found;
if P1 is null then

Insert P as a Node in the Dependency Graph;
if Edge between C1 and P do not cause a cycle then

Create a Edge in the Graph between C1 and P;

end

end
else

if value of P is null or different from P1 then
Update the value of P1 in the Graph;

end

end

end

end

end
Breadth-First Search start with First to produce a valid partial Update Queue;

end

end

This “chained execution” approach addresses the transitional turbulence problem de-

scribed in Section 3.3 by propagating the effects quickly through the GUI in an order that

preserves the dependencies, thus decreasing the likelihood of inaccurate or misleading dis-

plays. The recomputation of the dependency graph does introduce some overhead, but, by

only doing this once at the beginning of a related chain of executions, our approach seeks to

minimize its impact on the original application performance. In many cases, the performance
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gain from executing a whole chain of controls at once should be greater than the overhead

introduced by the computation of the dependency graph.

To enable the chain of execution behavior described above, the form or page must

call the function UpdateGraph() as the first action in the event handler for every reactive

control. Any form that is required to have this reactive behavior must implement the interface

IReactive and provide an implementation of the Update() function. For each control that

executes, its execution is redirected to Update(). This function identifies which control is

being executed by its type and name. The Update() function then executes the reactive

code respective to the control identified and, after the execution is over, it returns to the

UpdateGraph() execution so the next reactive execution can be handled.

We develop our augmentation using C# with the .NET framework. The primary

reason for this choice is its support for interoperability; the same code using the same

extensive library of GUI controls can be used in both Web and desktop GUI applications.

This facilitates the experimental approach described in Section 3.5.3. Another reason for the

choice of the C#/.NET platform is its advanced object-oriented features and user-defined

generic types, both of which promote code reuse in both the augmentation and experimental

implementation. A third reason for the choice is the platform’s metaprogramming and

reflection facilities. These enable us to conveniently implement the augmentation’s analyses

needed to build and update the dependency graph.

Along with our augmentation, we develop a library with several controls that extend

the most popular controls from the .NET GUI framework. We develop reactive versions

of Button, TextBox, ListBox, ComboBox, Label, and RadioButton. Each reactive control

consists of a class that extends the original control and implements the IUpdatable inter-

face. This interface includes the getter, setter, and getTarget() functions, which must be

implemented differently for each reactive control. The augmentation also includes sets of

controls for the Web and for the desktop, the interfaces IReactive and IUpdatable, the

graph class, and the dependencyAnalyzer class encapsulating Algorithms 1, 2, and 3.
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The augmentation’s code is the same on both the Web and desktop platforms. How-

ever, there is a flag that indicates whether or not the augmentation is being used on a Web-

based system. Some small details of the implementation differ between the two platforms.

For example, for the purposes of comparison, we use the attribute name for desktop controls

and the attribute id for Web controls. We handle these differences by using conditional

statements in the code.

Balancing the load between the code that is placed as a reactive code and the code

that is placed as nonreactive code is the key aspect to maintaining the performance and

accuracy of medium-to-large scale applications. In the following section, we describe our

test methodology.

3.5 Test Methodology

To evaluate our augmentation, we compare it to other similar environments built

using other technologies:

• Original .NET system;

• Sodium library (Blackheath and Jones, 2016);

• Reactive library Rx.NET (Malawski, 2016);

We start by measuring the overall improvement of our approach against the original

.NET itself to determine whether our platform achieves better results against the baseline.

In the next subsections, we establish the characteristics of two similar reactive li-

braries, Sodium (Blackheath and Jones, 2016) and Rx.NET (Malawski, 2016). Their perfor-

mances are compared to each other as well as to our platform.

3.5.1 Sodium

The Sodium library (Blackheath and Jones, 2016) is a state-of-art Functional Reac-

tive Programming (FRP) library implemented in several languages (e.g., C#, C++, Java,
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JavaScript, and Scala). It is based on the ideas promulgated by Elliott (2009). Sodium is

a full FRP library providing functional combinators and abstractions like cells (which con-

tains the value at any point of time) and streams (which are a sequence of events that can

happen any time). Blackheath and Jones (2016) argue that Sodium is a system with strong

semantics. By this they mean that the functions implemented in Sodium are based upon

mathematical descriptions, delimited inputs and outputs, known internal mechanisms, and

previously defined side effects.

Sodium provides a good platform for FRP development. A particularly attractive

feature is the ability to compose asynchronous streams using functional combinators. How-

ever, because Sodium’s implementation is based on the Observer design pattern, we expect

it to exhibit the shortcomings described in Section 3.3. Various researchers, such as Krouse

(2018) and Bregu et al. (2016), have identified other shortcomings of Sodium. For example,

in complex systems that integrate FRP and non-FRP code, FRP abstractions are prone to

induce errors or high latency into non-FRP computations. This can lead to an unsafe state

in applications, especially those running on the Java Virtual Machine (JVM) or the .NET

framework. Furthermore, Sodium uses a large amount of memory to keep the underlying

contextual information about the streams, especially because they are kept alive even when

they stop to produce values.

By comparing against Sodium, we address a comparison between our approach and a

mainstream reactive library for .NET. The comparison addresses the capacity of our approach

to adapt to changes in the user interface, recompute the dependencies, infer a new evaluation

order, and finally coalesces all the events in such an order that each event that depends upon

the execution of another component will always execute after it.

3.5.2 Rx.NET

Reactive Extension for .NET (Rx.NET) is a library for developing asynchronous and

event-based programs using observable collections and LINQ-style query operators to im-
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plement reactive programming for .NET applications on multiplatform systems. Malawski

(2016) argues that Rx.NET alleviates the side-effects of asynchronous execution in .NET

systems. Rx.NET represents any data sequence from .NET as an observable stream. A

stream is a theoretically infinite sequence of events, where each event is represented by the

state of a variable after that event. It is defined as an observable sequence because each

state can be evaluated (observed) by itself or inside of the sequence. An application can sub-

scribe to these observable streams to receive asynchronous notifications as new data arrives.

Rx.NET treats those streams as unbounded lists that can be iterated though, analyzed, and

understood the same as any other object in .NET. It is important to note that dependencies

between components (whenever a component A raises an event, a sequence of actions hap-

pens and affects component B and others) in Rx.NET must be explicitly specified by the

programmer.

The comparison of our approach against Rx.NET is a comparison with another well-

known current implementation of a reactive programming library. The goal is to measure the

performance on both startup and after each UI interaction and to determine the accuracy

after each interaction against the same metrics as we do with Sodium.

In the next section, we explain our experimentation setup and the results we collected

from this experimentation.

3.5.3 Experimentation Setup

For our comparisons, we use self-completion forms and Web pages. We implement

each form using the original .NET, Sodium, Rx.NET, and our augmentation and then com-

pare the performance of all four implementations. By a self-completion form, we mean a

form in which the user supplies some initial information and then asks the system to popu-

late the dependent fields in the form from what has already been supplied. In each case, we

constructed two different implementations: one on a Web page and one on the desktop.

We conducted tests using three different test scenarios:
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1. A shopping list that takes a list of the prices of items, adds the prices, and applies the

tax value;

2. A calculator for geometric forms. It calculates and self-completes the area, perimeter,

and volume. It also supports conversions from U.S. to metric units and vice versa (e.g.,

from feet to meters and from meters to feet, etc.).

3. A user form holding medical information.

For each of these tests, we implement the forms using several reactive controls from our

reactive augmentation: ReactiveButton, ReactiveTextBox, ReactiveComboBox, Reactive

ListBox, ReactiveLabel, and ReactiveRadioButton. Then, we configured the controls to

react upon certain reactive interactions. We scattered instances of these reactive controls

across the example form (or page) and then linked them to each other. For example, when

one of the buttons is clicked, it uses the value of a given textbox to populate other controls

with predefined values. The list below itemizes the interactions between the controls that

we programmed in each one of the experimentation examples:

• the click events of the Button and RadioButton controls

• the textChanged properties of the textBox and Label controls

• the selectChanged properties of the ComboBox and ListBox controls

• the Visible and Active properties of all above controls

Each of these controls has a similar version that we programmed into the library. We

categorize our results in two ways: performance and accuracy.

During each test run, we use the .NET StopWatch class to measure the time spent

starting the application and the time spent filling a form. This class emulates the behavior

of a real stopwatch, enabling the developer to start and stop it as needed. We start it at

the first click on the form (the first modification in the cycle) and stop it as the last control
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is filled. The property Elapsed from the class StopWatch gives the amount of time in

milliseconds spent from start to stop. The Microsoft documentation (Microsoft, 2019) of the

class StopWatch claims that the default function for counting time is the timer ticks from the

system timer. If the operating system or hardware supports a high-resolution performance

counter, then the Stopwatch class uses that counter to measure the elapsed time. This

measurement is linked with secondary research question D.

Besides the performance, we devise the following two metrics and a statistic to eval-

uate the accuracy of the result for each box inside the form:

Latency: Measure the length of the latency between the user action (write something, click

enter, press a mouse button) and the desired state being seen on the screen. For this

application, we measure the time needed to get the whole Web page into the desired

state from the triggering action. This test is concerned with answering the secondary

question C from Section 3.1.

Errors: Count the number of the errors detected for a sequence of complex interactions.

This test is concerned with answering both primary research question and secondary

research question A from Section 3.1. By an error we mean a situation where one of

the units is executed before one or more of its dependencies and that causes the units

to use an out-of-date or missing value. This incorrect order either causes a total failure

of the unit or a temporary mistaken state of the unit.

Average Errors: Count the average number of errors on a test where errors are detected.

This test is concerned with answering both the primary research question and the

secondary research question B from Section 3.1. To measure this, we first plan to

determine how many components are incorrectly ordered on a test where are errors

detected. Second, we count the total number of errors, count the total number of runs

that reported an error, and then compute the average.

Our tests emulate the behavior shown in Figure 3.3. These tests were developed to
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Figure 3.3. Test scenario expected behavior.

show that our platform can correctly evaluate mathematical expressions when the values of

the variables referenced are distributed among components of the user interface. In such a

case, the order of execution can affect the final result. If our system can ensure that the

accurate order will be respected in every cycle, then the accuracy of the entire operation can

be ensured. Since operations in a user interface can often be decomposed into smaller inter-

actions between components, if we can decrease the inaccuracies derived by the misordering

of the executions, then each one of these smaller interactions will be more accurate, thus

making the entire operation more accurate. The idea is that, as it happens in mathematical

computations, the order of execution affects the final result. If our system guarantees that

the accurate order will be respected in every cycle, than the accuracy of the entire operation

can be guaranteed. Since operations in a user interface can often be broken into smaller

interactions between components, if we can guarantee each one of these smaller interactions

are accurate, then the entire operations will have its overall accuracy increased.

We ran all the tests on an Intel Core i5 5300U 2.3 GHz processor with 8 GB RAM

and an Intel HD 5500 graphics card, running the Windows 10 64-bit operating system. We

used Visual Studio 2019 for development with C# 8.0 and .NET framework version 4.8. We

also used Rx.NET 4.4.1 and Sodium 2.0 for the Sodium tests.
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3.6 Results and Analysis

The implementations using our system took an average of 0.30 seconds more to start

up than the Sodium and Rx.NET applications and 0.35 seconds more than the original

.NET application. This can be explained by the overhead incurred by the creation of the

dependency graph and the analysis of all the controls. This is the most time-consuming step

in the execution of our augmentation code. Table 3.1 illustrates the average startup time for

each implementation using our augmentation, original .NET system, Rx.NET, and Sodium.

Platform Scenario 1 Scenario 2 Scenario 3
.NET 21.24 20.45 22.28
Sodium 29.58 30.65 31.12
Rx.NET 27.58 28.65 29.12
Our Platform 51.24 55.45 58.28

Table 3.1. Startup time in milliseconds for each test scenario

For each test, we calculated the time needed to execute the full self-completion rou-

tine. We started the stopwatch with the first button click and stopped it when the last

control had been executed. We checked during the execution to make sure that no excep-

tions or errors were raised, because, in such a case, the execution would never reach the last

control.

On average, for the three test scenarios, our implementation completed the form in

20% to 10% of the time that the Sodium implementation took on the same form. The average

is taken over the 50 executions. On each execution, the form was opened and self-completed,

then the information was cleared from the form before the execution was repeated.

Figure 3.4 shows the average performance graph in each of the executions for the

three test scenarios in both implementations.

Against the Rx.NET implementation, our platform performed the fill on the entire

form in an average of 30% of the time that the Rx.NET implementation took to do the same

task. And finally, against the original .NET implementation, our platform performed the fill

on the entire form in an average of 50% of the time that the .NET implementation took to
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Figure 3.4. Average performance graph - All 3 scenarios. Sodium vs. our platform.

do the same task.

With respect to accuracy, our system outperforms all the other implementations. We

measured the accuracy by comparing the intended final state of the self-completion form

(i.e., the state of each control) determined beforehand with the actual final state generated

by the self-completion form.

Figure 3.5 shows an average performance graph for our platform against Rx .NET

over each one of the executions for the three scenarios.

This test case seeks to highlight the effect that the execution order has on achieving

a correct final display. The inconsistencies observed in the original .NET implementation

tests show that an original .NET implementation displays the issues that we are considering

here.

Neither Sodium nor Rx.NET fully addressed the problem here and display many

inconsistencies because they do not consider the dependencies in scheduling updates. Our

augmentation seeks to guarantee that the dependencies between controls are not violated by

the actual execution order—that only up-to-date and accurate information is used to fill in

52



Figure 3.5. Average performance graph - All 3 scenarios. Rx.NET vs. our platform.

the form at all points during execution. This works like a chain of falling dominoes. If a

later one falls before a previous one, the inaccurate result may be perceived by an observer.

Figure 3.6 shows an average performance graph for our platform against original .NET

system over each one of the executions for the three scenarios.

Table 3.2 shows the result of the first test scenario, which implements a shopping list

user interface for all four systems.

Platform Total Cycles Total Errors
Avg. Errors
per Cycle

Latency in
Cycles

.NET 500 12 5 3
Sodium 500 8 2 1
Rx.NET 500 9 2 1
Our Platform 500 3 1 1

Table 3.2. Test results for scenario #1

The original .NET implementation yielded errors in almost 25% of the cycles. Both

the Rx.NET and the Sodium-based implementation had a worse performance but not by a

large margin if compared to our augmentation. They yielded errors after a wave of updates
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Figure 3.6. Average performance graph - All 3 scenarios. Original .NET vs. our platform.

in 12% to 15% of the tests. Our implementation yielded errors in less than 10% of the tests.

For both, it took one or two waves on average to restore the structure to a valid state as

shown in Tables 3.2, 3.3, and 3.4.

Table 3.3 shows the results of the second test scenario, which implements a geometric

self-completion calculator user interface for all four systems.

Platform Total Cycles Total Errors
Avg. Errors
per Cycle

Latency in
Cycles

.NET 500 20 1 5
Sodium 500 6 1 1
Rx.NET 500 8 2 1
Our Platform 500 2 1 1

Table 3.3. Test results for scenario #2

Table 3.4 shows the results of the third test scenario, which implements a metric

converter user interface for all four systems.

With respect to performance, the graph depicted in Figure 3.4 shows that our aug-

mentation performed the same task in 10% to 20% of the time in milliseconds that original

.NET, Rx.NET, and Sodium took. The execution time for our implementation was less than
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Platform Total Cycles Total Errors
Avg. Errors
per Cycle

Latency in
Cycles

.NET 500 16 1 4
Sodium 500 7 1 1
Rx.NET 500 10 2 1
Our Platform 500 3 1 1

Table 3.4. Test results for scenario #3

1 second while other three implementations’ execution time was up to 6 seconds. Our imple-

mentation was substantially faster than the other implementations. The performance of the

three tests by our augmentation are near the bottom of the graph. The tests performed by

Sodium, Rx.NET, and the original .NET are near the top. The graphical distances between

the graph lines give the magnitude of the difference between both performances.

How can we explain the performance differences? Sodium, Rx.NET, and original

.NET implementations are based on asynchronous event-handling systems as described in

Section 4.3. Because of the way asynchronous systems work, there is a time lag between one

action and the next.

Although Sodium implements reactivity and significantly tames the problems of asyn-

chronous calls, the way the system works behind the curtain limits its effectiveness for the

kinds of applications this research addresses. Sodium connects events to values but not be-

tween events. One stream does not connect directly to another; each event happens on a

single control only. However, our system links an event directly with its dependent events,

executing one directly after the other, avoiding a significant time lag between the event

executions.

A disadvantage of Rx.NET relative to the performance of our platform is that Rx.NET

represents each asynchronous call, or set of asynchronous calls, by self-contained occurrences

in the system life span. When these reactive calls involve the chain execution of multiple

controller event handlers, Rx.NET reactively treats the internal mechanisms of each exe-

cution, but between the executions, Rx.NET handles it as the original .NET event system
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would treat them through asynchronous callbacks.

The tests described in this section demonstrate the effectiveness of our approach. Our

augmentation outperformed Sodium and Rx.NET, both state-of-the-art reactive libraries.

It alleviated the performance problems caused by the asynchronous nature of the event-

handling approach used by original .NET. Asynchronous calls are important for user in-

terfaces because they enable the system to continue responding to the user while waiting

for a result from a previous command. However, exclusive use of asynchronous calls means

that the system has no mechanism for defining when a response will appear. Compared to

Sodium-like systems, our augmentation produces a faster and smoother experience for the

class of problems it was designed to solve—applications with dependencies between events

and the need to initiate a whole chain of executions as if it is a single execution. The tests

also demonstrate that our augmentation can give more accurate results than Sodium for a

variety of user interface applications, while yielding small performance improvements.

3.7 Discussion

Most papers focus primarily on how to build programs by generating and relating

different parts of the source code. Czaplicki (2012), Czaplicki and Chong (2013), Foust et al.

(2015), Krishnaswami (2012), Reynders et al. (2017), and Salvaneschi et al. (2014) present

reactive implementations of GUIs. The difference between these approaches and ours is that

our approach specifically builds a dependency graph and periodically updates it. This allows

our approach to work well in dynamic environments with high unpredictability.

Foust et al. (2015) describe a reactive model that can be used to generate a GUI that

satisfies the dataflow constraints (i.e., data dependencies between GUI components). This

work addresses the same problem as our work but from the opposite direction.

Czaplicki (2012) and Czaplicki and Chong (2013) describe the development of Elm,

a JavaScript-based language for creating dynamic GUIs and Web pages. However, Elm is

evolving in a different direction, even though it was initially based on reactivity in general.
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The approach in this chapter differentiates itself from the above in that, it aims to

solve what we consider the core of the problem: controlling the inherent delay and lack

of control and inaccuracy resulting from the use of asynchronous execution in current user

interface technologies. By restoring some synchronicity to the asynchronous executions, our

approach increases the performance while decreasing the number of temporary inaccuracies.

3.8 Conclusion

In this chapter, we describe the development of a reactive programming (Baino-

mugisha et al., 2013) approach that analyzes the complex relationships among the GUI

controls, encodes these dependencies in a dependency graph, and then uses the graph to

rearrange the updates in an order consistent with the dependency constraints. It builds the

graph when the GUI starts up and then rebuilds it whenever it detects that the dependen-

cies might have changed. The approach thus coalesces the processing of a chain of what

may be several events in the original system into a single, large-grained event that updates

the states of many controls at once. Although our approach does not totally eliminate the

transitional turbulence that can cause inaccurate or misleading displays, it does potentially

decrease the number of inaccuracies as well as increase the performance of the system. The

primary contributions of our research in this chapter are as follows.

A. As defined in section 3.1, our primary research question involved the reduction of tran-

sitional turbulence execution inconsistencies and increased accuracy while maintaining

performance. Our results indicate that, on average, our augmentation do maintain perfor-

mance while mitigating transitional turbulence and actually achieve better performance

when compared with other reactive implementations and against original .NET as well.

Our augmentation requires less total time and exhibits fewer errors, at the cost of a

modest increase in startup time compared to all three alternatives. Each application

developed with the prototype augmentation required approximately twice as much time

to start up as the corresponding original .NET application required. However, it was able
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to complete the entire chain of form updates in a small fraction of the time the corre-

sponding original .NET application required. In addition, it exhibited significantly fewer

visual inaccuracies than the corresponding original .NET application exhibited. Based

upon the results of our experiments, we concluded that our approach improves perfor-

mance and results in a more accurate behavior. This result also answers the secondary

research question D which is also related with maintaining the performance.

B. Secondary question B was related to extracting dependencies and define an event-handling

order. In the section 3.4, we describe the mechanism that analyze each UI control and

copy it to the dependency graph. In this process we do not modify the original UI, instead

we mirror the controls from the original UI highlighting the dependency relationships

between the controls to build a dependency graph. The execution order inferred from

the dependency graph in our approach relies upon the mathematical concept of evaluation

order that consists in a order in which each node of the graph is visited only once and

all nodes are visited after the nodes in which they depend on. The final evaluation order

must not violate any of the dependencies expressed in the graph. Our experiments shows

that the execution of the UI is functionally similar to the non-reactive approach that

must manually invoke each UI control sequentially, which means that the dependency

relationships detected and extracted from the UI is a valid representation of the depends-

on relationships we intend to capture. That proves we are successful in defining a function

to extract the dependencies and use them as constraints to generate an event-handling

order based upon the interconnection between reactive controls during the execution

cycle.

C. Secondary question C was related to the adaptiveness and prompt reconfiguration of

the dependency graph whenever it was necessary to match changes in the original user

interface hierarchy. The design of our approach rely on the fact that by copying the

current version of the UI into the dependency graph we are keeping a history of the
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previous iteration safely stored. This means that when the next update happens we

can compare the current version of the UI against the previous version to detect any

difference between the two states. That allow the system to immediately react to any

change detected by rearranging the dependency graph to match the current state. The

tests described both in Section 3.5 involved modifications in the tree that modified both

the state of a control, and also changes in the structure of the UI. Those tests were

created with the purpose of measuring our system’s capacity of self-adjustment and

prompt reconfiguration when a change is detected. Our experiments shows that our

augmentation improves responsiveness and enables prompt rearrangement of both the

dependency graph and the execution order even when there are structural changes in the

hierarchy. This results in an application that can self-adjust to redefine the dependencies

as they change to maintain the accuracy and performance benefits observed.

D. Secondary question A was related to maintaining accuracy and responsiveness when deal-

ing with the chained execution of multiple controls. Our augmentation performed better

than other reactive libraries (e.g., Sodium), demonstrating that our approach improve

the .NET event system providing better execution control and responsiveness while main-

taining performance and even increasing it. By augmenting the event system we maintain

native code working while targeting only the subset of the controls that the user chooses

to.
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CHAPTER 4

DEPENDENCY GRAPH-BASED REACTIVE AUGMENTATION OF GAME ENGINE

APPLICATIONS

4.1 Introduction

Virtual reality (VR) and augmented reality (AR) applications, collectively referred

to as virtual environments (VEs), are reactive in nature. They respond to events, which

may correspond to an interaction with the outside world (e.g., a user’s movement) or with

other components of the application (e.g., changes in the values of important data attributes).

VR/AR applications apply a variant of the implicit invocation model (similar to the approach

discussed in Chapter 2). These applications work similarly to animations, using a game loop.

A game loop is a time abstraction in which the states of all components in the game are

updated on each cycle. The states are redrawn onto the screen. Otherwise, a game is an

implicit invocation system. Each component relinquishes control to a central game manager.

Whenever the game loop starts to update the overall state of the game, the manager notifies

each component to update its own state (as a response to this game loop). After each cycle,

the game renders its image on the screen.

As game engines benefit from implicit invocation, they also suffer from implicit in-

vocation’s liabilities. The absence of control over the order in which events and their corre-

sponding responses occur may cause seemingly incorrect behaviours. In such applications,

whenever an interaction is performed, the system may not display the desired result imme-

diately and thus seem to behave erratically.

Since a VE is a reactive system, its behavior is modeled by the interactions between

the components and external actors and the interactions between components. An interac-
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tion with one component generates a “ripple effect” where all components around the initial

component are affected, and then all components around those components, and so on until

the effects propagate through a portion of the system. This is called transitional turbulence

as defined in Chapter 3. Transitional turbulence can result in inconsistencies in the visible

state if the display must render new frames before stability is reached.

In this chapter, we examine an augmentation of the implicit invocation model present

in the game engine by introducing some execution control and partially removing the insta-

bility corresponding to the transitional turbulence. Our augmentation reorders the execution

of events based upon the transitive dependency relationship (as defined in Chapter 3). The

augmentation uses the dependency graph to infer the invocation order of the update function

of all components. This approach results in the entire “transitional turbulence” often being

completed within one update cycle.

In this chapter, we focus our attention on applications running on the Unity3D game

engine, which is a popular platform for low-cost VE applications. During our tests on

Unity3D, we found that Unity3D does not provide a way to control the order of execution.

As noted in Chapter 2, another disadvantage of using the implicit invocation pattern is the

loss of control over the order in which components execute.

This degree of control and accuracy guarantee is essential for high accuracy systems.

In such systems, simulated interactions must occur in the same order as the interactions

would in a corresponding real-world situation. If they do not, then the simulation fails to be

realistic. An example is a chain of dominoes falling. When the first falls, the second falls only

when the weight of the first domino causes it to fall, and then the third falls similarly until

the last one falls. If one of the dominoes does not perform its fall correctly, the entire chain is

compromised. In doing this, we seek to remove the transitional turbulence mentioned above.

We are not the first to propose creating reactive programming frameworks for vir-

tual environments. There have been many solutions proposed for this problem in the past,

but most of these utilize specialized or purpose-built development environments (Blom and
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Beckhaus, 2008; Kawai, 2014; Westberg, 2017; Jankovic, 2000; Stefan et al., 2018; Wiebusch

and Latoschik, 2014; Lange et al., 2016). In this work, we propose an alternative approach

that attacks a common flaw present in most modern, widely used development environments,

such as Unity3D. Furthermore, we propose designing this approach in such a way as to be

intuitive for developers who are already familiar with these environments. The approach

that we chose utilizes the development environment’s native object hierarchy to introduce

more control into the implicit invocation model internally used by game engines to handle

the interaction between components by defining reactive dependency relationships between

objects and inferring an execution order from them in a virtual environment.

On the path to achieving this, our research aims to answer the following primary

Research Question:

Can dependency graph-based execution reordering and self-adjusting state recom-

putation be used to augment the implicit invocation game loop resulting in re-

duced transitional turbulence execution inconsistencies and increased accuracy

while maintaining performance on graphical applications built on game engines?

Our primary means for answering this question is to evaluate the improvement in the

accuracy and predictability of simulations with mathematical and logical constraints. To

test it appropriately, we develop an automated testing platform that includes game object

hierarchies with the purpose of evaluating mathematical expressions and programmatically

determining their values. In the remainder of this chapter, we analyze Unity3D architecture

in Section 4.2, then we define our problem in Section 4.3. In Section 4.4, we show the

details about the design and implementation of a proof of concept tool. In Section 4.5, we

compare our solution’s performance with the results achieved by the same solutions built

using the default Unity3D event system and also using UniRx (Kawai, 2014), an existing,

reactive library for Unity3D. In Section 4.6 we discuss related work on reactive programming,

especially the ones related with games. Section 4.7 summarizes the results of this work. In

the next section, we explore Unity3D architecture.
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4.2 Unity3D Architecture

A Virtual Environment (VE) is defined by Furness and Barfield (1995) as “any tech-

nology that induces targeted behavior in an organism by using artificial sensory stimulation,

while the organism has little or no awareness of the interference”. The perceived environ-

ment could be a captured “real” world just as well as a completely synthetic world. LaValle

(2017) devised a more general concept in which the perceived environment need not seem

“virtual” but can also be an augmented, or engineered, perception of reality.

The development of VEs is the final product assembled from several different devel-

oped products into a coherent application as defined by Cowan and Kapralos (2014). A

game engine is a collection of different tools, utilities, and interfaces that aid the develop-

ment of the various tasks that make up a VE on a single integrated application. Unity3D

(Unity Technologies, 2019) is a game engine that uses a hierarchical, component-oriented

programming approach to organize these components into an application. Unity3D’s na-

tive language is C#. Development of applications using Unity3D often takes advantage of

many .NET framework characteristics, as explained by Hocking (2015), including the .NET

common type system, class library, and other resources from the .NET platform.

The Unity3D architecture is based upon the idea that a Scene is a hierarchical col-

lection of GameObjects (Seligmann, 2018). Figure 4.1 highlights the relationship between

game objects and components in a scene.

GameObjects are placeholders without logical behavior and components must be at-

tached to the GameObject to implement a specific behavior into that GameObject (Unity

Technologies, 2019). GameObjects are defined by Baron (2019) as the building blocks for

scenes in Unity3D. Unity Technologies (2019) notes that the GameObject class provides a

collection of methods that allows the developer to find the methods, makes connections

and sends messages between GameObjects, and add or remove components attached to the

GameObject.

The behavior of a GameObject depends upon its attached components. Each com-
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Figure 4.1. Unity3D scene hierarchy (Marum et al., 2019).

ponent’s functionality can be augmented by attaching the script that describes that desired

functionality. A script is a code file. It describes the characteristics of a component and

defines functions the component can perform and how the component reacts to update and

start events. A script is similar to a class in that it defines the behavior of an object in an

object-oriented program.

Unity Technologies (2019) defines Script as a class that inherits from the built-in

class MonoBehaviour and contains a predefined set of methods including the game event

handlers Start() and Update(). Each time a script is attached to a GameObject, Unity3D
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Figure 4.2. Unity3D relationship of multiple scripts being implemented in multiple compo-
nents and attached to a single GameObject.

creates a new instance of the component defined by that class. Each game object-component

pair is unique since only one instance of a distinct component can be attached to a spe-

cific game object. Baron (2019) explains that the same script can be attached to multiple

GameObjects, implementing a specific component with different characteristics in each one

of them. Each GameObject can have multiple different components (each one from a dif-

ferent script), enabling different capabilities to the same GameObject. New abilities can be

attached or removed dynamically even during runtime, giving programmers the ability to

switch functionalities to a particular GameObject given specific circumstances. Figure 4.2

shows the relationship between GameObjects, components, and scripts.

Scripts allow the developer to create a component from scratch, handling game events,

creating and modifying other components’ and its own properties over time, and responding

to user input in any way necessary (Baron, 2019). The MonoBehaviour class is the base

class from which every Unity3D script derives, by default. When a C# script is created
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Figure 4.3. Unity3D relationship of one script being implemented as component and attached
to multiple GameObjects.

from Unity3D’s project window, it automatically inherits from MonoBehaviour and provides

the event handlers and other information that is fundamental for Unity3D to handle the

script (such as ID, name, and a pointer to the parent GameObject). The MonoBehaviour

class provides the framework that allows the developer to attach its script to a GameObject

in the editor, and it provides access to a large collection of event messages, which allows the

developer to execute its code based on what is currently happening in the project. Figure 4.3

shows the relationship between scripts and their instances on each GameObject.

4.2.1 Unity3D Game Loop

A Unity3D application does not behave in a typical manner for interactive software.

Instead, it behaves like an animation, which means, after a given time span, a new frame is

generated reflecting the current state of the application. A key concept in game programming

is the game loop, described by Gregory (2018) as a sequence of application processes that

66



updates the state of any applicable object in the game and then renders the frame. The game

loop is implemented as an abstraction of the CPU’s clock cycle by implementing a ticker

(which is normally based upon the relative time difference from the last game loop) so the

code in every frame executes in a consistent and independent manner (Sherrod, 2006). Since

Unity3D is a closed-source, proprietary game engine, the specifics of the core game loop and

its rendering pipeline are abstracted, so Unity3D allows the developer to focus on what to do

whenever the actual update process starts, instead of the actual time span (Gregory, 2018).

The Update() function is the function inside each script that contains the code that is

executed in each game loop in Unity3D (Unity Technologies, 2019). The Update() function

of every script is called before the frame is rendered and once per frame. It is the main

workhorse function for frame updates. The update mechanism of Unity3D has every object

expose an Update() function that is indirectly invoked in every frame (Baron, 2019). That

means the game loop is not aware of the content of the Update() function of each component.

The game loop does not even call the Update() directly. It just notifies each component that

it is the component’s time to update and the component invokes its own Update() method,

so that every component that has a Update() method will be invoked in every game loop.

Thus, the developer encapsulates the reaction to the updating process of the component’s

relevant information through a single interface.

Any component that is a valid Unity3D script must inherit from the MonoBehaviour

class, which provides multiple event handling methods for updating, starting, and destroying

processes (Unity Technologies, 2019). In the script code of each component, the developer

implements the behaviors that are needed in each of the instances created for this component.

Since MonoBehaviour is the common inherited type for all components, Unity3D dynamically

maintains a list of all entities that are components. Throughout the game loop, a game

manager initiates the game loop, during this game loop, the manager notifies each component

in the scene that inherits MonoBehaviour, allowing each component to call its own Update()

method. This update mechanism is a modified version of the implicit invocation architecture

67



Figure 4.4. Execution style of Unity3D based on the scene hierarchy (Marum et al., 2019).

model. Figure 4.4 illustrates how this process works.

In each iteration of the game loop, a game behaves as an implicit invocation system.

The components are controlled by a central game manager that notifies each component

to update its own state. Then the game updates its rendered image back to the user. So,

this is the difference between the game loop abstraction and the regular implicit invocation

pattern. Even though there is still an implicit mechanism that is outside the control of the

user, the game manager is guaranteed to call each component once per iteration of the game

loop.

4.2.2 Tests on Unity3D Execution Order

One of the details hidden inside the proprietary implementation of the Unity3D game

manager is how Unity3D organizes the notification and invocation of each update method

since there is no defined order of execution for objects within the game’s hierarchy. The

only comment about this issue in the Unity3D manual (Unity Technologies, 2019) is: “By

default, the Awake(), OnEnable(), and Update() functions of different scripts are called in

the order the scripts are loaded (which is arbitrary). However, it is possible to modify this

order using the Script Execution Order settings.” The Unity3D manual does not describe

in what order the Update() functions are executed in a given group of scripts. This is an
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important issue as each component may change the value of other components and affect

the overall reactivity of the environment.

We performed experiments to assess the execution order of the updates in Unity3D.

Each experiment involved a system with several objects, each of which inserted a unique

number into a list each time it updated. The application maintains in memory only one copy

of the list accessed by all objects from that class. The updated test involves programming

the update function of every object to insert a number (a unique index for every object in the

scene) into the global list. Since the order in which objects and components are added seems

to be the order used to arrange the updates, we searched for what type of modification to

the game tree causes a modification in the update order. From one test scenario to another,

the only thing that changed was the order in which the GameObjects and their components

were inserted or modified in the tree.

We performed the following sequence of tests:

1. Create the GameObjects level by level from the game tree, inserting them from the

root toward the leaves.

2. Alter the creation order from the first test setup by exchanging the positions of

GameObjects from different levels of the tree.

3. Alter the creation order from the first test setup by exchanging the positions of

GameObjects within the same level of the tree.

4. Rearrange the creation order for the whole tree used in the first test setup but keep

components assigned to the same GameObjects.

5. Detach some of the components from their original GameObjects in the first test setup

and reattach them to other GameObjects in different levels of the tree.

In all of the tests, Unity3D consistently updated in the same fashion. This order

is independent of the hierarchical position of the game object as the first test appeared to
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demonstrate, updating in an order starting from the leaves of the tree and finishing with the

root. The updates are done by going from the newest objects inserted or modified to the

oldest. Dragging objects around within the hierarchy has no effect on this order. The only

test that produced a different execution order is the fifth test, where we remove a component

from the root of the tree and insert it beneath one of the other components (one of the branch

nodes). This change may occur as a result of a change to the project’s generated metadata.

Because of this change, both the root game object (where the component is taken from)

and the branch game object (where the component is inserted) move to the beginning of

the update order. Moreover, it is important to note that such modifications are done when

the code is not running. Any modification during runtime (rearranging objects, attaching,

reattaching, or detaching components) has no effect on the metadata and thus has no effect

on the Unity3D execution order.

4.3 Transitional Turbulence in Unity3D Applications

In this research, we start with an unmodified Unity3D-built graphical application

(meaning any application built using Unity3D) as the basic application to be augmented.

We argue that this application does not achieve an accurate result due to transitional tur-

bulence. As we consider the term in this dissertation, transitional turbulence is a period of

chaotic or unreliable variation in the state of a software system that leads to instability in

its execution. We argue that the current Unity3D application implements timely updates

on the application state using the game loop. During each iteration of the game loop, every

component is implicitly invoked and called to execute its own Update() event. The order

in which these components are invoked is outside the developer’s control and produces a

temporarily undesirable state due to the fact that a component uses outdated information

from other components, which is especially problematic when one interaction in a single

component causes a chain of reactions affecting several other components. Such situations

happen often during execution, since these components are interconnected and the execution
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of each component may affect the characteristics and executions of other components.

The current model of execution for Unity3D is prone to result in inaccuracies during

the execution of applications due to transitional turbulence created by a lack of control

over the order of execution of such components’ update-handling functions. Scripts and the

components instantiated based on them in Unity3D are not executed as they would in the

traditional concept of a program. Instead, Unity3D implements an implicit invocation-like

scheme. During the game loop iteration, it passes control to each component by notifying

it to invoke specific functions that are declared within each component. Unity3D does not

define an explicit order in which these components are called. The implicit order cannot be

changed during runtime.

This research, initially presented in Marum et al. (2019) and Marum et al. (2020c),

aims to answer the primary Research Question, as defined in the Section 4.1. To answer this

question satisfactorily, we pursue several secondary research questions:

A. Is the corresponding dependency graph built by repurposing the original hierarchy using

a dependency analysis a valid representation of the depends-on relationship between

components in the scene hierarchy?

B. Is an evaluation order inferred from the dependency graph above a valid constrained

execution order in which no dependent component executes before any component it

depends on?

C. Does the timely reanalysis of the original scene and the rebuilding of the dependency

graph assure a prompt reaction to changes in the overall state to the components and

changes to the scene hierarchy as well resulting in an application that can react quickly

to unpredictable changes in the application’s state and structure?

D. Does a non-locking augmentation of the Unity3D event system, which keeps the remaining

parts of the application unchanged while maintaining the benefits, results in building an
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augmented Unity3D application that is functionally equivalent to the same application

built using the unmodified Unity3D?

Based on these questions, we built and tested a proof-of-concept augmentation to

determine if it increases the accuracy of the state rendered on the screen and the Unity3D

application’s overall performance without increasing the time to an unacceptable level. We

also plan to integrate our approach with third-party libraries and the Unity3D/.NET li-

braries, so it must maintain their benefits without interfering with their functioning. Our

approach should outperform the Unity3D built-in event system and other reactive libraries

used in game engines, demonstrating superior performance and accuracy in both static and

dynamic environments.

4.4 Design and Implementation

This section describes the design and implementation of our reactive dependency

graph-based component augmentation for game engines. It operates by augmenting the

game engine’s implicit invocation model by capturing the associations between components

and reordering their execution to match their evaluation order. We based this augmentation

on a proof-of-concept design of a dependency graph reactive component described in our

previous work (Marum et al., 2019, 2020c).

We developed a reactive augmentation to mitigate transitional turbulence problems.

Our augmentation is built as a component to be added to any Unity3D application. We

call it the DependencyManager. To ensure that the dependency graph will analyze the

entire tree, this component must be attached to the root of the game scene tree. This is

the component that builds and manages the dependency graph, determines the evaluation

order, and handles the event’s execution order mentioned above. Since the root of the tree

has access to all its children, this placement allows the DependencyManager to detect changes

within all the “reactive” components that implement IUpdatable.

We seek to limit our manipulations to only a subgroup of the components and their
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relationships. We focus on those that can reduce most of the transitional turbulence. We

do not manipulate those that cannot be accessed directly or that represent an expensive

computation. Generally speaking, we include the component relationships arising from

the application’s custom code and exclude those from .NET, Unity3D, or other support-

ing frameworks. We designate the components that the developer wants to be considered in

the dependency analysis by requiring that they implement the interface IUpdatable. (An

interface is a special class that can contain only method signatures. The implementation of

the method’s body is the responsibility of each class that implements the interface.) Our

approach iterates through the list of GameObjects to gather the components that meet the

criteria and the other components they modify to determine the dependency relationships

and construct the graph. One of our goals is to operate with already established VE systems

and technologies such as Unity3D.

Our augmentation works through the following steps:

1. When the application starts, traverse the object hierarchy to build the dependency graph.

Our approach iterates through the game scene hierarchy. This is Unity3D’s built-in data

structure that contains the GameObjects. This structure is used to divide the objects into

subgroups, parents and children. This hierarchy organizes the GameObjects and makes

it easier to move around this structure. The loop extracts the dependency relationships

between the components and adds each component as a node of the graph and each

dependency relationship as a directed edge. However, it omits any edge that would create

a cycle in the graph.

2. After the entire dependency graph has been built, topologically sort the graph to deter-

mine an evaluation order that satisfies the dependencies. This evaluation order identifies

a valid execution order for the updates.

3. On every update cycle, traverse the original game hierarchy to determine whether there

are any changes in the state of any component or in the dependencies between components

73



and then update the dependency graph accordingly and determine a new evaluation order.

4. Wrap the chain of events defined by the evaluation order from the dependency graph into

a single large-grained event to be executed as an Update method within the Unity3D

game loop.

5. Ensure that building the dependency graph initially and rebuilding it on each update cycle

are lightweight. That is, they should execute efficiently and require minimal modification

of existing applications.

4.4.1 Building the Dependency Graph

In augmentation step 1, the algorithm starts by analyzing the dependency relation-

ships between the components in the original game using the established criteria for de-

pendency. We create the dependency graph by accessing each component, identifying its

type information, gathering all its fields dynamically, and examining each field to determine

which other components it refers to. The resulting dependency graph is a digraph formed

by placing each one of the components gathered in the step above as a node and adding

an edge from one node to another if there is a depends-on relationship recognized between

the corresponding components of the edge. We use the evaluation order determined from

the dependency graph to rearrange the execution order of those components throughout

the updating game loop. Our approach uses a non-locking approach that works as part of

Unity3D’s game loop by coalescing the execution of all the dependency-related components

in the game scene in an order that satisfies the dependency graph’s constraints into a single

large-grained Unity3D Update() method.

We define a dependency relationship between two components as a relationship where

a component A contains the value of one of its properties or fields fully or partially defined

by the value of another component B or one of B’s property or fields. A property is a C#

capability that defines built-in get and set functions that allow the developer to encapsulate
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a specific field. A field is an object-oriented term related to an attribute encapsulated inside

of an object. The algorithm used for building the graph is shown in Algorithm 4.

Algorithm 4 Evaluating the scene and building the dependency graph (Marum et al., 2020c,
2019, 2016).

Q = empty queue;
Tree = a subset of all the game objects;
Root = root of the game tree;
Enqueue the root in Q;
while Q is not empty do

comp = Dequeue the next object in Q;
Enqueue in Q each child object of comp;
while for each Component C attached to game object comp do

if C is not in Unity3D or .Net type then
Insert C as a Node in the Graph;
while for each Field or Property P in the Component C do

if value of P is a component that implements IUpdatable and P is not null
then

Insert P as a Node in the Graph;
if Edge between C and P does not exist and do not cause a cycle then

Create a Edge in the Graph between source C and destination P;

end

end

end

end

end
Breadth-First Search to produce a valid update queue

end

A dependency can also exist if the update function of component B alters the value

of component A itself, one of the A’s properties or one of the A’s fields. In these cases, the

system records an edge going from A to B. We have established, as a condition for the system

to work, that these connecting fields and properties must be explicitly defined or referenced.

This condition can be relaxed in the future by adding code to verify which components and

values are being modified by an event.
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Figure 4.5. Alteration of the scene graph using the dependencies and establishment of a
modified execution order (Marum et al., 2019, 2020c).

4.4.2 Determining Evaluation Order

Augmentation step 2 establishes an execution order for the Update methods. It

determines the order from the dependency graph using a topological sort based on a Breadth-

First Search (BFS). A topological sort of a directed acyclic graph (DAG) is a linear ordering

of nodes such that for every directed edge from a node A to a node B, A comes before B in the

ordering. In our approach, this ordering is defined by the dependency relationship between

the components.

Figure 4.5 shows the process of building the dependency graph and the update order

from the game tree.

In the resulting DAG, each node contains the component object copied from the scene

graph, its parent GameObject information, and the component’s type. This is important

for the identification and equality comparison since each pair of GameObject-component is

unique. Each connection is encoded as a directed edge. The source node of each edge is

the component that contains the value used by the other component, and the destination is

the component that depends upon the other—the component that uses the value from the

source node. As it is a condition for building correctly a DAG, the algorithm makes sure
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that it does not create a circular dependency. When a cycle is detected, that dependency is

omitted from the dependency graph, but the execution will still happen as an event in the

Unity3D game loop.

4.4.3 Updating the Dependency Graph

Augmentation step 3 concerns the reanalysis of the dependency graph during the

update cycle. Once for every update cycle the algorithm reanalyzes the graph using a

similar BFS to step 1. During this cycle, the framework determines whether any component

in the scene graph has been modified, deleted, or inserted relative to the current state of the

dependency graph. If it detects that the component architecture has changed, the solution

then reconstructs the dependency graph to reflect the new architecture. Our approach

considers three distinct cases:

New component added to the scene: The algorithm adds the new component to the

graph and determines which components that it depends upon. The algorithm then

recomputes the dependencies for all components that became dependent upon the new

component.

A component modified in the scene: If some of the component’s properties are changed,

the algorithm must update the dependency graph around that component appropri-

ately. The modified component may now be dependent upon different components and

different components may now be dependent upon the modified component.

A component deleted from the scene: All edges coming from or going to the deleted

component must be deleted from the dependency graph. The dependencies for all

components that depended upon the deleted component must be recomputed.

4.4.4 Calling the Update Function

Augmentation step 4 defines the way our framework calls each Update() function.This

process is described in Algorithm 5.
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Algorithm 5 Reanalyze the scene graph to perform any needed updates to the dependency
graph—part 1 (Marum et al., 2016, 2019, 2020c).

Q = empty queue;
Tree = Subset of the game objects;
Root = root of the game tree;
Enqueue Root on Q;
while Q is not empty do

Comp = Dequeue the first object in the queue;
C1 = same instance of Comp previously stored in the Graph, null if none is found;
if C1 is null then

Insert Comp as a Node in the Dependency Graph;
while for each unchecked Field or Property P in Comp do

if value of P is a component that implements IUpdatable and P is not null then
Insert P as a Node in the Dependency Graph;
if Edge between C1 and P do not cause a cycle then

Create an Edge in the Dependency Graph between Node Comp and Node
P;

end

end

end

end

end

Our framework requires that a script in the scene must implement the interface

IUpdatable for it to be considered during our augmentation. This interface specifies a

single function ReactiveUpdate. This function is called by our augmentation instead of the

default Update function from the Unity3D event system. All code in the script that will be

handled reactively must be executed in this function.

This is done so that any behavior that must be handled without reactivity can update

in the default way without sacrificing performance or dealing with the internal mechanisms

of the Unity3D framework. From the same standpoint, Unity3D internal classes, the .NET

prototype classes, and other scripts that will not be reactive are ignored by our framework.

They are not triggered by changes and do not trigger changes in other scripts. Thus, the

mechanisms implementing our approach should be implemented carefully so that the solution

can augment specific areas of the application without interfering in the remaining parts.
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When a change occurs in any component, in the next game loop, all update notifica-

tion methods through the entire dependency chain are wrapped into a single large-grained

event where all these methods will be executed in the order inferred from the dependencies.

The reactive components shall be updated as a single block during the subsequent update

cycles. We implement it with wrapper classes for the components and a library implement-

ing the algorithms for constructing/reconstructing the dependency graph and using it to

coalesce chains into “large-grained” events. This process is described in Algorithm 6.

Algorithm 6 Reanalyze the scene graph to perform any needed updates to the dependency
graph—part 2 (Marum et al., 2016, 2019, 2020c).

while continues... do
else

Update the value of C1 in the Graph;
while for each unchecked Field or Property P in C1 do

if value of P is a component that implements IUpdatable and P is not null then
P1 = object that is equal to P in the Dependency Graph, null if none is found;
if P1 is null then

Insert P as a Node in the Dependency Graph;
if Edge between C1 and P does not exist or does not cause a cycle then

Create an Edge in the Dependency Graph between Node C1 and Node
P;

end

end
else

if value of P is null or different from P1 then
Update the value of P in the Graph;

end

end

end

end

end
Breadth-First Search to produce a valid Update Queue; while for each Component c in
the Update Queue do

execute Update Function;

end

end

79



Another important characteristic is that the current state of the application is self-

contained, which means there are neither dependencies across states nor dependencies across

update cycles. That is a crucial characteristic of our augmentation since the accuracy and

predictability of each update cycle is the core issue of this work.

The implementation of our augmentation in the game engine, specifically in Unity3D,

results in a reduction of transitional turbulence without degrading the performance of the

application and the scheduling the execution of each component without violating the de-

pendency constraints.

4.4.5 Ensuring Lightweight Mechanisms

Augmentation step 5 concerns how each Update function call is wrapped up as a

single function call. In our augmentation, when a change occurs in any component, in the

next game loop, all the update notification methods through the entire dependency chain

are wrapped into a single large-grained event where all these methods will be executed in

the order inferred from the dependencies. The reactive components shall be updated as a

single block during the subsequent update cycles. Another important characteristic is that

the current state of the system is self-contained, which means there are neither dependencies

across states nor dependencies across update cycles. That is a crucial characteristic of the

system since the accuracy and predictability of each update cycle is the core issue of this

work. The implementation of our augmentation in the game engine, specifically Unity3D,

results in a reduction of transitional turbulence without degrading the performance of the

system and in an execution schedule for each component that does not violate the dependency

constraints.

4.4.6 Comparing for Equality

One of the biggest issues encountered in the development phase was the Unity3D

system’s inability to determine the equality of references to the same object in different

data structures. In our approach, the comparison of multiple instances of the same object
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is a key feature needed to trace changes in objects and spread them throughout the depen-

dency graph. This is also important when checking if objects were added or deleted and if

dependencies were added, changed, or deleted. When comparing using object.equals(),

there were no positive answers, even though the comparisons were made between exactly

the same objects. The same was observed when comparing tags and references (using

ReferenceEquals()). The use of Find(), FindByTag(), and FindByName() requires re-

moving many false positives and leads back to the problem of finding a positive using one

of the techniques mentioned above. As such, we defined an indirect definition of equality

comparison between objects that focuses on the characteristics of the objects. If two compo-

nents have the same type and name and they belong to game objects that are equal (which

means they also have the same properties), then they must be the same. This approach relies

on the fact that no two objects of the same component type and with the same properties

(name, tag, and position) can be attached to the same game object. This set of information

represents, for our purposes, a unique identification for each component. These are required

to allow us to define the equality of objects effectively.

4.5 Test Methodology

For purposes of comparison, we designed, built, and tested similar environments using

three different system combinations:

• Unity3D using its own event system

• Unity3D with UniRx (Unity3D Reactive Extension) (reactivex.io, 2020)

• Unity3D with our reactive augmentation

The comparison against test scenarios built using only the Unity3D without any

reactivity was made to measure our approach against Unity3D itself and its own game

loop. We use it to measure the time increases for both startup time and in the game

loops. We wanted to measure the time taken to build the dependency graph and to update
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the graph and determine the evaluation order. We use both a small-size game hierarchy

with no graphical interface and a middle-sized game hierarchy with a graphical interface.

We compare our design against both applications built using the unmodified Unity3D and

Unity3D with a third-party reactive programming library. We sought to determine whether

our augmentation improves performance, and if so, by how much.

By comparing against UniRx, we are comparing our approach against one of the

current prominent implementations of reactive programming. We claim that the augmen-

tation we perform in this work overcomes the issue that no other reactive programming

implementation succeeded in doing: the loss of accuracy in the graphical application due

to nondeterminism of the game loop’s internal implicit invocation mechanism. Even though

some of those reactive programming libraries overcome the issues related to streams of events

between components and overcome the issues by ascertaining what happens when a specific

action happens on the application, those libraries do not handle situations where the interac-

tion that happens between the user and the application is unpredictable or where an event is

caused by a casual interaction between objects. If the reactive system cannot programmati-

cally predict the event and define the reaction to it, then the system handles it non-reactively,

as it would if built only using the Unity3D built-in event system. Since we made such a claim

in the problem definition, we must address the comparison between our approach and the

mainstream reactive library made for game engines, specifically for Unity3D. The compari-

son addresses the two points we consistently make throughout this work, the capacity of our

approach to adapt to changes in the scene, recomputing the dependencies, and inferring a

new evaluation order; the capacity of our system of coalescing all events in such an order

that each event that depends upon the execution of another component will always execute

after it.

The computer that we used for testing was a Dell Latitude E5550 laptop with a Intel

Core i5-5300 2.3 GHz processor with 8 Gb RAM and Intel HD Graphics 5500. We ran the

Windows 10 64-bit operating system and used Visual Studio 2017 with C# 8.0 and Unity3D
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2019 3.0.

We chose to record two metrics and two statistics based on these metrics to compare

performance between the three applications. They are based on three measurements: latency,

errors, and visible errors. When referring to an error, we specifically mean a situation where

one of the game components is executed before one or more of its dependencies, thus causing

inadvertent use of out-of-date or missing values. This incorrect order causes a failure of the

component or a temporarily erroneous state of the component. Latency means the number

of loops (or the time is taken) between the beginning of the test and when the expected

system state has been reached. A visible error is the temporarily incorrect state of one or

more of the components that are visible in the rendered imagery of the game. Since many

game loops can execute per frame of rendered video, we considered an error to be visible if

it persists for enough loops to outlast a single rendered frame. This does not mean that an

observer will necessarily be able to see the error in question, but instead that if some visible

element of the environment relied on this component, the resulting error could potentially be

visible to the observer. As such, this can be thought of as a lower bound or minimal criterion

for a visible error to occur in the environment. For the first scenario, no visual errors were

recorded, since the expression tree simulation had no visual component to be verified.

Two test scenarios were designed and built:

Scenario #1 includes insertion, deletion, and modification of components. It uses the

example of an expression tree calculator that was presented previously in Marum et al.

(2019) and Marum et al. (2020c).

Scenario #2 demonstrates how the update order affects common interactions among mul-

tiple objects in a target shooting example.

For both scenarios, we also collected data concerned with the additional time and

processing overhead at startup and during each game loop iteration. In particular, we

recorded the extra costs incurred by our approach to construct and update the dependency
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graph. These time increases should be kept small in proportion to the accuracy gain and

performance improvement. We measure the time spent for each system tested by using the

StopWatch class from the .NET framework. This class emulates the behavior of a regular

stopwatch, giving us the ability to start and stop it as needed. We start it at the beginning

of the start() and Update() and stop it at their end. The property Elapsed from the

class StopWatch gives the amount of time in milliseconds spent from start to stop. The

class StopWatch claims that the default method for counting time is the timer ticks from the

system timer. If the operating system or hardware supports a high-resolution performance

counter, then the StopWatch class uses that counter to measure the elapsed time. Our tests

do not reveal any significant performance degradation either in the update time or start-

up time. That happens because only the objects that can trigger reactivity are considered

and only when their values change. On average, the time consumed for the system on

the updates remains relatively small in comparison with Unity3D alone. In the future, we

plan to develop tests to measure more rigorously the above time increase utilizing the test

methodology described in Jones et al. (2019).

Performance-wise, our framework showed that the time spent in the game loop is,

on average, similar to the performance achieved by UniRx or Unity3D alone. Thus, the

use of our framework did not indicate a significant increase in the time spent in each game

loop iteration. Creating the dependency graph and performing the topological sort initially

took, on average, 198 milliseconds. When the dependency graph needs to be reconstructed,

our updating process inside the game loop took up to 100 milliseconds to redo the analysis

and sort. These statistics are directly connected to secondary research question #4 and

demonstrate that the time overhead produces by building and updating the dependency

graph on both startups and in each game loop is reasonable enough to not influence negatively

the development and usage of the system. That means that the algorithm described in the

previous section builds a dependency graph and traverses it completely in an amount of time

very close to the time performed by Unity3D alone between each frame.
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Next, we show the implementation and results of the two scenarios implemented

using the three combinations. These scenarios were executed through a set of automated

tests using UniRx, Unity3D, and our reactive framework.

4.5.1 Scenario #1: Implementation and Results

Scenario #1 includes insertion, deletion, and modification of components by using

the example of an expression tree calculator that was presented previously in Marum et al.

(2019) and Marum et al. (2020c). It is generally quite difficult to determine whether a series

of objects updates in an expected way in a virtual environment without degrading the system

performance by storing state data in memory or writing to a file. Instead, our approach is to

design a game environment where objects within the scene behave as mathematical elements

(operands and operators) within an expression tree. This allowed us to build test cases where

the value computed by the expression tree is known a priori. Any error in the execution

order would then be detectable in the final state of the system simply by comparing the

tree’s computed values with the expected values. This serves as a very sensitive method

for detecting errors in execution without introducing additional overhead costs. The test

scenario included insertion, deletion, and modification of components.

Scenario #1 was built for the purpose of creating a nongraphical, pure mathematical

version of the game hierarchy. Along with the tests, we hoped to be able to isolate the

interaction of our game hierarchy while still working inside the Unity3D game loop. We

used this test to measure the ability of our approach to reduce the transitional turbulence

and to propagate the effects to all its directly or indirectly dependent components without

the delays and non-determinism introduced by the normal event-handling system as if all

were part of the processing of one large-grained event. Also, we hoped to ascertain that our

approach will recognize whenever any of the components’ overall state has changed or when

the component architecture has changed (e.g., the addition, modification, or deletion of any

component). It must detect that the component architecture has changed, then reconstruct
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the dependency graph to reflect the new architecture. Performing the test involved:

• Randomly generating binary trees that represent mathematical expressions. The tree is

either a leaf or an internal node. If the tree is a leaf, then the algorithm randomly selects

some integer value. If the tree is an internal node, then the algorithm randomly selects

an arithmetic operator chosen from addition, subtraction, multiplication, division, and

exponentiation.

• Randomly placing integer values in the leaf nodes and binary operators in the internal

nodes of each tree. The “current” value of an internal node can be computed by

performing its operation on the “current” values of its two children. We require that

the root node be an operator to eliminate trivial cases.

• Computing the “current” value of the tree by computing the “current” value of the

root. For the “current” value of the tree to be the correct value of the expression, the

values of all nodes must be computed in the correct order. That is, the value of both

subtrees of an internal node must be computed before the value of the internal node.

This algorithm generates mathematical expressions such as the following:

• 5 + (4 ∗ 9) + 3− 52

• 32 ∗ (7 + 9)− 12− 16

• 50− (12 + 16)/8− (12− 9)

The result of an expression tree A is a calculation between its child nodes A1 and A2,

which means that in order to obtain the result of A correctly, both A1 and A2 must be available

and correct. A1 similarly depends on its two children A11 and A12. So the calculation will

obtain the correct final result only if the updates that trigger the calculations respect the

following order: A11 → A12 → A1 → A2 → A. Any execution order in which A executes
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Figure 4.6. Mathematical expression tree generation used in scenario #1 for testing our
framework (Marum et al., 2019).

before its children (A1 and A2) would produce a wrong result since it used an outdated or

nonexistent value. The diagram in Figure 4.6 depicts the test process.

The tree is first embedded in a game hierarchy, then the “current” value of the tree is

calculated, then this value is compared to the expected (i.e., correct) value of the expression.

To determine the adaptability, the test is repeated with several variations of the original

tree.

In our tests, after the end of the update cycle, the value of each internal node is

compared with the expected value computed beforehand. At some random time during the

tests, we introduce changes to the scene graph by inserting new nodes in random locations,

deleting random nodes, or modifying the value of a node. In the next update cycle, the test

compares the result of the expression with the new expected value. We also keep testing

between modifications to ensure that the result remains stable.

To measure the accuracy of each testing platform, we determined whether it reached a

accurate state at the end of each game loop iteration, despite having to handle unpredictable

modifications inserted in the original tree across the runtime execution. In this test, which

appears in Marum et al. (2019) and Marum et al. (2020c), our framework performed better
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Figure 4.7. Mathematical expression tree generation with or without modifications on the
original tree (Marum, 2017).

than UniRx and Unity3D with default functionality. Figure 4.7 shows the behavior of our

test with and without modifications to the original tree.

We recorded the measurements and took the average based upon the total number of

game loop iterations. The average results were recorded for each platform in each scenario:

• The latency (number of game loop iterations) needed to get the game into the expected

state once set into action. This measurement is directly linked with our secondary

research question C that claims that analyzing the game hierarchy in each game loop,

rebuilding the dependencies, and updating an evaluation order dynamically during

each game loop iteration ensures that the system can expeditiously adapt to changes

in the components and in the hierarchy structure as well.

• The number of errors detected for a sequence of interactions was expressed as the aver-

age number of update method executions that contained at least one error calculated

across all update cycles in each run, which is directly connected with research question

A

• The average number of errors in a single test where errors were detected. This is how

many components’ update method executions were incorrectly ordered in a test where

there were errors detected. We count the total number of errors, the total number of

runs that reported an error, and finally compute the average. This measurement is
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Platform
Total
Game
Loops

Total
Errors

Avg.
Errors
per Loop

Visible
Errors

Latency
in Loops

Unity3D 100 95 5 0 5
UniRX 100 15 2 0 5
Our Platform 100 15 2 0 1

Table 4.1. Test results for scenario #1

Platform
Total
Game
Loops

Total
Errors

Avg.
Errors
per Loop

Visible
Errors

Latency
in Loops

Unity3D 100 100 5 0 7
UniRX 100 80 5 0 20
Our Platform 100 20 3 0 1

Table 4.2. Test sesults for scenario #1 with modification during execution

linked to research question B.

• The average number of errors causing observable inaccuracies. This means the average

number of cycles where one or more components were in a temporarily incorrect state.

This statistic is connected with the primary research question and research question D.

Table 4.1 shows the result of the first test, with the expression tree running for 100

user cycles and no modifications inserted.

Table 4.2 shows the results of the second test, with the expression tree running for

100 user cycles (which means cycles initiated by direct user interaction) and a modification

inserted in the expression tree (game objects modified, added, or deleted).

4.5.2 Scenario #2: Implementation and Results

Scenario #2 is designed to demonstrate how the update order affects common inter-

actions among multiple objects in a target shooting example. Scenario #2 was used to see

how our system acts in an environment that could be easily extended to have VR or AR

capabilities. This test environment used both developer-made components and off-the-shelf

Unity3D assets. This was a point of particular interest because practical VE development
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commonly utilizes off-the-shelf assets, libraries, or packages. We generate a scene where the

first-person player can move, collide with objects and walls, and shoot targets. This scenario

was adapted from one of the examples included in the Standard Assets package downloaded

from the Unity3D asset store. We apply the same methodology from the first scenario men-

tioned above. We change components between game objects during the test execution. For

example, a wall that was not a shooting target at a random moment may change by adding

the shooting target component that causes it to react to shots, thus becoming a shooting

target, and vice versa. Future research should be conducted to definitively expand this re-

search by using the same component in a VR/AR system that uses devices or libraries from

third parties.

Scenario #2 was developed to assess how our system behaves in a more realistic

scenario. It is a graphical application with a camera and player movement. It thus uses

many built-in Unity3D classes. We assess the capacity of our augmentation to handle the

components related to physics including ballistics, collision, and ray-casting. Ray-casting is

a technique to handle target identification and light effects by creating a target vector from

the tip of the source towards any specific physical body that the “projectile” hits across a

mathematically generated trajectory. We developed two special classes of components in

the scene, the Shootable and Collidable objects. A player shooting a Shootable object

or colliding with a Collidable object initiates a reaction on those objects. The desired

behavior is that the reaction happens as soon as the collision or hit occurs, with any other

secondary reactions also occurring. The whole chain of reactions starts as a single flow, as

it should happen in the real world.

This test is concerned with our approach’s ability to adapt any existing application by

selecting a set of mechanisms appropriate for that application’s design and implementation

and by applying the dependency analysis so that it maintains a balance between the time

loss and the accuracy/performance gain. To determine that, we assess the capacity of our

approach to produce graphical results with fewer inaccurate states rendered on the screen.
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We record the measurements and compute the average based upon the total number

of game loop iterations. We record the average results for a given number of update cycles

with interactions shown in Table 4.3 and Table 4.4 for each platform in each scenario.

Tables 4.3 and 4.4 show the results for the second test scenario. We run the shoot-

ing/collision simulation for 100 user cycles (i.e., cycles initiated by a direct user interaction).

The first shows the results when no modifications are inserted and the second when modifi-

cations are inserted (i.e., game objects are modified, added, or deleted).

Platform
Total
Game
Loops

Total
Errors

Avg.
Errors
per Loop

Visible
Errors

Latency
in Loops

Unity3D 100 91 10 40 15
UniRX 100 16 10 15 10
Our Platform 100 12 5 0 1

Table 4.3. Test results for scenario #2

Platform
Total
Game
Loops

Total
Errors

Avg.
Errors
per Loop

Visible
Errors

Latency
in Loops

Unity3D 100 96 20 40 20
UniRX 100 75 30 45 30
Our Platform 100 15 15 0 1

Table 4.4. Test results for scenario #2 with modification during execution

4.6 Results and Analysis

As can be seen for the Scenario #1 in Table 4.1 and for the Scenario #2 in Table 4.3,

especially the numbers concerning the UniRx implementation, we observed inaccuracies in

only 15% of the tests using the scenario with no changes. However, Table 4.2 for Scenario

#1 and Table 4.4 for Scenario #2 show the inaccuracy rate increased to 80% when we

introduced changes randomly throughout the test. These episodes of inaccuracy continue to

occur for several cycles after a modification of the game tree. During the unstable period,

UniRx produced several errors, cataloged in one of two possible categories:
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• The system entered into an error state with a null or a type-related exception. (The

system expected an object of a certain type and found an object of another type or

found a null pointer.)

• The system ignored the existence of the new or modified node.

In the tests where modifications were introduced at runtime, UniRx took up to 30

cycles to recover from the error and reach a stable state. Additionally, in the tests where there

was an error, the game loop iteration containing an error had a high number of incorrectly

ordered executions per update cycle. This happens because any interaction with one of the

modified/inserted/deleted components was not correctly handled, resulting in an erroneous

state. Although UniRx is designed to handle input streams in a reactive way, it does not

react properly to changes in the objects themselves. This significantly limits the dynamics

of virtual environments where components may be arbitrarily inserted or removed, such as

multiuser experiences. Consequently, UniRx can only handle such situations if they are

predictable and properly handled by the programmer.

In the measurements concerning the default Unity3D event system, Table 4.1 for

Scenario #1 and Table 4.3 for Scenario #2 demonstrate that episodes of error happened

in 95% of the cases in the scenario with no changes to the scene graph. Several update

cycles were necessary before the scene graph was up-to-date. This can be explained by the

fact that the Unity3D event system uses an arbitrary order for updates as defined in the

Unity Manual (Unity Technologies, 2019). When a component executes, it uses the available

values, without knowing if the dependencies were updated accordingly. That is why a single

chain of reactions takes time to spread through the scene graph. The number of game loops

needed to reach a desirable result in Unity3D is invariably connected to the complexity of

the simulations and how many components are involved in that loop. This behavior can also

be observed in the number of errors per game loop.

The default Unity3D event system behaves similarly when changes are introduced
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to the game hierarchy. It took several game loops to stabilize the components’ states as

shown in Table 4.2 and Table 4.4. The system also produces errors in 95% of the cases. For

our framework, Table 4.1 and Table 4.3 show that episodes of error occur in only 15% of

the cases. Table 4.2 and Table 4.4 shows that these results differed very little for situations

where changes were introduced to the system. Compared to the other systems, our framework

detected the changes and reached a stable state more quickly than the others.

One potential reason for the poor performance of UniRx is that it assumes that the

structure of the scene graph will remain unchanged from one frame to the next. When the

system makes an asynchronous operation, UniRx expects to find the same game structure

that was there when the request was sent. When the structure changes, UniRx considers it to

be a situation that it cannot handle and triggers a runtime exception. In the development of

our framework, we intended to handle cases where the game tree may change during runtime

supporting a more general class of asynchronous operations. Our framework solves this

problem, handling environments with changing properties. It also circumvents the Unity3D

game loop by coalescing all the dependent update events into a single large-grained event

that executes all these updates in the evaluated order but does not satisfy all the issues

pertinent to the development of a reactive system.

The tests described in this section demonstrate the effectiveness of our approach. Our

framework mitigates the effects of the transitional turbulence caused by interactions among

multiple components. We intended to augment the current Unity3D game loop and coalesce

the component’s update methods into a single event in the game loop. By doing that, our

framework produced a smoother experience when compared with the existing alternatives.

Because this approach was developed to solve this class of problem, it effectively propagates

the chain of executions through the scene graph. It also proves to be able to adapt to a

significant range of changes in the structure of the tree or in the objects themselves.
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4.7 Conclusion

In this research, we have addressed the instability resulting from the transitional

turbulence that occurs in virtual environments. We have demonstrated this by exploiting

Unity3D’s existing object hierarchy.

Initially, and whenever the hierarchy changes thereafter, our approach extracts the

intercomponent dependencies and generates a new event-handling order that satisfies these

constraints. Our approach groups a chain of reactions corresponding to some external action

into a large-grained reactive event that can be performed in one update cycle, that is, within

the execution of a single Unity3D event. This approach seems to have the benefits of locking,

non-locking, and wait-free-based approaches without dealing with concurrency issues.

To evaluate the effectiveness of our approach, we used a test scenario built around an

expression evaluator to demonstrate how the update order of the game objects affects the

interactions among the game objects. We represented the expression as a game tree with

each operator at an internal node with its operands as its sub-trees. The values are at the leaf

nodes. For the correct value of the expression to be calculated, the operand subtrees must

be evaluated before the corresponding operator. To determine the effects of reconfiguration

of Unity3D’s game tree, we ran (a) tests that kept the expression tree stable throughout the

run and (b) tests that randomly introduced changes in the tree’s structure during the test

run. For each test run, we measured the startup time, latency, and total errors during the

run and computed the average startup time, latency, errors per cycle, errors that resulted in

a visibly inaccurate state, and number of miscalculations that occurred in a test that failed.

Our experiments indicate that, on average, our approach exhibited a shorter latency and

fewer errors, at the cost of a modest increase in startup time compared to the other two

alternatives. Our approach improves responsiveness and performance to changes and results

in more accurate mathematical and visual behavior.

Our primary research question, presented at the Section 4.1 establishes that we intend

to reduce the transitional turbulence, mitigate the execution inconsistencies among compo-
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nent’s Update() functions, especially between those components that have a depends-on

relationship and increased accuracy while maintaining performance on graphical applica-

tions built on game engines. To achieve that, we designed and implemented a dependency

graph-based execution reordering and self-adjusting state recomputation to augment the

Unity3D built-in game loop. The overall performance of our approach in the tests described

in Section 4.5.1 and 4.5.2 is superior against the unmodified Unity3D and UniRx in all met-

rics measured. The performance decrease is not perceptible to the external observer. These

information means that our approach is successful in mitigating most of the transitional

turbulence while maintaining performance and semantic equivalence with the unmodified

Unity3D application.

Our secondary research question A is related to whether the dependencies obtained

being a valid representation of the dependency relationship between components. In Sec-

tion 4.4, we describe the mechanism that analyzes each component and copy it to the depen-

dency graph. In this process, we do not modify the original hierarchy, instead we mirror the

components from the original hierarchy highlighting the dependency relationships between

the components to build a dependency graph. The execution order inferred from the depen-

dency graph in our approach relies upon the mathematical concept of evaluation order that

consists in an order in which each node of the graph is visited only once and all nodes are

visited after the nodes in which they depend on. The final evaluation order must not violate

any of the dependencies expressed in the graph. The mathematical expression evaluator test

that was described in Section 4.5.1 was developed with the goal of creating a test that de-

picts these depends-on relationships between the components as mathematical relationships

between operators and operands. In the majority of executions, our approach evaluated the

expression correctly, inferring correctly both the dependency relationship and the evaluation

order. We demonstrate that the dependencies extracted from the original hierarchy are a

valid representation of the depends-on relationship.

Since the secondary research question B is related to the validation of the evaluation

95



order inferred from the dependency graph that we built, the same tests and results can

also be used to advocate that our evaluation order extracted from the dependency graph is

demonstrated to be an order in which no dependent component executes before any compo-

nent it depends on. In the experiments mentioned above, the evaluation order inferred from

the dependency graph is proved to be in the majority of times an order that satisfies the set

of constraints or dependencies used to build the graph.

The secondary research question C is related to the prompt reconfiguration of the

dependency graph and the adjustment of the evaluation order in the face of a state change

of any component or a structural change. The design of our approach rely on the fact that

by copying the current version of the hierarchy into the dependency graph, we are keeping

a history of the previous iteration safely stored. This means that when the next update

happens, we can compare the current version of the hierarchy against the previous version

to detect any difference between the two states. That allows the system to immediately

react to any change detected by rearranging the dependency graph to match the current

state. The tests described in both Sections 4.5.1 and 4.5.2 related that involved random

modifications in the tree were created with the purpose of measuring our system’s capacity

of self-adjustment and prompt reconfiguration when a change is detected. Our results have

shown that our augmentation can assure a prompt reaction to changes in the overall state to

the components resulting in an application that can react quickly to unpredictable changes

in the application’s state and structure.

The secondary research question D is related to keeping the remaining parts of the

application unchanged while maintaining the benefits. This augmentation is designed with

the intention that it can be used in conjunction with other third-party libraries and assets.

Our tests illustrate that this is possible in principle using the Unity Standard Assets. We

expect similar compatibility to exist with a wide variety of applications, including libraries

for adding additional simulation functions. So, our augmentation results in building an

augmented Unity3D application that is functionally equivalent to the same application built
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using the unmodified Unity3D.

Our results also show that our augmentation preserves the proper functioning of the

original update mechanism of those systems. We seek to decrease the extra costs incurred

by the solution during the startup process making it small in proportion to the potential

accuracy and performance gains, so we balance the extra costs incurred in check and modify

the dependency graph low to avoid worsening the overall effect on the performance based

upon the fact that there is a low likelihood of a dramatic change in the dependency graph

from one cycle to another.
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CHAPTER 5

DYNAMICALLY COALESCING REACTIVE CHAINS DESIGN PATTERN

5.1 Introduction

Chapters 3 and 4 have addressed two different, but related problems and devised

two similar solutions using different technologies. Both solutions work by augmenting the

normal event-processing mechanisms used in the applications. But what is the essence of

our approach? What kind of problems does it solve? To what kinds of technologies can it

be applied?

In this chapter, we examine our research from Chapters 3 and 4 and reveal a general,

technology-independent approach that we expect to be useful to developers of similar appli-

cations. The primary contribution of this chapter is the codification of this general approach

as a design pattern we name Dynamically Coalescing Reactive Chains (DCRC).

We also intend to accomplish the careful documentation of the systematic process we used to

develop this pattern. This provides an example that other pattern writers may find useful.

As we analyze the previous solutions and extract the abstract features into a more

formal description, we intend to answer the following research question:

How can we codify the transitional turbulence mitigation approach taken in Chap-

ters 3 and 4 as a general, technology-independent design pattern?

We systematically step through the process for developing the pattern. We explore

the scope of the pattern in Section 5.3, review the two previous solutions in more detail in

Section 5.4, develop and refine the pattern element by element in Section 5.5, and present

the full pattern in Appendix A. In Section 5.6, we reflect on the pattern-writing process
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and discuss how the pattern may evolve in the future. In Section 5.7, we demonstrate the

efficacy of the pattern by showing how it can be applied to a real-world example based on

the .NET-based GUI application described in Chapter 3. Section 5.8 answers the research

question posed above and summarizes this chapter’s contributions. Before we write the

DCRC pattern let’s look more closely at what we mean by a software pattern in Section 5.2

5.2 Software Patterns

A software design pattern is defined in the classic “Gang of Four” patterns book as

a “general and reusable solution to a set of problems with common characteristics within

a given context” (Gamma et al., 1995). A pattern is not invented; it is distilled from

practical experience (Buschmann et al., 1996). Patterns codify “best practices” for software

architecture and design (Meszaros and Doble, 1998). Patterns are written and published to

document these best practices and enable others to apply them in their own work.

The “Siemens” book (Buschmann et al., 1996) on patterns groups software patterns

into three categories: architectural patterns, design patterns, and idioms.

An architectural pattern—sometimes called an architectural style (Garlan and Shaw,

1993)—is a high-level, language-independent abstraction that guides the design of the system-

wide structure. Examples include the Pipes and Filters pattern (Buschmann et al., 1996;

Garlan and Shaw, 1993; Shaw, 1996) that is a fundamental approach to structuring programs

on Unix-like systems and the Model-View-Controller pattern (Buschmann et al., 1996;

Goldberg and Robson, 1983) that is a “best practice” for structuring Web and other user

interface applications.

A design pattern is a mid-level, (mostly) language-independent abstraction that guides

the design of a subsystem. The classic patterns in the “Gang of Four” patterns book (Gamma

et al., 1995) all fall into this category. Although not language-specific, these classic patterns

focus primarily on design issues that arise in the use of statically typed, single-dispatch,

object-oriented languages without first-class functions. Some of the patterns are less mean-
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ingful for other languages.

An idiom is a low-level, language-specific abstraction that guides some aspects of both

design and implementation. For example, consider the classic Singleton design pattern

(Gamma et al., 1995), which guarantees that exactly one object from a class exists. Although

this is a general abstraction, its implementation varies significantly from one language to

another, leading to a related idiom for each language (Buschmann et al., 1996).

Among several existing approaches for describing patterns, we choose the approach

described by Wellhausen and Fiesser (2011) because of its simplicity. They describe “a

creative, iterative process” that is suitable for our needs to refine and evolve our pattern

description. In their approach to writing patterns, the following elements must be present

in the given order:

Pattern Name gives an evocative name for the pattern.

Context describes the circumstances in which the problem occurs.

Problem describes the specific problem to be solved.

Forces describe why the problem is difficult to solve, giving different considerations that

must be balanced to solve the problem.

Solution describes how the solution to the problem works at an appropriate level of detail.

Consequences describe what happens when a software designer applies the pattern. It

gives both the possible benefits and possible liabilities of using the pattern.

All of the above elements except Consequences are also included in the Mandatory El-

ements Present pattern from Meszaros and Doble’s A Pattern Language for Pattern

Writing (Meszaros and Doble, 1998).

In this chapter, we follow the steps below adapted from the pattern “writer’s path”

described by Wellhausen and Fiesser (2011). In the various steps, we apply patterns from
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the pattern languages of Meszaros and Doble (1998) and Harrison (1999, 2006) to refine our

new pattern.

1. Explore the new pattern’s rationale and scope. Write short notes to answer questions

such as: Why should we write a new pattern at all? What is included in and ex-

cluded from its scope? What concrete examples do we have to examine? State a crisp

definition for the scope.

2. Examine existing solutions. Read the notes from the previous step. Discuss the so-

lutions with others. Collect a list of possible names. Briefly summarize the general

solution, focusing on its essence. List any clever ideas identified in the solutions for

later consideration, even if not essential to the solution.

3. Describe the problem that leads to the solution. Strive to get this in one sentence.

Be careful to separate the problem from its solution. Make sure the solution actually

solves the problem.

4. Consider the consequences of the solution, both its benefits and its liabilities. Think

about what happens if the solution is applied and what happens if it is not.

5. Identify the forces that make the problem difficult to solve. The forces usually conflict,

pushing in different directions. Consider what differentiates the chosen solution from

other possible solutions to the problem to help identify the different forces at work.

Give each force a meaningful name.

6. Match each force with the corresponding consequence. A force makes the problem

difficult to solve. How the solution resolves this difficulty leads to the corresponding

consequence. Each force must be resolved and may have both benefits and liabilities.

7. Describe the context in which the problem exists. The problem might not exist outside

this context. The context cannot be changed by the solution.
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8. Choose a pattern name. A good name should evoke the core idea of the solution. It

should be easy to remember.

9. Reexamine and rewrite the six pattern elements. Use the Context to describe the

background and assumptions. Focus on devising a short, crisp Problem description.

Put what makes the Problem difficult in the Forces. Make sure the Solution solves the

Problem and balances the Forces. Link the Forces with the Consequences.

10. Put the pattern elements in the standard order. Restate the Solution and Consequences

appropriately to match the other elements. Write the pattern so that it flows smoothly

from Context to Consequences.

11. Get feedback from experts in the technical area and pattern writing. After a period of

time, reexamine and rewrite the pattern description. Be patient.

5.3 Exploring Rationale and Scope

In writing the Dynamically Coalescing Reactive Chains (DCRC) design pat-

tern, we first explore the new pattern’s rationale and scope, that is, its context. By analyzing

the case studies in Chapters 3 and 4, we observe that both exhibit the characteristics of an

implicit invocation architecture.

The Implicit Invocation (II) pattern is an architectural pattern (Garlan and Shaw,

1993; Qian et al., 2010; Shaw, 1996) that can describe a wide range of systems, including

systems like those in Chapters 3 and 4. Using typical software architecture terminology,

the system model can be defined as a graph with software components at the nodes and

connectors along the edges (Shaw, 1996; Shaw et al., 1995). The components are high-level

computational and data storage entities and the connectors are the interactions among the

components. In addition, there is a control structure that governs how the system executes.

Figure 5.1 depicts the implicit invocation pattern. According to Shaw (1996), the

Implicit Invocation system consists of a “loosely coupled collection” of “independent
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Figure 5.1. Unmodified representation of the implicit invocation architecture model.
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reactive processes”—or perhaps a better term for our purposes is “modules” (Garlan and

Shaw, 1993). The components are these modules, which can “signal significant events with-

out knowing the recipients of the signals”. The connectors are the implicit (or automatic)

invocations of procedures in the modules’ interfaces “that have registered interest in events”.

The control structure is “decentralized” so that the individual components are unaware of

the recipients of their signals.

An implementation of the Implicit Invocation pattern usually requires some kind

of “event handler that registers components’ interest in receiving events and notifies them

that events have been raised” (Shaw, 1996). When a component registers interest in an

event, it associates a procedure with that event.

When a component registers interest in an event, it associates a procedure with that

event. To notify the component that the event has been raised, the event handler implicitly

invokes the associated procedure (Garlan and Shaw, 1993). We assume the event handler

is nondeterministic but fair. That is, once an event is signalled by a component, all the

listeners’ associated procedures will eventually be invoked, but there is no guarantee in what

order the events will be handled.

An implicit invocation system has advantages and disadvantages (Garlan and Shaw,

1993; Shaw, 1996). Among the advantages are support for software reuse and dynamic

reconfiguration. Among the disadvantages are the nondeterminism of processing order and

the difficulty in reasoning about correctness.

There are, of course, many different variations of the implicit invocation concept,

such as the Publisher-Subscriber (Buschmann et al., 1996; Eugster et al., 2003) and

Observer (Gamma et al., 1995) design patterns. In this dissertation, we use the term

Implicit Invocation, which seems to describe the general operation of the event-driven

programming mechanisms we used in the previous solutions and many other similar systems.

Consider the case studies in Chapters 3 and 4:

• For Web and desktop graphical user interface applications like those in Chapter 3, we
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Context

We have an application constructed according to the Implicit Invocation architectural
pattern (Shaw, 1996), assuming nondeterministic but fair handling of events.

Figure 5.2. Context element draft.

layer our solution to the transitional turbulence problem on top of the .NET frame-

work’s built-in event system. That is, we “augment” the built-in event-handling system

with new software mechanisms.

• For virtual and augmented reality applications like those in Chapter 4, we layer our

solution on top of the Unity3D game engine’s (Unity Technologies, 2019) built-in event-

handling system.

In both case case studies, the built-in event-handling systems follow the implicit invocation

architectural pattern as described above. In both case studies, we also observe transitional

turbulence as described in Chapters 3 and 4

Thus, to define the Context for our new pattern, we focus on applications built around

the implicit invocation pattern. The first draft of our new pattern’s Context element is shown

in Figure 5.2. As we continue to write the pattern, we identify other assumptions about the

Context in which the pattern is relevant.

In writing our new pattern, we also constrain it in the following ways:

• As suggested by the Clear Target Audience (Meszaros and Doble, 1998) and

Consistent-“Who” (Harrison, 2006) patterns, we focus our attention on developers

who are working within a software architecture described by the Implicit Invocation

pattern. We do not assume any particular programming language or platform in the

general description.

• As suggested by the Terminology Tailored to Audience and Understood

Notations patterns (Meszaros and Doble, 1998), we use terminology, concepts, and
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notations that should be familiar to the identified target audience. We also relate

the terminology we use in the pattern description to that we use in the Implicit

Invocation architectural pattern description.

• As suggested by the Dead Weasels pattern (Harrison, 2006), we seek to identify any

“weasel words”—words that “imply meaning but have no real substance” or that are

too ambiguous or imprecise to guide the reader in applying the pattern effectively. We

try to replace a “weasel word with a phrase or paragraph that is more specific”.

5.4 Examining Existing Solutions

In step 2 on the writer’s path, we examine existing solutions with the primary objec-

tive of unifying them. We seek to describe the general pattern that emerges from two related

case studies:

• Dynamic Web and desktop graphical user interfaces (GUIs) designed and implemented

with C# on the .NET platform (from Chapter 3).

• Dynamic virtual reality (VR) and augmented reality (AR) applications designed and

implemented in the Unity3D game engine using C# (from Chapter 4).

There is, of course, a wealth of other research on reactive programming languages and

systems (Bainomugisha et al., 2013; Cooper and Krishnamurthi, 2006; Czaplicki and Chong,

2013; Drechsler et al., 2014; Elliott, 2009; Meyerovich et al., 2009; Reynders et al., 2017) we

could profitably examine. However, in this chapter we focus our attention on solutions that

follow the Implicit Invocation architectural pattern and that work by augmenting the

normal event-processing mechanisms of the technologies they are built upon. The solutions

from Chapters 3 and 4 satisfy these criteria. The new design pattern seeks to document how

a developer should analyze an existing application, design appropriate new mechanisms to

reduce transitional turbulence, and implement the mechanisms in a modified application.
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5.4.1 Dynamic GUI Application

Chapter 3 explores the issue of transitional turbulence occurring in Web and desktop

graphical user interfaces (GUIs) implemented with C# on the .NET platform.

In this environment, a GUI consists of a loosely coupled collection of controls (i.e.,

the components in the Implicit Invocation architectural pattern). Each control responds

to events in which it is “interested”. A response to an event may result in the control

changing its state and triggering new events that notify other controls of the state change.

Thus one control responding to one event may trigger chains of events affecting several other

controls in the GUI. In complex cases, these event chains may be long; reaching a stable

state may require the processing of many events. The propagation of events is done by an

event-handling layer of the system, not by the controls themselves. So, from the perspective

of an application developer, the order in which events are handled is nondeterministic.

Although a GUI’s controls are loosely coupled from a communication perspective,

an implementation usually arranges them into some hierarchical data structure. For exam-

ple, the controls within a Web-based GUI are organized by the Document Object Model

(DOM) within a browser. Similarly, the controls within a C# desktop GUI are organized

by a separate class named Designer; this class abstracts the UI visual representation and

contains a hierarchical set of controls. The display system uses these data structures when

it periodically renders the GUI onto the screen.

This is where transitional turbulence can arise. The processing of a long chain of

events may span across several cycles of the display system. A control may be rendered with

a state that is inconsistent with the states of other controls. This may result in displays that

are temporarily inaccurate or misleading from the perspective of a human user.

To combat this problem in Chapter 3 we developed a reactive programming (Bain-

omugisha et al., 2013) approach that analyzes the complex relationships among the GUI

controls, encodes these dependencies in a dependency graph, and then uses the graph to

rearrange the updates in an order consistent with the dependency constraints. It builds the
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Figure 5.3. Constructing dependency graph and determining execution order.

graph when the GUI starts up and then rebuilds it whenever it detects that the dependencies

might have changed. The approach thus coalesces the processing of a chain of what may

be several events in the unmodified system into a single, large-grained event that updates

the states of many controls at once. Although the approach does not totally eliminate the

transitional turbulence that can cause inaccurate or misleading displays, it does potentially

decrease the number of inaccuracies as well as increase the performance of the system.

To evaluate their approach, we developed a prototype library and used it to conduct

several experiments. The experiments involved both desktop and Web versions of three

different forms that self-complete (i.e. compute the values in some fields from values supplied

in other fields). We executed a test 50 times on each form and measured the startup time,

the total time, and the total number of inaccuracies. We compared our approach with

approaches that used the Sodium (Blackheath and Jones, 2016) and Rx.NET (reactivex.io,

2020) reactive programming libraries and the builtin .NET GUI library. Figure 5.3 shows,

in general, how our approach augments this GUI application’s event-handling mechanisms.

Our experiments indicate that, on average, our approach requires less total time and

exhibits fewer errors, at the cost of a modest increase in startup time compared to all three

alternatives. Each application developed with the prototype library required approximately

twice as much time to start up as the corresponding unmodified .NET application required.

However, it was able to complete the entire chain of form updates in a small fraction of
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the time the corresponding unmodified .NET application required. In addition, it exhibited

significantly fewer visual inaccuracies than the corresponding unmodified .NET application

exhibited. Based upon the results of their experiments, we concluded that our approach

improves performance and results in a more accurate behavior.

Our approach in Chapter 3 seems to work well for the kind of problems envisioned and

the technologies used in this solution. Given how the approach works, it seems reasonable

that it will work in similar situations. But what is the essence of their solution and how can

we characterize the problem that it solves? In the next section, we examine another existing

solution to see what we can learn.

5.4.2 Dynamic VR Applications

Chapter 4 extended and systematized our research from a preliminary study (Marum

et al., 2019). This preliminary work also motivated the solution we examined in the previous

section.

The solution in Chapter 4 sought to remove the instability corresponding to the tran-

sitional turbulence occurring in virtual reality (VR) and augmented reality (AR) applications

implemented with C# in the Unity3D game engine (Unity Technologies, 2019). (We chose

Unity3D because it is a popular platform for VR/AR application development.) These ap-

plications are inherently reactive and nondeterministic with respect to how and when the

internal mechanism will execute such events and eventually deliver the resulting state.

Whenever multiple game objects in the simulated scene interact with one another, it

may take several cycles for the VR/AR application to update the states of all components

and reach stability. As we discuss for the first existing solution, this is called transitional

turbulence or, sometimes, the “ripple effect”. Transitional turbulence can result in incon-

sistencies in what is displayed for the user, which may lead to inconsistent and misleading

states within the VR/AR application, making the entire application seem unreliable and un-

predictable. Our approach focuses on reordering the execution of events so that the “ripple
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effect” can often be resolved within one update cycle.

Much of the nondeterminism is due to the unpredictable nature of the user inter-

actions, but some of it is due to the lack of the application developer’s control over some

aspects of the execution, especially those aspects affecting the order in which events and the

responses to those events occur in the system. The removal of this type of nondeterminism

yields a more accurate system.

This study shows that Unity3D does not provide a mechanism for controlling the

order of execution. Chapter 4 argues that the ability to change the execution order of

components—and, consequently, to enable the correct ordering of the components’ execu-

tions in a scene graph—is key to achieving highly accurate systems. To be perceived as

accurate, simulated interactions must occur in the same order as the interactions would in

the corresponding real-world situation. If they do not, then the simulation does not seem

realistic to the user. Consider a domino chain. When the first domino falls, the second

should fall when the weight of the first domino causes it to fall. The third falls similarly,

and so forth throughout the chain. If any one of these falls is shown incorrectly, the whole

simulated sequence is likely to be perceived as unrealistic.

As with the Dynamic GUI solution we examined above, we developed a reactive

programming (Bainomugisha et al., 2013) approach to mitigate the transitional turbulence

problems. This approach analyzes the complex relationships among the game objects present

in the scene hierarchy, encodes these dependencies in a dependency graph, and then uses the

graph to rearrange the updates in an order consistent with the dependency constraints. It

builds the graph when the application starts up and then rebuilds it whenever it detects that

the dependencies might have changed. The approach thus coalesces the processing of a chain

of what may be several events in the unmodified system into a single, large-grained event

that updates the states of many controls at once. Although the approach does not totally

eliminate the transitional turbulence that can cause inaccurate or misleading displays, it does

potentially decrease the number of inaccuracies as well as increase the system’s performance.
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Figure 5.4. Dependency test using the expression evaluator.

To evaluate our approach, we developed a prototype library and used it to conduct

several experiments. The experiments involved a three-way comparison among applications

on Unity3D using our approach, the default Unity3D event system, and UniRx, the Reactive

Extensions library for the Unity3D platform (Kawai, 2014). Figure 5.4 also shows, in general,

how our approach augments this VR/AR application’s event-handling mechanisms.

To evaluate the effectiveness of our approach, we used a test scenario built around an

expression evaluator to demonstrate how the update order of the game objects affects the

interactions among the game objects. we represented the expression as a game tree with an

operator at each internal node with its operands as its subtrees. The values are at the leaf

nodes. For the correct value of the expression to be calculated, the operand subtrees must

be evaluated before the corresponding operator. To determine the effects of reconfiguration

of Unity3D’s game tree, we ran (a) tests that kept the expression tree stable throughout the

run and (b) tests that randomly introduced changes in the tree’s structure during the test

run. For each test run, we measured the startup time, latency, and total errors during the

run and computed the average startup time, latency, errors per cycle, errors that resulted

in a visibly inaccurate state, and number of miscalculations that occurred in a test that

failed. Our experiments indicate that, on average, our approach exhibited a shorter latency

and fewer errors, at the cost of a modest increase in startup time compared the other two
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alternatives. We concluded that our approach improves performance and results in more

accurate behavior as described in Chapter 4.

Thus, our approach also seems to work well for the kind of problems envisioned and

the technologies used in the second solution. Our task is now to identify the commonalities

of the two specific solutions and codify a general, technology-independent approach as a new

design pattern.

5.4.3 Generalizing the Solutions

In Chapter 3 and 4, we examine each of the systems above in detail. Both solutions

develop a reactive programming approach that encodes the complex relationships among the

components of a specialized Implicit Invocation system in a dependency graph and then

uses the graph to order the updates of the components without violating the dependency

constraints. This enables more timely updates and more accurate visualizations, potentially

providing users with a more satisfying experience.

In the “What”-Solutions pattern, Harrison (2006) suggests writing the core idea

of a solution in a one- or two-sentence summary. This summary will form a prominent part

of the full description of the new pattern’s Solution element.

The draft summary shown in Figure 5.5 captures these observations. Consider the

GUI solution from Chapter 4. This solution augments .NET’s default event-handling mech-

anism by building a dependency graph and using it to schedule the updates of the controls.

If the update of some control A modifies some other control B, then B depends on A. At

startup, the augmentation first analyzes the entire GUI to identify all the depends-on rela-

tionships and then builds a dependency graph that records these relationships as directed

edges. During the execution of the GUI, whenever a user interacts with some control X, the

augmentation immediately updates all other controls that directly or indirectly depend upon

X. The unrelated controls in the GUI are not affected. This approach to execution matches

how we expect GUI’s to operate.
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Solution

A solution encodes the complex relationships among the application’s components in
a dependency graph and then uses the graph to order the updates of the components
without violating the dependency constraints. The goal is to reorder the updates of the
components so that the new order reduces transitional turbulence without degrading the
performance of the system.

Figure 5.5. Solution element summary.

In our study of these solutions, we tentatively identify Dynamically Coalescing

Reactive Chains as the name of this pattern.

5.5 Writing the Pattern

In this section, we continue along the pattern writer’s path, traversing steps 3-10 from

Section 5.2. We formulate the new pattern’s Problem, Forces, and Consequences elements,

refine the Context and Solution elements, and choose a Pattern Name.

5.5.1 Describing the Problem

In step 3 on the pattern writer’s path, we describe the problem that leads to the

solution. The core of a pattern is the pairing of a Problem with the corresponding Solu-

tion. However, Harrison (2006) observes that often “the problem and solution are basically

restatements of one another” during the early phases of writing a pattern. To help differen-

tiate these, the “Why”-Problems pattern (Harrison, 2006) suggests that pattern writers

ask themselves “how the world would be worse” if the new pattern is not used. Of course,

the pattern writers can make “the world” as specific as it needs to be by how they define

the Context.

In the solutions we examine in Section 5.4, the core issue addressed by the existing

solutions (from Chapters 3 and 4) is reducing the transitional turbulence. Transitional

turbulence can result in an external presentation that does not accurately represent the

system’s expected behavior. This leads us to the initial statement of the Problem element

for the new pattern in Figure 5.6.
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Problem

We want to eliminate or reduce the length of the periods of transitional turbulence during
which the external presentation does not accurately reflect the state of the application.
We need to do this without sacrificing performance. The goal is to better satisfy ob-
servers’ expectations by increasing the accuracy of the external presentation.

Figure 5.6. Problem element draft.

Consider how the problem can be specifically observed. In the GUI study in Chap-

ter 3, when a user enters data in the form, it may reconfigure itself. If the interconnections

among controls are complex then it may take several display cycles for all the changes to

propagate throughout the form. During this period, the form may show invalid options or

may redraw itself while the user is entering data. It is understandable that both situations

would be frustrating to the user.

Although the Context and Solution must be refined further, the proposed Solution

seems to solve the stated Problem in the given Context. The Problem (Figure 5.6) specifies

what must be done. The Solution (Figure 5.5) proposes how that can be accomplished. The

Context (Figure 5.2) describes the environment in which the Problem and its Solution exist.

5.5.2 Considering the Consequences

In step 4 on the pattern writers path, we consider the consequences of the solution.

The Solution to a Problem has both benefits and liabilities (Wellhausen and Fiesser, 2011).

Figure 5.7 shows the Consequences we identify for the new pattern.

To identify benefits, we consider what happens if the Solution is applied? And what

happens if it is not applied? To identify liabilities, we consider what its drawbacks are? Let

us consider the experimental results from the two studies we examine in Section 5.4

In the dynamic GUI application in Chapter 3, the result shows that our approach

requires less time to reach a stable state (i.e., has shorter latency) and exhibited fewer errors

(i.e., inaccuracies) at the cost of a modest increase in startup time. In the dynamic VR

application in Chapter 3, our approach also reduces the latency for reaching a stable state
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Consequences

Benefits:

• A solution dynamically adapts to changes in an application’s component architec-
ture during normal operation.

• A solution coalesces sets of dependent internal events into “large-grained events”
such that the handling of a large-grained event causes the same overall state change
as the corresponding set. This can decrease latency and increase accuracy (i.e.
decrease the number of errors).

• An application can be readily adapted to use the mechanisms implementing the
solution.

Liabilities:

• Changes to an application’s component architecture during normal operation can
increase latency and decrease accuracy.

• An implementation of a solution often causes additional processing overhead at
startup and shutdown of the application.

• An implementation of a solution often causes additional processing overhead during
normal operation, especially when the component architecture changes.

• An application must be adapted to use the mechanisms implementing the solution.
Modifying the application often complicates its design, implementation, testing, or
use.

Figure 5.7. Consequences element draft.

and exhibits fewer errors at the cost of a modest increase in startup time. Both applications

adapt appropriately to the runtime reconfiguration of the user interfaces’ structures. Neither

application seems to require significant changes to the application’s design or implementation.

In both studies, our approach eliminates or reduces transitional turbulence, which results in

more accurate behaviors.

Some of the phrases used in the Consequences and in other elements may need ex-

planation. By “changes to an application’s component architecture”, we mean the addition,

deletion, or modification of components and events within the same architecture constructed

according to the Implicit Invocation pattern. By “mechanisms implementing the solu-

tion”, we mean some combination of libraries, frameworks, tools, and design and program-
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Forces

Runtime Reconfiguration: We want to adapt to changes in an application’s component
architecture during normal operation.

Transitional Turbulence Reduction: We want to decrease the transitional turbulence in
the application’s execution to better satisfy the observers’ expectations.

Startup Cost Inflation: We want to avoid adding significant startup or shutdown costs.

Operational Overhead Creep: We want to avoid adding significant processing overhead
during the application’s normal operation.

Code Cluttering: We want to avoid significantly complicating the application’s design,
implementation, testing, and use.

Figure 5.8. Forces element draft.

ming techniques used to implement the solution.

5.5.3 Identifying the Forces

In step 5 on the pattern writer’s path, we identify the forces. The Forces are aspects

of the stated problem and its context that make selecting and devising a solution difficult.

Figure 5.8 shows the Forces we identify for this Problem. Following the suggestion of the

Visible Forces pattern (Meszaros and Doble, 1998), we assign each force in the new

pattern a meaningful name and display the set of forces as a list.

The forces concern issues such as runtime changes in the application’s component

architecture (Runtime Reconfiguration), the core issue of Transitional Turbulence Reduction,

increasing runtime overhead (Startup Cost Inflation and Operational Overhead Creep), and

increasing implementation complexity (Code Cluttering).

To characterize transitional turbulence, we use two measures (as in Chapters 3 and 4):

latency and error (inaccuracy) counts. Latency is the period of “time” (perhaps measured in

update cycles) that it takes for all components to reach a stable state following some stimulus

(such as the processing of an external event). An error (or inaccuracy) is an inconsistency in

the externally “visible” state of the application that can occur during such a period of insta-
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bility. To reduce transitional turbulence means, in general, that we need to reduce both of

these measures. (We also refer to decreasing the number of errors/inaccuracies as increasing

accuracy.) Following the suggestion of the Forces Hint at Solution pattern (Harrison,

2006), we order them from Problem-oriented issues toward Solution-oriented issues.

5.5.4 Matching Forces with Consequences

In step 6 on the pattern writer’s path, we match each force with the corresponding

consequence. Figure 5.9 shows how we map the Forces to the benefits and liabilities in the

new pattern.

A force makes the problem difficult to solve. How the solution resolves this difficulty

leads to the corresponding consequence. Each force must be resolved. In most cases, the

mapping from forces to consequences should be one-to-one (Wellhausen and Fiesser, 2011)

(i.e., each consequence should be matched to exactly one force). However, a force may be

mapped to both a benefit and a liability. In Figure 5.9 note that the Code Cluttering and

Runtime Reconfiguration forces each match with both a benefit and a liability. Also note

that each consequence matches with exactly one force.

As first-time pattern writers, we found it necessary during this step to revisit the

previous two steps and refactor both the Forces and the Consequences to ensure that we had

the primary issues covered in compatible ways. The steps from Section 5.2 are not rigid;

instead they are soft guidelines to help writers think through the issues. However, it is still

useful for us to “write the documentation” (this chapter) as if “we had followed the ideal

process” (Parnas and Clements, 1986).

5.5.5 Describing the Context

In step 7 on the pattern writer’s path, we describe the context in which the problem

exists. The context defines “aspects and requirements that are so important that the problem

may not exist outside the context but that are, at the same time, not modified by the

solution” (Wellhausen and Fiesser, 2011). The context “imposes constraints on the solution”
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Matching Forces

Runtime Reconfiguration: We want to adapt to changes in an application’s component ar-
chitecture during normal operation.

• Benefit: A solution dynamically adapts to changes in an application’s component
architecture during normal operation.

• Liability: Changes to an application’s component architecture during runtime can
increase latency and decrease accuracy.

Transitional Turbulence Reduction: We want to decrease the transitional turbulence in the
application’s execution to better satisfy the observers’ expectations.

• Benefit: A solution coalesces sets of dependent internal events into large-grained
events such that the handling of a large-grained event causes the same overall
state change as the corresponding set. This can decrease latency and increase
accuracy (i.e. decrease the number of errors).

Startup Cost Inflation: We want to avoid adding significant startup or shutdown costs.

• Liability: An implementation of a solution often causes additional processing
overhead at startup and shutdown of the application.

Operational Overhead Creep: We want to avoid adding significant processing overhead dur-
ing the application’s normal operation.

• Liability: An implementation of a solution often causes additional processing
overhead during normal operation, especially when the component changes.

Code Cluttering: We want to avoid significantly complicating the application’s design, im-
plementation, testing, or use.

• Benefit: An application can be readily adapted to use the mechanisms implement-
ing the solution.

• Liability: An application must be adapted to use the mechanisms implementing
the solution. Modifying the application often complicates its design, implemen-
tation, testing, or use.

Figure 5.9. Matching forces with consequences.
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(Meszaros and Doble, 1998).

The basic Context (from Figure 5.2) is that we have an application constructed ac-

cording to the Implicit Invocation architectural pattern. Beyond that, we examine what

additional assumptions that the two existing solutions make about contexts in which they

execute. By doing so, we refine the Context to that shown in Figure 5.10.

The existing solutions assume that components can be added, removed, or modified

during normal operation and the components are organized into a hierarchical data structure

that can also change as the application executes. They also assume that the collective

state of the components is sampled periodically (e.g., by a display system) and presented

externally and, as a result, the application can exhibit transitional turbulence. In addition,

the applications assume that the components encapsulate their states behind interfaces and

that the implementation environment or the application itself allows a program to extract

metadata about the components and their interfaces.

5.5.6 Choosing the Pattern Name

In step 8 on the pattern writer’s path, we choose a pattern name. We can use several

patterns from Meszaros and Doble (1998) to guide us in this task. The Evocative Name

pattern suggests choosing a name that evokes an image that conveys “the essence of the

pattern solution to the target audience”. The name should be memorable and suitable for

addition to the technical vocabulary of software developers.

The Noun Phrase Name pattern suggests naming the pattern for the result it

creates. The Meaningful Metaphor Name pattern further suggests choosing a name

based on a metaphor that is familiar to the target audience.

We adopt the name Dynamically Coalescing Reactive Chains because it

seems to best meet the criteria given by Meszaros and Doble (1998). For convenience, we

sometimes use the acronym DCRC. We show this choice in Figure 5.11.
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Context

We have an application that has the following characteristics:

• The application is constructed according to the Implicit Invocation architec-
tural pattern (Shaw, 1996), assuming nondeterministic but fair handling of events.

• The application’s component architecture may change during normal operation.
The application organizes the components into a hierarchical structure. This struc-
ture may change dynamically during the application’s normal operation as a result
of external stimuli or the actions of components.

• The application presents some aspects of its state that can be observed from outside
the system periodically. The timing of this presentation is not under the control of
the application.

• Because of the asynchronous nature of the application’s operation, the externally
observable presentation may exhibit periods of transitional turbulence. By tran-
sitional turbulence, we mean a period of chaotic or unreliable variation in the
application’s state that can result from one or more changes to the application’s
interconnected components. It can result in an externally observable state that
does not accurately represent the expected result.

• Each component is an information-hiding module (Parnas, 1972) with a well-defined
interface (Britton et al., 1981). The only way to change or access its state explicitly
is by calling one of its accessor or mutator procedures (e.g. properties in some
object-oriented languages).

• The application supports reflection capabilities. That is, application-level code can
examine the application’s features (such as its components, events, event handlers,
and hierarchical structure) at runtime and extract metadata (such as names, types,
and the type signatures of the procedures in component interfaces).

Figure 5.10. Context element revision.

Pattern Name

Dynamically Coalescing Reactive Chains

Figure 5.11. Pattern name element draft.
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5.5.7 Rewriting the Pattern Elements

In step 9 on the pattern writer’s path, we reexamine and rewrite the six pattern

elements. At this point in our process, the primary element that needs attention is the

Solution, including how it relates to the Problem and the Forces. We need to provide

sufficient detail for the reader to use the pattern effectively to design and implement a

concrete solution. However, we want to keep the new pattern technology-independent and

do not want to overwhelm the reader with arcane details of particular implementations and

implementation technologies.

5.5.7.1 Solution-writing Guidelines

Several of Harrison’s pattern-writing patterns (Harrison, 1999, 2006) give us guidance

on how to refine the Solution:

• The Big Picture pattern (Harrison, 1999) suggests that the Problem and Solution

should “by themselves” convey the key idea—“the big picture”—of the new pattern.

• The Matching Problem to Solution pattern (Harrison, 1999) suggests that the

Solution should solve the “whole” Problem “but not more”.

• The Convincing Solution pattern (Harrison, 1999) suggests that pattern writers

seek to make the Solution “compelling”. Often this means making it “narrower and

deeper”.

• As we discussed in Section 5.4, the “What”-Solutions pattern (Harrison, 2006)

suggests writing the core idea of the Solution in a one- or two-sentence summary

placed at the beginning of the Solution description. The “How”-Process pattern

(Harrison, 2006) suggests extending the summary with more detail about “what to

do, how to do it, and why to do it that way,” including providing any appropriate

illustrations. In particular, it should describe how the Solution balances the Forces

and identify any Forces that are not considered.
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• The Forces Hint at Solution pattern (Harrison, 2006) suggests that the Forces

should guide the reader from the Problem to the Solution.

Because of our goal of keeping the new pattern technology-independent, we found satisfy-

ing Harrison’s Convincing Solution and Matching Problem to Solution patterns

(Harrison, 1999) challenging. The latter required us to tweak the statement of the Context

to include subtle assumptions the Solution makes about the environment.

5.5.7.2 Refined Solution

Summary (from Figure 5.5). A solution encodes the complex relationships among the

application’s components in a dependency graph and then uses the graph to order the updates

of the components without violating the dependency constraints. The goal is to reorder the

updates of the components so that the new order reduces transitional turbulence without

degrading the performance of the system.

As we note in Section 5.4, our solutions rely on multiple aspects. To apply the pattern,

a developer must first understand the concept of dependency and then build a graph that

encodes the dependencies in an application. A design that applies the pattern must augment

the existing system with various mechanisms. Below we propose the mechanisms that must

be defined along with the pattern.

Definitions. What do we mean by a “dependency graph” in this Context?

• If the execution of a component C can directly affect a subsequent execution of a

component D in any way, then D depends on C.

For example, C might trigger an event for which D listens, change aspects of its state

that D accesses, directly call one of D’s mutator procedures, or create or modify com-

ponent D.

• A dependency graph is a digraph formed by placing the components at the nodes and
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Figure 5.12. Theoretical evaluation order overwritten on top of the dependency graph.

adding an edge from one node to another if the corresponding components have a

depends-on relationship.

Figure 5.12 shows a dependency graph as the highlighted area on the top of the existing

component graph.

For example, the GUI augmentation in Chapter 3, we define dependency as a relation-

ship in which one component is related to another if the execution of the first leads (directly

or indirectly) to the execution of the second and the order in which they execute affects the

final result of the execution. Each directed edge denotes a dependency relationship in which

the execution of source control leads to the execution destination control.

To apply the DCRC pattern, we are primarily interested in recording the dependen-

cies related to the implicit invocations—between components that listen for an event and

those that trigger the event. Of course, being able to record other kinds of dependencies

may also be helpful.
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Figure 5.13. Modifications that will occur in the original hierarchy.

Augmenting the application. To apply the DCRC pattern to an application that sat-

isfies the Context, we augment the application with appropriate software mechanisms. Some

of these mechanisms depicted in Figure 5.13.

These mechanisms may include some combination of libraries, frameworks, tools, and

design and programming techniques. The various mechanisms should be lightweight. That is,

they should execute efficiently and should not require extensive modifications of the existing

application. The “software mechanisms” needed and the meaning of “lightweight” depend

upon the application’s specific implementation technologies and performance requirements.

In the GUI augmentation in Chapter 3, we cite the mechanisms provided by the

.NET. .NET provides lightweight capabilities for iterating through the controls of a form,

tracking and executing the controls, and detecting when a user has interacted with a control.

For applications that satisfy the Context, we can augment the application’s event-

handling mechanisms to solve the Problem. The solution involves three processes: analyzing
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the application to identify how to add the mechanisms, developing the mechanisms, and

incorporating the mechanisms into the application’s operation.

1. In the augmentation analysis process, the solution’s developer must:

(a) Examine the hierarchical structure to identify how a program can iterate through

the components (i.e., accessing each component exactly once).

(b) Examine the design and implementation of the components and the features of the

implementation language to identify how a program can extract the dependency

relationships among the components at runtime.

This may involve use of the components’ existing features or the implementation

language’s reflection capabilities. If sufficient capabilities do not exist, we can

design lightweight modifications that implement sufficient application-specific ca-

pabilities.

(c) Examine the components and events to determine which component relationships

to include in the dependency graph and which to exclude. To reduce transitional

turbulence, the augmented application program can manipulate the components

and relationships included but cannot manipulate those excluded.

Generally speaking, we include the component relationships arising from the ap-

plication’s custom code (which we can modify if needed) and exclude those in the

supporting framework (which we cannot modify). We may also want to exclude

any component relationship if that relationship represents an expensive compu-

tation or arbitrary delay.

2. As it is illustrated in Figure 5.14, in the augmentation development process, the

solution developer must:

(a) Design and implement a lightweight runtime mechanism that enables the program

to differentiate between the components that are to be included in the dependency
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Figure 5.14. Augmentation from the implicit invocation to the dependency graph.

graph and those that are not.

This may involve features already present in the application (e.g., types, value

of some property, metadata) or may involve modifying the application to add

appropriate features. For example, in an object-oriented system in which the

components are objects, we could modify the included components to implement

a “marker interface” that can can be checked by reflection.

The developer should establish a criterion to determine what to include in the

dependency graph and what to exclude. In general, this criterion can be defined

as a function to be called by the dependency graph building procedure. It must

return a boolean value true if its argument should be inserted in the dependency

graph and otherwise return false.

(b) Design and implement a lightweight runtime mechanism that enables the program
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to detect whether the component architecture or the dependencies among the

components have changed since the previous check (or since the beginning of

operation).

In this Context, we assume that a change to the hierarchical structure holding

the components likely means a change to the component architecture.

(c) Design and implement lightweight mechanisms to construct the dependency graph

initially and to reconstruct it when needed.

To build a dependency graph, the program can traverse the hierarchical struc-

ture (e.g., do a breadth-first traversal of the Document Object Model), placing

each component at a node and adding edges to other nodes according to the

depends-on relationships between components. However, it must prune the graph

appropriately to remove any cycles.

3. In the augmentation incorporation process, the solution developer must modify

the application’s operation in the following ways:

(a) The application must construct the dependency graph at or before startup. (The

left side of Figure 5.14 illustrates this augmentation.)

(b) When some component C included in the dependency graph signals an event

E, the application must intercept E and directly call the procedures associated

with event E on all listening components as recorded in the dependency graph.

Then it must recursively apply the process to all events signalled by the listening

components. It continues this as long as there are dependencies indicated in

the graph (which cannot have cycles). This process dynamically coalesces the

processing of chains of events into what is processed as one “large-grained” event.

(The upper half of Figure 5.14 illustrates this augmentation.) The meaning of

“intercept” depends upon the application’s specific implementation technologies.
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(c) After the processing of each “large-grained” event in the previous step, the appli-

cation must check whether the application’s component architecture has changed

(e.g., the addition, modification, or deletion of any component in the hierarchical

structure) or the dependencies among components have changed. If so, then it

must update the dependency graph appropriately to reflect the new component

architecture.

Balancing the forces. In the Solution described above, we handle all the identified Forces.

How do we balance the various Forces to achieve this Solution?

• Transitional Turbulence Reduction.

For a state change in any component, the augmented application must propagate the

effects to all its directly or indirectly dependent components without the delays and

non-determinism introduced by the normal event-handling system—as if all were part

of the processing of one large-grained event. This can decrease latency and increase

accuracy (i.e., decrease the number of errors).

• Runtime Reconfiguration.

Frequently during normal operation of the application, the augmented application

checks whether the its component architecture has changed. If it detects a change, it

then reconstructs the dependency graph to reflect the new architecture. The extra costs

incurred in reconstructing the dependency graph must not itself worsen the solution’s

overall effect on the latency and accuracy.

Changes to an application’s component architecture during normal operation can in-

crease latency and decrease accuracy. However, a good solution must dynamically

adapt to such changes and seek to mitigate the effects on latency and accuracy.

• Startup Cost Inflation.
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When applying the pattern, developers should seek to keep the cost of initially con-

structing the dependency graph low. The developers should carefully select the compo-

nents to include in the analysis and use efficient methods for determining dependency

relationships and constructing the graph.

The augmented application likely incurs additional processing overhead at startup and

shutdown. In particular, the extra costs for constructing the initial dependency graph

should be small in proportion to the potential accuracy and performance gain in an

application that runs sufficiently long.

• Operational Overhead Creep.

The augmented application likely incurs additional processing overhead during normal

operation, especially when the component architecture changes. In particular, the

extra costs for checking for changes in the component architecture and reconstructing

the dependency graph should be small in proportion to the potential accuracy and

performance gain in an application that runs sufficiently long. In cases in which the

component architecture changes infrequently, the augmented application should incur

minimal costs.

• Code Cluttering.

To implement a solution, the developer must augment the existing application by in-

corporating a set of software mechanisms as described above. Unfortunately, modifying

the application often complicates its design, implementation, testing, and use.

However, in a good design and implementation of the solution’s new software mech-

anisms, it should be possible to readily augment the existing solution. Thus the new

software mechanisms should be designed, implemented, and documented carefully so

that the solution can work well with typical application designs.

For example, for a typical GUI application it should be possible to implement the
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solution approach as a software framework with wrapper classes for the controls and

a library implementing the algorithms for constructing/reconstructing the dependency

graph and using it to coalesce chains into “large-grained” events.

5.5.8 Putting the Elements in Standard Order

In step 10 on the pattern writer’s path, we put the pattern elements in the standard

order. We seek to organize the DCRC pattern according to Meszaros and Doble’s Single-

Pass Readable pattern (Meszaros and Doble, 1998). That is, we seek to write the pattern

so that it flows smoothly from Context to Consequences, capable of being read sequentially

and understood in one pass.

We give the full pattern description in Appendix A, including the refined Solution

element from Section 5.5.7. We also restructure the Consequences component from Figure 5.7

to show the mapping from the Forces as shown in Figure 5.9.

5.6 Evolving the Pattern

The final step on the pattern writer’s path is to get feedback from experts in the

technical area and pattern writing. The patterns community (The Hillside Group, 2020)

often uses a process called shepherding to assist pattern writers (Harrison, 1999, 2006). This

is a “process in which a pattern author receives feedback from another, experienced pattern

author” (Wellhausen and Fiesser, 2011). It is an iterative process in which the experienced

writer—the “shepherd”—gives feedback to the pattern’s author—the “sheep”. Harrison’s

Three Iterations pattern (Harrison, 1999) suggests that approximately three rounds of

feedback and revision are required. Often this coaching is associated with a conference such

as Pattern Languages of Programs (PLoP) (The Hillside Group, 2020).

This DCRC pattern is based on the work reported in Chapters 3 and 4. It is being

written primarily by the author of this dissertation in collaboration with his two dissertation

advisors and another collaborator. Two members of the team have expertise in software ar-

chitecture and two in the application areas and technologies underlying the existing solutions
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we examined in Section 5.4. None have previous experience writing software patterns, but

most have some experience using patterns. One member from each group is taking the lead

in writing the pattern itself, with the other two serving as reviewers. We organized our work

using the writer’s path outlined in Section 5.2, which is adapted from the helpful Wellhausen

and Fiesser (2011) tutorial, and applied patterns from the published pattern languages for

pattern writing (Harrison, 1999, 2006; Meszaros and Doble, 1998). In this pattern, we record

our steps along the path as well as give the full DCRC pattern.

As Buschmann et al. (2007) notes, “Just as useful software evolves over time as it

matures, pattern descriptions evolve over time as they mature.” Software patterns are, in

some sense, always works in progress that can incorporate “deeper experience gained when

applying patterns in new and interesting ways”. In particular, they may be refined to form

part of a pattern language—“a network of interrelated patterns that defines a process for

resolving software development problems systematically.” A pattern language combines a

vocabulary—a set of evocatively named patterns—with a grammar—the rules for combining

individual patterns into valid sequences in which they can be applied.

In this pattern description, we seek to specify a design pattern with a relatively broad

context. It would have been an easier task for us to specify an idiom (or idioms) for the

narrower context of C#.NET and Unity3D by drawing on our understanding of the work

in Chapters 3 and 4. As our work on the pattern evolves, we plan to evaluate how well

the general pattern can be specialized to specific technologies, which may lead us to define

related idioms. However, it may also be that future evolution will lead us in the direction of

a network of patterns that we will seek to weave into a pattern language covering variations

of the event-driven, Implicit Invocation architecture (Shaw, 1996) and implementation

platforms.

In the future, we also plan is to evaluate the generality of the DCRC pattern by repli-

cating one or more of our previous case studies using different technologies (e.g., replicating

the GUI case study from Chapter 3 using Java and JavaFX (Chin et al., 2019; OpenJFX
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Project, 2020)). We can also examine other reactive programming approaches (Bainomugisha

et al., 2013; Cooper and Krishnamurthi, 2006; Czaplicki and Chong, 2013; Drechsler et al.,

2014; Elliott, 2009; Meyerovich et al., 2009; Reynders et al., 2017) to see what new ideas can

be incorporated into a future revision of the DCRC pattern.

As we describe in Section 5.3, we built our context around the Implicit Invoca-

tion architectural pattern as specified by Shaw in 1996 (Shaw, 1996). One attraction to this

classic presentation is that it is concise and described using consistent software architecture

concepts. Another attraction is that this architecture has been the focus of formal modeling

research (e.g., using Z notation (Garlan and Notkin, 1991), process algebra and trace seman-

tics (Garlan et al., 1998), and model checking (Garlan et al., 2003)). Our primary focus has

been on defining a pragmatic design pattern useful to practitioners as well as to researchers.

To date, we have not given attention to devising a formal specification. However, our ongo-

ing work to evolve the pattern’s Solution could benefit from a better formal understanding

of the operation of the kinds of event-driven, Implicit Invocation systems we focus on.

5.7 Applying the Pattern

In this section, we demonstrate the efficacy of the Dynamically Coalescing Re-

active Chains (DCRC) pattern by applying it to a realistic example. For convenience,

we choose to reexamine the .NET-based dynamic GUI application case study from Chap-

ter 3. In the future we plan to replicate this work using other technologies—such as Java

and JavaFX—as discussed in Section 5.6. In this section, we consider the DCRC pattern

element by element and evaluate its applicability to the dynamic GUI application.

5.7.1 The Context

The DCRC pattern’s Context element lists six characteristics (shown in italics be-

low). We consider each Context characteristic with respect to the dynamic GUI application.

• The application is constructed according to the Implicit Invocation architectural

132



pattern, assuming nondeterministic but fair handling of events.

A .NET GUI consists of a loosely coupled collection of controls. The controls execute

asynchronously with respect to each other. A control can interact externally (e.g.,

with a user) and internally (e.g., with other controls). The controls interact via events,

which are scheduled in a nondeterministic manner. Thus, a .NET GUI exhibits the

characteristics of an implicit invocation architecture as defined in Section 5.3.

• The application’s component architecture may change during normal operation. The

application organizes the components into a hierarchical structure. This structure may

change dynamically during the application’s normal operation as a result of external

stimuli or the actions of components.

In a .NET GUI, the “components” are the controls, each of which is represented by

an object. The GUI arranges the objects representing the controls into a hierarchical

data structure internally (e.g., the DOM in a Web application). This data structure

forms the “component architecture”. It may change as the result of some action from

outside the GUI or by execution of the GUI’s controls themselves.

• The application presents some aspects of its state that can be observed from outside

the system periodically. The timing of this presentation is not under the control of the

application.

The display system operates independently from a .NET GUI. It renders the GUI onto

the screen periodically. To do so, it accesses the GUI’s data structures (e.g., the DOM).

• Because of the asynchronous nature of the application’s operation, the externally ob-

servable presentation may exhibit periods of transitional turbulence.

As we note above, a .NET GUI’s controls execute asynchronously and communicate

via an event-handling mechanism. Because of the fine-grained nature of the events,

it may be necessary to process many events to propagate the changes at one control
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to all other controls. However, the display system operates independently from the

GUI and directly accesses the GUI’s data structures. Thus, a .NET GUI can exhibit

transitional turbulence as defined in this dissertation.

• Each component is an information-hiding module with a well-defined interface. The

only way to change or access its state explicitly is by calling one of its accessor or

mutator procedures (e.g., properties in some object-oriented languages).

Each control in a .NET GUI is an object that instantiates a class from the Control class

hierarchy. This object implements its class’s interface and encapsulates (i.e., hides) all

its attributes. Thus, the only way for another object to access or alter a control’s

internal state is to call a method in its interface. Some of the control’s methods are

associated with the operation of the event-handling system. Therefore, a control is an

information-hiding module (Parnas, 1972) with a well-defined interface (Britton et al.,

1981). The only way to access a control’s state is by calling its methods.

• The application supports reflection capabilities. That is, application-level code can ex-

amine the application’s features (such as its components, events, event handlers, and

hierarchical structure) at runtime and extract metadata (such as names, types, and the

type signatures of the procedures in component interfaces).

The .NET framework’s primary programming language is C#. C# is an object-

oriented language in which everything is an object. The language’s extensive reflection

facilities enable a program to examine its objects at runtime and extract metadata

about their features (e.g., the names, types, and values of attributes, the names and

type signatures of methods, the types of objects, and the classes and interfaces ex-

tended by classes).

The dynamic .NET GUI applications we consider have all the above characteristics. The

related .NET and C# features are sufficient to implement the software mechanisms (e.g.,

the dependency graph) needed to design and implement the Solution described below.
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5.7.2 The Problem

The DCRC pattern’s Problem element states the problem description as follows: We

want to eliminate or reduce the length of the periods of transitional turbulence during which

the external presentation does not accurately reflect the state of the application. We need to

do this without sacrificing performance. The goal is to better satisfy observers’ expectations

by increasing the accuracy of the external presentation.

As we note in the discussion of the Context, the .NET GUIs we consider can exhibit

transitional turbulence as defined in this dissertation. This can cause the GUI display to

inaccurately reflect the state of the application for periods of time. In some circumstances, we

may want to eliminate or reduce the length of these periods without sacrificing performance.

Thus, the DCRC pattern addresses a problem that is relevant for .NET-based dyanmic GUI

applications.

5.7.3 The Forces

The DCRC pattern’s Force element identifies five forces (shown in italics below)

that must be balanced appropriately to solve the Problem. We consider the dynamic GUI

application with respect to each force.

Transitional Turbulence Reduction : We want to decrease the transitional turbulence

in the application’s execution to better satisfy the observers’ expectations.

Decreasing transitional turbulence is the primary motivation for attempting to solve

the Problem in this Context. In an implicit invocation architecture like .NET GUIs,

this likely requires a solution that optimizes the event processing.

The Transitional Turbulence Reduction force is in conflict with all the other forces:

Runtime Reconfiguration, Startup Cost Inflation, Operational Overhead Creep, and

Code Cluttering. They represent factors that make achieving transitional turbulence

reduction difficult.
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Runtime Reconfiguration : We want to adapt to changes in an application’s component

architecture during normal operation.

In .NET GUI applications, the structure of the GUI itself can change during execution.

The Context requires that we handle this situation in any Solution to the Problem.

However, this situation may complicate any solution that optimizes the event pro-

cessing based on the GUI’s structure. For example, if the solution builds and uses a

dependency graph of the controls, then changes in the GUI’s structure invalidates the

graph. This requires that the dependency graph be updated whenever the GUI’s struc-

ture changes, which likely makes the code more complex and degrades performance.

The Runtime Reconfiguration force is in conflict with the Transitional Turbulence

Reduction, Overhead Cost Creep, and Code Cluttering forces.

Startup Cost Inflation : We want to avoid adding significant startup or shutdown costs.

For .NET GUI applications, any Solution to the Problem likely requires that the GUI

be analyzed and modified before normal operation begins. Both steps require that new

software mechanisms (i.e., code) be developed and executed. In addition, the modified

GUI likely has more complex code and increased execution time. For example, the

analysis may construct a dependency graph of the controls and the modification may

augment the GUI to use the dependency graph to optimize the event processing.

If the analysis and modification can be done statically, then they can be done in a

preprocessing phase and will thus have limited impacts on the startup and shutdown

of the GUI’s execution.

If the analysis and modification must be done dynamically, then they must done at

runtime and can thus have more significant impacts on the startup and shutdown of

the GUI’s execution. For the Startup Cost Inflation force, we want to keep these costs

small.

Because of the requirement to support dynamic changes to the GUI (as discussed
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above for the Runtime Reconfiguration force), the solution presented in Chapter 3

did the analysis and modification completely at runtime. Some of the initial analysis

and modification could have been done in a preprocessing step, but that would have

required the mechanisms to be implemented in two completely different ways.

The Startup Cost Inflation force is in conflict with the Transitional Turbulence Reduc-

tion and Code Cluttering forces.

Operational Overhead Creep: We want to avoid adding significant processing overhead

during the application’s normal operation.

As we note in the discussion of the Startup Cost Inflation force, the modified .NET

GUI has more overhead and more complex code for the event processing. The costs of

supporting Runtime Reconfiguration also adds processing overhead and code complex-

ity. For the Operational Overhead Creep force, we want to keep the execution costs of

event processing small.

The Overhead Cost Creep force is in conflict with the Transitional Turbulence Reduc-

tion, Runtime Reconfiguration, and Code Cluttering forces.

Code Cluttering : We want to avoid significantly complicating the application’s design,

implementation, testing, and use.

For .NET GUIs, all the mechanisms we introduce in the discussion of the other forces

above increase the complexity of the GUI program. This increases the cost to design,

implement, test, and maintain the application.

For the Code Cluttering force, we want any modifications of the GUI programs to be

simple and to be supported by libraries and/or tools. We also want the modifications to

the event processing to work on top of the standard .NET event-processing mechanisms.

The solution presented in Chapter 3 designed and implemented a library to handle

most of the additional processing needed; it works on top of the standard .NET event
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handler.

The Code Cluttering force is in conflict with the Transitional Turbulence Reduction,

Runtime Reconfiguration, Startup Cost Inflation, and Operational Overhead Creep

forces.

The dynamic .NET GUI applications we consider exhibit all the above forces. Any Solution

must balance the forces to solve the Problem acceptably.

5.7.4 The Solution

For applications that satisfy the Context, the DCRC pattern’s Solution element

describes how to augment the application’s event-handling mechanisms to solve the Problem.

The Solution involves three augmentation processes that are involved in building the needed

software mechanisms:

1. analyzing the application to identify how to add the mechanisms

2. developing the mechanisms

3. incorporating the mechanisms into the application’s operation

Here we focus on these processes and related aspects of the Solution element, which are

shown below in italics. We consider the dynamic GUI application with respect to each item.

1. In the augmentation analysis process, the solution’s developer must:

(a) Examine the hierarchical structure to identify how a program can iterate through

the components (i.e., accessing each component exactly once).

A .NET-based GUI provides a hierarchical collection of its controls. For Web de-

velopment using C#, this collection holds the Document Object Model (DOM).

For desktop development using C#, the Designer class holds a collection of con-

trols as objects of class Control class or one of its subclasses. .NET also supports
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the iteration construct foreach that enables programs to conveniently iterate

through collections of objects such as the collection of controls. Thus, by using

foreach on the collection of controls, a C# program can examine each control in

the structure.

(b) Examine the design and implementation of the components and the features of the

implementation language to identify how a program can extract the dependency

relationships among the components at runtime.

In the .NET-based GUI case study, we develop the GUI using C#, which provides

extensive reflection facilities. The Type class enables a C# program to examine

any of its own objects and extract metadata about their features, including the

names and type signatures of its methods and the names, types, and values of its

attributes. By examining the objects for the controls, the program can determine

the dependencies.

Suppose A and B are two controls in the GUI. If one of control A’s attributes holds

a reference to control B or one of A’s methods has a formal parameter of type B,

then control B depends on control A. (Our assumption for unmodified .NET GUIs

is that the only communication between controls is through the event system.)

(c) Examine the components and events to determine which component relationships

to include in the dependency graph and which to exclude. To reduce transitional

turbulence, the augmented application program can manipulate the components

and relationships included but cannot manipulate those excluded.

To augment a .NET GUI application, the developers must decide which controls

to include as a part of the event-processing optimization and which to exclude.

For example, the developers should exclude any control that they cannot modify—

such as a .NET or system control or a control in a third-party library. Similarly,

they will normally want to exclude any control that takes a long time to execute.

The other controls—which we call “reactive” controls—should be included in the
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event-processing optimizations; these controls and their interrelationships must

be included in the dependency graph.

The C#/.NET interface is a class-like construct. It declares a set of (abstract)

public methods but does not define the concrete bodies of the methods. An

interface defines a C#/.NET type that is visible to the reflection facilities.

However, an interface itself cannot be instantiated to create an object. An

interface can be implemented by any number of classes. A class that implements

an interface must provide concrete definitions for all its methods. A class can

extend just one parent class, but it can implement any number of interfaces.

An interface is a good way to enable C#/.NET to distinguish reactive con-

trols from other controls present in the GUI. We define an interface named

iReactive. This interface defines a special event handler method for the re-

active controls; a class that implements iReactive must define an appropriate

method body. The class for any reactive control must implement iReactive. If

an existing control needs to be made reactive, it can be “wrapped” by a class that

implements iReactive. When the augmented application builds the dependency

graph, it needs to include all controls that implement iReactive and exclude any

that do not.

2. In the augmentation development process, the solution developer must :

(a) Design and implement a lightweight runtime mechanism that enables the program

to differentiate between the components that are to be included in the dependency

graph and those that are not.

As we discussed above, all control objects implement the iReactive interface.

Using the reflection facilities, a C#/.NET program can easily check to see if an

object implements this interface. If an object does, it must be included in the

dependency graph; it it does not, it should be excluded from the dependency
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graph.

(b) Design and implement a lightweight runtime mechanism that enables the pro-

gram to detect whether the component architecture or the dependencies among

the components have changed since the previous check (or since the beginning of

operation).

To determine whether the GUI changes, the augmented .NET GUI application

stores a “snapshot” of the GUI’s structure at the beginning of an update cycle (as

defined below). The snapshot consists of the dependency graph with each node

holding a reference to its associated control object. At the end of the update

cycle, the augmented application checks whether the GUI structure has changed

since the beginning of the cycle. In particular, it must detect GUI changes that

add new dependencies or modify existing dependencies or add new dependencies.

To determine if there are changes in the dependencies, the augmented application

examines each reactive control in the GUI. If that control did not appear in the

previous snapshot, then the dependency graph is no longer valid. (To compare

two control objects, a C#/.NET program checks whether they have the same

name and type.) If that control did appear in the previous snapshot and any

of its dependencies have changed, then the dependency graph is no longer valid.

To check whether a control’s dependencies have changed, the augmented appli-

cation checks the control’s attributes and methods with the reflection package

as discussed above. If any control appears in the previous snapshot, but not in

the current GUI, then the dependency graph is no longer valid. If nothing has

changed from the previous snapshot, then the dependency graph remains valid.

If the dependency graph is no longer valid, then it needs to be rebuilt.

(c) Design and implement lightweight mechanisms to construct the dependency graph

initially and to reconstruct it when needed.

As discussed above, a .NET GUI consists of a hierarchical collection of control
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objects. A C# program iterates through this collection. It examines each control

using the C#/.NET reflection facilities. If the current control is one that should

be included in the dependency graph, which means it implements the iReactive

interface, then the augmented application inserts a new node into the depen-

dency graph for the control. For each other control that the current control

depends on, then the augmented applications inserts an appropriate edge into the

dependency graph going from the other control to the current control signifying

that the other control depends on current control.

The process is essentially the same for the initial construction of the dependency

graph and for its reconstruction because of a change in the GUI’s structure. The

reconstruction is a slightly different in that it only iterates through the controls

referenced by the previous dependency graph (not all the controls in the GUI).

3. In the augmentation incorporation process, the solution developer must modify

the application’s operation in the following ways :

(a) The application must construct the dependency graph at or before startup.

In C#/.NET GUI, we implement a GUI as an instance of the Form class or one

of its subclasses. This class has an event-handler method form start(). Form

executes this method during its instantiation—after it instantiates all its controls

and before it renders the form to the user. This is where we incorporate the

construction of the dependency graph into the event-handling system.

To make the GUI reactive, we declare the interface iUpdatable to designate a

reactive form. This interface requires that the Form subclass implementing it

overrides and defines the form start() method. Using the techniques discussed

above, the method must analyze the GUI and construct the initial dependency

graph as an object in the Form subclass.

(b) When some component C included in the dependency graph signals an event E, the
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application must intercept E and directly call the procedures associated with event

E on all listening components as recorded in the dependency graph. Then it must

recursively apply the process to all events signalled by the listening components.

It continues this as long as there are dependencies indicated in the graph (which

cannot have cycles). This process dynamically coalesces the processing of chains

of events into what is processed as one “large-grained” event.

As discussed above, we use the interface iReactive to designate reactive controls.

We declare this interface to include the event-handler method reactiveUpdate.

Any Control subclass that implements the interface must provide appropriate

behavior (which can be the code that usually would go on the built-in event-

handler method Update()). The reactive control class must also override the

built-in Update() method so that it calls the reactiveUpdate method. The

augmented GUI application thus executes this method instead of the control’s

standard event handler.

If a reactive control responds to an external (e.g., user interaction) event, then

the built-in event handler method Update() must detect the external event and

redirect its handling to the augmented event-handling method reactiveUpdate.

The augmented event-handling mechanism constructs a sequence of the control

updates triggered by the initial external event based on the constraints in the

dependency graph and then invokes the sequence of reactiveUpdate methods of

each control explicitly. This process thus propagates the effects of one external

event throughout the GUI. From the standpoint of the built-in event-handling

system, this whole sequence of updates executes as one “large-grained” event.

We call the period from the receipt of the external event until completion of the

sequence one update cycle.

(c) After the processing of each “large-grained” event in the previous step, the appli-

cation must check whether the application’s component architecture has changed
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(e.g., the addition, modification, or deletion of any component in the hierarchi-

cal structure) or the dependencies among components have changed. If so, then

it must update the dependency graph appropriately to reflect the new component

architecture.

At the end of an update cycle, the augmented application checks whether the GUI

structure has changed since the beginning of the cycle (as previously described).

If it has changed, it must rebuild the dependency graph (as previously described).

As mentioned in the previous step, the built-in event handler of the control which

detected the event calls the augmented event-handling mechanism (that is the first

and only thing the built-in event handler must do). The routine to update the

dependency graph according with the modifications in the GUI is executed as part

of the augmented event-handling, right after inferring the execution order from

the dependency graph and call the reactiveUpdate() methods of each control

sequentially as a single large-grained event.

5.7.5 The Consequences

The DCRC pattern’s Consequences element lists the consequences of applying the

pattern—both benefits and liabilities (shown in italics below). The Consequences element

maps each force to a benefit and/or a liability. We consider the dynamic GUI application

with respect to each benefit and liability.

BENEFITS

Transitional Turbulence Reduction : A solution coalesces sets of dependent internal

events into “large-grained” events such that the handling of a large-grained event causes

the same overall state change as the corresponding set. This can decrease latency and

increase accuracy (i.e., decrease the number of errors).

The .NET GUI application optimizes the event processing by combining the state

changes associated with sequences of related events into larger units. By doing so, it
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seeks to mitigate the effects of transitional turbulence.

Runtime Reconfiguration : A solution dynamically adapts to changes in an application’s

component architecture during normal operation.

The .NET GUI application adapts to runtime changes in the structure of the GUI. It

seeks to preserve the benefits of the event-processing optimizations that mitigate the

effects of transitional turbulence.

Code Cluttering : An application can be readily adapted to use the mechanisms implement-

ing the solution.

The .NET GUI application augments the standard .NET event processing system but

does not replace it. The solution presented in Chapter 3 uses a library and the reflection

facilities to optimize event processing.

LIABILITIES

Runtime Reconfiguration : Changes to an application’s component architecture during

normal operation can increase latency and decrease accuracy.

The .NET GUI application adapts to runtime changes in the structure of the GUI.

These changes may, in themselves, degrade the event-processing performance. In addi-

tion, they may degrade the effectiveness of optimizations that are based on the GUI’s

structure. The application may need to undertake a costly reanalysis of the GUI

structure to incorporate different optimizations. A solution should minimize the cost

of adapting to runtime structural changes.

Startup Cost Inflation : An implementation of a solution often causes additional process-

ing overhead at startup and shutdown of the application.

As we note in the discussion of the Startup Cost Inflation force, any Solution to the

transitional turbulence reduction Problem for .NET GUIs likely requires that the GUI
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be analyzed and modified before normal operation begins. This can be a costly oper-

ation, particularly if performed at runtime. A solution should minimize this startup

overhead.

Operational Overhead Creep: An implementation of a solution often causes additional

processing overhead during normal operation, especially when the component architec-

ture changes.

As we note in the discussion of the Operational Overhead Creep force, any Solution to

the transitional turbulence reduction Problem for .NET GUIs likely adds overhead to

the normal processing of events. This overhead may be especially significant when the

solution must adapt to changes in the GUI’s structure. A solution should minimize

this operational overhead.

Code Cluttering : An application must be adapted to use the mechanisms implementing

the solution. Modifying the application often complicates its design, implementation,

testing, or use.

As we note in the discussion of the Code Cluttering force, any Solution to the tran-

sitional turbulence reduction Problem for .NET GUIs likely makes the GUI programs

more complex and, hence, more costly to design, implement, test, and maintain. The

added software mechanisms should be kept lightweight.

5.7.6 Summary

In this section, we have shown that the Dynamically Coalescing Reactive

Chains pattern is applicable to .NET-based GUI applications and that the pattern can guide

the development of a solution to the transitional turbulence reduction problem. Of course,

as we discuss in Section 5.6, additional research can help us refine the pattern description.

146



5.8 Conclusion

Transitional turbulence is a period of chaotic or unreliable variation in the state of

a software system that results from changes in the system’s interconnected components.

During these periods of instability, an external observer of the system’s state may “see”

erroneous results. This is a problem that can affect visual user interfaces such as those in

virtual and augmented reality applications and in desktop or Web GUIs.

Guided by the development of the applications in Chapters 3 and 4, we formulated

the Dynamically Coalescing Reactive Chains design pattern to answer the research

question:

How can we codify the transitional turbulence mitigation approach taken in Chap-

ters 3 and 4 as a general, technology-independent design pattern?

We seek to write this pattern to document our approach and enable others to apply it in

their own work.

To answer the research question, we pursued a research approach with three phases:

1. We explored the conceptual background on design patterns and their development and

adopted the pattern writer’s path documented by Wellhausen and Fiesser (2011) to

discover the elements of the new pattern in a stepwise fashion. We applied the pattern-

writing patterns of Meszaros and Doble (1998) and Harrison (1999, 2006) to refine the

new pattern.

2. We analyzed the applications presented in Chapters 3 and 4 to identify and write

suitable descriptions for the new pattern’s Context, Problem, Forces, and Consequences

elements. We then documented a technology-independent Solution that balances the

Forces to solve the Problem and establish the desired Consequences. We selected the

Name Dynamically Coalescing Reactive Chains (DCRC) for the new pattern.
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3. To demonstrate the effectiveness of the DCRC pattern for mitigating transitional

turbulence, we applied the pattern to a .NET-based dynamic GUI application (similar

to that in the Chapter 3 case study). We showed that the pattern is applicable to

this application and can guide us to derive a realistic solution (similar to the one in

Chapter 3).

This chapter both presents the design pattern and records the systematic process we

used to write it. It lays the foundation for further research on transitional turbulence and

related software architecture issues. We found that this work required that we think deeply

about the applications and our process for developing them. As a result, we were able to

refine the original applications themselves.

Overall, we are pleased with the results of the research reported in Chapters 3, 4,

and 5. The first two chapters reported how we developed applications on different tech-

nologies that successfully mitigated transitional turbulence. The third chapter captured this

knowledge in a more technology-independent way—a way that can guide others to apply the

“same” approach and be successful in mitigating transitional turbulence in other implicit

invocation applications.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Introduction

In this chapter, we summarize the accomplishments of the research reported in this

dissertation and explore possible future research.

6.2 Conclusion

In Chapter 1, we define the following overall research question:

Can we mitigate the transitional turbulence in an implicit invocation-based sys-

tems by applying a technology-independent formal description such as a design

pattern created by highlighting common aspects of similar applications?

To answer the overall research question, we organized our research in three parts:

• In Chapter 3 and Marum et al. (2020a), we investigated the transitional turbulence

problem for dynamic, .NET-based GUI applications for the desktop and Web. We

designed, implemented, and tested an augmented application that successfully mit-

igated transitional turbulence in this context. It does so by optimizing the .NET

event-handling mechanisms. Our experimental tests indicated that our augmented ap-

plications performed better than the unmodified .NET applications and similar appli-

cations implemented using the reactive libraries Rx.NET (Malawski, 2016) and Sodium

(Blackheath and Jones, 2016).

This research result is novel, significant, and potentially useful by itself. It yielded a

publication (Marum et al., 2020a). It also contributed to answering the overall research

question.
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• In Chapter 4 and Marum et al. (2019, 2020c), we investigated the transitional turbu-

lence problem for virtual and augmented reality applications using the Unity3D game

engine (Unity Technologies, 2019). We chose this environment because Unity3D is

a low-cost platform commonly used in virtual and augmented reality research. We

designed, implemented, and tested an augmented application that successfully miti-

gated transitional turbulence in this context. It does so by optimizing the Unity3D

event-handling mechanisms. Our experimental tests indicated that our augmented

applications performed better than the unmodified Unity3D applications and similar

applications implemented using the reactive library UniRx (Kawai, 2014).

As above, this research result is novel, significant, and potentially useful by itself. It

yielded two publications (Marum et al., 2019, 2020c). It also contributed to answering

the overall research question.

• Encouraged by the success of the previous two parts of this research, in Chapter 5,

we sought to unify and generalize the approach. We focused on a type of system

characterized by the implicit invocation architectural pattern (Shaw, 1996), which the

applications above exhibited.

We decided to document the general approach using a design pattern (Buschmann

et al., 1996), a well-accepted technique in the software architecture community. We

organized our work using a writer’s path adapted from the helpful Wellhausen and

Fiesser (2011) tutorial and applied patterns from the published pattern languages for

pattern writing (Harrison, 1999, 2006; Meszaros and Doble, 1998). We recorded our

steps along the path as well as presenting the new pattern Dynamically Coalesc-

ing Reactive Chains (DCRC). To demonstrate the effectiveness of the pattern for

mitigating transitional turbulence, we applied the pattern to a .NET-based dynamic

GUI application (similar to that in the Chapter 3 case study). We showed that the

pattern is applicable to this application and can guide us to derive a realistic solution
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(similar to the one in Chapter 3).

This research result is also novel and significant. The systematic recording of our

development process is also interesting and potentially useful for others developing

design patterns. We are confident that future work will show that the pattern is useful

for a wide range of problems. Combined with the two previous results, this part shows

that the answer to the research question is “Yes”.

Overall, we are pleased with the results of the research implementations reported in

Chapters 3 and 4 and the design pattern description in Chapter 5. The first two chapters

reported how we developed applications on different technologies that successfully mitigated

transitional turbulence. In both, we reported improvements in performance and accuracy.

The third chapter captured this knowledge in a more general, technology-independent man-

ner using a design pattern. The pattern can guide others to apply the same approach to

different but related applications and technologies. We believe that the result can be simi-

larly successful in mitigating transitional turbulence in other implicit invocation applications.

We showed that the pattern is applicable to an implicit invocation-based application and

that it can guide us to derive a realistic solution to a given problem.

6.3 Future Work

In this dissertation research project, we have investigated the problem of transitional

turbulence and related issues affecting user interface applications. We devised a novel ap-

proach to mitigate transitional turbulence and incorporated it into two case studies. We

also generalized the approach and documented it as a design pattern. However, like most

research efforts, new questions arise from the process of answering the old ones. In this

section, we identify several issues that we, or others, can explore in future research.

Although we have published papers on the research reported in Chapter 3 (Marum

et al., 2020a) and Chapter 4 (Marum et al., 2019, 2020c), we have not yet published the

results of the research reported in Chapter 5. In the future months, we expect to write
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papers based on the design pattern research and submit them for publication. The possible

topics and venues include:

• the DCRC pattern itself (e.g., in a journal or at a premier patterns conference such as

Pattern Languages of Programming (PLoP)).

• reflections on the process of developing the DCRC pattern (e.g., in a journal such as IET

Software or The Art, Science, and Engineering of Programming (<Programming>))

We note that PLoP, the premier venue in the software patterns community, and similar

conferences around the world (e.g., EuroPLoP, AsianPLop) have unusual formats. As we

discussed in Section 5.6, they are based on the practice of shepherding (Harrison, 1999,

2006). Accepted pattern submissions are assigned to an experienced pattern writer—called

a shepherd—who gives feedback to the pattern author and works with the author to refine

the pattern description iteratively. Once sufficiently developed, the pattern description is

published by the conference.

In Chapter 5 we defined the Dynamically Coalescing Reactive Chains (DCRC)

design pattern. We wrote the pattern to be relatively independent of any programming plat-

form or specific application. However, to keep the dissertation research within a reasonable

scope, we limited our practical development work to .NET-based GUIs and Unity3D VR/AR

applications. The Unity3D game engine itself runs on top of .NET, so the range of base tech-

nologies and kinds of applications explored so far are small. Thus, in the future, other related

applications and platforms should be explored. This should enable the pattern to be refined.

It may also enable us to explore the limitations of our approach; that is, where does the

approach fail to mitigate transitional turbulence?

We have identified the following related application areas to explore:

• interactive data visualization applications

• game applications involving nonplayer characters and robots
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• task scheduling applications

We have also identified the following related technologies to explore:

• the Java language with a user interface package such as JavaFX (Chin et al., 2019)

• the Python 3 language with a user interface package such as PyQt6 (Riverbank Com-

puting, 2021)

• the CryEngine Entity-Component-System (ECS) game engine (Berns et al., 2019; Cry-

Tek, 2021; Raffaillac and Huot, 2019) using the Lua and C++ languages.

Depending on the outcomes of the research above, we can also revisit the design pat-

tern itself. As we noted in Section 5.6, we can seek to evolve the DCRC pattern into a whole

pattern language (Buschmann et al., 2007), define more specific idioms for various tech-

nologies or application areas, or develop a formal model for the architectures and processes

associated with the DCRC pattern.
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APPENDIX A

FINAL VERSION OF DCRC DESIGN PATTERN

A.1 Pattern Name

Dynamically Coalescing Reactive Chains

A.2 Context

We have an application constructed according to the Implicit Invocation archi-

tectural pattern (Shaw, 1996), assuming non-deterministic but fair handling of events. Fur-

thermore, it has the following characteristics:

• The application’s component architecture may change during normal operation.

• The application organizes the components into a hierarchical structure. This struc-

ture may change dynamically during the application’s normal operation as a result of

external stimuli or the actions of components.

• The application presents some aspects of its state that can be observed from outside

the system periodically. The timing of this presentation is not under the control of the

application.
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• Because of the asynchronous nature of the application’s operation, the externally ob-

servable presentation may exhibit periods of transitional turbulence. By transitional

turbulence, we mean a period of chaotic or unreliable variation in the application’s

state that can result from one or more changes to the application’s interconnected

components. It can result in an externally observable state that does not accurately

represent the expected result.

• Each component is an information-hiding module with a well-defined interface. The

only way to change or access its state explicitly is by calling one of its accessor or

mutator procedures (e.g., properties in some object-oriented languages).

• The application supports reflection capabilities. That is, application-level code can

examine the application’s features (such as its components, events, event handlers,

and hierarchical structure) at runtime and extract metadata (such as names, types,

and the type signatures of the procedures in component interfaces).

Figure A.1 depicts the implicit invocation architecture, which describes the basic

nature of applications to which this pattern can be applied.

A.3 Problem

We want to eliminate or reduce the length of the periods of transitional turbulence

during which the external presentation does not accurately reflect the state of the application.

We need to do this without sacrificing performance. The goal is to better satisfy observers’

expectations by increasing the accuracy of the external presentation.

A.4 Forces

Runtime Reconfiguration: We want to adapt to changes in an application’s component ar-

chitecture during normal operation.
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Figure A.1. Abstract definition of a implicit invocation-based system.
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Transitional Turbulence Reduction: We want to decrease the transitional turbulence in the

application’s execution to better satisfy the observers’ expectations.

Startup Cost Inflation: We want to avoid adding significant startup or shutdown costs.

Operational Overhead Creep: We want to avoid adding significant processing overhead dur-

ing the application’s normal operation.

Code Cluttering: We want to avoid significantly complicating the application’s design, im-

plementation, testing, and use.

A.5 Solution

A.5.1 Summary

A solution encodes the complex relationships among the application’s components in

a dependency graph and then uses the graph to order the updates of the components without

violating the dependency constraints. The goal is to reorder the updates of the components

so that the new order reduces transitional turbulence without degrading the performance of

the system.

A.5.2 Definitions

What do we mean by a “dependency graph” in this Context?

• If the execution of a component C can directly affect a subsequent execution of a

component D in any way, then D depends on C.

For example, C might trigger an event for which D listens, change aspects of its state

that D accesses, directly call one of D’s mutator procedures, or create or modify com-

ponent D.

• A dependency graph is a digraph formed by placing the components at the nodes and

adding an edge from one node to another if the corresponding components have a
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Figure A.2. The dependency graph.

depends-on relationship. Figure A.2 shows a dependency graph and the evaluation

order as it is inferred from the dependency relationships between the nodes.

To apply the DCRC pattern, we are primarily interested in recording the dependen-

cies related to the implicit invocations—between components that listen for an event and

those that trigger the event. Of course, being able to record other kinds of dependencies

may also be helpful. Figure A.2 shows a simple dependency graph, the grey area depicts a

theoretical dependency relation between multiple objects.

A.5.3 Augmenting the Application

To apply the DCRC pattern to an application that satisfies the Context, we augment

the application with appropriate software mechanisms.

These mechanisms may include some combination of libraries, frameworks, tools, and

design and programming techniques. The various mechanisms should be lightweight. That is,

they should execute efficiently and should not require extensive modifications of the existing
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Figure A.3. The characteristics of the abstracted augmentation.

application. The “software mechanisms” needed and the meaning of “lightweight” depend

upon the application’s specific implementation technologies and performance requirements.

For applications that satisfy the Context, Figure A.3 shows how, by using this pattern, we

can augment the application’s event-handling mechanisms to solve the Problem.

The solution involves three processes: analyzing the application to identify how to

add the mechanisms, developing the mechanisms, and incorporating the mechanisms into

the application’s operation.

1. In the augmentation analysis process, the solution’s developer must:

(a) Examine the hierarchical structure to identify how a program can iterate through

the components (i.e., accessing each component exactly once).

(b) Examine the design and implementation of the components and the features of the
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implementation language to identify how a program can extract the dependency

relationships among the components at runtime.

This may involve use of the components’ existing features or the implementation

language’s reflection capabilities. If sufficient capabilities do not exist, we can

design lightweight modifications that implement sufficient application-specific ca-

pabilities.

(c) Examine the components and events to determine which component relationships

to include in the dependency graph and which to exclude. To reduce transitional

turbulence, the augmented application program can manipulate the components

and relationships included but cannot manipulate those excluded.

Generally speaking, we include the component relationships arising from the ap-

plication’s custom code (which we can modify if needed) and exclude those in the

supporting framework (which we cannot modify). We may also want to exclude

any component relationship if that relationship represents an expensive compu-

tation or arbitrary delay.

2. In the augmentation development process, the solution developer must:

(a) Design and implement a lightweight runtime mechanism that enables the program

to differentiate between the components that are to be included in the dependency

graph and those that are not.

This may involve features already present in the application (e.g., types, value

of some property, metadata) or may involve modifying the application to add

appropriate features. For example, in an object-oriented system in which the

components are objects, we could modify the included components to implement

a “marker interface” that can can be checked by reflection.

(b) Design and implement a lightweight runtime mechanism that enables the program

to detect whether the component architecture or the dependencies among the
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Figure A.4. Runtime reconfiguration capability of our augmentation.

components have changed since the previous check (or since the beginning of

operation).

In this Context, we assume that a change to the hierarchical structure holding the

components likely means a change to the component architecture. The figure A.4

depicts how the final result of the overall execution of all components still yield

the accurate result even after a modification.

(c) Design and implement lightweight mechanisms to construct the dependency graph

initially and to reconstruct it when needed.

To build a dependency graph, the program can traverse the hierarchical struc-

ture (e.g., do a breadth-first traversal of the Document Object Model), placing

each component at a node and adding edges to other nodes according to the

depends-on relationships between components. However, it must prune the graph

appropriately to remove any cycles.

3. In the augmentation incorporation process, the solution developer must modify

the application’s operation in the following ways:

(a) The application must construct the dependency graph at or before startup. (The

left side of Figure A.3 illustrates this augmentation.)

(b) When some component C included in the dependency graph signals an event

E, the application must intercept E and directly call the procedures associated
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with event E on all listening components as recorded in the dependency graph.

Then it must recursively apply the process to all events signalled by the listening

components. It continues this as long as there are dependencies indicated in

the graph (which cannot have cycles). This process dynamically coalesces the

processing of chains of events into what is processed as one “large-grained” event.

(The upper half of Figure A.3 illustrates this augmentation.)

The meaning of “intercept” depends upon the application’s specific implementa-

tion technologies.

(c) After the processing of each “large-grained” event in the previous step, the appli-

cation must check whether the application’s component architecture has changed

(e.g., the addition, modification, or deletion of any component in the hierarchical

structure) or the dependencies among components have changed. If so, then it

must update the dependency graph appropriately to reflect the new component

architecture.

A.5.4 Balancing the Forces

In the Solution described above, we handle all the identified Forces. How do we

balance the various Forces to achieve this Solution?

• Transitional Turbulence Reduction.

For a state change in any component, the augmented application must propagate the

effects to all its directly or indirectly dependent components without the delays and

nondeterminism introduced by the normal event-handling system—as if all were part

of the processing of one large-grained event. This can decrease latency and increase

accuracy (i.e., decrease the number of errors).

• Runtime Reconfiguration.
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Frequently during the normal operation of the application, the augmented application

checks whether its component architecture has changed. If it detects a change, it then

reconstructs the dependency graph to reflect the new architecture. The extra costs

incurred in reconstructing the dependency graph must not itself worsen the solution’s

overall effect on the latency and accuracy.

Changes to an application’s component architecture during normal operation can in-

crease latency and decrease accuracy. However, a good solution must dynamically

adapt to such changes and seek to mitigate the effects on latency and accuracy.

• Startup Cost Inflation.

When applying the pattern, developers should seek to keep the cost of initially con-

structing the dependency graph low. The developers should carefully select the compo-

nents to include in the analysis and use efficient methods for determining dependency

relationships and constructing the graph.

The augmented application likely incurs additional processing overhead at startup and

shutdown. In particular, the extra costs for constructing the initial dependency graph

should be small in proportion to the potential accuracy and performance gain in an

application that runs sufficiently long.

• Operational Overhead Creep.

The augmented application likely incurs additional processing overhead during normal

operation, especially when the component architecture changes. In particular, the

extra costs for checking for changes in the component architecture and reconstructing

the dependency graph should be small in proportion to the potential accuracy and

performance gain in an application that runs sufficiently long. In cases in which the

component architecture changes infrequently, the augmented application should incur

minimal costs.

172



• Code Cluttering.

To implement a solution, the developer must augment the existing application by in-

corporating a set of software mechanisms as described above. Unfortunately, modifying

the application often complicates its design, implementation, testing and use.

However, in a good design and implementation of the solution’s new software mecha-

nisms, it should be possible to readily augment the existing solution. Thus, the new

software mechanisms should be designed, implemented, and documented carefully so

that the solution can work well with typical application designs.

For example, for a typical GUI application, it should be possible to implement the

solution approach as a software framework with wrapper classes for the controls and

a library implementing the algorithms for constructing/reconstructing the dependency

graph and using it to coalesce chains into “large-grained” events.

A.6 Consequences

A.6.1 Benefits

• Runtime Configuration: A solution dynamically adapts to changes in an application’s

component architecture during normal operation.

• Transitional Turbulence Reduction: A solution coalesces sets of dependent internal

events into “large-grained” events such that the handling of a large-grained event causes

the same overall state change as the corresponding set. This can decrease latency and

increase accuracy (i.e., decrease the number of errors).

• Code Cluttering: An application can be readily adapted to use the mechanisms imple-

menting the solution.

A.6.2 Liabilities

• Runtime Reconfiguration: Changes to an application’s component architecture during

normal operation can increase latency and decrease accuracy.
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• Startup Cost Inflation: An implementation of a solution often causes additional pro-

cessing overhead at startup and shutdown of the application.

• Operational Overhead Creep: An implementation of a solution often causes additional

processing overhead during normal operation, especially when the component archi-

tecture changes.

• Code Cluttering: An application must be adapted to use the mechanisms implementing

the solution. Modifying the application often complicates its design, implementation,

testing, and use.
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